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Abstract: The traditional means of monitoring the health of industrial systems involves the use of
vibration and performance monitoring techniques amongst others. In these approaches, contact-type
sensors, such as accelerometer, proximity probe, pressure transducer and temperature transducer, are
installed on the machine to monitor its operational health parameters. However, these methods fall
short when additional sensors cannot be installed on the machine due to cost, space constraint or sensor
reliability concerns. On the other hand, the use of acoustic-based monitoring technique provides an
improved alternative, as acoustic sensors (e.g., microphones) can be implemented quickly and cheaply
in various scenarios and do not require physical contact with the machine. The collected acoustic
signals contain relevant operating health information about the machine; yet they can be sensitive to
background noise and changes in machine operating condition. These challenges are being addressed
from the industrial applicability perspective for acoustic-based machine condition monitoring. This
paper presents the development in methodology for acoustic-based fault diagnostic techniques and
highlights the challenges encountered when analyzing sound for machine condition monitoring.

Keywords: machine condition monitoring; anomalous sound detection; industrial sound analysis;
detection and classification of acoustic scenes and events

1. Introduction

Unplanned interruption of industrial processes can result in serious financial losses;
as such, it becomes of significant relevance to prevent unplanned shutdowns of machinery.
The monitoring and diagnosis of the current health state of the machine is crucial in
achieving this.

The conventional approach of machine health monitoring involves the use of vibra-
tion and other performance monitoring techniques. In these circumstances, sensors such
as accelerometer, proximity probe, pressure transducer and temperature transducer are
installed on the machine to monitor its health state. However, these methods are of an
intrusive nature, requiring physical modification of the machine for their installation. Al-
ternatively, the use of acoustic-based monitoring provides an improved approach which is
non-intrusive to the machine operation. Sound signals from a machine contains substantial
relevant health information; however, acoustic signals in an industrial environment can be
affected by background noise from neighbouring operating machineries; thus, posing a
challenge during industrial condition monitoring.

The analysis of sound has been successful in speech and music recognition, especially
for creating smart and interactive technologies. Within this context, there exist several large-
scale acoustic datasets such as Audio Set [1] and widely available pre-trained deep learning
models for audio event detection and classification such as: OpenL3 [2,3], PANNs [4]
and VGGish [5]. However, within the context of machine condition monitoring and fault
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diagnostics, these is a nascent problem for the detection and classification of acoustic scenes
and events [6–8].

This paper presents the development in methodology for acoustic-based diagnostic
techniques and explores the challenges encountered when analysing sound for machine
condition monitoring.

2. Methods—Acoustic-Based Machine Condition Monitoring
2.1. Detection of Anomalous Sound

The goal of anomalous sound detection is to determine if the sound produced by a
machine during operation typifies a normal or an abnormal operating state. The ability to
detect such automatically is fundamental to machine fault diagnostics using data driven
techniques. However, the challenge with this task is that sound produced from anomalous
state operation of the machine is rare and varies in nature, hence presenting difficulty in col-
lecting training dataset of such observed abnormal machine operating state. Furthermore,
in actual industrial applications, it would be costly and damaging to consider running
machines with implanted faults for the sake of data collection. Therefore, the traditional
approaches which may be initially apparent such as framing the problem as a two-class
classification problem becomes impractical.

In addressing the anomalous sound detection problem, consideration must be given
to the fact that only training dataset of the machine running in its normal state would be
available. As such, this forms the context within which the problem should be considered.
Any such technique would have to learn the normal behaviour of the machine based on
this available training dataset.

In furtherance of actualizing anomalous machine sound detection for industrial envi-
ronment, saw the birth of the Detection and Classification of Acoustic Scenes and Events
(DCASE) challenge task “Unsupervised Detection of Anomalous Sounds for Machine Con-
dition Monitoring” in 2020. With the provision of a comprehensive acoustic training dataset
combining ToyADMOS [9] dataset and MIMII dataset [10], six categories of machines
(i.e., toy and real) of toy car, toy conveyor, valve, pump, fan, and slide rail, operating both
in normal and abnormal conditions were considered; researchers were expected to develop
and benchmark techniques for detection of anomalous machine sounds. Since the inclusion
of this task as part of the DCASE Challenge, over the subsequent years, the task has evolved
to account for challenges such as: domain shifted conditions (i.e., accounting for changes
in machine operating speed, load, and background noise) [11] and domain generalisation
(i.e., invariant to changes in machine operating speed, load, and background noise) [12].

The challenge of machine anomaly detection is to find a boundary between normal
and anomalous operating sound. In achieving this, the following methods have emerged.

2.1.1. Autoencoder-Based Anomaly Detection

An autoencoder is a neural network, trained to learn the output as an accurate re-
constructed representation of the original input. As an unsupervised learning technique,
it has been used by several studies for the detection of anomalous machine operating
sound [7–10,13–15].

Autoencoder acts as a multi-layer neural network as shown in Figure 1, consisting of
the following segments: encoder network, which accepts a high-dimensional input and
transforms to a low-dimensional representation, decoder network, which accepts a latent
low-dimensional input to reconstruct the original input, and at least a bottleneck stage
within the network architecture. The presence of the bottleneck stage acts to compress the
knowledge representation of the original input in order to learn the latent space represen-
tation. When the autoencoder is used for anomaly detection the goal during training is
to minimize the reconstruction error between the input and the output using the normal
machine operating sounds. Herein, the reconstruction error is used as the anomaly score.
Anomalies are detected by thresholding the magnitude of the reconstruction error. Based on
the application, this threshold could be set. Once an anomalous machine operating sound



Eng 2023, 4 49

is provided to the system, it would yield a higher-than-normal reconstruction error, thereby
flagging as a fault mode. Table 1 provides baseline autoencoder architecture parameters
as applied for anomaly detection. Purohit et al. [10] implemented AE for anomaly detec-
tion based on acoustic dataset of malfunctioning industrial machines consisting of faulty
valve, pump, fan, and slide rail. Although the dataset used MIMII [10] has been made
publicly available, a key part of their work is the adopted architecture of their AE model.
Purohit et al. [10] based the input layer on the log-Mel spectrogram. The Mel spectrogram
is a spectrogram where frequencies have been transformed to the Mel scale. The Mel
spectrogram provides a good correlation with human perception of sound, due to the Mel
scale representing scale of pitches that humans would perceive to be equidistant from each
other. As such, it not uncommon to find log-Mel spectrogram as performant input feature
representation for acoustic event classification amongst others [16]. In [10], the log Mel
spectrogram was determined for a frame size of 1024 acoustic time series data points, with
a hop size of 512 and 64 Mel filter banks. This results in a log Mel spectrogram of size equal
64. This process was repeated for five consecutive frame sizes. The final input layer feature
is formed by concatenating the log Mel spectrogram of five consecutive frames, resulting
in an input feature vector size of 5 × 64 = 320. This is feed into an auto-encoder network
with fully connected layers (FC) such as: encoder section—FC (input, 64, ReLU), FC (64,
64, ReLU), and FC (64, 8, ReLU) and decoder section—FC (8, 64, ReLU), FC (64, 64, ReLU)
and FC (64, Output, none). Here, FC (x, y, z) translates fully connected layer with x input
neurons, b output neuron, and z activation function such as rectified linear units (ReLU).
The implemented AE model is trained for 50 epochs using Adam optimization approach.
Similar approach can be adopted using the baseline AE topologies in Table 1.
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Table 1. Baseline auto encoder system architecture for anomaly detection.

Input Autoencoder Topology Ref.

Frequency domain signal analysis:
Log Mel spectrogram

Input layer

• STFT * frame size 64 ms (50% hop size)
• Log Mel-band energies (F = 128 bands)
• 5 consecutive frames are concatenated (P = 2, 2P + 1 = 5).
• Input dimension (D): 640 (D = F × (2P + 1))

Hidden layers
Dense layer (layers 1–4)

• Dense layer (units: 128)
• Batch Normalization
• Activation (ReLU *)

Bottleneck/latent layer

• Dense layer (units: 8)
• Batch Normalization
• Activation (ReLU *)

Dense layer (layers 5–8)

• Dense layer (units: 128)
• Batch Normalization
• Activation (ReLU *)

Output layer

• Dense layer (units: 640)
• Learning (epochs: 100, batch size: 512, data shuffling between epochs)
• Optimizer: Adam (learning rate: 0.001)

[13]

Frequency domain signal analysis:
Log Mel spectrogram,
MFCC,
Spectrogram,
Harmonic Percussive Source Separation
(HPSS-h [harmonic], HPSS-p [percussive])

Input layer

• STFT * (Hanning window size: 1021 samples, hop length: 512 samples)
• Log Mel-band energies (128 bands)
• Input dimension (D): log-Mel, log-linear, and MFCC* = 640; hpss-h,

and hpss-p = 513

Hidden layers
Dense layer (layers 1–4)

• Dense layer (units: 128)

Bottleneck/latent layer

• Dense layer (units: 5)

Dense layer (layers 5–8)

• Dense layer (units: 128)

Output layer

• Dense layer (units: input dimension = 640 or 513)

[18]

Frequency domain signal analysis:
Log Mel spectrogram Autoencoder architecture as [13] [9,10]

* STFT: Short-Time Fourier Transform; ReLU: Rectified Linear Unit; MFCC: Mel-Frequency Cepstral Coefficients.

2.1.2. Gaussian Mixture Model-Based Anomaly Detection

Gaussian Mixture Model (GMM) is an unsupervised probabilistic clustering model
that assumes each data point belongs to a Gaussian distribution with unknown parameters.
As an unsupervised learning technique, it has been used by several studies for the detection
of anomalous machine operating sound [19–21].

