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Abstract: Recent advancements in deep learning for healthcare and computer-aided laboratory
services have sparked a renewed interest in making medical data more accessible. Elevating the
quality of healthcare services and delivering improved patient care necessitates a knowledge base
rooted in data-driven insights. Deep learning models have proven to excel in this regard, as they
are specifically designed to embrace a data-driven approach. These models thrive on exposure
to larger datasets, which enables them to continuously improve their performance. However, as
healthcare organizations strive to aggregate clinical records onto central servers to construct robust
deep learning models, concerns surrounding privacy, data ownership, and legal restrictions have
emerged. Safeguarding sensitive medical data while harnessing collective knowledge from multiple
healthcare centers is a challenging balancing act. One promising approach to address these concerns
is the use of privacy-preserving techniques that allow for the utilization of data from multiple centers
without compromising security. Federated learning (FL) is a technique that has emerged to enable
the deployment of large machine learning models trained across multiple data centers without the
necessity of sharing sensitive information. In this article, we present the most recent findings derived
from a systematic literature review focusing on the application of federated learning in healthcare
settings. This review offers insights into the current state of research and practical implementations
of FL within the healthcare domain. By leveraging federated learning, healthcare institutions can
harness the collective power of their data while upholding privacy and data security standards,
ultimately leading to more effective and data-driven healthcare solutions.

Keywords: deep learning; federated learning; privacy preservation; healthcare; aggregation

1. Introduction

Data-driven deep learning models hold great promise in assisting with medical treat-
ment and diagnosis, but they allow massive quantities of different data to be widely useful.
For instance, deep learning is extremely useful for text identification in medical laboratory
reports [1], tumor segmentation and classification from MRI scans, and cancer diagnosis
and forecasting. Machine learning applications actually require enormous quantities of
data. Acquiring enough data to solve a particular problem with ML can be incredibly
hard, time-consuming, and extremely expensive. In practical terms, data is frequently
dispersed rather than centralized and must be gathered from multiple sources before being
used. Furthermore, the knowledge gained by an organization might exhibit a peculiar
distribution that does not assist the creation of systematic models. For example, hospitals in
various areas or nations seem to have distinct patient profiles and pathologies and would
benefit from collaborating together to design and develop ML applications that serve all
of their patients equally. To promote robustness and generality, deep learning involves
immense and varied training datasets. Multicenter research is extremely important when
developing DL algorithms that are applicable to a wide range of situations in the real world.
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The most popular approach for such collaborative multi-center efforts is currently described
as “centralized learning”, through which data from many places is shared and consolidated
into a centralized place in line with multi contracts. So far, huge data collection and resource
sharing may raise operational challenges, and overcoming privacy and ethical issues might
take time. For instance, only a specific hospital or clinic might have access to a patient’s
medical records [1]. The significance of data security and privacy protection is increasingly
being widely recognized [1], particularly as the frequency of data breaches at health care
organizations rises. Medical images of the patient may include private and sensitive data
about patients that should not be shared with anyone except the institutions where they
were produced, especially when complete de-identification is indeed not practicable [2].

The Health Insurance Portability and Accountability legislation (HIPPA) and the Gen-
eral Data Protection Regulations (GDPR) legislation have prohibited stakeholders from
exchanging electronic health records (EHRs) with healthcare providers or researchers with-
out patient agreement [3]. Indeed, various countries throughout the world are developing
stronger legislation to protect data security. The European Union, for example, imple-
mented the General Data Protection Regulation (GDPR) in 2018 to protect its customers’
privacy and confidentiality of their data. On the one hand, establishing these restrictions
will result in a more civic society. However, the restrictions make it impossible. These regu-
lations, however, make it more difficult for academics from many universities to share data
and collaborate on a deep learning model. To avoid data leaking, the “distributed learning”
model was designed to scatter data among various institutions rather than aggregating it
into a single pool.

