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Abstract: Powders and their mixtures are elemental for many industries (e.g., food, pharmaceutical,
mining, agricultural, and chemical). The properties of the manufactured products are often directly
linked to the particle properties (e.g., particle size and shape distribution) of the utilized powder
mixtures. The most straightforward approach to acquire information concerning these particle
properties is image capturing. However, the analysis of the resulting images often requires manual
labor and is therefore time-consuming and costly. Therefore, the work at hand evaluates the suitability
of Mask R-CNN—one of the best-known deep learning architectures for object detection—for the
fully automated image-based analysis of particle mixtures, by comparing it to a conventional, i.e., not
machine learning-based, image analysis method, as well as the results of a trifold manual analysis.
To avoid the need of a laborious manual annotation, the training data required by Mask R-CNN are
produced via image synthesis. As an example for an industrially relevant particle mixture, endoscopic
images from a fluid catalytic cracking reactor are used as a test case for the evaluation of the tested
methods. According to the results of the evaluation, Mask R-CNN is a well-suited method for the
fully automatic image-based analysis of particle mixtures. It allows for the detection and classification
of particles with an accuracy of 42.7% for the utilized data, as well as the characterization of the
particle shape. Also, it enables the measurement of the mixture component particle size distributions
with errors (relative to the manual reference) as low as −2± 5 for the geometric mean diameter and
−6± 5% for the geometric standard deviation of the dark particle class of the utilized data, as well
as −8± 4% for the geometric mean diameter and −6± 2% for the geometric standard deviation of
the light particle class of the utilized data. Source code, as well as training, validation, and test data
publicly available.

Keywords: imaging particle analysis; fluid catalytic cracking; automatic particle mixture analysis;
Mask R-CNN; image synthesis; Hough transform

1. Introduction

Powders are crucial for many branches of modern industry. A prominent example is
the chemical industry, where approximately 60 % of the products are powders themselves
and another 20 % require powders during their production (in Europe) [1]. Apart from the
chemical industry, powders and especially powder mixtures are particularly important for
the food, pharmaceutical, mining, and agricultural industries [2].

A prominent example for the relevance of particle mixtures in the chemical industry is
fluid catalytic cracking (FCC), which is considered to be the most important conversion
method from the realm of petrochemistry [3]. For more information about this process,
please refer to Sadeghbeigi [3]. FCC reactors are filled with catalyst particles, which are
progressively loaded with coke during the continuous cracking process. With increasing
load, the initially light particles become darker and less catalytically active over time, so
that fresh (or regenerated) and therefore light particles have to be (re)introduced to the
reactor. This results in a particle mixture featuring two classes: dark and light particles.

Eng 2022, 3, 78–98. https://doi.org/10.3390/eng3010007 https://www.mdpi.com/journal/eng

https://doi.org/10.3390/eng3010007
https://doi.org/10.3390/eng3010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/eng
https://www.mdpi.com
https://orcid.org/0000-0001-8992-7205
https://orcid.org/0000-0001-5008-8133
https://doi.org/10.3390/eng3010007
https://www.mdpi.com/journal/eng
https://www.mdpi.com/article/10.3390/eng3010007?type=check_update&version=1


Eng 2022, 3 79

Besides the mixing ratio, the particle size distributions (PSDs) and characteristic
particle shapes of the mixture fractions play important roles for the properties of particle
mixtures [4,5]. In case of FCC, they are for instance elemental for the calculation of the
degree of fouling of the utilized catalyst.

The most straightforward way to attain information about the aforementioned proper-
ties of particle mixtures is image analysis. Hence, there were numerous proposals for the
(semi-) automatic image-based analysis of particle mixtures. The most basic approaches
do not consider individual particles, but rather analyze images as a whole, based on their
histograms. Therefore, they are limited to the analysis of mixture homogeneity [6,7] or
constituent concentrations [8] and cannot be used to retrieve information concerning the
PSDs or characteristic particle shapes. More advanced methods (e.g., [9]) allow for the mea-
surement of the PSDs and particle shape, yet they are semiautomatic and therefore require
large amounts of manual interaction. The most advanced methods for the fully automated
image-based analysis of PSDs utilize convolutional neural networks (CNNs) [10–12] and
have achieved superior accuracies with respect to the PSD measurement of single-class
particle systems. In principle, the utilized methods are capable of multiclass object detec-
tion, as was shown numerous times for everyday objects (e.g., [13]). However, until now,
this was only demonstrated once, for particle images with low image coverages [14], com-
pared to the dense images that are typically encountered in-situ, in the context of chemical
applications such as FCC plants (see Figure 1a).

(a) Real image (b) Synthetic image

Figure 1. Example of a real image (a) used for testing and a synthetic image (b) used for training and
validation of proposed method.