GMM approach finds a mixture of multi-dimensional Gaussian probability distri-
butions that most likely model the dataset. To achieve this, expectation-maximisation
algorithm is used to estimate the parameters of the Gaussian distributions: mean, co-
variance matrix and mixing coefficients. Expectation-maximisation method is a two-step
iterative process which aims to find the maximum likelihood estimates of the Gaussian
mixture parameters. It alternates between the expectation step and the maximisation step.
Within the expectation step, the responsibilities (which data point belongs to which cluster)
are determined using the current estimate of the model parameters, while the maximisation
step estimates the model parameters for maximizing the expected log-likelihood function.
GMM for anomaly detection uses trained GMM model based on acoustic features as shown
in Table 2 to predict the probability of each datapoint being part of one of the k Gaussian
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distribution clusters. An anomaly is detected by a data point having a probability lower
than a threshold which could be either a percentage or a value threshold.

Table 2. Baseline GMM acoustic features.

SN Signal Analysis Domain Acoustic Features Ref.

1

Time Domain Zero Crossing Rate,

[19]

Mean, Max, Min, Covariance of the waveform
Short-time Energy,

Frequency Domain Entropy of Energy,
Spectral Centroid,
Spectral Spread,
Spectral Entropy,
Spectral Flux,
Spectral Roll-off,
MFCC,
Chroma Vector,
Chroma Deviation

2 Frequency Domain Fisher Vectors [20]

3 Frequency Domain Log Mel Spectrogram [21]

2.1.3. Outlier Exposure-Based Anomaly Detection

Outlier Exposure (OE) is an approach for improved anomaly detection in deep learning
models [22]. Key in this method is the use of an out-of-distribution dataset, to fine tune
a classifier model that enables it to learn heuristics that discriminate in-distribution data
points from anomalies. The learned heuristics then has the capability to generalize to
new distributions. The OE methodology, first proposed by [22], is achieved by adding
a secondary loss to the regular loss for in-distribution training data, which is usually a
cross-entropy loss or an error loss term. For classification models, the secondary loss is also
a cross-entropy loss computed between the outlier logits and a uniform distribution.

The OE approach has already been applied in the domain of detecting anomalous
machine operating sound using classifier models such as MobileNetV2 [11,12]. Herewith,
MobileNetV2 [23] is trained to identify from which data segment within both in-distribution
and out-of-distribution datasets the observed signal was generated (machine anomaly
identification). The trained classifier then outputs the SoftMax value that is the predicted
probability for each data segment. The anomaly score becomes the averaged negative
logit of the predicted probabilities of the correct data segment. Table 3 shows baseline
parameters for an OE approach using MobileNetV2 classifier model.

Table 3. Baseline OE architecture based on MobileNetV2.

Input OE Topology Ref.

Frequency domain
signal analysis:
Log Mel spectrogram

Input layer

• STFT frame size 64 ms (50% hop size)
• Log Mel-band energies (F = 128 bands)
• 64 consecutive frames are concatenated (P)
• Input image size (64 × 128)
• Hop frames (strides): 8

Triplication layer

• Triplicate input image to each color channel

MobileNetV2

• Input: 64 × 128 × 3 image
• Output: Softmax for sections
• Learning (epochs: 20, batch size: 32, data shuffling between

epochs)
• Optimizer: Adam (learning rate: 0.00001)

[11]
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2.1.4. Signal Processing Methods

Acoustic signal processing methods are an adaptation from existing vibration-based
approaches reliant on time, frequency, and time-frequency domain analysis of the signal.

Time domain analysis is performed on the acoustic signal time series representation
through statistical analysis for calculating feature parameters such as mean, standard deviation,
skewness, kurtosis, decibel, crest factor, beta distribution parameters, root mean square,
maximum value, etc. These calculated statistical feature parameters from the acoustic signal
are used to provide an overall indication of the current health condition of the machine. This
approach, although simplistic, has been explored by various investigations for acoustic-based
machine fault detection: e.g., Heng and Nor [24] evaluated the applicability of the statistical
parameters such as crest factor, kurtosis, skewness, and beta distribution as fault indicators
from acoustic signals for monitoring rolling element bearing defect.

For a machine operation under steady state conditions, frequency domain analysis
techniques are commonly applied to examine the acoustic signals. Fast Fourier Trans-
form (FFT), a computationally cheap technique to transform time-domain signals to the
frequency domain, has been applied in acoustic-based condition monitoring of electric
induction motors [25,26], engine intake air leak [27], among others. To capture nonlinear
and nonstationary processes in machine operations, Ensemble Empirical Mode Decompo-
sition (EEMD) method has been used [28]. EEMD simulates an adaptive filter, extracting
underlying modes in the signal to decompose into a series of intrinsic mode functions
(IMF) from high to low frequency content. Spectrum of IMFs has been adopted as a fault
indicator for detecting incipient faults in wind turbine blades from acoustic signals [29].

Furthermore, time-frequency domain analysis, such as, short time Fourier transform
and wavelet transform, are also powerful approaches for capturing nonstationary processes
within machinery acoustic signals. Grebenik et al. [30] used consumer grade microphones
and applied EMD and wavelet transform as diagnostic criteria for the acoustic fault diagnos-
tics of transient current instability fault in DC electric motor. Spectral autocorrelation map
of acoustic signals has been applied for detection of fault in belt conveyor idler [31]. EMD
and wavelet analysis has been applied to extract features from acoustic signals produced
by a diesel internal combustion engine for monitoring its combustion dynamics [32,33].
Anami and Pagi [34] used the chaincode of the pseudospectrum to analyse acoustic fault
signals from a motorcycle for fault detection.

2.2. Classification of Anomalous Sound

The goal of classification of anomalous sound is to categorise a machine sound record-
ing into one of the predefined fault classes that characterises the machine fault state.

Two main approaches have emerged for machine fault diagnostics based on acoustic
signal. The first based on feature-based machine learning techniques and the second based
on 2D acoustic representation deep learning approaches.

2.2.1. Feature-Based Machine Learning Methods

Feature-based machine learning methods can be broken into three stages. The first
stage involves, extracting features from the machine condition acoustic signals. Features
are important as fault descriptors are determined using statistical methods, fast Fourier
transform, EEMD, or wavelet transform, etc. Extracted features are used to train a machine
learning classifier such as Support Vector Machine (SVM), k-Nearest Neighbor (kNN),
Random Forest (RF), logistic regression, naïve Bayes, Deep Neural Network (DNN), etc.
The trained ML model is then used as a predictor for machine health state based on
unknown machine condition acoustic signals.

This approach for machine fault detection based on acoustic inputs is presented
in Figure 2. Although the system consists of several steps, the focus here would be in
addressing the challenges in engineering feature extraction and for selecting appropriate
classifier learning algorithm.
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(1) Feature Extraction

An approach for acoustic signal representation is required, which is capable to differ-
entiate normal and abnormal operating sound from machinery, utilising low-level features
derived from the time domain, frequency domain and time-frequency domain of the
acoustic signal. This is achieved as follows and summarized in Table 4:

(a) Time domain-based feature extraction

Time domain features find their basis from descriptive statistical parameters derived
from the acoustic signal time-series for representation of both healthy and faulty machine
states and training various machine learning models. This approach has been adopted by
several investigators [35] and relevant time-domain parameters summarized in Table 4.

(b) Frequency domain-based feature extraction

Frequency domain features take their basis from the Fourier transform spectral trans-
formation of the acoustic signal. Pasha et al. [36] used a band-power ratio as discriminant
feature from acoustic signals to monitor air leaks in a sintering plant associated with pallet
fault. Here, band-power ratio refers to the ratio of the spectral power within the fault
frequency band to the spectral power of the entire signal spectrum. In [36], the feature ex-
traction from a sound recording consisted of the band-power ratio performed repeatedly at
fixed sampling window length (i.e., 1024 samples) within the fixed time duration/recording.
Other potential parameters can be extracted from the frequency spectrum as demonstrated
by [37] and listed in Table 4.

(c) Time-frequency domain-based feature extraction

Time-frequency signal analysis refer to approaches that enable the simultaneous study
of signals in both time and frequency domain. The time-frequency representations, such
as STFT, wavelet transform, Hilbert-Huang transform, amongst others, provide useful
parameters to characterise acoustic signals. Based on the work of [37], relevant time-
frequency parameters are provided in Table 4.

Table 4. Feature extraction parameters [37].

SN Signal Analysis Domain Features Summary

1 Time Domain Zero Crossing Rate The rate of sign-changes along a signal within a frame length.
2 Frequency Domain Short-time Energy The sum of squares of the signal values normalised by frame length.
3 Frequency Domain Entropy of Energy Shannon entropy of the normalised energies within a frame length.

4 Frequency Domain Spectral Centroid
The centre of mass of the spectrum of a frame. Determined by the
weighted mean of the frequencies present within the spectrum of a
frame length.
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Table 4. Cont.

SN Signal Analysis Domain Features Summary

5 Frequency Domain Spectral Spread The second central moment of the spectrum of a frame length

6 Frequency Domain Spectral Entropy Shannon entropy of the normalised spectral energies within the
spectrum of a frame length.

7 Frequency Domain Spectral Flux The squared difference between the normalised magnitudes of the
spectra of the two successive frame length.

8 Frequency Domain Spectral Roll-off This is the frequency below which 90% of the spectral distribution for
the frame is concentrated.

9 Frequency Domain MFCC

Mel-Frequency Cepstrum Coefficient (MFCC) provide an effective
representation of sound which closely mimics the sound perception
of the human ear. MFCC are determined by taking the linear Discrete
Cosine Transform (DCT) of the log power spectrum on the nonlinear
Mel scale.

10 Frequency Domain Chroma Vector A representation of the spectrum projected onto 12 bins representing
the 12 distinct semitones (or chroma) of the musical octave.

11 Frequency Domain Chroma Deviation Standard deviation of the chroma vector.
12 Frequency Domain Band-power ratio Normalised spectral peaks within fault frequency band

(2) Classifier Learning Algorithms

Classifier learning algorithms provide an automated intelligent approach for the detection
and classification of machine faults. The generally adopted approach for the development of
these machine fault inference systems are based on machine learning classifiers. The machine
learning classifier is a supervised learning model that can learn a function that maps an
input to a categorical output based on the example input-output pairs [38]. The input for the
machine learning classifier model includes the extracted features from the acoustic signal,
while the output is the class labels which represent different operational or health state of the
machine. To further estimate the optimal classifier model, a cross validation technique can be
applied to tune the hyper-parameters of each model.