1.1. Deep Learning Models Used in Healthcare Are as Follows
1.1.1. Deep Belief Networks

These are unsupervised algorithms in the field of generative graphical models. To
tackle difficulties, they employ backpropagation and pre-training. This is equivalent to a
stack of constrained Boltzmann machines.

1.1.2. Convolutional Neural Networks

CNN is a deep learning system that can take an input image, assign priority to various
elements in the image, and then discriminate and differentiate between the image and
others. It is used to increase the classification accuracy of facial electromyography (FEMG)
and speech signals.

1.1.3. Recurrent Neural Networks

An RNN is one form of artificial neural network (ANN). It is the only form of neural
network with internal memory, and it is both strong and robust. RNNs can recall vital
information about the input they receive as a result of internal memory [4].

1.1.4. Adversarial Generative Networks

This describes generative adversarial networks (GANs): An adversarial approach for
estimating generative models has been suggested. At the same time, two models are being
trained: the generative model G and the discriminative model D. G is a generative model
that captures data distribution, whereas D is a discriminative model that calculates the
probability that a sample originated from G rather than G [4].

1.2. The Comparison of Deep Learning Models Is as Follows

Backpropagation is a straightforward, supervised approach that is easy and quick to
deploy. However, it takes a long time to train and is quite sensitive to noisy data. DBNs
are unsupervised learning techniques that are also components of a generative graphical
model. They uncover significant patterns in the data. DBNs can quickly learn an optimal
set of parameters for models with a large number of parameters and nonlinear layers, but
they are exceedingly slow and inefficient. CNNs are supervised learning algorithms that
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employ many building blocks, including convolution layers, pooling layers, and fully con-
nected layers, to learn the spatial hierarchies of data automatically using backpropagation.
They are easy to train and implement, and they perform well in pre-training and feature
extraction. They do, however, demand a lot of memory to preserve their intermediate
results, and their main applications are in video and image recognition, natural language
processing, picture categorization, and so on. RNN is a supervised learning system that
can retrain from past data while new data is accumulated, making it helpful for time series.
Because of the nature of RNNs, their calculations are slow. GANs have a wide range of
applications, including image analysis, and do not need to use Markov chains. When the
discriminator’s cost function increases, the generator’s cost function drops [5].

Federated learning (FL) [6] is a relatively new method for protecting patient privacy
while training deep learning models on federated healthcare data. By avoiding the need
for the transfer of medical data through a centralized aggregate server, this method allows
for decentralized training of deep learning models [7]. Each hospital acts as a client node,
training its own deep learning model locally and then uploading it to the global central
server for a sum up. A global model is formed from the local models of all the nodes
and is distributed to them by a centralized server that coordinates and aggregates them.
During training, node-specific training data are never transmitted, so this is an important
point to emphasize. They are instead kept locally at each node. The confidentiality of
patients’ medical records is maintained by transmitting only the model’s weight and
characteristics [8]. Since FL preserves private information while facilitating collaboration
between numerous medical institutions, it greatly lessens many security concerns. FL shows
great promise for healthcare applications that aim to enhance patient and institutional
access to high-quality healthcare. Figure 1 shows the working of federated learning.
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Figure 1. Federated learning framework.

Using its own data, each client refines a model obtained from the server. The client
initiates a local training session by requesting the model from a cloud server and notifying
it of its readiness. After that, the client receives the most up-to-date global model available.
After a model has been acquired, a training session can begin using the localized data and
the model. Once the conduction of training is completed locally, the model is sent back to
the central server, where the preferred changes have been accumulated. When one training
round is over, the server alerts the client and updates the global model based on the model
it received [9]. The federated learning process consists of the following three steps:
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1. Distribution: The aggregation center distributes the global model details to all of the
regional nodes by way of a secure network connection.

2. Train locally: In order to train the global model, each regional center uses data
collected locally in conjunction with the global model parameters [10].

3. Global aggregation: Here, training outcomes are aggregated globally, meaning that
all participating local centers report back to an aggregation server. The server then
applies the changes made at the regional nodes to the global model parameters. The
term “global training” describes this method [11]. The flowchart of the federated
learning framework is shown in Figure 2.

