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Abstract: A photovoltaic (PV) cell is generally used as renewable energy source. For an accurate
study of various PV applications, modeling this basic device in a PV generator is essential. However,
the manufacturers do not usually provide the model parameters and their values vary over time
due to PV degradation and the change in weather conditions. Thus, finding an optimal technique
for estimating the appropriate parameters is crucial. This problem can be solved by metaheuristic
optimization algorithms, namely particle swarm optimization (PSO). However, early convergence
is the main defect of PSO. This work presents an enhancement in the optimization method (PSO)
for identifying the optimal parameters of a PV generating unit. In this method, the identification
of parameters of the single diode model is based on an opposition-based initialization particle
swarm optimization technique. The optimization algorithm is implemented in MATLAB which gives
good results.

Keywords: photovoltaic (PV) cell; opposition-based particle swarm optimization algorithm; one
diode model parameters

1. Introduction

Solar Energy is considered as the most promising alternative to conventional energy
sources. Its main application is the photovoltaic (PV) power generation that was predicted
to be over 1000 TWh in 2021 [1]. PV systems convert solar energy into electrical energy.
They can be installed easily, and they are noise-free. For an accurate study of various
PV applications, modeling the basic device in a PV generator is essential. However, the
manufacturers do not usually provide the model parameters and their values vary over
time due to PV degradation [2] and the change in weather conditions. Thus, finding an
optimal method for estimating appropriate parameters is critical.

The single diode model (ODM) is regarded as the most suitable model used to charac-
terize the PV generator [3–7] compared to the two-diode model (DDM) and the three-diode
model (TDM) as it has the least number of parameters and a good accuracy. The ODM has
five electrical parameters that are: photocurrent (Iph), reverse saturation current (Is), diode
ideality factor (n), series resistance (Rs), and parallel resistance (Rsh).

Different techniques have been developed to identify ODM parameters, which can be
classified in three categories [5,7]:

- Analytical methods [7],
- Numerical methods [3–6],
- Optimization methods based on artificial intelligence [8–11].

Although numerical methods are widely used in the literature due to their speed
of calculation, simplicity, and accuracy, they cannot be used to solve PV model complex
non-linear equations. This problem can be solved using optimization techniques based
on artificial intelligence. Particle swarm optimization (PSO) is a popular metaheuristic
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optimization algorithm. However, the main defect of PSO that does not let it provide
high-quality solutions in multimodal problems, such as PV panels parameters estimation,
is its early convergence. This work presents an enhancement in the optimization method
(PSO) for extracting the optimal parameters of a PV generating unit. The purpose of
this work is to simulate the I-V and P-V characteristics based on the single diode model
(ODM) using an opposition-based initialization particle swarm optimization algorithm that
allows finding the optimal values of the needed parameters. The optimization algorithm
is implemented in MATLAB for obtaining these model parameters and hence, I-V and
P-V characteristics. The analysis is performed on various PV modules under different
environmental conditions. The obtained results are compared and discussed to prove the
efficiency and accuracy of the suggested optimization technique.

2. Photovoltaic Cell

A PV cell is an electronic device that permits the conversion of solar energy into
electrical energy based on the photovoltaic effect, as shown in Figure 1. Solar cell produces
electricity with poor voltage, which is approximately about 0.5 to 0.6 volts for the common
single junction silicon PV cell. Thus, PV cells are coordinated in the form of modules or
panels to produce electricity with high voltage and to provide adequate voltage and current
for life applications.
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2.1. Characteristics of the PV Cell

The electrical characteristics of a PV generator are mainly provided by the manufac-
turers under standard test conditions (STC) that are specified by the ambient temperature
TSTC = 25 ◦C, irradiation level GSTC = 1000 W/m2, and the air mass value AM = 1.5.
However, in the working field, PV panels operate at varying temperatures and at lower
insulation levels. In order to define the power output of the solar generator, it is essential
to find the expected operating temperature of the PV panel. The nominal operating cell
temperature (NOCT) is set as the temperature reached by open circuited cells in a PV panel
under the conditions: ambient temperature Tambient = 20 ◦C, solar irradiance G = 800 w/m2,
and wind speed = 1 m/s. Hence, the PV cell temperature can be calculated as follows:

Tcell = Tambient +

(
NOCT− 20

800

)
∗G (1)

The typical I-V and P-V curves characterizing a photovoltaic cell are shown in Figure 2.
The three significant points on the photovoltaic characteristics are short circuit current (Isc),
open circuit voltage (Voc), and maximum power point (Vmpp,Impp).

