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Abstract: This study investigates the correlation between the California Bearing Ratio (CBR) and the
Dynamic Cone Penetrometer (DCP) for subgrade soil analysis. The paper aims to provide practical
equations for predicting CBR values from DCP test results, therefore enhancing the efficiency of
soil assessments in engineering practice. By analyzing test data and proposing correlations for
different soil groups, the study introduces recalibrated correlations that demonstrate high accuracy
in predicting CBR values. The newly proposed equations offer reliable predictions with R2 values
of 0.89, 0.92, and 0.94 for clean sand, silty sand or sandy silt, and cohesive soil, respectively. These
correlations serve as valuable tools for engineers, enabling rapid and accurate CBR estimations for
improved decision-making in various engineering projects.

Keywords: California Bearing Ratio; CBR; Dynamic Cone Penetrometer; DCP; estimation; prediction;
subgrade; sand; soil; cheap and fast

1. Introduction

The California Bearing Ratio (CBR) is one of the most important characteristics rep-
resenting the shear strength of subgrade material in pavement structures. To conduct
the CBR test, samples must be transported from the borrow pit, prepared, compacted,
and soaked in the laboratory, and then penetrated with CBR equipment. Consequently,
a truly representative CBR value is difficult to obtain because it takes a long time and is
not readily determined in the field. In addition, civil engineers are often faced with the
urgent need for the CBR of soil in a short amount of time. A survey of large amounts of
material resources for road construction is a good example. Therefore, in the literature, a
number of correlations between CBR and other strength properties of soil, such as density,
unconfined compressive strength, and DCP, have been established [1–35]. Among these
techniques, one of the tests that can provide a highly reliable correlation with the CBR is
the Dynamic Cone Penetration (DCP) test [3,4,13,14,17–29,35]. In addition, a CBR predic-
tion from multivariate data analysis and/or method of neural network can also provide
highly reliable results [36–42]. However, the multivariate data analysis and neural network
method always require input soil parameters that are not already determined in the field.
Therefore, DCP equipment, which is considered compact, accurate, and lightweight, is a
powerful tool to achieve an efficient onsite correlation between CBR and DCP.

The correlations between CBR and DCP for local materials proposed by many re-
searchers are usually in the form of logarithmic equations, as summarized in Table 1, and
the trends of all graphs are depicted in Figure 1. According to the equations in Table 1, a
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typical form of the DCP–CBR equation can be expressed as shown in Equation (1), where
α and β are the fitting parameters. Using the same form of equation, all graphs have the
same tendency. It should be noted that when DCP reaches approximately 30 mm/blow, the
CBR varies in a narrow range, around approximately 6%. Furthermore, a wide possible
range of CBR was found when DCP was less than 30 mm/blow. For instance, when DCP
is 10 mm/blow, the possible value of CBR can be approximately 13–32%. In this situa-
tion, it is very difficult for engineers to make decisions when selecting the proper CBR. In
addition, inconsistency was found in the literature. Wilcesh et al. (2018) [19] reported a
single equation that predicted well for various groups of soil (USCS system), i.e., SC, ML,
MH, CL, and CH for DCP ranging between 20 and 120 mm/blow. On the other hand, it
was revealed from the test data for soil type SM, SP, SP–SM, ML, and CL (USCS system)
obtained by Al-Refeai and Al-Suhaibani (1996) [17] that the correlations could predict well
for some groups of soil but the data points for all groups of soil were scattered. However,
consistency was found from the test results of Feleke and Araya (2016) [18] and the soil
type CL of Al-Refeai and Al-Suhaibani (1996) [17]. It was evident that what was available
was not enough. However, this was due to the existing test data, which was used to obtain
reliable correlations for CBR predictions for general purposes.

Table 1. Existing correlation between CBR and DCP.

Equation
No.