Eng. Proc. 2023, 59, x FOR PEER REVIEW 4 of 10 
 

 

1. Distribution: The aggregation center distributes the global model details to all of the 
regional nodes by way of a secure network connection. 2. Train locally: In order to train the global model, each regional center uses data col-
lected locally in conjunction with the global model parameters [10]. 3. Global aggregation: Here, training outcomes are aggregated globally, meaning that 
all participating local centers report back to an aggregation server. The server then 
applies the changes made at the regional nodes to the global model parameters. The 
term “global training” describes this method [11]. The flowchart of the federated 
learning framework is shown in Figure 2. 

 
Figure 2. Flowchart of the federated learning framework. 

2. Challenges Associated with Healthcare Data 
This section elaborates on the challenges associated with federated learning, espe-

cially with healthcare data.  

2.1. Variations in the Quality of Data Due to Noise 
When it comes to data collection, healthcare businesses are in a vulnerable state. Col-

lecting massive amounts of clinical data from EHRs, medical imaging, and radiology re-
ports, etc. is labor intensive and time consuming. For acquiring high-resolution medical 
pictures, multishot MRI is a common technique [12,13]. Nevertheless, the technique can 
introduce instrumental and environmental noise because of distortions in the final image. 
There are difficulties, consequences, and potential developments for any data format [14]. 

2.2. Incorrect Data Annotation 
Annotating data samples is an important part of healthcare datasets. As a result, they 

need to be carried out legally, bearing in mind privacy concerns, and according to estab-
lished standards [15]. Improper annotations, such as a mismatched dataset, an unbalanced 
class distribution, or bias and data sparsity, result from improper labeling [16]. 

2.3. Data Heterogeneity: 
Many FL algorithms and strategies assume that the data is independently and iden-

tically distributed (IID) across the participants, which presents a challenge when the dis-
tribution of the data is not uniform. FL may help address some potential biases through 
potentially increased diversity of data sources [10]. Strategies like FedAvg9 tend to fail 
under these conditions which might be seen as counterproductive to the goal of collabo-
rative learning in general. Another difficulty is that local participants may not benefit from 
the global optimal solution if the data are heterogeneous  

Figure 2. Flowchart of the federated learning framework.

2. Challenges Associated with Healthcare Data

This section elaborates on the challenges associated with federated learning, especially
with healthcare data.

2.1. Variations in the Quality of Data Due to Noise

When it comes to data collection, healthcare businesses are in a vulnerable state.
Collecting massive amounts of clinical data from EHRs, medical imaging, and radiology
reports, etc. is labor intensive and time consuming. For acquiring high-resolution medical
pictures, multishot MRI is a common technique [12,13]. Nevertheless, the technique can
introduce instrumental and environmental noise because of distortions in the final image.
There are difficulties, consequences, and potential developments for any data format [14].

2.2. Incorrect Data Annotation

Annotating data samples is an important part of healthcare datasets. As a result,
they need to be carried out legally, bearing in mind privacy concerns, and according
to established standards [15]. Improper annotations, such as a mismatched dataset, an
unbalanced class distribution, or bias and data sparsity, result from improper labeling [16].

2.3. Data Heterogeneity

Many FL algorithms and strategies assume that the data is independently and iden-
tically distributed (IID) across the participants, which presents a challenge when the
distribution of the data is not uniform. FL may help address some potential biases through
potentially increased diversity of data sources [10]. Strategies like FedAvg9 tend to fail un-
der these conditions which might be seen as counterproductive to the goal of collaborative
learning in general. Another difficulty is that local participants may not benefit from the
global optimal solution if the data are heterogeneous
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2.4. Privacy and Security

Sensitive information in the healthcare industry must be protected using strict methods
of privacy [17]. As a result, it is important to think about the costs and benefits, possible
solutions, and outstanding risks involved with FL’s privacy-preserving functionality.