The maximum current Isc in the photovoltaic cell is generated when a short circuit
occurs between its terminals, while the maximum voltage Voc can be measured when there
is an open circuit.

The maximum power achieved from a photovoltaic cell occurs at a point on the bend
in the I-V curve known as the maximum power point (MPP). The voltage and current at
those points are designated as Vmpp and Impp.
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Generally, manufacturers provide these parameters in the datasheet under STC. When
the PV panel is connected to an external load, the actual point on the I-V curve at which the
photovoltaic cell operates is determined based on the electrical characteristics of the load.
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Figure 2. Typical I-V and P-V characteristics of PV cell.

2.2. One Diode Model of PV Cell

In order to analyze solar cells characteristics, this latter is modeled as electrical equiva-
lent circuits using simulation software. Researchers have developed mathematical models
to understand and study the effect of different weather conditions on photovoltaic elec-
trical output. One of these models that is widely used is the lumped parameter model.
This model is classified based on the number of diodes used and it has proven to be the
most successful.

Although the model characteristics accuracy improves as the number of diodes in-
creases, the model mathematical equation becomes more complex. In this work, the single
diode model that is shown in Figure 3 is used for the identification of the PV generator
parameters due to its simplicity compared to other lumped models and its good accuracy.
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The ODM governing equation is given as:

I = Iph − Is

[
e(

V+I∗Rs
n∗Vt

) − 1
]
− V + I ∗ Rs

Rsh
(2)

Such that, Vt is the thermal voltage.
The model’s five parameters are:
Iph: Photocurrent (A); Is: Diode saturation current (A); n: Diode ideality factor; Rsh:

Parallel resistance (Ω); Rs: Series resistance (Ω).
The single diode model considers various properties of the solar cell such as: the shunt

resistance that considers the leakage current to the ground when the diode is in reverse
biased, and the series resistance that takes into account the voltage drops and internal
losses due to the flow of current. However, this model is still not the most accurate model
as it has neglected the recombination effect of the diode.
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3. Identification of PV Cell Parameters Using Optimization algorithms
3.1. Optimization Algorithms

It can be noticed that the I-V relationship of the one diode model, which is given in
Equation (2) and hence the current voltage curve, is complex and highly nonlinear. Thus, it
is difficult to solve it using analytical methods. Consequently, metaheuristic optimization
methods based on artificial intelligence have been developed by scientists for solving these
kinds of equations and determine the needed parameters. These techniques are developed
to find a good solution among a large set of feasible solutions with less computational effort
than other optimization techniques.

3.2. Opposition Based Initialization Particle Swarm Optimization Technique

Particle Swarm Optimization is a population-based metaheuristic global optimization
method inspired by the motion of schooling fish and bird flocks. The PSO algorithm
examines the space of an objective function by adjusting the trajectories of individual
agents, named particles. A population of these particles flies through the search space such
that each particle i is attracted toward the position of the current global best g* and its own
best location xi in history, simultaneously, it has a tendency to move randomly. Initially, the
particles are placed randomly in the search space. The objective function is evaluated for
all the particles. When a particle i finds a position that is better than any previously found
locations, it updates it as the new current best location xi by updating the velocity, first
depending on movement inertia, self-cognition, and social interaction using Equation (3),
then updating its position through Equation (4) at each iteration. Thus, all n particles have
a current best position at any time t during iterations. The purpose is to find the global
best among all the current best solutions until the objective no longer improves or after
a specified number of iterations. The motion of particles is schematically represented in
Figure 4. Where g* = {(xi)} for (i = 1, 2, . . . n) is the current global best and x∗i is the current
best for particle i [8,12].