Correlation
CBR (%), DCP (mm/Blow) Researchers

1 Log(CBR) = 2.494 − 1.0672Log(DCP) Al-Refeai, Al-Suhaibani (1996) [17]
2 Log(CBR) = 2.015 − 0.906Log(DCP) Feleke & Araya (2016) [18]
3 Log(CBR) = 112.03

DCP0.808 Wilcesh et al. (2018) [19]
4 Log(CBR) = 2.81 − 1.32Log(DCP) Harrison (1986) [20]
5 Log(CBR) = 2.20 − 0.71Log(DCP)1.5 Livneh (1989) [21]
6 Log(CBR) = 2.465 − 1.12Log(DCP) U.S. Army Corps of Engineers (1992) [22]
7 Log(CBR) = 2.48 − 1.057Log(DCP) TRL [23]
8 Log(CBR) = 2.954 − 1.496Log(DCP) Yitagesu (2012) [24]
9 Log(CBR) = 0.84 − 1.26Log(DCP) IDOT (1997) [25]

TRL denotes Transport Research Laboratory, Huntingdon, UK; IDOT denotes Illinois Department of Transporta-
tion, US.
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Figure 1. Graphs of the existing correlation between CBR and DCP.

In this paper, the existing test data for various soil types were investigated, and
the correlations were recalibrated. Four distinct sets of test results (three existing test
results [17–19] and one additional set from this study) were used in the analyses. The
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coefficient of determination (R2) was used to evaluate the proposed correlations. Useful
recommendations were also provided for practical application with no additional testing.

Log(CBR) = α − β·Log(DCP) (1)

2. Materials and Methods

To recalibrate the existing correlations between CBR and DCP, the test results of soils
from many regions and soil groups are required. As mentioned earlier, three existing test
results [17–19] were included in the analyses, with one extra test result from five provinces
in northeast Thailand. Figure 2 shows the location map for material resources in northeast
Thailand. The three existing soil testing datasets [17–19] are not repeated here. On the other
hand, soil data from tests conducted in Thailand are shown in Table 2.
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Figure 2. Location map for local material from five provinces of northeast Thailand (Chaiyaphom,
Khon Kaen, Maha Sarakham, Kalasin, and Roi Et).

Table 2. Basic soil test properties of soil in northeast Thailand.

Sample
No.

LL (%) PI (%) Gs
Soil Classification

AASHTO USCS

1 18.27 5.54 2.69 A-2-4 SC–SM
2 24.50 13.21 2.67 A-2-6 SC
3 15.99 4.51 2.65 A-2-4 SC–SM
4 17.43 9.04 2.65 A-2-4 SC
5 19.27 9.75 2.67 A-2-4 SC
6 20.12 11.15 2.65 A-2-6 SC
7 19.50 15.48 2.66 A-2-6 SC
8 18.02 9.57 2.68 A-2-4 SC
9 21.89 16.44 2.63 A-2-6 SC
10 15.78 10.84 2.67 A-2-6 SC
11 20.56 8.86 2.67 A-2-4 SC
12 27.56 20.04 2.66 A-2-6 SC
13 19.95 8.22 2.64 A-2-4 SC
14 23.21 14.61 2.63 A-2-6 SC
15 18.27 6.08 2.62 A-2-4 SC–SM
16 20.32 14.69 2.65 A-2-4 SC
17 19.81 14.92 2.66 A-2-4 SC
18 17.23 10.98 2.68 A-2-6 SC
19 16.72 5.56 2.63 A-2-4 SC–SM
20 17.25 6.12 2.62 A-2-4 SC–SM
21 18.33 11.23 2.64 A-2-4 SC
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According to Table 2, most soils are classified as clayey sand (SC), and some of the
samples are silty–clayey sand (SC–SM) in the USCS system, while soils are classified as A-2
group in the AASHTO system for all samples.