2. Data

The real images (see Figure 1a), which motivated this publication and were used as
test data (see Section 2.2) for the proposed method, were attained using an endoscopic
camera (SOPAT Pl Mesoscopic Probe [15]), situated in the catalyst cycle of an FCC plant.
A specialty of the proposed method is the use of synthetic training and validation data (see
Figure 1b, Sections 2.1 and 3.1.2), to avoid the laborious manual annotation of the large
amounts of data, which are usually required for the training of CNNs.

2.1. Training and Validation Data

While training data are directly used for the training—i.e., the optimization of the
weights—of the utilized neural networks, validation data are only used to evaluate the
performance of said networks during the training. It was therefore at most an indirect
influence on the network weights, e.g., by stopping the training as soon as the validation



Eng 2022, 3 80

performance ceases to improve (early stopping, see also Section 3.1.1). For the studies at
hand, the training and validation data sets consisted of 400 synthetic images (featuring
107,930 dark and 13,314 light particles) and 20 synthetic images (featuring 5353 dark and 648
light particles), respectively. Increasing the number of synthetic training images to 800 did
not yield any significant improvement. For details concerning the PSD properties of the
synthetic training and validation images, please refer to Section 3.1.2.

2.2. Test Data

The test data are never used during training (not even indirectly) but solely to judge
the performance of the proposed method and compare it to that of the fully-automated
benchmark method (see Section 3.2.2). For the publication at hand, the test data consisted
of a set of 12 real images, accompanied by the results of a trifold manual annotation,
i.e., carried out by three independent operators (see Figure 2a–c, Section 3.2.1).

(a) Manual reference 1 (b) Manual reference 2

(c) Manual reference 3 (d) Manual reference (merged)

Figure 2. Exemplary annotations of manual reference measurements (a–c), as well as merged manual
reference (d).

2.2.1. Average Particle Size Distribution

Since even the manual annotation is not perfect, the results from the three different
operators vary slightly. Figure 3 and Table 1 show comparisons of the resulting PSDs.
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Light particles (Figure 3b) are easier to annotate for human operators than dark particles
(Figure 3a). Since dark particles are much more frequent and also smaller, they have a high
chance of being surrounded by other dark particles, which makes them difficult to locate,
due to the low contrast. Conversely, light particles tend to be larger and less frequent, so
that they are more often surrounded by dark particles than other light particles, which
results in a higher contrast and therefore an easier annotation process.
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(a) dark particles
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(b) light particles

Figure 3. Comparisons of particle size distributions resulting from manual reference measurements,
each for dark (a) and light (b) particles. Shaded areas represent ±σ.

Table 1. Particle size distribution properties (geometric mean diameter dg, geometric standard
deviation σg, and number of particles N) of dark and light populations of three manual references
and averaged manual reference (mean ± standard deviation of dg and σg, respectively).

Dark Particles Light Particles
dg σg N dg σg N

Manual reference 1 54.0 px 1.63 1525 72.0 px 1.54 325
Manual reference 2 53.0 px 1.64 1106 68.5 px 1.61 335
Manual reference 3 58.7 px 1.48 864 65.7 px 1.55 328

Manual reference (avg.) 55.2± 2.5 px 1.58± 0.08 – 68.7± 2.6 px 1.57± 0.03 –

To compensate for the uncertainty that is introduced by the manual annotation,
the manual reference PSDs for both dark and light particles were averaged to form the
PSDs, used as benchmarks for the tested particle mixture analysis methods (see Figure 3
and Table 1). The averaging was carried out as follows for each of the involved particle
classes (dark and light):

1. Fitting of the raw data of each of the manual references via Gaussian kernel density
estimations (KDEs) in the log-normal space, using Scott’s Rule [16] to select a suitable
bandwidth for the estimation. For an elaboration upon this method, please refer to
Scott [16].

2. Interpolation of the three resulting KDEs at 200 linearly spaced support values, be-
tween the minimum and maximum observed area equivalent diameters (see
Figure 3a,b, dashed lines).

3. Averaging of the probability densities acquired by the interpolation, to yield means
(see Figure 3a,b, solid lines) and standard deviations (see Figure 3a,b, shaded areas)
for each of the support values.

