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Abstract: We previously developed an incoherent holography technique for use in lattice light sheet
(LLS) microscopes that represents a specialized adaptation of light sheet microscopy. Light sheet
instruments resolve 3D information by illuminating the sample at 90◦ to the imaging plane with a
sheet of laser light that excites fluorophores in the sample only in a narrow plane. Imaging this plane
and then moving it in the imaging z-axis allows construction of the sample volume. Among these
types of instruments, LLS microscopy gives higher z-axis resolution and tissue depth penetration. It
has a similar working principle to light sheet fluorescence microscopy but uses a lattice configuration
of Bessel beams instead of Gaussian beams. Our incoherent light detection technique replaces the
glass tube lens of the original LLS with a dual diffractive lens system to retrieve the axial depth of
the sample. Here, we show that the system is applicable to all light sheet instruments. To make a
direct comparison in the same emission light path, we can imitate the nature of non-Bessel light sheet
systems by altering the mask annuli used to create Bessel beams in the LLS system. We change the
diffractive mask annuli from a higher NA anulus to a smaller NA anulus. This generates a Gaussian
excitation beam similar to conventional light sheet systems. Using this approach, we propose an
incoherent light detection system for light sheet 3D imaging by choosing a variable NA and moving
only the light sheet while keeping the sample stage and detection microscope objective stationary.

Keywords: incoherent holography; light sheet; fluorescent microscopy

1. Introduction

Continuous irradiation causes photodamage and phototoxicity when imaging living
samples and specimens. In order to overcome this problem, light sheet fluorescence
microscopy (LSFM) was developed as an imaging technique with good optical sectioning,
to record faster and scan larger sample volumes at low radiation intensities over longer
time frames [1]. The LSFM is similar to laser scanning confocal microscopy (LSCM) [2],
but the emitted fluorescence light is collected by the detection objective in a perpendicular
direction from the excitation light and without the need for a confocal aperture. In LSFM, the
excitation light does not pass through the entire sample; instead, the sample is illuminated
from the side with a thin light sheet (LS) beam. This clever idea allows the LSFM to
collect the emitted light from fluorophores localized in the thin LS plane only and not from
fluorophores belonging outside the LS plane. This results in a low light dose usage, and
therefore reduces both photobleaching and phototoxicity [3–5]. LSFM is also referred to
as selective-plane illumination microscopy (SPIM) when imaging large samples [1]. The
axial resolution is given by both the thickness of the LS (ideally it is extremely thin) and the
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detection NA [6,7]. If we choose a microscope objective with an NA of 1.1, we can obtain a
very thin light sheet. However, the light sheet confocal length, over which the sheet is thin,
must be matched to the FOV of the recorded images or the size of the samples. The thinner
the sheet (and higher the NA), the shorter the thin region is.

In most of the cases, the light sheet has a Gaussian profile at the specimen due to
the Gaussian shape of the laser beams. A thicker Gaussian light sheet can cover a larger
FOV but has a lower resolution and optical sectioning. Non-Gaussian beams using arrays
of Bessel beams, called “lattice” beams, have been employed to generate images with
excellent scanning efficiency and resolution, by using very thin light sheets. The lattice light
sheet microscopy (LLSM) system uses the LSFM principle with an optical lattice created
with Bessel beams, resulting in a light sheet with a thickness of ~400 nm [8]. The typical
acquisition rate of an LLSM system is hundreds of frames per second, making LLSM the
ultimate tool for live-cell fluorescence imaging.