2.5. Standard Medical Datasets

These have been lacking in both quantity and quality, making it difficult to create a
dependable answer to the FL algorithm’s challenges. The dataset used in FL experiments
may differ greatly depending on the research goals. Medical image classification and seg-
mentation performance is a primary focus of some datasets, while network communication
performance is a primary focus of others [18]. There is a lack of benchmark datasets, which
is especially problematic in the medical field. To evaluate the efficacy of the FL, which
integrates data from various medical databases, a trustworthy standard is needed.

2.6. Data Partitions

In order to train a trustworthy collaborative machine learning model, the FL strategy
aims to pool information from multiple clients into a larger data set. Whether there is a
small sample size, a lack of features in the sample, or both, FL relies heavily on the data
partition (horizontal or vertical) you choose [19,20].

3. Literature Review

In this section, we continue our discussion of modern FL designs, proposed in differ-
ent papers. This section provides an in-depth summary of previous studies and various
research methods.

Related Work

According to the study, many researchers have proposed federated learning for med-
ical data analysis, medical imaging, medical image classification, and segmentation and
most of them expressed privacy concerns. An in-depth analysis of the ideas behind fed-
erated learning and the current directions of medical imaging research is proposed [1].
The authors of [2] discuss the technical challenges and practical considerations that come
with putting federated learning algorithms for medical imaging into practice, as well as
introduce federated learning algorithms for medical imaging and talk about their applica-
tions. The authors of the study [3] propose combining the methodologies of the Internet
of Medical Things (IoMT) and federated learning (FL) to predict COVID-19 through CT
scans. This is done with the intention of achieving the research objective. The unique
federated semi-supervised learning approach is presented in [21] as a means of resolving
the discrepancy that exists between datasets and human annotations. This approach can
be used with or without annotations. Due to the fact that federated learning does not
necessitate the exchange of personally identifiable information, it is an excellent option for
institutions and nations that adhere to stringent privacy policies. Using repositories like The
Cancer Genome Atlas (TCGA), analysis can be performed on the effects of IID and non-IID
distributions, and the sizes of single datasets [22]. According to [22], a framework that
allows for the collaborative development of machine learning models for medical image
analysis through differentially private federated learning is one that is both practicable
and dependable.

The work will help researchers develop a practical federated learning environment
for the healthcare industry by taking a novel approach based on modern machine learning
methods. Rather than directly sharing datasets with one another, the results of training
obtained from multiple centers are connected to make a consolidated overall model [23,24].
In this way, sensitive patient data is protected as it is transferred between hospitals. An
investigation was carried out to find out how FL context is made with multiple domains
and tasks [25], where the nodes may contain datasets that have been trained to deal with
tasks from more than one domain [26]. This research delves into what is behind this issue,
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what federated learning’s (FL) potential benefits are for the future of digital health, and
where it might go wrong [16]. Proportionally Fair Federated Learning (or Prop-FFL for
short) is a new federated learning technique proposed in this study [27] to improve model
“fairness” across participating hospitals. Table 1 shows the results of a comparison between
the suggested research and the most recent survey in the field.

Table 1. The results of a comparison between the suggested research and the most recent survey in
the field.

Reference Contribution RM CS FLA Advantages Limitations

Erfan Darzidehkalani
et al., 2022 [1]

A thorough examination of its
concepts and current research

trends in medical imaging.
✔ - -

Achieving success in
circumventing privacy

and data-sharing
constraints.

Limited to
radiologists only.

MohammedAdnan
et al., 2022 [2]

Both bag-p
reparation and

Multiple-Instance Learning
(MIL) are required for the
proposed method which

is client-side.

- ✔ -

Presented a privacy
assessment of the method

through the differential
privacy framework

-

Suresh Dara et al.,
2022 [3]

To classify COVID19 in chest CT
images, a scalable framework

was proposed that incorporated
federated learning, IoT, and big

data architectures.

- ✔ - Worked on the COVID-19
classification problem.

The difficulty of
transmitting

parameters and
accumulating

weights.