4. Calculation of the means and standard deviations of the characteristic properties
(geometric mean diameter dg and geometric standard deviation σg) of the reference
PSDs (see Table 1).
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2.2.2. Merged Annotations

While the evaluation of the PSD measurement quality of a given method is ensemble-
based, the evaluation of the object detection quality is instance-based. In computer vision,
an instance refers to an object of a certain class, e.g., a particle. This means that missing
or redundant particles affect the latter significantly more than the former. To attain an
object detection reference as complete as possible, the three manual references were merged
into a single reference. The merging was carried out based on a voting system, where
only instances that are present in at least two of the three manual reference annotations
(see Figure 2a–c) were carried over to the merged annotation (see Figure 2d). Identical
instances in the three manual annotations were identified based on their intersection over
union (IoU), using an IoU threshold of 50 %, which was chosen in line with the matching
criterion used by the prominent Pascal VOC [17] and COCO [18] object detection challenges.
From the sets of identical instances resulting from the voting process, only a single instance
per set was chosen randomly for the merged annotation to avoid duplicates.

Intersection over Union

The intersection over union (IoU, also referred to as Jaccard or Tanimoto index) is a
common metric for object detection tasks. It is used to measure the similarity of two objects,
taking into account not only their shape and size, but also their position (see Figure 4).
It can therefore be used to compare a prediction of an algorithm to the so-called ground
truth, which in machine learning, refers to the best available data to test a prediction of an
algorithm (i.e. the ground truth is not necessarily perfect itself).

Union

Particle BParticle A

Intersection

IoU=50 %

Figure 4. Illustration of intersection over union (IoU) metric.

As the name implies, it is defined as the ratio of the area of intersection and the area of
the union of two objects A and B:

IoU(A, B) =
|A ∩ B|
|A ∪ B| (1)

3. Methods

Apart from the proposed method itself (see Section 3.1) this section also elaborates
upon the methods used to benchmark its performance (see Section 3.2).

3.1. Proposed Method

The proposed method consists of two parts: Mask R-CNN (see Section 3.1.1) and
image synthesis (see Section 3.1.2).

Mask R-CNN [13], is a well-established region-based convolutional neural network
(R-CNN) architecture for object detection. As such, it requires large amounts of already
annotated images, to be used for its supervised training process. To avoid the laborious
creation of the training data via manual annotation, we propose the use of image synthesis.
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3.1.1. Mask R-CNN

The following section will give a brief overview of the working principles of the Mask
R-CNN architecture, which consists of six stages (see Figure 5; For a more detailed explana-
tion, please refer to He et al. [13].): feature extraction, region of interest (ROI) proposal/
extraction, bounding box regression, instance classification and instance segmentation.

Feature extraction

ROI proposal

ROI extraction

Bounding box

regression

Instance  

classification

Instance

segmentation

Input

image

Feature

map

Regions of

interest (ROI)

ROI feature

maps

Detection results 

Bounding boxes 

Class labels 

Confidence scores 

Instance masks

light 

(99 %)

dark

(98 %)

dark 

(97 %)

Figure 5. Illustration of the Mask R-CNN architecture.
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During the feature extraction, the input image is fed to a large CNN (the backbone) to
extract the so-called feature map using image convolution (hence the name CNN). The uti-
lized convolution kernels are learned during the training, based on the supplied training
data. The feature extraction is a step-wise process. With each step, the lateral resolution
of the image is reduced in return for progressively more semantic, i.e., meaningful in the
context of the given task, information about each remaining pixel. As a result, the feature
map has not just two but three dimensions, where the third dimension holds semantic
information about each pixel, just as the third dimension of an RGB image holds semantic
information about the redness, greenness, and blueness of its pixels.

For the ROI proposal/extraction, a fixed number of potential ROIs is generated,
without taking the feature map into consideration. Then, a small neural network is used
to predict the objectness score of each potential ROI based on its content. Subsequently,
ROIs with a low score or a high overlap with higher-score ROIs are discarded, while the
remaining ROIs are extracted, by simply cutting them out of the feature map. The result
is a set of instance feature maps, i.e., one feature map for each object in the input image.
Ultimately, the set of instance feature maps is resized to a uniform size using ROI alignment
and passed to each of the downstream network branches. The details of ROI alignment
are beyond the scope of this publication. For an in-depth explanation, please refer to
He et al. [13].

The goal of the bounding box regression (regression: prediction of continuous values)
is to predict the coordinates and dimensions of the bounding boxes of the objects in the
ROIs, by means of a small fully-connected neural network. This step is necessary, since the
ROIs themselves correspond to the feature map, which has a very low spatial resolution,
rather than the high-resolution input image.

During the instance classification (classification: prediction of discrete values), a class
label for each of the objects in the ROIs is predicted by another small fully-connected neural
network, along with a confidence score. This step is crucial for the analysis of particle
mixtures. For the images used withing this publication, there are two classes: dark and light
particles.

The instance segmentation uses a small CNN, to upsample the low-resolution, high-
depth feature map associated with each ROI to a high-resolution, low-depth binary mask,
conversely to the downsampling carried out by the backbone during the feature extraction.
The resulting mask has the same size as the bounding box and each of its pixels is either
true, if the corresponding pixel of the ROI belongs to the object, or false if not.