The lattice light sheet, Figure 1a, is formed by superimposing a linearly polarized sheet
of light with a binary phase map of Bessel beams on a binary spatial light modulator (SLM),
which is conjugated to the image plane of the excitation objective. Before reaching the
sample plane, the beam passes a Fraunhofer lens and is further projected onto a transparent
optical annulus, Figure 1b, to eliminate unwanted diffraction orders and lengthen the light
sheet. In dithered mode, a 2D lattice pattern is oscillated in the x-axis using a galvanometer
(x-galvo), to create a uniform sheet, while another galvanometer mirror moves together
with the detection objective, in the z-axis (z-galvo), to scan the sample volume.
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Figure 1. (a) The LLS instrument [8]; (b) the diffraction annular mask filters of inner diameter,
NAin, and outer diameter, NAout, to filter out undiffracted light and unwanted higher diffraction
orders; (c) the detection arms for the LLS instrument with the IHLLS detection arm incorporated;
and (d) optical schematics of IHLLS. The LLS and IHLLS with HNA use higher NAout and a shorter
light sheet (more like Bessel beams), here NAout = 0.55, NAin = 0.48, and sheet length 15 µm. The
LLS and IHLLS with LNA use lower NAout and longer light sheet (more like Gaussian beams),
here NAout = 0.3, NAin = 0.275, and sheet length 75 µm. The detection magnification Mdet = 62.5
and the illumination wavelength λexcitationn = 488 nm. The LLS, or IHLLS 1L with one diffractive
lens, fSLM = 400 mm, are used for calibration purposes. The IHLLS 2L with two diffractive lenses,
fd1 = 220 mm and fd2 = 2356 mm, are used for incoherent imaging. Lenses L1=L4 with focal lengths
175 mm, L2=L3 with focal lengths 100 mm; mirrors M1, M2, M3; fp1 and fp2 are the imaging positions
of the two diffractive lenses, fd1 and fd2.
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A more recent approach of the LLSM is the new detection path, Figure 1c,d, that
uses the incoherent holography idea, called an incoherent holographic lattice light sheet
(IHLLS) [9], to scan the sample volume without moving the detection objective. It is possible
by projecting two diffractive lenses at various z-galvo positions, using a phase SLM, to
encode the depth position of the sample being imaged. The annular mask, Figure 1b,
mentioned above, was centered on an anulus with a higher NA (HNA), NAout = 0.5,
NAin = 0.485, and a sheet length 15 µm; therefore, the beams used for excitation were more
Bessel-like beams. The intensity profile of the obtained optical lattice is determined by both
the applied binary phase map and the geometry of the transparent annulus.

Here, we propose to expand our previous IHLLS detection technique that uses a HNA
by choosing a diffractive mask annulus with a lower NA (LNA). In this case, the anulus has
the following parameters: NAout = 0.3, NAin = 0.275, and sheet length 75 µm. The new
detection approach uses a Gaussian-like excitation beam similar to conventional light sheet
systems. This provides a tradeoff between the size of the imaged beam and the resolution
of the ultimate image in the z-plane. This has advantages for imaging objects at larger
intercellular scales.

2. Imaging Performances and Diffraction Mask Parameter Selection

In LLS, near-non-diffracting Bessel beams are created at the focal position of the
excitation objective, by projecting an annular excitation beam, Figure 2a, in the back focal
plane of the excitation objective. While the z-galvo and z-piezo are moved along the z
axis to acquire stacks in LLS/IHLLS 1L, Figure 2b, in IHLLS 2L only the z-galvo is moved
at various z positions, Figure 2c. The imaging area/volume is limited to a small FOV,
Figure 2d red square, due to the tradeoff between the sheet’s propagation length and its
thickness. Although IHLLS 1L is the incoherent version of the LLS detection module, the
axial resolution in LLS is better than the axial resolution in IHLLS 1L due to the blurry effect
of the diffractive lens that focusses to infinity. The FOV limitation is no longer an issue in
IHLLS 2L because the combination of the z-galvo motion in the range −40 µm to + 40 µm
and the dual diffractive lenses uploaded onto the phase SLM allows scanning for the whole
FOV of the CMOS detector, which is 208 × 208 µm2. Moreover, the axial resolution is better
in IHLLS 2L due to the fact that the focus position is found numerically.