Mohammad
Ghasemi-rad et al.,

2022 [22]

Provides an overview of
federated learning algorithms
(FedAvg, CWT, etc.) for use in

medical imaging

✔ - ✔
Data heterogeneity,

communication load, and
privacy all attained.

Specific to radiology

Micah J. Sheller et al.,
2020 [28]

Collaborative learning methods
that protect individual data

were discussed
✔ - -

Meeting the requirements
of data protection

regulations.
-

Naoual Mouhni et al.,
2022 [5]

A condensed, up-to-date
introduction to federated

learning for medical imaging
techniques, written for

academics and practitioners.

✔ - -

Privacy can be maintained
through a combination of

federated learning and
other cutting-edge

methods, such as the
Blockchain chain.

Need to optimize the
security of health

data.

Truong X. Nguyen
et al., 2022 [29]

Provided up-to-date FL ocular
imaging evidence ✔ - -

In order to facilitate
partnerships between

multiple institutions, FL
developed a robust and
cooperative DL model.

Not overcoming
privacy challenges.

Gurtaj Singh et al.,
2023 [30]

Emphasize the obvious
discrepancy between the IID

and non-IID instances
of accuracy

- ✔ -

Different FL methods,
with varying

scalability and dataset
distribution, all achieve

high-quality results.

Many hospitals lack
GPU-capable

computers, which are
necessary for carrying

out gradient
calculations.

RM: review method, CS: case study, FLA: FL Applications, ✔—shows that the parameter is present, and ‘-‘—shows
that the parameter is not present.

4. Secure Aggregation Based Privacy Preservation Algorithms for Federated Learning

We compared a centralized training approach with the real-world dataset and the
performance of the FedAvg, FedPer, FedMa, Secret Sharing and Homomorphic encryption
secure aggregation algorithms for human activity recognition.

4.1. Federated Averaging (FedAvg)

By averaging the weights of the individual local models, the server creates a fresh
aggregated model using the FedAvg technique [31]. By applying the FedAvg algorithm to
our CNN model, we obtain a centralized learning approach that achieves an accuracy of
82.74% on the global test-set while the client-side model, on average, achieves an accuracy
of 71.22%.
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4.2. Federated Personalization (FedPer)

FedPer operates on the premise that the model should be partitioned into generic and
specific parts. All of your custom layers will remain hidden from the server. In a federated
server, transfer learning only aggregates the lowest levels. Clients were found to retain
their individualized skills and perform well on local test-sets with an accuracy of 95.05%
(just lagging behind the local learning accuracy of 95.41%).

4.3. Federated Match Averaging (FedMA)

Using a layer-based learning scheme, FedMA finds optimal solutions by combining
and matching nodes with similar weights. Each layer’s training is completed independently
before being uploaded to the central server. Compared to the centralized learning method,
the FedMA method improves the server model’s accuracy to 77.91 percent. The client’s
model keeps some degree of customization (93.80% accuracy on local test-set) at the cost of
performing well on the global test-set (60.77%) (Ek, 2020).

4.4. Secret Sharing

Secure aggregation with secret sharing is a technique used to safeguard the privacy
and confidentiality of data during the aggregating process. It entails separating the data
into shares and distributing them to other parties [4]. The cutting-edge secure aggregation
method trial findings demonstrate that it is 99% quicker, while lowering client communica-
tion costs by 20%. Furthermore, the trained model has the same accuracy as FedAvg for
balanced, unbalanced, IID, and non-IID data distributions.

4.5. Homomorphic Encryption

MPHE (multiparty homomorphic encryption) allows the central node to compute this
aggregate while only receiving encrypted versions of each individual gradient. Threshold
additively homomorphic cryptosystems can accommodate client dropouts, but they are
either computationally costly or demand extra trust assumptions with the transmission,
which is roughly 98% accurate.