Implementation Details

The implementation of Mask R-CNN used for this publication is available as part
of the self-implemented PADDLE (PArticle Detection via Deep LEarning; https://github
.com/maxfrei750/paddle; accessed date: 1 December 2021) toolbox, which makes use
of PYTHON and the following mentionable packages: (i) PYTORCH [19], TORCHVISION

[19] and PYTORCH LIGHTNING [20] for the construction and training of neural networks;
(ii) ALBUMENTATIONS [21] for image augmentation, which is an easy way to artificially
increase the size of a training data set by applying transformations to the input images (for
the studies at hand, vertical and horizontal flipping was applied to the training data, each
with a probability of 50 %); (iii) HYDRA [22] for the comfortable handling of configuration
files as well as (iv) WEIGHTS & BIASES [23] and TENSORBOARD [24] for experiment logging.

One of the great advantages of Mask R-CNN is that the backbone is easily interchange-
able to meet the needs of different applications. For this publication, the convolutional
blocks of the ResNet-50 network [25] were used as backbone. For an elaboration upon the
reasoning behind this design choice, please refer to Frei & Kruis [10]. Also, the maximum
number of detections per image was increased to 400, based on the maximum number of
instances in the synthetic training images (see Section 3.1.2).

Apart from the network architecture, the strategies used during the training process
are fundamental to its success. For the publication at hand, the main goal (apart from a

https://github.com/maxfrei750/paddle
https://github.com/maxfrei750/paddle
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good performance) of the training strategies was to avoid the need for time-consuming
optimization of hyperparameters (i.e., parameters of the utilized learning algorithm that
have to be specified manually and are not optimized by the learning algorithm itself,
e.g., learning rate, training duration, etc.). This was achieved with a combination of two
techniques: early stopping and learning rate scheduling. Both of these techniques are based on
the monitoring of a validation metric, to measure the performance of the neural network in
training, on a set of validation data. Early stopping automatically determines a suitable
training duration, by stopping the training as soon as the validation metric does not
improve over a certain amount of training epochs (20). Similarly, the utilized learning
rate scheduling automatically determines the optimum learning rate—which is the most
important hyperparameter [26]—by dropping the base learning rate (0.005) by a predefined
factor (10) if the validation metric does not improve over a certain amount of training
epochs (10). As validation metric, the mean average precision on the set of validation
images is being used. For a comprehensive elaboration upon this metric, please refer to
Frei & Kruis [11].

3.1.2. Image Synthesis

The synthetic data, used for the training and validation of the utilized Mask R-CNN,
were created using the self-implemented SYNTHPIC (SYNTHetic Particle Image Creator; ht
tps://github.com/maxfrei750/synthPIC4Python; accessed date: 1 December 2021) toolbox,
which is based on BLENDER [27] controlled by PYTHON [28]. While SYNTHPIC offers a
wide variety of tools to synthesize life-like particle images, only the features used for the
publication at hand shall briefly be elaborated upon.

Figure 6 illustrates the image synthesis procedure of a single synthetic image. The first
fundamental step of the image synthesis is the creation of geometry. Since the real data
feature a mixture of dark and light particles, the geometry creation is based on two particle
populations as well. Each population, in each image, consists of three components:

• A unique random PSD, represented by a geometric mean diameter dg (in pixels) and a
geometric standard deviation σg, both picked from a wide uniform distribution U of
plausible values:

dg ∼ U([50, 70]) (2)

σg ∼ U([1.3, 1.7]) (3)

• A number of particles N, which is picked from a uniform distribution U, with different
boundaries for dark and light particles, since in the real images, there are many more
dark than light particles:

Ndark ∼ U({250..350}) (4)

Nlight ∼ U({25..50}) (5)

The boundaries were chosen based on the resulting similarity of the synthetic images
to the real images used for the testing of the proposed method.

• A so-called particle primitive, which serves as prototype for the particles of the respec-
tive population. Each primitive features a certain base shape, a procedural (i.e., based
on randomizable parameters) deformation and a procedural texture (this is where
dark and light particles differ).

https://github.com/maxfrei750/synthPIC4Python
https://github.com/maxfrei750/synthPIC4Python
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Figure 6. Illustration of image synthesis procedure for a single image. U is a uniform distribution.
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After all particles for an image were created by duplicating the particle primitives
and resizing them according to the respective PSD, the particles are placed in the 3D
simulation space. The particles are placed randomly, however within the boundaries
of the 2D projection that is ultimately required to calculate the image. Due to the high
number of particles, the placement can result in intersecting particles. To relax these
intersections, and to create a dense particle ensemble that resembles the real images,
SYNTHPIC uses the built-in rigid body physics simulation of BLENDER, which pushes
objects apart, proportionally to their overlap, until they no longer intersect.