The NA of the beam is an overall combination of the inner and outer numerical
apertures (NAs) of the annular mask filter, NAout, and NAin. The Bessel-like beams are
considered to be created using those annuli on the diffraction mask with NAout ≥ 0.5 and
the Gaussian-like beams created with the annuli, with NAout < 0.4. The thickness of the
pattern generated by these beams at the focal position of the excitation objective is given
by wsheet = λexcitation/2NAout, and the sheet length or the FOV by λescitation

n(cosθin−cosθout)
, where

θin = arsin(NAin/n), θout = arsin(NAout/n), and n = 1.33 [7]. Although increasing the
NA difference produces a thinner light sheet illumination profile, which provides higher
axial resolution, the length that the light sheet spans is reduced, and thus it is hard to
further compress the light sheet thickness while maintaining a relatively large FOV. The
sheet parameters of the two diffraction mask filters at 488 nm are wsheet-HNA = 443.6 nm,
wsheet-LNA = 813.3 nm, and the FWHM sheet lengths are FWHMsheet-HNA = 15 µm and
FWHMsheet-LNA = 75 µm.

Imaging can be done with various sheet lengths: cultured cells and intracellular events
could be imaged using light sheets with lengths smaller than ~20 µm, small organoids with
sheets of lengths ~30 to 40 µm, and large organoids with sheets of lengths ~50 to 70 µm.

The beams generated by using the two annuli are shown in Figure 3. The upper row
shows the optical lattice generated with the HNA annulus and the bottom row the optical
lattice generated by the LNA annulus. Optical lattices can be designed to balance the
confinement and the thickness by adjusting the spacing between each pair of beams. As an
example, the lattice in Figure 3a is designed as a coherent superposition of 30 Bessel beams
with a spacing of 0.99. Similarly, the lattice in Figure 3b is designed by using 26 Bessel
beams with a spacing of 1.755. A single Bessel beam is shown in Figure 3c,d, respectively.
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We can see that the lower NA beam has a Gaussian-like shape. The beams at the sample
plane, corresponding to the patterns in Figure 3a,b, are shown in Figure 3e,f, and the same
beams but with the dithered mode are shown in Figure 3g,h.
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Figure 2. Excitation and scanning geometry in LLS, IHLLS Systems. (a) The diffraction mask is
conjugated with the BFP of the excitation objective; (b) the scanning geometry in LLS and IHLLS 1L,
the z−galvo and z−piezo are moved along the z axis to acquire imaging stacks; (c) The scanning
geometry in IHLLS 2L; the z-galvo is moved at various z positions but the z-piezo is kept fixed;
(d) The FOV in a conventional LLS system or the incoherent version with one diffractive lens, with
dithering scanning modality and HNA, is about 52 × 52 µm2 (red area); (e) the diffractive lens effect
in IHLLS 2L system. Excitation objective: Special Optics 0.65 NA, 3.74 mm working water dipping
lens; detection objective: Nikon CFI Apo LWD 25×—water dipping, 1.1 NA, 3 mm working distance.
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Figure 3. Optical lattice generation using HNA and LNA annuli; (a) HNA, 30 Bessel beams optical
lattice with 0.99 spacing; the width of the light sheet in the center of the FOV is about 400 nm;
(b) LNA, 26 Bessel beams optical lattice with 1.755 spacing; the width of the light sheet in the
center of the FOV is about 800 nm; (c,d) Single Bessel beam at the sample plane; and (e,f) the Bessel
beams corresponding to the optical lattices from (a,b) at the sample plane. The scanning area in a
conventional LLS (HNA) is at best 52 × 52 µm2 (red square in (e)), and in a conventional LLS (LNA)
about 78 × 78 µm2 (green square in (f)); (g,h) The Bessel beams corresponding to the optical lattices
from (a,b) with the dithered mode at the sample plane.
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3. Results

To examine the effects of applying IHLLS holography with LNA, we performed three
experiments for this study.