There are several types of supervised machine learning classifier models, such as: logis-
tic regression, naïve Bayes, decision trees, RF, k-nearest neighbor (kNN), SVM, discriminant
analysis, DNN, etc. [39,40]. Each machine learning classifier model has its strengths and
weaknesses; for an application, choosing the most appropriate is mostly based on compar-
ing the accuracy and other performance metrics, such as recall rate, F-score, true positive
rate, false positive rate, etc. Table 5 highlights exemplar applications of machine learning
classifiers for the classification of machine operating sounds.

(a) K-Nearest Neighbors (KNN): KNN is a non-parametric and instance-based machine
learning algorithm which can be used for both classification and regression [39,41]. It
is classed as a non-parametric method because it makes no explicit assumption about
the underlying distribution of the training data and an instance-based method because
it does not learn a discriminative function from the training data but memorises it
instead [39,41]. When KNN is used for classification, its input consists of the K closest
training instances to the unknown instance in the feature space based on a similarity
distance metric, e.g., Euclidean distance, hamming distance, Chebyshev distance,
Minkowski distance, etc. The output class membership of the unknown instance
is determined by a majority vote of its K nearest neighbors. Although KNN is a
simplistic classifier model, it is very versatile (i.e., used in many applications), robust
(i.e., tight error bounds) and often used as a benchmark for comparison with more
complex classifiers [42,43].

(b) Linear Support Vector Machine (SVM): SVM can be viewed as a discriminative clas-
sifier model defined by a separating hyperplane [39]. In a nutshell, when an SVM
is given labeled training data, the algorithm outputs an optimal hyperplane which
classifies new unseen data. The optimal hyperplane is determined by maximising
the margin or distance between the nearest points (support vectors) to the hyper-
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plane. Sometimes, the data are not linearly separable, SVM circumvents this by
adopting either a soft margin parameter in the optimisation loss or using kernel tricks
to transform the feature set into a higher dimensional space.

(c) Random Forest: Random Forest is an ensemble method of learning based on contribu-
tion from multiple decision trees [39]. A decision tree is a simple model to classify a
dataset, where the data is continuously split based on parameters such as information
gain, Gini index, etc. When random forest is used as a classifier, each decision tree in
the ensemble, makes a class prediction, and the class with the most vote is the model
prediction. A key aspect of the random forest classifier model is that the decision trees
are uncorrelated. To achieve uncorrelated decision trees, several techniques such as
bagging and feature randomness during tree split are used. Bagging ensures that each
individual tree, randomly sample from the dataset with replacement, thus producing
different trees in the ensemble.

(d) Decision Tree: Decision tree is used for solving classification problems by crafting
a tree-structure where internal nodes represent data attributes, branches represent
decision rules and end leaf nodes represent outcomes. It applies a hierarchical struc-
ture in determining patterns within data with the intent of creating decision-making
rules and predicting regression relationships between dependent and independent
variables [39,40]. Optimising the decision tree model, relevant hyperparameters are
minimum leaf size, maximum number of split and split criteria, e.g., Gini index,
information gain, etc.

(e) Naive Bayes: Naive Bayes classifier rely on Bayes theorem for solving classification
problems [39]. Bayes theorem provides a means to formalise the relationship of
conditional probabilities or likelihoods of statistical variables. In Naive Bayes classifier,
the interest lies in determining the posterior probability of a class label (Y) given some
observed features, i.e., P(Y| f eatures). Using Bayes theorem, this posterior probability
is expressed as:

P(Y| f eatures) = (P( f eatures|Y)× P(Y))/P( f eatures) (1)

where P( f eatures|Y) represent probabilities or likelihood of the features given the
class label determined from a naïve assumption of a generative model underlying
the dataset such as Gaussian distribution, multinomial distribution, or Bernoulli
distribution; P(Y) is the prior probability or initial guess for the occurrence of the
class label based on the underlying dataset.

(f) Artificial Neural Network (ANN)/Multi-Layer Perceptron (MLP): ANN or MLP is
inspired by the brain biological neural system. It uses the means of simulating the
electrical activity of the brain and nervous system interaction to learn a data-driven
model. The structure of an ANN comprises of an input layer, one or more hidden
layers and an output layer as shown in Figure 3 [39]. Each layer is made up of
nodes or neurons and is fully connected to every node in the subsequent layers
through weights (w), biases (b), and threshold/activation function. Information in
the ANN move in two directions: feed forward propagation (i.e., operating normally)
and backward propagation (i.e., during training). In the feedforward propagation,
information arrives at the input layer neurons to trigger the connected hidden neurons
in subsequent layer. All the neurons in the subsequent layer do not fire at the same
time. The node would receive the input from previous node, this is multiplied by
the weight of the connection between the neurons; all such inputs from connected
previous neurons are summed at each neuron in the next layer. If these values at each
neuron is above a threshold value based on chosen activation function, e.g., sigmoid
function, hyperbolic tangent (tanh), rectified linear unit (ReLU), etc. the node would
fire and pass on the output, or if less than the threshold value, it would not fire.
This process is continued for all the layers and nodes in the ANN operating in the
feedforward mode from the input layer to the output layer. The backward propagation
is used to train the ANN network. Starting from the output layer, this process
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compares the predicted output with actual output per layer and updates the weights
of each neuron connection in the layer by minimize the error using a technique such
as gradient descent amongst others as shown in Figure 3. This way, the ANN model
learns the relationship between the input and output.
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Table 5. Exemplar classifier learning algorithm for classification of machine operating sounds.

SN Classifier Learning Algorithms Features Application Ref.

1 SVM Frequency domain signal analysis:
Band-power ratio

Detection of air leaks between grate
bars lined sinter strand pallets in a
sintering plant

[36]

2 Decision Tree (J48/C4.5 Algorithm) Frequency domain signal analysis:
Band-power ratio

Detection of air leaks between grate
bars lined sinter strand pallets in a
sintering plant

[36]

3 Deep Neural Network (DNN)
Frequency domain signal analysis:
Short-Term Fourier
Transform (STFT)

Detecting changes in electric motor
operational states such as supply
voltage and load

[14]

4

Decision tree, Naive Bayes, kNN,
SVM, Discriminant Analysis,
Ensemble classifier, with
Bayesian Optimisation

Frequency domain signal analysis:
Wavelet packet transform, with
Principal Component
Analysis (PCA)

Detecting of internal combustion
engine fault [40]

5 kNN, SVM, and Multi-layer
Perceptron (MLP)

Frequency domain signal analysis:
Wavelet packet transform with
various mother wavelets

Detecting of internal combustion
engine fault [44]

6 Artificial Neural Network (ANN)

Frequency domain signal analysis:
Spectral peaks from the fast Fourier
Transform of acoustic signal
(0–2996.25 Hz)

Detecting loose stator coils in
induction electric motors [6]
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2.2.2. Acoustic Image-Based Deep Learning Methods

This approach leverages techniques from the field of machine hearing [45]. Machine
hearing involves sound processing considering inherent sound sensing system structures
as humans and sound mixtures in realistic context [45].

In emulating human hearing, machine hearing adopts a four-layer architecture within
which each layer represents a distinct area of research. The first layer, auditory periphery
layer (cochlea model), mimics the representation of the nonlinear sound wave propagation
mechanism in the cochlea as cascading filter systems; the second layer, auditory image
computation, provides a projection of one or more forms of auditory images to the auditory
cortex mimicking the auditory brain stem operation; the third layer abstracts the operation
within the auditory cortex via extraction of application-dependent features from the au-
ditory images; the final and forth layer addresses the application specific problem using
appropriate machine learning system [46].

For application in classifying anomalous machine operating sound, variations are
made in the auditory image computation representation; as such, best referred to as acoustic
image representation. From the literature, there have been several possibilities for the 2D
acoustic image representation such as: spectrogram (from STFT), Mel-spectrogram, cochlea-
gram, amongst others [47,48]. Table 6 provides a summary of acoustic image representation
in combination with deep learning models for classifying anomalous machine operating
sounds and Figure 4 shows examples of acoustic image representations.
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(1) Acoustic Image Representation 

Figure 4. Acoustic image representation (a) acoustic input (b) spectrogram of acoustic input
(c) cochleagram of acoustic input (d) Mel spectrogram of acoustic input [16].

(1) Acoustic Image Representation

(a) Spectrogram: This is a two-dimensional representation of the frequency characteristics
of a time-domain signal as it changes over time as shown in Figure 4. Spectrogram is
generated using Fourier transform of the time-domain signal; the time-domain signal is
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first divided into smaller segments of equal length with some overlap; then, fast Fourier
transform (FFT) is applied to each segment to determine its frequency spectrum; the
resulting spectrogram becomes a side-by-side overlay of the frequency spectrum of
each segment over time. FFT represents an algorithm to compute the discrete Fourier
transform (DFT) of the windowed time-domain signal, represented as [16]:

Fn = ∑N−1
k=0 xnwne−2πink/N , n = 0, · · · , N − 1 (2)

where Fn is discrete Fourier transform, N is number of sample points within the
window, fk is the discrete time-domain signal, and wn is the window function. The
spectrogram is obtained as the logarithm of the DFT, as such [16]:

Sn = log|Fn|2 (3)

where Sn is spectrogram, and Fn is discrete Fourier transform.
(b) Mel Spectrogram: This is a spectrogram where frequencies have been transformed to

the Mel scale as shown in Figure 5. The Mel scale is a linear scale model of the human
auditory system, represented as [49,50]:

fmel = 2595× log10(1 + f /700) (4)

where fmel is frequency on the Mel scale, and f is frequency from the spectrum.