The second fundamental step of the image synthesis process is the rendering, which
makes use of BLENDERs built-in rendering engines, to produce a clean version (i.e., without
distortions) of the synthetic image and the corresponding particle masks. While it is
possible with SYNTHPIC, the masks do not account for occlusions, since initial experiments
showed that this deteriorated the performance of the proposed method.

The third and last fundamental step of the image synthesis is the compositing, which
takes the clean image and makes it more lifelike by adding distortions (e.g., blur) and
characteristic image features such as the very prominent aperture mask and the lens texture,
which are identical for each of the real images. While the former was extracted using a
graphics editor (GIMP [29]), the latter was attained by averaging the available real images
to extract the mean image.

The parameters of the image synthesis were chosen to subjectively match the style
and appearance of the real test data. Figure 1 depicts a comparison of a synthetic and a real
example image.

3.2. Benchmark Methods

There are two kinds of benchmarks for the proposed method: on the one hand, it needs
to be compared to the most accurate method for image-based particle mixture analysis
currently available, i.e., manual annotation, to test its accuracy. On the other hand, it
makes sense to compare the proposed method to another fully automated method for the
image-based analysis of particle mixtures to asses how it contributes to the goal of reliable
full automation.

3.2.1. Manual Analysis

While manual annotation is still the gold standard of image-based particle analysis
when it comes to accuracy, it is far from perfect. Especially for ambiguous images, e.g., due
to a low contrast and blur, annotation results can vary dramatically (see Figure 2). For the
images at hand, this is especially problematic for the dark particle class. To alleviate this
problem, the images used for the testing of the proposed method were analyzed not only
once, but a total of three times by two in-house operators and one external operator (see
also Section 2.2). While the two in-house operators used identical methods, the external
analysis was carried out with the default methods of the external party to achieve a truly
independent analysis.

Prior to the annotation, each image was preprocessed using the IMAGE-PRO PLUS

software [30], to enhance the image clarity and contrast (see Figure 7). The preprocessing
consisted of two steps: (i) A gamma correction with a factor of 1.7 and (ii) the application
of the HiGauss filter [31] with a size of 9× 9 and a strength of 10.

Manual references 1 and 2 (see Figure 2a,b) were created in-house using the popular
IMAGEJ software [32]. Each image was annotated in two separate passes, one for the dark
particles and one for the light particles, using the elliptical selection tool. Consequently,
the resulting annotations are all strictly elliptical or even circular. Manual reference 3
(see Figure 2c) was also created in two separate passes but by an external service special-
ized in imaging-particle analysis, using an annotation tool based on free-hand drawing.
Annotations can therefore have arbitrary shapes.
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(a) Original image (b) Preprocessed image

Figure 7. Example of a preprocessed image (b) compared to corresponding original image (a).

3.2.2. Hough Transform

As an example of a conventional, i.e., not machine learning-based, fully automated
method for the image-based analysis of particle mixtures, a workflow based on mean
thresholding, histogram equalization [33,34], Canny edge detection [35], and the Hough
transform (HT) [36] was implemented using PYTHON [28] with the SKIMAGE package [37],
to be used as a benchmark for the proposed method.

The principal steps of the conventional workflow (see Figure 8) are as follows.

Aperture Mask Extraction

The utilized images all feature an identical aperture mask. Since the dark regions of
this mask do not hold any meaningful information, it is sensible to exclude them from the
image analysis. The extraction of the aperture mask was carried out manually, using a
graphics editor (GIMP [29]).

Mean Thresholding with Mask

To discriminate light and dark particles, the original image is binarized using mean
thresholding, resulting in a light particle mask, where true pixels represent pixels belonging
to light particles and a dark particle mask, where true pixels represent pixels belonging to
dark particles. For the creation of the light particle mask, pixels with an intensity larger
than the mean intensity value of the original image pixels were set to true. Complementary,
for the creation of the dark particle mask, pixels with an intensity smaller or equal to
the mean intensity value of the original image pixels were set to true. In both cases,
pixels corresponding to false pixels in the aperture mask were not considered during the
calculation of the mean pixel intensity and were set to false themselves. From this point
on-wards, the workflow splits into a light and a dark particle route, both of which operate
identically but on different parts of the original image.
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Since the utilized automated binarization method plays a crucial role for the perfor-
mance of the conventional fully-automated benchmark method, its choice shall be briefly
elaborated upon.