3.1. LLS and IHLLS 1L Imaging with LNA

The first was done using the conventional LLS pathway where the z-galvo was stepped
in δz = 0.101 µm increments through the focal plane of a 25× Nikon objective, for a
displacement of ∆z = 40 µm, Figure 4a. The detection objective was simultaneously moved
the same distance with a z-piezo controller. The second set of images was obtained using
the IHLLS 1L with a focal length fSLM= 400 mm displayed on the SLM, where both the
z-galvo and z-piezo were again stepped with the same δz = 0.101 µm increments through
the focal plane of the objective for the same displacement ∆z = 40 µm, Figure 4b. The
scanning area in a conventional LLS with HNA is at best 52 × 52 µm2 or 78 × 78 µm2 in a
conventional LLS with LNA (green dashed rectangles). Therefore, to enlarge the scanned
region these ROI areas can be moved in a mosaic fashion by moving the sample.
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Figure 4. Tomographic imaging of 0.5 µm polystyrene beads, maximum FOV 208 × 208 µm2, in a
conventional LLS (a) and IHLLS 1L of focal length 400 nm (b), without deconvolution, with LNA.
On the sides and above are shown the max projections through the volume (400 z-galvo steps). The
Bessel beams are displayed in the upper left corner of each xy-projection to show the orientation of
the beams, FOV 208 × 208 µm2. The area enclosed inside the colored dashed rectangles, in the corner
insets of (a,b), are as follows: green—the scanning area for the original LLS with LNA, 78 × 78 µm2,
and yellow—the maximum FOV scanning area for the IHLLS 2L. We notice that LLS and IHLLS
1L cannot achieve the maximum FOV. The maximum FOV is achieved by using the IHLLS 2L, as
showing in the next section.

3.2. IHLLS 2L Imaging

Our incoherent system enables full complex-amplitude modulation of the emitted
light for extended FOV and depth. The second set of images was obtained using the IHLLS
pathway with two super-imposed diffractive lenses displayed on the SLM comprising
randomly selected pixels (IHLLS 2L), where only the z-galvo was moved within the same
∆z = 40 µm displacement range, above and below the reference focus position of the
objective (which corresponds to the middle of the camera FOV), at z_galvo = ±40 µm,
±30 µm, ±20 µm, ±10 µm, and 0 µm, Figure 5. The two wavefronts interfere with each
other at the camera plane, to create Fresnel holograms. Four interference patterns were
created using a phase shifting technique (θ = 0, θ = π/2, θ = π, θ = 3π/2) and further
combined mathematically to obtain the complex amplitude of the object point at the
camera plane.
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Figure 5. IHLLS 2L 500 nm beads holography, intensity images at phase shift, θ = 0; z-galvo position:
(a) 40 µm, (b) 30 µm, (c) 20 µm, (d) 10 µm, (e) 0 µm, (f) −40 µm, (g) −30 µm, (h) −20 µm, and
(i) −10 µm.

The max projection of all z-planes where the beads were found are displayed in
Figure 6a. They show the complex holograms propagated to the best focal plane. We
observed that IHLLS 2L performed better in comparison to the conventional LLS system in
dithering mode regarding the scanning/detection area. The scanned area with detected
beads in an IHLLS 2L system with LNA is the full FOV of the CMOS detector while the
scanned area with detected beads in a LLS system with LNA is about 78 × 78 µm2. In terms
of axial resolution, we already showed [9] that the axial resolution of IHLLS 2L was higher
than that of LLS because the objects are localized with greater precision using diffraction
software packages.
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Figure 6. Volume imaging comparison between the IHLLS 2L and LLS with LNA; (a) IHLLS 2L bead
volume reconstruction; (b) LLS bead volume imaging. The green rectangle in the middle of the image
represents the scanning area of the conventional LLS system in the dithering mode.

4. Conclusions

The approach of using lower-NA (LNA) masks to generate lattice light sheets forms
beams that approximate Gaussian rather than Bessel beams. This provides a tradeoff
between the size of the imaged beam and the resolution of the ultimate image in the z-plane.
This has advantages for imaging objects at larger intercellular scales. Here, we demonstrate
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that even with these longer but lower-resolution beams, the IHLLS approach to generate
holograms to resolve 3D positional information is functional. In fields of study such as
neuroscience, where the cell structure is complex but at large scales, this approach will
enable the resolution of complex 3D structures capturing structures as large as 200 µm
in length.
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