As shown in Figure 5, Mel spectrogram is computed by passing the result of windowed
times-series signal FFT for each smaller segment of the divided signal through a set of
half-overlapped triangular band-pass filter bank equally spaced on the Mel scale. The
spectral values outputted from the Mel band-pass filter bank are summed and concatenated
into a vector of size dependent on the number of Mel filters, e.g., 128, 512, etc. The resulting
Mel spectrogram becomes a side-by-side overlay of the resulting vector representation
from each consecutive time-series signal segment over time.
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filters [48]. The Gammatone filter represents a pure sinusoidal tone that is modulated 
by a Gamma distribution function; the impulse response of the Gammatone filter is 
expressed as [16]: 
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(c) Cochleagram: A cochleagram is a time-frequency representation of the frequency fil-
tering response of the cochlea (in the inner ear) as simulated by a bank of Gammatone
filters [48]. The Gammatone filter represents a pure sinusoidal tone that is modulated
by a Gamma distribution function; the impulse response of the Gammatone filter is
expressed as [16]:

h(t) = Atn−1e−2πbt cos(2π fcmt + φ) (5)

where A is amplitude, n is filter order, b is filter bandwidth, fcm is filter centre fre-
quency, φ is phase shift between filters, and t is time.

As shown in Figure 6, cochleagram is computed by passing the result of windowed
times-series signal FFT for each smaller segment of the divided signal through a series
of overlapping band-pass Gammatone filter bank. The spectral values outputted from
the Gammatone filter bank are further transformed by logarithmic and discrete cosine
transform operations before been summed and concatenated into a vector of size dependent
on the number of Gammatone filters, e.g., 128, etc. The resulting cochleagram becomes a
side-by-side overlay of the resulting vector representation from each consecutive time-series
signal segment over time.
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classification stage based on multi-layer perception with 512 hidden nodes, ReLU 
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mized; therefore, impacting model performance on training accuracy. Table 6 high-
lights other applications of acoustic image-based classifiers of anomalous machine 
operating sounds. 
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(2) Deep Learning Methods

(a) Convolution Neural Network (CNN): CNN is inspired from the operation of the mam-
malian visual cortex. As shown in Figure 7, CNN is a multi-stage neural network made
up of key stages: filter stage (i.e., convolution layer, pooling layer, normalisation layer
and activation layer) and classification stage (i.e., fully connected layer of multilayer
perceptron) [51]. The convolution layer functions to extract feature set from acoustic
image representation into a feature map, pooling layer reduces the dimensionality of the
feature map, and the classification stage performs the classification task using the multi-
layer perceptron. [47] has applied CNN with a combination of log-spectrogram, short-
time Fourier transform and log-Mel spectrogram features to classify rolling-element
bearing cage fault based on acoustics signals. Implemented CNN model consisted of
three stage feature extraction layers: fully connected layer (shape = 16 × 16, rectified lin-
ear unit (ReLU) activation function, max. pooling = 2 × 2), fully connected layer (shape
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= 32 × 32, ReLU, max. pooling = 2 × 2), and fully connected layer (shape = 64 × 64,
ReLU, max. pooling = 2 × 2) and a final classification stage based on multi-layer
perception with 512 hidden nodes, ReLU and sigmoid activation function. Dataset was
very sparse, and model was not optimized; therefore, impacting model performance
on training accuracy. Table 6 highlights other applications of acoustic image-based
classifiers of anomalous machine operating sounds.
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(b) Recurrent Neural Network (RNN): RNN is a type of neural network which uses
sequential data or time series data to learn. Unlike CNN, RNN have internal memory
state (i.e., can be trained to hold knowledge about the past); this is possible as inputs
and outputs are not independent of each other, prior inputs influence the current
input and output; simply put, output from previous layer state are feed back to the
input of the next layer state. As shown in Figure 8, x is input layer, h is middle
layer (i.e., consist of multiple hidden layers) and y is output layer. W, V and U are
the parameters of the network such as weights and biases. At any given time (t),
the current input is constituted from the input x(t) and previous x(t − 1); as such
the output from x(t − 1) is feedback into the input x(t) to improve the network
output. This way, information cycles through a loop within the hidden layers in the
middle layer. RNN uses the same network parameters for every hidden layer, such
as: activation function, weights, and biases (W, V, U). Despite the flexibility of the
basic RNN model to learning sequential data, they suffer from the vanishing gradient
problem (i.e., difficulty training the model when the weights get too small, and the
model stops learning) and exploding gradient problem (i.e., difficulty training the
model due to very high weight assignment). To overcome these challenges, the long
short-term memory (LSTM) network variant of RNN is normally used. LSTM has
the capability to learn long-term dependencies between time steps of sequential data.
LSTM can read, write and delete information from its memory. It achieves this via a
gating process made up of three stages: forget gate, update/input gate and output
gate which interacts with is long-term memory and short-term memory pathways
used to feedback its memory states amongst hidden layers. As shown in Figure 9,
“c” represents the cell state and long-term memory, “h” represents the hidden state
and short-term memory, and “x” represent the sequential data input. The forget gate
determines how much of the cell state “c” is thrown away or forgotten. The update
gate determines how much of new information is going to be stored in the cell state,
and output gate determines what is going to be outputted. [52] has applied LSTM RNN
with cochleagram features to classify varying rolling-element bearing faults based on
60 s acoustics signals. Implemented model consisted of an input feature set based on
128 gammatone filter bank cochleagram; Considering a 1 s. duration as a frame, the 60 s
dataset generated 60-time frames. Each frame is represented as a cochleagram. 67% of
the dataset was used to train the LSTM RNN model and 33% for testing. Model accuracy
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on fault classification task was 94.7%. Table 6 highlights other applications of acoustic
image-based classifiers of anomalous machine operating sounds.
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(c) Spiking Neural Network (SNN): SNN is a brain-inspired neural network where infor-
mation is represented as binary events (spikes). It shares similarity with concepts such 
as event potentials in the brain. SNN incorporates time into its propagation model for 
information; SNN only transmit information when neuronal potential exceeds a 
threshold value. Working only with discrete timed events, SNS accepts as input spike 
train and outputs spike train. As such, information is required to be encoded into the 
spikes which is achieved via different encoding means: binary coding (i.e., all-or-noth-
ing encoding with neurons active or inactive per time, rate coding, fully temporal codes 
(i.e., precise timing of spikes), latency coding, amongst others [53]. As shown in Figure 
10, SNN is trained with the margin maximization technique, described in [54]. During 
first epoch, SNN hidden layer is developed based on neuron addition scheme. In sub-
sequent epochs, the weights and biases of the hidden layer neurons are updated further 
using the margin maximization technique. Here, weights of the winner neuron are 
strengthened, while those of the others are inhibited; this reflects the Hebbian learning 
rule of the natural neurons; as a result, neurons are only connected to their local neu-
rons, so they process the relevant input patterns together. This approach maximizes 
the margin among the classes which lends itself to training the spike patterns. Ref. [48] 
has applied SNN with cochleagram features to classify varying rolling-element bearing 
faults based on 10 s acoustics signals. Implemented model consisted of an input feature 
set based on 128 gammatone filter bank cochleagram; later reduced to 50 using princi-
pal component analysis (PCA). Considering a 10 ms duration as a frame, the 10 s da-
taset generated 1000-time frames. Each frame was encoded into a spike train using the 
population coding method. 90% of the dataset was used to train the SNN model and 
10% for testing. Model accuracy was above 85%. Table 6 highlights other applications 
of acoustic image-based classifiers of anomalous machine operating sounds. 
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(c) Spiking Neural Network (SNN): SNN is a brain-inspired neural network where
information is represented as binary events (spikes). It shares similarity with concepts
such as event potentials in the brain. SNN incorporates time into its propagation
model for information; SNN only transmit information when neuronal potential
exceeds a threshold value. Working only with discrete timed events, SNS accepts
as input spike train and outputs spike train. As such, information is required to
be encoded into the spikes which is achieved via different encoding means: binary
coding (i.e., all-or-nothing encoding with neurons active or inactive per time, rate
coding, fully temporal codes (i.e., precise timing of spikes), latency coding, amongst
others [53]. As shown in Figure 10, SNN is trained with the margin maximization
technique, described in [54]. During first epoch, SNN hidden layer is developed
based on neuron addition scheme. In subsequent epochs, the weights and biases
of the hidden layer neurons are updated further using the margin maximization
technique. Here, weights of the winner neuron are strengthened, while those of the
others are inhibited; this reflects the Hebbian learning rule of the natural neurons;
as a result, neurons are only connected to their local neurons, so they process the
relevant input patterns together. This approach maximizes the margin among the
classes which lends itself to training the spike patterns. Ref. [48] has applied SNN
with cochleagram features to classify varying rolling-element bearing faults based
on 10 s acoustics signals. Implemented model consisted of an input feature set
based on 128 gammatone filter bank cochleagram; later reduced to 50 using principal
component analysis (PCA). Considering a 10 ms duration as a frame, the 10 s dataset
generated 1000-time frames. Each frame was encoded into a spike train using the
population coding method. 90% of the dataset was used to train the SNN model and
10% for testing. Model accuracy was above 85%. Table 6 highlights other applications
of acoustic image-based classifiers of anomalous machine operating sounds.
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Figure 10. SNN architecture [48]. 
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Detection of rolling-element bearing fault 
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[48] 

4 Spectrogram (from STFT) CNN * Detection of rolling-element bearing fault 
such as cage defect 

[47] 

5 Log-Mel Spectrogram CNN * Detection of rolling-element bearing cage 
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Network. 
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Table 6. Exemplar acoustic image representation and classifier models.

SN Acoustic Image Representation Deep Learning Methods Application Ref.

1 Spectrogram/Log-Spectrogram CNN * Detection of rolling-element bearing fault
such as cage defect [47]

RNN * Detection of air leaks between grate bars
lined sinter strand pallets in a sintering plant [36]

2 Cochleagram RNN *

Detection of rolling-element bearing fault
such as inner race defect, outer race defect,
rolling-element defect, combined defect, and
heavily worn bearing

[52]

3 Cochleagram SNN *

Detection of rolling-element bearing fault
such as inner race defect, outer race defect,
rolling-element defect, combined defect, and
heavily worn bearing

[48]

4 Spectrogram (from STFT) CNN * Detection of rolling-element bearing fault
such as cage defect [47]

5 Log-Mel Spectrogram CNN * Detection of rolling-element bearing cage fault [47,55]

* CNN: Convolutional Neural Network, RNN: Recurrent Neural Network, SNN: Spiking Neural Network.