Figure 9 depicts a comparison of the histograms of the pixel intensities of the images
of the test data set. Evidently, (i) all images feature quasi-identical histograms; and (ii) there
is just a single mode, i.e., the differentiation of dark and light particles based on the pixel
intensity is a challenging task.
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Figure 9. Comparison of histograms of pixel intensities of images of test data set.

To find an optimal automated binarization method, six different methods were tested:
the iterative self-organizing data analysis technique (ISODATA) [38], Li’s minimum cross
entropy method [39], mean thresholding, the minimum method [40], Otsu’s method [41]
and the triangle method [42]. Each of the methods was applied to the images of the
test set and the resulting thresholds were plotted in form of a box plot (see Figure 10).
Based on the results, the minimum method and the triangle method were disqualified,
since they yield abnormally high, respectively low thresholds and therefore unusable
binarization results. While the remaining methods generally produce similar thresholds,
only the mean thresholding method does not produce implausible outliers—since all
test images feature quasi-identical histograms (see Figure 9), they should also result in
quasi-identical thresholds—and was therefore used for the conventional fully-automated
benchmark method.
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Figure 10. Box plot of binarization thresholds for images of test data set, as calculated by ISO-
DATA [38], Li’s [39], mean thresholding, minimum [40], Otsu’s [41] and triangle [42] method, respec-
tively.

Histogram Equalization with Mask

Since the contrast of the original images is low, especially in the region of the dark
particles, histogram equalization [33,34] is applied in the areas covered by the light and
dark particle masks, respectively.
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Canny Edge Detection with Mask

The contrast enhanced dark and light particle images are processed using Canny edge
detection [35], so that only the edges of the respective particle class are extracted. Edges
outside of the corresponding particle mask are being ignored.

Circle Hough Transform with Mask

The dark and light particle edges resulting from the previous processing step are used to
carry out two separate circle Hough transforms [36], one for each particle class. To improve
the detection results for the respective particle class, circles that are primarily outside of the
corresponding particle mask are being removed.

4. Results

In this section, various aspects of the performance of the proposed method with
respect to both detection quality (see Section 4.1) and PSD analysis (see Section 4.2) will
be evaluated, by comparing its results to those of a manual analysis, as well as those of
a conventional fully automated method, based on the HT. For details concerning these
benchmark methods, please refer to Section 3.2.

The source code and model, as well as training, validation and test data, used for the
training of the proposed method and the generation of the results presented in this section
are available via the following link: https://github.com/maxfrei750/ParticleMixtureAna
lysis/releases/v1.0 (accessed date: 1 December 2021).

4.1. Detection Quality

Since the assessment of the detection quality is instance-based, the merged manual
reference (see Section 2.2.2) will be used as basis for the evaluation throughout this section.
To get a first, qualitative impression of the detection quality of the proposed method,
Figure 11 compares a random selection of example detections to the merged manual
reference, as well as the results of the HT.

Both the proposed method and the HT tend to overlook or misclassify some of the
particles (regardless of their class). Subjectively, the clustered detections of the proposed
method resemble the manual reference much closer than the more spread out, random-
looking detections of the HT. Interestingly, the proposed method sometimes produces
ambiguous classifications, where light particles are classified as light as well as dark.

https://github.com/maxfrei750/ParticleMixtureAnalysis/releases/v1.0
https://github.com/maxfrei750/ParticleMixtureAnalysis/releases/v1.0
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Figure 11. Randomly picked examples of the detection quality of the proposed method and the Hough transform, compared
to the merged manual reference.

Figure 11. Randomly picked examples of detection quality of proposed method and Hough transform,
compared to merged manual reference.

Classification

For object detection tasks, the evaluation of the classification capabilities of a method
is more complicated than for more basic tasks, such as image classification, since it requires
a positional matching of predictions and targets of each image.

For the studies at hand, the matching was carried out as follows: The predictions are
iterated in descending order of their confidence scores (see Section 3.1.1; for the HT, all
confidence scores are 100 %). Each prediction is matched with the ground truth instance
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that results in the highest IoU (see Section 2.2.2) and was not used in a previous match,
but only if IoU ≥ 50 %.

Additionally to the two original classes dark and light, this matching process introduces
a third class: the vacancy class. For example, a prediction without a matching ground truth
instance should have had the class vacancy. Likewise, if there is no matching prediction
for a given ground truth instance, the tested method passively made an incorrect virtual
prediction of class vacancy. For the HT, this is the only way to make a vacancy prediction.
In contrast, the proposed method can correctly predict the vacancy class via the confidence
score (see Section 3.1.1) that comes with every predicted instance. If the confidence score is
below 50 % (regardless of the originally predicted label), then the corresponding instance
can considered to belong to the vacancy class. However, this might give an unfair advantage
to the proposed method during the calculation of classification accuracies (see Equations (6)
and (7) and Table 2), if it produced a lot of correct vacancy predictions. Therefore, to level
the playing field, predictions of the proposed method with a confidence score below 50 %
were discarded, thereby artificially robbing it of the ability to make correct predictions of
class vacancy.