CBR and DCP testing are two significant tests in addition to the testing of basic
properties. The standard for conducting the CBR and DCP were ASTM D1883-21 and
ASTM D6951/D6951M-18, respectively. The CBR test method involves several key steps
to determine the strength of a soil sample. The soil sample is initially passed through a
19-millimeter sieve. The portion passing through the sieve is used for testing, while the
retained soil is replaced with an equal amount of fresh soil. Samples of 6.8 kg are prepared.
Compaction is performed to achieve maximum dry densities specific to each specimen.
Each specimen is mixed with water to achieve its optimum moisture content (OMC). The
soil is compacted in the mold in five layers, with each layer being compacted thoroughly.
The number of rammer blows is 56 blows/layer. After compaction, the weight of the mold
and compacted soil is measured. In the loading step, the mold with the specimen is placed
in a compression testing machine (CTM) under a surcharge load of 4.54 kg. The CTM
is operated at a controlled rate of penetration (1.25 mm/minute). During the test, the
penetration of the piston into the soil and the corresponding load applied are measured
using a dial gauge and a proving ring, respectively. The load applied at various levels of
penetration is recorded.

A steel rod with a 60-degree conical tip and a diameter of 20 mm makes up the DCP
apparatus. An anvil attached to a second steel rod sits above the rod. This rod serves as
a guide so that an 8-kilogram hammer may be raised and lowered from a height of 57.5
cm on several occasions. The anvil is used as the connecting point between the two rods
to provide rapid couplings and effective energy transmission from the falling weight to
the penetrating rod. After the test gear is put up, the DCP is set up at the test site, and a
zeroing scale is created by recording the rod’s initial penetration. The weight is hoisted
to the top of the rod, 57.5 cm above the anvil, and then dropped while the rod is held
vertically. Following each drop, the rod’s penetration is measured. To avoid soil binding
and the penetration rod affecting test findings, the rod may be gently rotated in cohesive
soils. If the target depth is attained or the rod penetrates less than 3.18 mm 10 drops, the
test will be declared over. The DCP’s dimensions are shown in Figure 3. The penetration
depth (D) in millimeters per single drop of the hammer is the definition of the DCP value.
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3. Results and Discussions

In this section, the results of both DCP and CBR testing from 21 soil samples in
northeast Thailand are presented, and then the analyses for the correlation are described.
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3.1. Test Results for Strength Parameters of Subgrade Soils

Prior to the test of CBR, a compaction test had to be performed to obtain the optimum
moisture content (OMC) and the maximum dry density (MDD), which is required in the
CBR testing procedure. Therefore, the results of DCP and CBR, as well as the MDD, are
presented in this section. It is worth noting that MDD is one of the most effective factors
that can provide a reliable correlation to the CBR. However, the process of MDD testing
has a drawback in that it is time-consuming compared to the DCP test.

Table 3 summarizes the test results of the 21 soil samples in northeast Thailand. The
relationship between the DCP and CBR is demonstrated in Figure 4. It is indicated from
Table 3 that the DCP values range from 7 to 40 mm/blow, and it is observed that the
tendency of the DCP–CBR is similar to those of the DCP–CBR presented in Figure 1. Using
Equation (1), the best-fit parameters α and β for soil in northeast Thailand were evaluated,
as shown in Equation (2) with R2 of 0.94. Notably, although Equation (2) can predict well in
northeast Thailand, there is no guarantee that the equation for local material is applicable
to material in other regions. Therefore, a recalibration process is required and is described
in the next section.

Log(CBR) = 2.58 − 1.18Log(DCP) (2)

Table 3. Test results of 21 soil samples in northeast Thailand.

Sample
No.