3. Datasets for Detection and Classification of Anomalous Machine Sound (DCAMS)

Openly available datasets are vital for progress in the data-driven machine condition
monitoring approaches. In recent time, there have been significant progress in the corollary
area of acoustic scene classification mainly due to opensource dataset such as: AudioSet
dataset [1], which provides a collection over 2 million manually labelled 10 s sound seg-
ments from YouTube within 632 audio event classes. However, nothing of such large scale
is available for Detection and Classification of Anomalous Machine Sounds (DCAMS).
Within limited scale, several research projects are beginning to lay the foundation as they
were bridging the dataset gap for DCAMS.

3.1. ToyADMOS Dataset

This dataset provided by [9], is a collection of anomalous machine sounds produced
by miniaturised machines (i.e., toy car, toy conveyor, and toy train) as shown in Figure 11.
It is designed to provide scenarios such as: inspecting machine condition (toy car), fault
diagnostics for a static machine (toy conveyor) and fault diagnostics for a dynamic machine
(toy train). The data acquisition setup for each scenario is performed using four micro-
phones sampled at 48 kHz and measurement locations are shown in Figure 12. To provide
anomalous operating conditions for the miniaturised machines, systematic fault modes as
shown in Table 7 are imbedded in the various toy machines.
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Figure 12. Schematic of microphone installation setup for ToyADMOS miniaturised machines (a) 
toy car (b) toy conveyor (c) toy train [9]. 

Table 7. Imbedded faults in ToyADMOS miniaturized machines [9]. 

Toy Car Toy Conveyor Toy Train 
Parts Condition Parts Condition Parts Condition 

Shaft Bent Tension pulley Excessive tension First  
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Chipped wheel axle 

Gears 
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Melted 
Tail  

pulley 
Excessive tension 

Removed 
Last  

carriage 
Chipped wheel axle 

Tires 
Coiled (plastic ribbon) 
Coiled (steel ribbon) 
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Attached metallic object 1 
Attached metallic object 2 
Attached metallic object 3 

Straight rail-
way track 

Broken 
Obstructing stone 

Disjointed 

Voltage Over voltage 
Under voltage 

Voltage Over voltage 
Under voltage 

Curved rail-
way track 

Broken 
Obstructing stone 

Disjointed 

3.2. MIMII Dataset 
The MIMII (Malfunctioning Industrial Machine Investigation and Inspection) dataset 

comprises normal and anomalous machine operating sounds of four types of real ma-
chines such as valves, pumps, fans, and slide rails [10]. The dataset was captured using an 
8-microphone circular array with machine configuration in Figure 13 and sampled at 16 

Figure 11. Schematic of ToyADMOS miniaturised machines (a) toy car (b) toy conveyor (c) toy train [9].
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Table 7. Imbedded faults in ToyADMOS miniaturized machines [9].

Toy Car Toy Conveyor Toy Train

Parts Condition Parts Condition Parts Condition

Shaft Bent Tension
pulley Excessive tension First

carriage Chipped wheel axle

Gears Deformed
Melted

Tail
pulley

Excessive tension
Removed

Last
carriage Chipped wheel axle

Tires Coiled (plastic ribbon)
Coiled (steel ribbon) Belt

Attached metallic object 1
Attached metallic object 2
Attached metallic object 3

Straight railway track
Broken

Obstructing stone
Disjointed

Voltage Over voltage
Under voltage Voltage Over voltage

Under voltage Curved railway track
Broken

Obstructing stone
Disjointed
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3.2. MIMII Dataset

The MIMII (Malfunctioning Industrial Machine Investigation and Inspection) dataset
comprises normal and anomalous machine operating sounds of four types of real machines
such as valves, pumps, fans, and slide rails [10]. The dataset was captured using an
8-microphone circular array with machine configuration in Figure 13 and sampled at
16 kHz. Each recording consists of 10 s. segments recordings of the machines with various
faults as shown in Table 8.

Table 8. Imbedded faults in MIMII real machines [10].

Machine Type Operations Examples of Anomalous Conditions

Valve Open/close repeat with
different timing More than two kinds of contamination

Pump Suction from discharge to a
water pool Leakage, contamination, clogging, etc.

Fan Normal work Unbalanced, voltage change, clogging, etc.

Slide rail Slide repeat at different speeds Rail damage, loose belt, no grease, etc.
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3.3. DCASE Dataset 
The DCASE dataset [13] is a merge of subset of ToyADMOS and MIMII dataset com-

prising both normal and anomalous machine operating sounds. To harmonise both da-
tasets, each audio file includes a single channel and 10 s in duration. All the audio files are 
resampled at 16 kHz. The dataset relates to the following machine operating sounds: toy 
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The IDMT-ISA-ELECTRIC-ENGINE dataset [14] consists of anomalous operating 

sounds of three brushless electric motors. Different operational states such as good, heavy 
load and broken are simulated within the electric motors by changing the supply voltage 
and loads. The dataset provides mono audio for each sound file sampled at 44.1 kHz. For 
each of the operational states, IDMT-ISA-ELECTRIC-ENGINE dataset provides 774 sound 
files for “good” state, 789 for “broken” state and 815 for “heavy load”. Figure 14 shows 
the setup for acoustic data acquisition in the electric motor machines. 

Figure 13. Schematic of microphone installation setup for MIMII [10].

3.3. DCASE Dataset

The DCASE dataset [13] is a merge of subset of ToyADMOS and MIMII dataset
comprising both normal and anomalous machine operating sounds. To harmonise both
datasets, each audio file includes a single channel and 10 s in duration. All the audio files
are resampled at 16 kHz. The dataset relates to the following machine operating sounds: toy
car (ToyADMOS), toy conveyor (ToyADMOS), valve (MIMII), pump (MIMII), fan (MIMII)
and slide rail (MIMII).
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3.4. IDMT-ISA-ELECTRIC-ENGINE Dataset

The IDMT-ISA-ELECTRIC-ENGINE dataset [14] consists of anomalous operating
sounds of three brushless electric motors. Different operational states such as good, heavy
load and broken are simulated within the electric motors by changing the supply voltage
and loads. The dataset provides mono audio for each sound file sampled at 44.1 kHz. For
each of the operational states, IDMT-ISA-ELECTRIC-ENGINE dataset provides 774 sound
files for “good” state, 789 for “broken” state and 815 for “heavy load”. Figure 14 shows the
setup for acoustic data acquisition in the electric motor machines.
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Figure 14. Three electric motor setups for IDMT-ISA-ELECTRIC-ENGINE dataset [14]. 

3.5. MIMII DUE Dataset 
The MIMII DUE (Malfunctioning Industrial Machine Investigation and Inspection 

with domain shifts due to changes in operational and environmental conditions) provides 
a sound dataset for training and testing anomalous sound detection techniques and their 
invariance to domain shifts [56]. This builds on the authors’ previous released MIMII da-
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MIMII DUE provides normal and anomalous sounds for five industrial machines: 
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vided referred to as sections. Each section refers to a unique instance of machine product; 
this provides for manufacturing variability within machine type. Furthermore, each sec-
tion has its dataset is split into source domain and target domain. The source domain con-
tains machine operating sound running at design point while target domain contains ma-
chine operating sound running at off-design point. 

3.6. ToyADMOS2 Dataset 
ToyADMOS2 dataset also provides for training and testing anomalous machine 

sound detection techniques for their performance in domain shifted conditions [57]. As 
opposed to ToyADMOS its predecessor, it only carters for two types of miniature ma-
chines: toy car and toy trains. The recording and system setup is same for ToyADMOS [9]; 
however, a key difference, ToyADMOS2 has the normal and anomalous machine operat-
ing sounds recorded with machines operating under different speeds. This provides for a 
source domain consisting of machines with specified operating conditions and the target 
domain with machines having different operating conditions. Suitable for training and 
testing with the different domains. 

3.7. MIMII DG Dataset 
MIMII DG dataset provides normal and anomalous machine operating sounds for 

benchmark Domain Generalisation techniques [58]. It comprises five groups of machines 
including valve, gearbox, fan, slide rail and bearing. The audio recording for each machine 
consists of three sections representing different types of domain shift conditions, which 
for each machine could be operating condition change and environmental background 
noise change. 
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3.5. MIMII DUE Dataset

The MIMII DUE (Malfunctioning Industrial Machine Investigation and Inspection
with domain shifts due to changes in operational and environmental conditions) provides
a sound dataset for training and testing anomalous sound detection techniques and their
invariance to domain shifts [56]. This builds on the authors’ previous released MIMII
dataset [10] which had the limitation of not representing industrial scenarios with changes
in machine operational speed and background noises.

MIMII DUE provides normal and anomalous sounds for five industrial machines: fan,
gearbox, pump, slide rail and valve. For each of the machines, six sub-division is provided
referred to as sections. Each section refers to a unique instance of machine product; this
provides for manufacturing variability within machine type. Furthermore, each section
has its dataset is split into source domain and target domain. The source domain contains
machine operating sound running at design point while target domain contains machine
operating sound running at off-design point.

3.6. ToyADMOS2 Dataset

ToyADMOS2 dataset also provides for training and testing anomalous machine sound
detection techniques for their performance in domain shifted conditions [57]. As opposed
to ToyADMOS its predecessor, it only carters for two types of miniature machines: toy car
and toy trains. The recording and system setup is same for ToyADMOS [9]; however, a
key difference, ToyADMOS2 has the normal and anomalous machine operating sounds
recorded with machines operating under different speeds. This provides for a source
domain consisting of machines with specified operating conditions and the target domain
with machines having different operating conditions. Suitable for training and testing with
the different domains.

