Abstract

Strain Sensor Based on Biological Nanomaterial †

Levan P. Ichkitidze 1,2,*, Alexander Yu. Gerasimenko 1,2, Dmitry V. Telyshev 1,2, Eugeny P. Kitsyuk 3, Vladimir A. Petukhov 2, and Sergei V. Selishchev 2

1 Institute for Bionic Technologies and Engineering of I.M. Sechenov, First Moscow State Medical University, 119991 Moscow, Russia; gerasimenko@bms.zone (A.Y.G.); telyshev@bms.zone (D.V.T.)
2 Institute of Biomedical Systems of National Research, University of Electronic Technology “MIET”, Zelenograd, 124498 Moscow, Russia; vov4ick@mail.ru (V.A.P.); selishchev@bms.zone (S.V.S.)
3 Scientific-Manufacturing Complex “Technological Centre”, Zelenograd, 124498 Moscow, Russia; kitsyuk.e@gmail.com
* Correspondence: ichkitidze@bms.zone
† Presented at the 8th International Symposium on Sensor Science, 17–28 May 2021; Available online: https://i3s2021dresden.sciforum.net/.

Abstract: We investigated a prototype of a strain sensor based on the layers of a bionanomaterial containing bovine serum albumin (BSA matrix) and multi-walled carbon nanotubes (MWCNT filler). The aqueous dispersion of 25 wt.% BSA/0.3 wt.% MWCNT was applied by screen printing onto flexible polyethylene terephthalate substrates. After drying the layers by laser irradiation (~970 nm), various parameters of the layers were controlled, i.e., resistance R, bending angle θ, number of cycles n, and measurement time. One measurement cycle corresponded to a change within the range $\theta = \pm 150^\circ$. The layers of the BSA/MWCNT bionanomaterial had dimensions of $(15 \div 20) \, \text{mm} \times (8 \div 10) \, \text{mm} \times (0.5 \div 1.5) \, \mu\text{m}$. The dependences of resistance R on the bending angle θ were similar for all layers at $\theta = \pm 30$, and the $R(\theta)$ curves represented approximate linear dependences (with an error of $\leq 10\%$); beyond this range, the dependences became nonlinear. The following quantitative values were obtained for the investigated strain sensor: specific conductivity $\sim 1 \div 10 \, \text{S/m}$, linear strain sensitivity ~ 160, and bending sensitivity $1.0 \div 1.5\%/\circ$. These results are high. The examined layers of the bionanomaterial BSA/MWCNT as a strain sensor are of particular interest for medical practice. In particular, strain sensors can be implemented by applying a water dispersion of nanomaterials to human skin using a 3D printer for monitoring movements (arms and blinking) and the detection of signs of pathology (dysphagia, respiratory diseases, angina, etc.).

Keywords: strain sensor; bovine serum albumin; multi-walled carbon nanotubes; laser irradiation; strain sensitivity

All authors have read and agreed to the published version of the manuscript.

Funding: Study was supported by the Ministry of Science and Higher Education of the Russian Federation No. 07503-2020-216 from 27 December 2019.

Conflicts of Interest: The authors declare no conflict of interest.