Soil
Classification

MDD
(g/cm3)

DCP
(mm/Blow)

CBR
(%)

1 SC–SM 1.84 20.83 14.18
2 SC 1.79 13.10 12.92
3 SC–SM 1.71 31.25 5.32
4 SC 1.75 20.00 8.66
5 SC 1.74 25.00 8.13
6 SC 1.79 30.00 7.88
7 SC 1.89 16.67 15.44
8 SC 1.64 30.00 4.54
9 SC 1.76 10.70 21.42
10 SC 1.73 27.50 8.82
11 SC 1.78 22.00 11.50
12 SC 1.86 15.71 13.02
13 SC 1.94 12.50 20.37
14 SC 1.86 17.86 13.55
15 SC–SM 1.85 11.09 14.28
16 SC 1.76 30.64 8.65
17 SC 1.93 10.42 25.87
18 SC 1.70 33.33 5.25
19 SC–SM 1.95 8.93 30.36
20 SC–SM 1.94 7.35 35.46
21 SC 1.69 39.82 5.04

3.2. Recalibration of the Correlations

The recalibration process starts by investigating all test results of DCP–CBR from
all types of soil. The data points extracted from [17–19], including from this study, are
depicted in Figure 5 with the upper and lower bound lines. Data points can be divided
into two ranges of DCP value: (1) DCP less than 30 mm/blow; and (2) DCP greater than
30 mm/blow. For DCP less than 30 mm/blow, CBR decreased with DCP, and the data
points were scattered in a wide range. Within this range, it is impossible to determine a
unique correlation. This confirmed that test results from local material could not be used in
the CBR prediction without any special conditions. For DCP greater than 30 mm/blow,
the CBR varied in a narrow range for all types of soil. Therefore, a unique correlation
can be established. This agreed with the finding of Wilcesh et al. [19], who suggested a
single equation for describing the DCP–CBR relationship in this range of DCP. In addition,
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despite having the equation of Wilcesh et al. [19], a constant value of CBR of 6% is enough
for the estimation of DCP greater than 30 mm/blow. Moreover, when trying to evaluate
the existing correlations presented in Table 1 by four sets of test data, the finding showed
that the equation proposed by Wilcesh et al. [19] provided the highest R2 in three cases (i.e.,
Feleke & Araya (2016), Wilches et al. (2018) and the soil test in this paper), but gave low R2

for data from Al-Refeai & Al-Suhaibani (1996). Table 4 summarizes the R2 described above.
The numbers in rectangles represent the considered low value of R2.

Eng 2024, 5, FOR PEER REVIEW 6 
 

 

12 SC 1.86 15.71 13.02 
13 SC 1.94 12.50 20.37 
14 SC 1.86 17.86 13.55 
15 SC–SM 1.85 11.09 14.28 
16 SC 1.76 30.64 8.65 
17 SC 1.93 10.42 25.87 
18 SC 1.70 33.33 5.25 
19 SC–SM 1.95 8.93 30.36 
20 SC–SM 1.94 7.35 35.46 
21 SC 1.69 39.82 5.04 

 
Figure 4. Relationship between the DCP and CBR of soil samples in northeast Thailand. 

𝐿𝑜𝑔(𝐶𝐵𝑅) = 2.58− 1.18𝐿𝑜𝑔(𝐷𝐶𝑃) (2)

3.2. Recalibration of the Correlations 
The recalibration process starts by investigating all test results of DCP–CBR from all 

types of soil. The data points extracted from [17–19], including from this study, are de-
picted in Figure 5 with the upper and lower bound lines. Data points can be divided into 
two ranges of DCP value: (1) DCP less than 30 mm/blow; and (2) DCP greater than 30 
mm/blow. For DCP less than 30 mm/blow, CBR decreased with DCP, and the data points 
were scattered in a wide range. Within this range, it is impossible to determine a unique 
correlation. This confirmed that test results from local material could not be used in the 
CBR prediction without any special conditions. For DCP greater than 30 mm/blow, the 
CBR varied in a narrow range for all types of soil. Therefore, a unique correlation can be 
established. This agreed with the finding of Wilcesh et al. [19], who suggested a single 
equation for describing the DCP–CBR relationship in this range of DCP. In addition, de-
spite having the equation of Wilcesh et al. [19], a constant value of CBR of 6% is enough 
for the estimation of DCP greater than 30 mm/blow. Moreover, when trying to evaluate 
the existing correlations presented in Table 1 by four sets of test data, the finding showed 
that the equation proposed by Wilcesh et al. [19] provided the highest 𝑅  in three cases 
(i.e., Feleke & Araya (2016), Wilches et al. (2018) and the soil test in this paper), but gave 
low 𝑅  for data from Al-Refeai & Al-Suhaibani (1996). Table 4 summarizes the 𝑅  de-
scribed above. The numbers in rectangles represent the considered low value of 𝑅 . 