3.7. MIMII DG Dataset

MIMII DG dataset provides normal and anomalous machine operating sounds for bench-
mark Domain Generalisation techniques [58]. It comprises five groups of machines including
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valve, gearbox, fan, slide rail and bearing. The audio recording for each machine consists of
three sections representing different types of domain shift conditions, which for each machine
could be operating condition change and environmental background noise change.

4. Challenges
4.1. Sound Mixtures with Background Noise

The presence of background noise interfering with machine fault signature during
acquisition of acoustic data poses a challenge in terms of accuracy and repeatability of
machine fault diagnostics. Background noise in this context refers to sound from other
operating machines that are different from the target machine. Additionally, it includes the
sounds from other activities in the industrial environment.

Approaches are therefore required to eliminate background noise from the collected
acoustic data. The challenge lies in the fact that the background noise sources are un-
correlated, as such, filtering techniques are not applicable. Techniques, such as Blind
Signal Separation (BSS) and Independent Component Analysis (ICA), have the potential
to address this challenge by recovering the signal of interest out of the observed sound
mixtures. BSS has been applied in [59] for extracting the unobserved fault acoustic signal
during metal stamping with a mechanical press. Wang et al. [60] also applied BSS using
sparse component analysis for separating sound mixtures of power transformer origin.
In [48], ICA was applied together with variational mode decomposition, to separate the
independent components hidden in the observation low signal-to-noise ratio signals, for
an intelligent diagnosis application.

In practice, the mixture of acoustic signals is formed by the random mixing of multiple
sound sources resulting in non-linear mixture models, which is an area requiring further
attention for acoustic-based machine condition monitoring.

4.2. Domain Shift with Changes in Machine Operation and Background Noise

Domain shift represents the change in machine operating and environmental condi-
tions. This is common in industrial settings as machines would not always operate in their
design point conditions. There is always a need for the machine to run at an off-design
point, indicating changes to both speed and loading as well as changes in the background
noise from auxiliaries during operation. Tackling the domain shift problem is important
for effective anomaly detectors applicable to machine operating sound.

The concept of domain adaptation is gaining prominence as an approach for anomaly
detection in domain shifted conditions [11,61]. Domain adaptation addresses the problem as:
when provided with a set of normal data from a source domain and a limited set of normal
data from a target domain, how do you develop a performant anomaly detector in the target
domain. From the literature, the following approaches for domain adaptation have emerged:
learning the transformation from the source domain to the target domain [62,63], learning
invariant representations between the source and the target domains [64–67] and few-shot
domain adaptation [68,69]. With the option of domain adaptation, it opens opportunities for
application to acoustic-based machine condition monitoring and fault diagnostics.

4.3. Domain Generalisation Invariant to Changes in Machine Operation and Background Noise

Domain generalisation is an attempt to provide an alternative to the domain adaptation
techniques when dealing with domain shift due to the computational cost of the domain
adaptation techniques. Domain generalisation poses the problem of learning commonalities
across various domains (i.e., source and target) to enable the model to generalize across the
domains. Such generalisation would need to account for domain shift caused by differences
in environmental conditions, machine physical conditions, changes due to maintenance,
and differences in recording devices for instance.

Fundamentally, domain generalisation attempts the out-of-distribution generalisation
by using only the source domain data. In the literature, several techniques have emerged
such as [70]: domain alignment, meta-learning, ensemble learning, data augmentation, self-
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supervised learning, learning disentangled representations, regularisation strategies, and
reinforcement learning. With the development and application of domain generalisation
techniques for machine fault diagnostics problem, it would open compelling opportunities
for the applicability of the acoustic-based approaches.

4.4. Effect of Measurement Distance, Measurement Device and Sampling Parameters
4.4.1. Measurement Distance (Microphones Positions)

Sound propagates through air as a longitudinal wave; as it moves through the air
medium, from the source to the listener or observer, sound as characterised by sound
intensity, experiences attenuation, i.e., loss in energy. For a point source (i.e., uniformly
radiating sound in all directions), this attenuation follows the inverse square law as shown
in Figure 15, which is dependent on the measurement distance. In practice, for every dou-
bling of measurement distance, the sound intensity reduces by a factor of 4; alternatively,
the sound pressure level reduces by 6 dB. From sound propagation theory, it is evident
that, the measurement distance of anomalous machine operating sound is important [71].
However, very little consideration has been given to this effect during experimental setup
for anomalous machine sound data acquisition as corroborated by the benchmarking open-
source datasets such as ToyADMOS, MIMII, IDMT-ISA-ELECTRIC ENGINE, MIMII DUE,
ToyADMOS2, and MIMII DG. One can argue, the measurement distance effect can be
accounted for within domain adaptation or domain generalisation challenges. Yet, the vari-
ous datasets do not provide a systematic grouping of the dataset based on the measurement
distance for this to be considered. The parameters often considered are changes in machine
operating parameters (i.e., rotating speed and load) and environmental/background noise.

An important question is then raised; how far should the microphones be from the
sound source considering the measurement distance effect?

In acoustics, two physical regions exist that shed light to the above question: the
acoustics near field and acoustics far field as shown in Figure 16. The transition from near
field to far field occur in at least 1 wavelength of the sound source [72]. It is important, to
note, as wavelength is a function of frequency, this transition distance would change as the
frequency content of the sound source changes. The near field exist very close to the sound
source with no fixed relationship between sound intensity and distance. Within the far field,
the inverse square law of sound propagation holds true. In practice, this is the region where
the measuring microphone should ideally be located. As a minimum, a single microphone
can suffice for accurate and repeatable measurement of sound. Although fundamental
acoustics theory would place the far field at least 1 wavelength of the sound source [72];
ISO 3745, provides several guidelines or criteria for microphone placement within the far
field for sound power measurement [73]:

(a) r ≥ 2do (6)

(b) r ≥ λ/4 (7)

(c) r ≥ 1 metre (8)

where r is measurement distance, do is characteristic dimension or largest dimension of the
sound source, and λ is the lowest wavelength of the sound source.

For small, low-noise sound sources with measurement over a limited frequency range,
the measurement distance can be less than 1 m, but not less than 0.5 m, provided considera-
tion for criteria (a) and (b) above are adhered to [73].

Within the near field, measurement is feasible; but would require multi-microphone
array. For the measurement of anomalous machine operating sound, guidelines are lacking
in the literature and further research is required.
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4.4.2. Single Microphone Measurement Device and Sampling Parameters 
Acoustic measuring device mismatch between development data acquisition and 

testing can occur in practice. As every microphone have its unique transfer function which 
dictates its frequency response and perception of sound, measuring device mismatch 
needs to be considered. Very little has been done in considering this challenge in the de-
tection and classification of anomalous machine operating sound. However, such consid-
eration is already attracting attention in the corollary field of acoustic scene classification 
[75]. Key to this consideration in acoustic scene classification field, is the realization of the 
TUT Urban Acoustic Scenes dataset which consists of ten different acoustic scenes, rec-
orded in six large European cities with four different microphone devices: highlighting 
the importance of considering the acoustic measuring device for robust pattern learning 
algorithm [75]. 

As very little work has been explored on the effect of recording device mismatch in 
anomalous machine operating sound detection and classification to inform device choice; 
still, some learning can be gleaned from the choice of microphones, sampling frequency 
and sample duration as shown in Table 9 from the opensource dataset projects on 
DCAMS. 
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4.4.2. Single Microphone Measurement Device and Sampling Parameters

Acoustic measuring device mismatch between development data acquisition and
testing can occur in practice. As every microphone have its unique transfer function which
dictates its frequency response and perception of sound, measuring device mismatch needs
to be considered. Very little has been done in considering this challenge in the detection
and classification of anomalous machine operating sound. However, such consideration is
already attracting attention in the corollary field of acoustic scene classification [75]. Key to
this consideration in acoustic scene classification field, is the realization of the TUT Urban
Acoustic Scenes dataset which consists of ten different acoustic scenes, recorded in six large
European cities with four different microphone devices: highlighting the importance of
considering the acoustic measuring device for robust pattern learning algorithm [75].

As very little work has been explored on the effect of recording device mismatch in
anomalous machine operating sound detection and classification to inform device choice;
still, some learning can be gleaned from the choice of microphones, sampling frequency
and sample duration as shown in Table 9 from the opensource dataset projects on DCAMS.
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Table 9. Exemplar acoustic measurement devices and sampling parameters.

Datasets Microphone Brand Microphone Type Sampling
Frequency Sample Duration Ref.

ToyADMOS Shure SM11-CN Omni-directional
Microphone

16 kHz
(Downsampled) 10 s, and 10 min [9]

MIMII
TAMAGO-03

(Circular microphone array with 8
distinct microphones)

- 16 kHz 10 s. [10]

IDMT-ISA-
ELECTRIC-ENGINE - - 44.1 kHz 3 s. [14]

MIMII DUE
TAMAGO-03

(Circular microphone array with 8
distinct microphones)

- 16 kHz 10 s. [56]

ToyADMOS2 Shure SM11-CN
TOMOCA EM-700

Omni-directional
Microphone
Condenser

Microphone

48 kHz 12 s. [57]

MIMII DG
TAMAGO-03

(Circular microphone array with 8
distinct microphones)

- 16 kHz 10 s. [58]

4.4.3. Microphone Array Measurement (Acoustic Camera)

Acoustic camera measurement provides the capability for sound source localisation,
quantification and visualization using multi-dimensional acoustic signals processed from a
microphone array unit and overlaid on either image or video of the sound source as shown
in Figure 17 [76]. An acoustic camera, is a collection of several microphones, acting as a
microphone array unit, where the microphones within the array can be arranged either as
uniform circular configuration, uniform linear configuration, uniform square configuration
or customized array configuration for specific application. Acoustic camera can provide
acoustic scene measurement both in the near and far acoustic fields.

For localizing anomalous machine operating sound in application, acoustic camera
has been used to map the variation in machine emitted sound for fault detection as follows:
localizing sources of aircraft fly by noise [77], characterising emitted sound from internal
combustion engine running idle in a vehicle [78], fault detection in a gearbox unit [79], fault
localisation in rolling-element bearing [80], etc.
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Figure 17. Acoustic camera for fault detection based on variation in emitted sound (a) Acoustic 
camera setup (b) test object without a fault (c) test object with a fault [81]. 