vi
n+1 = w vi

n + c1r1

[
pi

n − xi
n

]
+ c2r2

[
pg

n − xi
n

]
(3)

xi
n+1 = xi

n + vi
n+1 (4)

Such that:
xi is the position of the ith particle in the search space;
vi is the velocity of the ith particle;
w is particle inertia;
c1 is the cognitive acceleration constant;
c2 is the social acceleration constant;
pi is the particle’s best-known position;
pg is the global best position;
r1, r2 are random numbers that vary between 0 and 1.
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The starting points in PSO are randomly given. If these latter are close to the optimal
point, convergence speed would be faster. Thus, to get better results, a better and careful
initialization based on priori information is needed. The proposed method for an improved
PSO algorithm is an opposition-based initialization of the swarm. This approach consists
of initializing the PSO population and its opposite population, as shown in Figure 5. The
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fitness function is evaluated for both populations and only the fitter particles are selected
to form a new population for the PSO.
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The concept used is described below.
Particle: a swarm particle pi is defined as:
i ∈ [a, b] such that, i = 1, 2, . . . , D and a, b ∈ R;
D represents dimensions, and R represents real numbers.
Opposite particle: every particle pi has a unique opposite pi

op defined as:

pi
op= a + b− pi such that, i = 1, 2, . . . D and a, b ∈ R (5)

3.3. ODM Parameters Extraction Using an IOB-PSO

The following objective function is used,F(X) = I − Iph + Is

[
e(

V+I∗Rs
n∗Ns∗Vt

) − 1
]
+ V+I∗Rs

Rsh

X =
{

Iph, Is, Rs, n, Rsh}
(6)

The fitness function used to quantify the error between the simulated and measured
data is the root mean square error (RMSE),

Fitness =

√√√√ 1
N

N

∑
1

F(X)2 (7)

The pseudo code of the IBPSO method is given in Algorithm 1 and its corresponding
flowchart is shown in Figure 6.
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Algorithm 1 IOBPSO

1: Input: T, Ns, VData , IData
2: Output: global best
3: for each particle
4: Initialize particle position
5: Initialize particle velocity
6: Calculate cost value of particles using Equation (6)
7: Initialize opposite particle position using Equation(5)
8: Initialize opposite particle velocity
9: Calculate cost value of opposite particles using Equation (6)
10: If opposite particle cost < particle cost
11: Update particle
12: end if
13: Update particle best
14: If particle best cost < global best cost
15: Update global best
16: end if
17: end for
18: for (t =1: Max number of iterations)
19: for each particle
20: Update velocity using Equation (3)
21: Update position using Equation(4)
22: Calculate cost value using Equation (6)
23: If particle cost < particle best cost
24: Update particle best
25: If particle best cost < global best cost
26: Update global best
27: end if
28: end if
29: end for
30: end for
31: return global best
32: end procedure

4. Test Results and Discussion

The proposed algorithm IOB-PSO is used to identify the parameters of the single diode
model. The algorithm is tested for two different PV modules. The obtained results are
compared with other methods results to prove its effectiveness. It is developed in MATLAB
R2016a and executed under Windows 10 64-bit OS, on a PC with Intel® Core™ i5-2450M
CPU processor @ 2.50GHz, 4GB RAM.

Table 1 presents the search ranges used for the optimization of the model parameters.
Table 2 presents the IOB-PSO parameters.

Table 1. ODM parameter search ranges.

Parameters Search Range

Iph [0.95 × Isc, 1.05 × Isc]

Is [1 µA, 5 µA]

n [1, 2]

Rsh [ Vmpp
Isc− Impp

, 1500 Ω]

Rs [0, Vmpp− Voc
Impp

]
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Table 2. IOB-PSO parameters.

Parameters Value

Cognitive factor c1 1.5
Social factor c2 2.0

Inertia weight w [0.2, 0.9]
Random values r1, r2 [0, 1]
Number of particles 30
Maximum iteration 1000

The IOB-PSO algorithm is used to estimate parameters for the various PV modules.
The electrical specifications of the utilized modules are described in Table 3.

Table 3. Electrical specifications of the PV modules.