0

10

20

30

40

50

60

0 10 20 30 40 50 60

CB
R 

(%
)

DCP (mm/Blow)

𝐿𝑜𝑔 𝐶𝐵𝑅 = 2.58− 1.18𝐿𝑜𝑔(𝐷𝐶𝑃)(𝑅 = 0.94)

Figure 4. Relationship between the DCP and CBR of soil samples in northeast Thailand.

Eng 2024, 5, FOR PEER REVIEW 7 
 

 

 
Figure 5. Data plot between the DCP and CBR of subgrade soils. 

Table 4. Coefficient of determination (𝑅 ) of Equations in Table 1 for various soil datasets. 

Equation 
Number 

Al-Refeai &  
Al-Suhaibani (1996) 

[17] 

Feleke & Araya 
(2016) 
[18] 

Wilches  
et al. (2018) 

[19] 
This Study 

1 0.82 0.45 0.96 0.97 
2 0.59 0.85 0.83 0.77 
3 0.78 0.92 0.97 0.91 
4 0.43 0.00 0.92 0.93 
5 0.85 0.74 0.93 0.92 
6 0.82 0.67 0.92 0.97 
7 0.83 0.51 0.96 0.97 
8 0.09 0.00 0.81 0.95 
9 0.03 0.06 0.02 0.03 

TRL denotes Transport Research Laboratory, Huntingdon, UK; IDOT denotes Illinois Department 
of Transportation, US. 

The special conditions for recalibration are addressed here. It should be kept in mind 
that no extra testing should be required, and the identifying procedure of soil samples 
during DCP testing by visual inspection should be enough in the case of the soil type 
involved. The special conditions added in the analyses are as follows: 
(1) The proposed correlations should be in the form of Equation (1) and provide fewer 

changes or a constant value of CBR when DCP is greater than 30 mm/blow; 
(2) The correlation should be separated for the cohesionless and cohesive soil; 
(3) For cohesionless soil in which the data points were more scattered, the subgroup, 

such as clean sand or sand mixed with non-plastic silt (both silty sand and sandy silt), 
could be an important condition. 
With these conditions, the proposed correlations can be derived in three subgroups, 

as shown in Equations (3)–(5) and Figure 6. In analyzing data using the aforementioned 
conditions, it was also assumed that soils in the same group should yield consistent results 
independently of the data source. However, it should be noted in grouping that there 
should be no additional tests to maintain the ease of practical application of the obtained 
equations. Therefore, SP and SP–SM were grouped as clean sand, SM, ML, and MH were 
grouped as silty sand or sandy silt, and SC and SC–SM were grouped as cohesive soil. 

Log(CBR) = 3.47 − 1.68log(DCP) (for soil SP, SP–SM) (3)

Figure 5. Data plot between the DCP and CBR of subgrade soils.

The special conditions for recalibration are addressed here. It should be kept in mind
that no extra testing should be required, and the identifying procedure of soil samples
during DCP testing by visual inspection should be enough in the case of the soil type
involved. The special conditions added in the analyses are as follows:

(1) The proposed correlations should be in the form of Equation (1) and provide fewer
changes or a constant value of CBR when DCP is greater than 30 mm/blow;

(2) The correlation should be separated for the cohesionless and cohesive soil;
(3) For cohesionless soil in which the data points were more scattered, the subgroup,

such as clean sand or sand mixed with non-plastic silt (both silty sand and sandy silt),
could be an important condition.
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Table 4. Coefficient of determination (R2) of Equations in Table 1 for various soil datasets.