Central to the analysis and interpretation of the multi-dimensional acoustic signals is 
acoustic beamforming technique [76,82]. Ref. [82] provides an extensive review on acous-
tic beamforming theory including consideration for acoustic beamforming test design cri-
teria. 

Acoustic beamforming is a spatial filtering technique used in far field acoustic do-
main, for localisation and quantification of the sound source; where it amplifies the acous-
tic signal of interest while suppressing interfering sound sources (e.g., background noise) 
[82]. In principle, the beamforming algorithm works by summing individual acoustic sig-
nals based on their arrival times from the sound source to the microphone array. This 
summation process suppresses the interfering signals while enhancing the acoustic signal 
of interest. The technique can be performed both in the time-domain and frequency do-
main [82]. 
(1) Delay and Sum Beamforming in the Time-Domain: This is demonstrated in Figure 18 

as follows, considering only two sound sources as an example (i.e., source 1 and source 
2). For each sound source, the travel path of emitted sound to the microphone array 
would be different; as such, captured signals by the microphone array would show 
different delays and phases for the measured signals from both sources. As both pa-
rameters, delay, and phase, are proportional to the travelled distance between micro-
phone array and source; with the knowledge of the speed of sound in the medium (e.g., 
air), the runtime delay is estimated for the signal of interest (source 1) reaching all the 
microphone locations. The measured signal for every microphone in the array is then 
shifted by the calculated runtime delay for that channel, creating an alignment in phase 
in the time-domain for the signal of interest (source 1). The resulting signals from every 
microphone channel are summed and normalised by the number of microphones in 
the array; As shown in Figure 18, the signal of interest (source 1) is amplified due to 
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Figure 17. Acoustic camera for fault detection based on variation in emitted sound (a) Acoustic
camera setup (b) test object without a fault (c) test object with a fault [81].
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Central to the analysis and interpretation of the multi-dimensional acoustic signals is
acoustic beamforming technique [76,82]. Ref. [82] provides an extensive review on acoustic
beamforming theory including consideration for acoustic beamforming test design criteria.

Acoustic beamforming is a spatial filtering technique used in far field acoustic domain,
for localisation and quantification of the sound source; where it amplifies the acoustic signal
of interest while suppressing interfering sound sources (e.g., background noise) [82]. In
principle, the beamforming algorithm works by summing individual acoustic signals based
on their arrival times from the sound source to the microphone array. This summation
process suppresses the interfering signals while enhancing the acoustic signal of interest.
The technique can be performed both in the time-domain and frequency domain [82].

(1) Delay and Sum Beamforming in the Time-Domain: This is demonstrated in Figure 18
as follows, considering only two sound sources as an example (i.e., source 1 and
source 2). For each sound source, the travel path of emitted sound to the microphone
array would be different; as such, captured signals by the microphone array would
show different delays and phases for the measured signals from both sources. As
both parameters, delay, and phase, are proportional to the travelled distance between
microphone array and source; with the knowledge of the speed of sound in the
medium (e.g., air), the runtime delay is estimated for the signal of interest (source 1)
reaching all the microphone locations. The measured signal for every microphone
in the array is then shifted by the calculated runtime delay for that channel, creating
an alignment in phase in the time-domain for the signal of interest (source 1). The
resulting signals from every microphone channel are summed and normalised by the
number of microphones in the array; As shown in Figure 18, the signal of interest
(source 1) is amplified due to constructive interference while source 2 is minimized
due to destructive interference. To create the final acoustic scene representation,
for each microphone channel, the root mean square (RMS) amplitude value or the
maximum amplitude value of the time-domain acoustic signal can be evaluated for
visualization as an acoustic map.
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(2) Delay and Sum Beamforming in the Frequency Domain: This is demonstrated in
Figure 19 as follows, considering only two sound sources as an example (i.e., source
1 and source 2). For each sound source, the travel path of emitted sound to the
microphone array would be different; as such, captured signals by the microphone
array would show different delays and phases for the measured signals from both
sources. The delay for the signal of interest can be determined using information
such as, distance between source and microphone and the speed of sound in the
medium. Fourier transform is performed at all microphone channel resulting in a
complex spectrum for amplitude and phase. To eliminate the delay in phase for the
signal of interest at all microphone location, the complex spectra is multiplied by a
complex phase term as shown in Figure 19, bringing the interested acoustic source in
phase without impacting the amplitude of the spectra. The resulting complex spectra
from all the microphone channels are summed and normalised by the number of
microphone channels. The interest sound source signal (source 1) is enhanced due to
constructive interference, while source 2 is diminished due to destructive interference.
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Application of acoustic camera to machine diagnostics have been attracting increasing
interest [77–80,85,86]. Of note, is the approach proposed by [85,86] to localise faults in
rotating machinery using acoustic beamforming and spectral kurtosis (i.e., spectral kurtosis
is an effective indicator of machine fault [87,88]). As shown in Figure 20, spectral kurtosis
is used as a post-processor of the multi-dimensional acoustic time-domain signals from
the microphone array to identify and localise fault-related frequency bands (i.e., frequency
bands that are impulsive); the resulting kurtogram having a spatial dimension provides
the capability to localise the high kurtosis region providing indication of machine fault.
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5. Outlook

Anomalous machine operating sound provides a rich set of information about a
machine’s current health state upon which to automate the detection and classification of
machinery faults. Despite advances in data-driven machine learning and deep learning
approaches as currently applied for acoustic-based machine condition monitoring, there
still exist areas for further research for this technique to be industrially applicable.

5.1. Addressing Pitfalls in Acoustic Data Collection

The performance of data-driven models and their ability to generalize during training
and testing depends on the available datasets being a representative of the actual fault
scenario. However, generating machine fault dataset for actual machines is a costly en-
deavor. If the training dataset is too small, the model learns sampling noise. As a work
around, most of the opensource dataset for the detection and classification of anomalous
machine operating sounds have focused on either toy machines or scaled down machine
models. This approach has provided initial seeding to be able to benchmark currently
developed techniques. Generally, available datasets account for steady-state changes in
machine operational parameters such as speed and load, consideration of varying degree of
background noise during acoustic signal measurement, and different models of similar ma-
chine class. These datasets are lacking in the following areas: consideration of the distance
effect during grouping of the dataset (i.e., it would be relevant to have measurements at
different distances from the source to test the robustness of developed approaches working
in the field where it would be difficult to maintain repeatable measurement distance),
consideration of transient operation regime of machines during dataset grouping (i.e.,
steady-state dataset alone is a non-representative training data; developed approach need
to be able to differentiate transient operation from anomalous operation), and consideration
of device mismatch during data acquisition (i.e., recording for same machine fault with
different types of microphones, such as omni-directional microphone, pressure-free field
microphone, condenser microphone, etc.; Furthermore, it would be relevant to specify a
standard reference microphone such as the omni-directional microphone, in other for spec-
trum correction coefficients for various microphones to be provided with respect to this [89];
using spectrum correction coefficients opens up the possibility of data transformation to
account for device mismatch).
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5.2. Addressing Measurement Artifacts (i.e., Background Noise, and Distance Effect)

In the industrial environment, acoustic-based machine condition monitoring is often
plagued with the problem of having multiple signals mixing such as acoustic signal of
interest indicative of anomalous machine operation and the background noise, i.e., neigh-
boring machinery, factory noise, etc. It is required for the sound mixture to be separable,
i.e., separating the acoustic signal of interest from the background noise. Conventional ap-
proaches such as spectral subtraction methods which rely on the background noise having
a constant magnitude spectrum and acoustic signal of interest been short-time stationary
would not be applicable as there is the possibility of removing fault frequencies from the
spectrum of the acoustic signal of interest [90]. Blind signal separation can be useful as it
offers sound mixture separation without prior knowledge of either of the signals or the
way in which they are mixed [91]. Application and optimisation of blind signal separation
for acoustic-based machine condition monitoring provides an area for further research.

The effect of distance between the acoustic source and microphone leads to attenuation
of the measured sound intensity. Furthermore, it places a burden of repeatability between
laboratory conditions and industrial conditions, impacting data-driven model accuracy
for application. Eliminating or minimizing the distance effect on the acquired acoustic
signal is an area requiring further research. [71] proposed a normalisation scheme (i.e.,
d-normalization) in the frequency domain using the spectrum representation of the acoustic
signal which minimized the distance effect as shown in Figure 21 and expressed as:

I( f ) = I( f )/µI (9)

where I( f ) is the normalised spectrum of the measured sound intensity, I( f ) is the un-
normalised spectrum of the measured sound intensity (i.e., determined from fast Fourier
transform of the time-domain acoustic signal), and µI is the mean of the rectified time-
domain acoustic signal intensity, given as:

µI = (1/N)×∑N
i=1|Xi| (10)

where N is number of sample points in the acoustic time-domain signal, |Xi| is the absolute
amplitude value of the acoustic time-domain signal.

Although the result is promising, it is applicable to the spectral representation of the
acoustic signal. Alternative normalisation scheme be required for other acoustic image
representation such as cochleagram, Mel-spectrogram, amongst others? Furthermore, what
would be the impact on the data-driven model accuracy due to normalisation of the input
acoustic representation? These are open questions for further research.