Module Type Ns Temperature [◦C] Irradiance [w/m2]

STM6-40/36 Mono-crystalline 36 51 NA
Photowatt-PWP201 Poly-crystalline 36 45 1000

NA: not available.

The IOB-PSO is tested for the mono-crystalline STM6-40/36 module using I-V experi-
mental data [13] measured at T = 51 ◦C; and for the Photowatt-PWP201 poly-crystalline
module with I-V data measured under a temperature of T = 45 ◦C [13]. The obtained results
are presented and compared with other previously published methods in Tables 4 and 5,
respectively.

Table 4. STM6-40/36 extracted parameters achieved by various methods.

Meth.
Parameters Error

Iph[A] Is[µA] n Rs[Ω] Rsh[Ω] RMSE

ABC [14] 1.50 1.664 1.487 4.99 15.21 1.838 × 10−3

CIABC [14] 1.664 1.676 1.498 4.40 15.62 1.819 × 10−3

CSA [13] 1.664 2.000 1.534 2.91 15.841 1.794 × 10−3

ImCSA [13] 1.664 2.000 1.534 2.92 15.841 1.795 × 10−3

IOB-PSO * 1.663 2.88 1.57 0.0015 598.74 1.772 × 10−3

* Proposed method.

Table 5. Photowatt-PWP201 extracted parameters achieved by different methods.

Meth.
Parameters Error

Iph[A] Is[µA] n Rs[Ω] Rsh[Ω] RMSE

CPSO [13] 1.0286 8.3010 1.451194 1.0755 1850.1 3.5 × 10−3

PS [13] 1.0313 3.1756 1.341358 1.2053 714.2857 1.18 × 10−2

SA [13] 1.0331 3.6642 1.356142 1.1989 833.3333 2.7 × 10−3

CARO [15] 1.03185 3.28401 1.35453 1.20556 841.3213 2.427 × 10−3

IOB-PSO * 1.030 3.495668 1.35 1.200877 986.306335 2.4251 × 10−3

* Proposed method.

Using the identified parameters, the PV characteristics of the two modules were
constructed and then compared with the experimental curves in Figures 7 and 8.
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Figure 8. I-V and P-V experimental data and simulated data for the Photowatt-PWP201 module.

It can be noted that the RMSE error of the proposed IOB-PSO is the smallest and hence,
the obtained results using the proposed algorithm are the best. Therefore, the efficiency
of this method for identifying the model parameters is proven. Figures 7 and 8 show the
comparison between I-V and P-V experimental and simulated data of the STM6-40/36 and
the Photowatt-PWP201 modules. The simulated curves highly match the measured ones,
which proves the reliability of the IOB-PSO algorithm.

Figure 9 presents the convergence curve of the IOB-PSO method for these modules; it
can be noticed that the convergence is very fast. The algorithm reached the optimal solution
within 207 iterations in an execution time of 19.0017 s for the monocrystalline module
STM6-40/36, while for the Photowatt-PWP201 module, it needed 613 iterations (27.585 s).
This proves that the proposed IOB-PSO method has a very fast convergence speed.
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5. Conclusions

In this work, an efficient method for obtaining the I-V and P-V characteristics of a
PV module based on the one diode model has been proposed, due to the non-availability
of all needed parameters in the datasheet. The optimization algorithm was chosen for
the identification of the ODM model parameters. The proposed method is an improved
opposition-based particle swarm optimization; this algorithm was tested using the ex-
perimental I-V data that were acquired at different working conditions for various PV
modules. The obtained results were compared with other methods outcomes provided in
the references; this algorithm has showed a satisfying estimation of the five parameters
extracted with minimum errors. Furthermore, the PV characteristics were plotted using the
extracted parameters and compared with the experimental data. The simulated curves are
found to be well-suited with the corresponding measured data, thus, the performance of
the IOB-PSO algorithm proved to be good. Adding to the fact that this proposed algorithm
has provided optimal results with an acceptable accuracy, the time taken for the IOB-PSO
execution is less than 30 s.

This approach is found to be useful for designers since it is simple, fast, and provided
accurate results.
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