For a classification with three classes, there are nine possible outcomes for each in-
stance, which can be ordered in a so-called confusion matrix, which compares the predicted
class of an instance with the true class it was supposed to have. Figure 12 compares the
confusion matrices of the HT and the proposed method. The proposed method outperforms
the HT for the vacancy and dark classes by a large margin, while the latter performs slightly
better for the light particle class.
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Figure 12. Comparison of confusion matrices of Hough transform (a) and proposed method (b),
when applied to merged manual reference.

The overall accuracy ACC of a method can be calculated based on the true predictions
Tt = Xtp,[t=p] and the false predictions Ftp = Xtp,[t 6=p]

ACC =
∑t Tt

∑t Tt + ∑t,p Ftp
=

∑t Tt

∑t,p Xtp
, (6)

where Xtp is a prediction, while t and p are the true and predicted classes, respectively.
This means that the accuracy is equal to the number of correct predictions divided by the
total number of predictions.

Conceptually, the overall accuracy of a method for the given classification task is a
result of its capabilities to differentiate between (i) an object and a vacancy and (ii) dark and
light particles. It is therefore possible to attain more detailed insights concerning the object
vs. vacancy accuracy ACCobj.|vac. by joining the dark and light classes into a combined object
class:

ACCobj.|vac. =
∑t Tt + Flight,dark + Fdark,light

∑t,p Xtp
(7)
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Contrarily, it is possible to study the dark vs. light accuracy ACCdark|light by dropping the
vacancy class:

ACCdark|light =
Tdark + Tlight

Tdark + Tlight + Fdark + Flight
(8)

Table 2 compares the proposed method and the Hough transform, with respect to their
overall accuracy ACC, object vs. vacancy accuracy ACCobj.|vac. and dark vs. light accuracy
ACCdark|light.

Table 2. Comparison of proposed method and Hough transform, with respect to their overall accuracy
ACC, object vs. vacancy accuracy ACCobj.|vac. and dark vs. light accuracy ACCdark|light.

Hough Transform Proposed Method

ACC 13.0 % 42.7 %
ACCobj.|vac. 13.7 % 45.2 %
ACCdark|light 95.1 % 94.4 %

Both methods succeed at discriminating dark and light particles, provided that par-
ticles as such are identified successfully. However, the proposed method significantly
outperforms the HT with respect to the overall accuracy, since it features a much higher
accuracy with respect to the differentiation of objects and vacancies. The reason for its
better object detection capabilities is presumably the inherently more adaptive nature of
the proposed method, with respect to the initial feature extraction. While the HT relies on
rather static methods (see Section 3.2.2), whose parameters need to be tweaked manually
and can therefore never be optimal, the proposed method automatically custom-tailors the
feature extraction to the input data during the training process.

Still, the accuracy of the proposed method leaves room for future improvements.
Potential approaches are (i) improvements of the image synthesis to achieve more lifelike
training data, e.g., using image similarity metrics; and (i) supplementation of the synthetic
training data with real training data, attained by manually correcting erroneous detections
in the outputs of the proposed method in its current state.

4.2. Particle Size Distribution Analysis

The end use of the proposed method is the analysis of the PSDs of the different
fractions of a particle mixture, which is the direct result of its capabilities to identify and
label, as well as classify individual particles.

To calculate the PSD from a set of detection results for a certain class, the area equiva-
lent diameter of the resulting detection masks was calculated and a Gaussian KDE [16] was
carried out in the log-normal space, using Scott’s Rule [16] to select a suitable bandwidth
for the estimation. For the proposed method, each observation was weighted according to
its confidence score.

Figure 13 compares the PSDs that were obtained using the proposed method and the
HT with the manual reference annotations, for both dark and light particles. The proposed
method clearly outperforms the HT, for both classes and provides PSDs that resemble
the manual references more closely. The HT produces quasi-identical PSDs for the dark
and light particle fractions, while the proposed method is better at picking up the subtle
differences in the two particle ensembles that are apparent in the manual references. Nev-
ertheless, the proposed method still leaves room for improvements. Particularly striking
in this respect are the implausible peaks of the PSDs that the proposed method produces
at area equivalent diameters of dA ≈ 38 px and dA ≈ 54 px (for dark particles), as well as
dA ≈ 24 px and dA ≈ 60 px (for light particles). The examination of the exact reasons for
these artifacts is beyond the scope of this publication and will therefore be subject to future
investigations. However, it can be hypothesized that they are the consequence of aliasing
effects, resulting from discretizations within the architecture of the utilized CNN. Potential
candidates for such effects are the downsampling mechanisms (convolution and pooling)
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in the backbone (see Section 3.1.1), as well as the utilization of discrete bounding box sizes
(among them 32 px and 64 px) during the ROI proposal. Potential remedies could be the
use of alternative backbone architectures (e.g., transformer-based, i.e., non-convolutional),
or finer step sizes during the ROI proposal.
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Figure 13. Particle size distributions of dark (a) and light (b) particles, as predicted by Hough
transform and proposed method, compared to averaged manual reference, when being applied to
test set. Shaded areas represent ±σ.