5.3. Improving Data-Driven Model Accuracy for Application: Domain Adaptation versus
Domain Generalisation

Domain shift (i.e., changes in machinery operating speed and load) is inevitable
in industrial processes due to machines operating in off-design conditions and harsh
environment. As such, training data-driven models for the DCAMS problem to account
for this system dynamics is a must have. However, learning robust model representation
by using data from multiple domains to identify invariant relationships between the
various domains is still a challenging problem. Two schools of thought have emerged
to address the domain shift problem in acoustic-based machine condition monitoring:
domain adaptation [92,93] and domain generalisation [94]. Both approaches tackle the
same problem based on the available dataset. Domain adaptation assumes you have dataset
from the source domain (i.e., machine operating at design point) and some set of data in the
target domain (i.e., machine operating at off-design point), it attempts to learn the mapping
between the source and target domain based on these criteria. Alternatively, domain
generalisation assumes you have dataset from two different source domains, it attempts
to learn the mapping to an unseen domain. Although several domain adaptation and
generalization techniques have been proposed in the literature, the model performance for
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both approaches is yet to reach satisfactory level in applications as evident from DCASE2021
and DCASE2022 Task 2 challenges [11,12].
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5.4. Addressing Multi-Fault Diagnosis

In industrial environment, machinery may need to operate in both off-design conditions
and harsh conditions continuously for extended periods of time. As such, machine compo-
nents are liable to the occurrence of multiple faults at the same time. When these multi-faults
occur, their impact to machine performance and lifespan is more severe as compared to the
presence of a single fault due to fault interactions [95]. Fault diagnosis approaches needs to be
able to accommodate both single fault and multi-faults detection scenarios. From the literature,
within acoustic-based condition monitoring methodology, the focus has been on addressing
the single-fault diagnosis problem; multi-fault diagnosis of machinery is still lacking. This
area of research needs consideration for viable industrial applications, e.g., fault diagnosis in
gearbox, electric motor, compressor, pump, amongst others.

5.5. Improving Acoustic Camera Spatial Detection of Machine Faults

Acoustic camera for machine fault diagnosis provides spatial information not possible
with conventional condition monitoring approaches such vibration analysis. However,
interpreting the visualization of the emitted sound field from the machine from acoustic
beamforming is very limited; It is important to note that regions of high sound pressure
level does not necessarily correlate with the presence of a fault. Further research is required
to analyse the multi-dimensional acoustic time-domain signals as a function of space from
the acoustic beamforming analysis using either signal processing methods or data-driven
machine learning/deep learning approaches. Pioneering in this regard, [85,86] have pro-
posed spectral kurtosis as means to filter the multi-dimensional acoustic time-domain
signals from acoustic beamforming to localise impulsive-related machine faults, e.g., gear-
box faults, rolling-element bearing faults, etc., as well as extract the time-domain acoustic
signals from the region of high spectral kurtosis. This area of research is still limited in
correlating regions of high spectral kurtosis to a fault. The extract time-domain signal
provides an opportunity to be explored for evaluation using data-driven approaches. Fur-
thermore, beyond spectral kurtosis, what other signal processing approaches are relevant
with improved sensitivity to localizing machine faults from the multi-domain acoustic
signals provided by the acoustic camera?
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6. Conclusions

Acoustic-based machine condition monitoring has been attracting increasing atten-
tion, especially with the annual DCASE challenge task on unsupervised anomalous sound
detection for identifying machine conditions. Given the industrial relevance and signif-
icance of this research area, it becomes important in this paper to address the following
questions: (i) are there commonalities or differences amongst the developed methodologies
for detecting and classifying anomalous machine operating sounds, (ii) what open datasets
are available for benchmarking the developed techniques, and (iii) what challenges are still
there for the applicability of acoustic-based machine condition monitoring. Hopefully, this
review of the state-of-the-arts can inspire more advancement in the acoustic-based machine
condition monitoring research area.
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3. Arandjelović, R.; Zisserman, A. Look, Listen and Learn. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Venice, Italy, 22–29 October 2017.

4. Kong, Q.; Cao, Y.; Iqbal, T.; Wang, Y.; Wang, W.; Plumbley, M. PANNs: Large-Scale Pretrained Audio Neural Networks for Audio
Pattern Recognition (Pretrained Models). IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 2880–2894. [CrossRef]

5. Hershey, S.; Chaudhuri, S.; Ellis, D.P.W.; Gemmeke, J.F.; Jansen, A.; Moore, R.C.; Plakal, M.; Platt, D.; Saurous, R.A.; Seybold,
B.; et al. CNN architectures for large-scale audio classification. In Proceedings of the 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 131–135. [CrossRef]

6. Gaylard, A.; Meyer, A.; Landy, C. Acoustic Evaluation of Faults in Electrical Machines. In Proceedings of the 1995 Seventh International
Conference on Electrical Machines and Drives (Conf. Publ. No. 412), Durham, UK, 11–13 September 1995; pp. 147–150.

7. Kawaguchi, Y.; Endo, T. How Can We Detect Anomalies from Subsampled Audio Signals? In Proceedings of the 2017 IEEE 27th
International Workshop on Machine Learning for Signal Processing (MLSP), Tokyo, Japan, 25–28 September 2017; pp. 1–6.

8. Koizumi, Y.; Saito, S.; Uematsu, H.; Harada, N. Optimizing Acoustic Feature Extractor for Anomalous Sound Detection Based on
Neyman-Pearson Lemma. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28
August–2 September 2017; pp. 698–702.

9. Koizumi, Y.; Saito, S.; Uematsu, H.; Harada, N.; Imoto, K. ToyADMOS: A Dataset of Minia-ture-Machine Operating Sounds for
Anomalous Sound Detection. In Proceedings of the 2019 IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), New Paltz, NY, USA, 20–23 October 2019; pp. 313–317.

10. Purohit, H.; Tanabe, R.; Ichige, T.; Endo, T.; Nikaido, Y.; Suefusa, K.; Kawaguchi, Y. MIMII Dataset: Sound Dataset for
Malfunctioning Industrial Machine Investigation and Inspection. In Proceedings of the Detection and Classification of Acoustic
Scenes and Events 2019 Workshop (DCASE2019), New York, NY, USA, 25–26 October 2019; pp. 209–213.

11. Kawaguchi, Y.; Imoto, K.; Koizumi, Y.; Harada, N.; Niizumi, D.; Dohi, K.; Tanabe, R.; Purohit, H.; En-do, T. Description and
Discussion on DCASE 2021 Challenge Task 2: Unsupervised Anomalous Sound Detection for Machine Condition Monitoring
under Domain Shifted Conditions. arXiv 2021, arXiv:2106.04492.

12. Dohi, K.; Imoto, K.; Harada, N.; Niizumi, D.; Koizumi, Y.; Nishida, T.; Purohit, H.; Endo, T.; Yamamoto, M.; Kawaguchi, Y.
Description and Discussion on DCASE 2022 Challenge Task 2: Unsupervised Anomalous Sound Detection for Machine Condition
Monitoring Applying Domain Generalization Tech-niques. arXiv 2022, arXiv:2206.05876.

13. Koizumi, Y.; Kawaguchi, Y.; Imoto, K.; Nakamura, T.; Nikaido, Y.; Tanabe, R.; Purohit, H.; Suefusa, K.; Endo, T.; Yasuda, M.; et al.
Description and Discussion on DCASE2020 Challenge Task2: Unsupervised Anomalous Sound Detection for Machine Condition
Monitorin. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2020 Workshop (DCASE2020), Tokyo,
Japan, 2–4 November 2020; pp. 81–85.

http://doi.org/10.1109/TASLP.2020.3030497
http://doi.org/10.1109/icassp.2017.7952132


Eng 2023, 4 76

14. Grollmisch, S.; Abeßer, J.; Liebetrau, J.; Lukashevich, H. Sounding Industry: Challenges and Datasets for Industrial Sound
Analysis. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruña, Spain, 2–6 September
2019; pp. 1–5.

15. Koizumi, Y.; Saito, S.; Uematsu, H.; Kawachi, Y.; Harada, N. Unsupervised Detection of Anomalous Sound Based on Deep
Learning and the Neyman–Pearson Lemma. IEEE/ACM Trans Audio Speech Lang Process 2019, 27, 212–224. [CrossRef]

16. Sharan, R.; Xiong, H.; Berkovsky, S. Benchmarking Audio Signal Representation Techniques for Classification with Convolutional
Neural Networks. Sensors 2021, 21, 3434. [CrossRef]

17. Roche, F.; Hueber, T.; Limier, S.; Girin, L. Autoencoders for Music Sound Modeling: A Com-parison of Linear, Shallow, Deep,
Recurrent and Variational Models. In Proceedings of the 16th Sound & Music Computing Conference (SMC 2019), Malaga, Spain,
28–31 May 2019.

18. Bai, J.; Chen, C.; Chen, J. Feature Based Fusion System for Anomalous Sounds Monitoring. In Proceedings of the 5th Workshop
on Detection and Classification of Acoustic Scenes and Events (DCASE), Tokyo, Japan, 2–4 November 2020.

19. Ahmed, F.; Nguyen, P.; Courville, A. An Ensemble Approach for Detecting Machine Failure from Sound. In Proceedings of the
5th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE), Tokyo, Japan, 2–4 November 2020.

20. Alam, J.; Boulianne, G.; Gupta, V.; Fathan, A. An Ensemble Approach to Unsupervised Anomalous Sound Detection. In
Proceedings of the 5th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE), Tokyo, Japan, 2–4
November 2020.

21. Morita, K.; Yano, T.; Tran, K.Q. Anomalous Sound Detection by Using Local Outlier Factor and Gaussian Mixture Model. In
Proceedings of the 5th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE), Tokyo, Japan, 2–4
November 2020.

22. Hendrycks, D.; Mazeika, M.; Dietterich, T. Deep Anomaly Detection with Outlier Exposure. In Proceedings of the Seventh
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

23. Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Inverted Residuals and Lin-ear Bottlenecks: Mobile Networks
for Classification, Detection and Segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
Salt Lake City, UT, USA, 18–22 June 2018.

24. Heng, R.B.W.; Nor, M.J.M. Statistical Analysis of Sound and Vibration Signals for Monitor-ing Rolling Element Bearing Condition.
Appl. Acoust. 1998, 53, 211–226. [CrossRef]

25. Van Riesen, D.; Schlensok, C.; Henrotte, F.; Hameyer, K. Acoustic Measurement for Detecting Manufacturing Faults in Electrical
Machines. In Proceedings of the 17th International Conference on Electrical Machines (ICEM), Chania, Greece, 2–5 September 2006.
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