Equation
Number

Al-Refeai &
Al-Suhaibani

(1996) [17]

Feleke & Araya
(2016)
[18]

Wilches
et al. (2018)

[19]
This Study

1 0.82 0.45 0.96 0.97
2 0.59 0.85 0.83 0.77
3 0.78 0.92 0.97 0.91
4 0.43 0.00 0.92 0.93
5 0.85 0.74 0.93 0.92
6 0.82 0.67 0.92 0.97
7 0.83 0.51 0.96 0.97
8 0.09 0.00 0.81 0.95
9 0.03 0.06 0.02 0.03

TRL denotes Transport Research Laboratory, Huntingdon, UK; IDOT denotes Illinois Department of Transporta-
tion, US.

With these conditions, the proposed correlations can be derived in three subgroups,
as shown in Equations (3)–(5) and Figure 6. In analyzing data using the aforementioned
conditions, it was also assumed that soils in the same group should yield consistent results
independently of the data source. However, it should be noted in grouping that there
should be no additional tests to maintain the ease of practical application of the obtained
equations. Therefore, SP and SP–SM were grouped as clean sand, SM, ML, and MH were
grouped as silty sand or sandy silt, and SC and SC–SM were grouped as cohesive soil.

Log(CBR) = 3.47 − 1.68log(DCP) (for soil SP, SP-SM) (3)

Log(CBR) = 2.53 − 1.13log(DCP) (for soil SM, ML, MH) (4)

Log(CBR) = 2.32 − 1.03log(DCP) (for soil SC, SC-SM) (5)
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Figure 6. Graphs of new correlations proposed in this paper.

In Figure 6, data points representing soil groups SP, SP–SM, SM, ML, MH, SC, and
SC–SM were plotted against the proposed correlations. These correlations were established
based on the conditions mentioned earlier, yielding R2 values of 0.89, 0.92, and 0.94 for clean
sand, silty sand or sandy silt, and cohesive soil, respectively. With an R2 of approximately
0.9, these correlations provided sufficient accuracy for rapid prediction. It was emphasized
that visually inspecting the soil before applying the correlations was crucial. Engineers
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could distinguish between clean sand and sand mixed with silt by observing the particle
sizes. If the soil appeared predominantly sandy with visible particles, it was likely clean
sand. However, if there were clearly visible portions of finer soil mixed in, it indicated a
mixture of sand and silt. Additionally, if the soil exhibited cohesive properties or could
be molded into threads when mixed with water, akin to the plastic limit (PL) test, it was
classified as cohesive soil. Hence, visual inspection could be effectively combined with the
new correlation method.

4. Conclusions

This study focuses on predicting the CBR from the DCP for subgrade soil. By analyzing
test data and proposing correlations between CBR and DCP for different soil groups, the
researchers aimed to provide simple and practical equations for accurately predicting CBR
values in general engineering practice. The findings of the study highlight the importance
of recalibrating the existing correlations to ensure applicability across different regions and
emphasize the significance of visually inspecting soil characteristics before applying the
proposed correlations. The newly proposed correlations demonstrated high accuracy with
R2 values of 0.89, 0.92, and 0.94 for clean sand, silty sand or sandy silt, and cohesive soil,
respectively. These correlations offer a valuable tool for engineers to rapidly obtain CBR
values, ultimately enhancing the efficiency and reliability of subgrade soil assessments in
various engineering projects.

Furthermore, the authors advise future research on the application of multivariate
data analysis and neural network modeling if more trustworthy findings in the prediction
of CBR are needed and if testing for CBR values should not be rushed.
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