To quantify the previous qualitative assessments of the PSD analysis, the geometric
mean diameter and geometric standard deviation of the measured PSDs were calculated for
the proposed method and the HT, for both classes (see Figure 13, legends). Subsequently,
the errors of the PSD properties of the tested methods were calculated, relative to the
average PSD properties of the manual references (see Section 2.2.1). Figure 14 depicts a
comparison of these relative errors. Overall, the proposed method features smaller relative
errors, which are even in the range of the uncertainty of the manual reference for the
dark particle class. Unlike human operators, both automated methods fare worse for light
particles than for dark particles. While these differences are within the range of uncertainty
for the proposed method, they are significant for the HT. Ergo, the proposed method not
only excels with respect to accuracy, but also interclass consistency, which may be of special
interest, depending on the application of the surveyed particle mixture.
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Figure 14. Relative errors of geometric mean diameter dg and geometric standard deviation σg of
particle size distributions of dark (a) and light (b) particles, as predicted by Hough transform and
proposed method, compared to averaged manual reference, when being applied to test set. Error
bars represent ±σ of averaged manual reference.
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5. Conclusions

This work made a progress toward the fully automated image-based analysis of dense
particle mixtures using Mask R-CNN, a prominent deep learning-based object detection
architecture, and image synthesis.

The proposed method was tested on a set of endoscopic images of particle mixtures
stemming from an FCC plant, and its results were compared to those of a conventional
benchmark method for the image-based analysis of particle mixtures based on the HT,
as well as a trifold manual analysis. While the benchmark method achieved only a low
detection/classification accuracy (13.0%) compared to that of the proposed method (42.7 %),
the latter still leaves room for improvement. On the one hand, the lifelikeness of the
synthetic training images still leaves much to be desired and can presumably be drastically
improved by the use of advanced generative methods, such as generative adversarial
networks (GANs). On the other hand, the feature extraction of the utilized Mask R-CNN
can be updated to use a more powerful architecture, e.g., replacing the utilized CNN by a
transformer network. Results from other fields of computer vision (e.g., classification) give
reason for hope that, in the long-term, a human or even super-human performance might
be feasible.

Nevertheless, even today, the proposed method already provides a usable precision
with respect to the measurement of mixture component PSDs, featuring errors (relative to
the manual reference) as low as ∆dg = −2± 5 % and ∆σg = −6± 5 % for the dark particle
class, as well as ∆dg = −8± 4 % and ∆σg = −6± 2 % for the light particle class.

It thereby significantly outperforms the HT-based benchmark method, which features
errors of ∆dg = −5± 5 % and ∆σg = −11± 5 % for the dark particle class, as well as
∆dg = −23± 4 % and ∆σg = −11± 2 % for the light particle class.

Remarkably, for the dark particle class, which is notoriously difficult to annotate even
for humans, the relative errors of the proposed method are already comparable to or even
smaller than the uncertainty of the human reference measurements.

All in all, the proposed method is a viable method for the image-based analysis of
dense particle mixtures.
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Abbreviations

Acronyms

CNN convolutional neural network
COCO common objects in context
FCC fluid catalytic cracking
GAN generative adversarial network
HT Hough transform
IoU intersection over union
ISODATA iterative self-organizing data analysis technique
KDE kernel density estimation
Pascal pattern analysis, statistical modeling and computational learning
PSD particle size distribution
R-CNN region-based convolutional neural network
RGB red, green, blue
ROI region of interest
VOC visual object classes

Symbols

ACC (overall) accuracy
ACCdark|light dark vs. light accuracy
ACCobj.|vac. object vs. vacancy accuracy
dA area equivalent diameter
∆dg percentage error of the geometric mean diameter
dg geometric mean diameter
∆σg percentage error of the geometric standard deviation
F false prediction
Ftp false prediction of class p for an instance of class t
Xtp prediction of class p for an instance of class t
IoU intersection over union
N number of particles
p predicted class
σ standard deviation
σg geometric standard deviation
T true prediction
t true class
Tt true prediction of class t
U uniform distribution
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