As per the results obtained from different secure aggregation privacy preservation
algorithms, it has been observed that the accuracy of all the algorithms are good, but
Table 2 shows that Homomorphic encryption secure aggregation is preserving the privacy
of the healthcare data by observing the Health Insurance Portability and Accountability
Act (HIPPA) and General Data Protection rules (GDPR) standards with security, efficiency
and reliability parameters. The related comparison is shown in Figure 3. The Blue bar in
Figure 3 represents client own accuracy, red bar represents server accuracy and yellow bar
represents client all accuracy.
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Table 2. Results of applying various secure aggregation federated algorithms.

Approaches Fed Avg Fed Per Fed MA Secret
Sharing

Homomorphic
Encryption

Client own accuracy (%) 95.55 95.05 93.80 94.67 97.6

Server accuracy (%) 82.74 NA 77.91 85.35 94.3

Client all accuracy (%) 71.22 93.80 60.77 73.01 91.2

5. Conclusions

Federated learning has distinguished itself as a one-of-a-kind learning platform by
allowing edge devices to train the model on a local level using their own data. This has
helped the company gain a wider range. In this article, we discuss federated learning, which
is a technique that makes it possible for experts in the field of artificial intelligence and
healthcare centers to work together on the development of collaboration models for deep
learning. Applying criteria like partitioning, distribution, privacy attacks and defenses,
and benchmark datasets, we reviewed how federated learning has developed over the
past two years in the service of healthcare applications. We envision this work serving as
a foundation for further investigations of federated learning potential in health wellness
programs and a standard for protecting personally identifiable medical data.
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Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Prasad, V.K.; Bhattacharya, P.; Maru, D.; Tanwar, S.; Verma, A.; Singh, A.; Tiwari, A.K.; Sharma, R.; Alkhayyat, A.; T, urcanu, F.-E.;

et al. Federated Learning for the Internet-of-Medical-Things: A Survey. Mathematics 2022, 11, 151. [CrossRef]
2. Sheller, M.J.; Edwards, B.; Reina, G.A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R.R.; et al.

Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 2020, 10,
12598. [CrossRef] [PubMed]

3. Yang, D.; Xu, Z.; Li, W.; Myronenko, A.; Roth, H.R.; Harmon, S.; Xu, S.; Turkbey, B.; Turkbey, E.; Wang, X.; et al. Federated
semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan. Med.
Image Anal. 2021, 70, 101992. [CrossRef] [PubMed]

4. Hameed, B.Z.; Shah, M.; Naik, N.; Singh Khanuja, H.; Paul, R.; Somani, B.K. Application of Artificial Intelligence-based
classifiers to predict the outcome measures and stone-free status following percutaneous nephrolithotomy for staghorn calculi:
Cross-validation of data and estimation of accuracy. Eur. Urol. 2021, 79, S1375. [CrossRef]

5. Nguyen, T.X.; Ran, A.R.; Hu, X.; Yang, D.; Jiang, M.; Dou, Q.; Cheung, C.Y. Federated Learning in Ocular Imaging: Current
Progress and Future Direction. Diagnostics 2022, 12, 2835. [CrossRef] [PubMed]

6. Darzidehkalani, E.; Ghasemi-Rad, M.; van Ooijen, P. Federated Learning in Medical Imaging: Part II: Methods, Challenges, and
Considerations. J. Am. Coll. Radiol. 2022, 19, 975–982. [CrossRef] [PubMed]

7. Singh, G.; Violi, V.; Fisichella, M. Federated Learning to Safeguard Patients Data: A Medical Image Retrieval Case. Big Data Cogn.
Comput. 2023, 7, 18. [CrossRef]

8. Li, L.; Xie, N.; Yuan, S. A Federated Learning Framework for Breast Cancer Histopathological Image Classification. Electronics
2022, 11, 3767. [CrossRef]

9. Parekh, V.S.; Lai, S.; Braverman, V.; Leal, J.; Rowe, S.; Pillai, J.J.; Jacobs, M.A. Cross-Domain Federated Learning in Medical
Imaging. arXiv 2021, arXiv:2112.10001.

10. Rieke, N.; Hancox, J.; Li, W.; Milletarì, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al.
The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 119. [CrossRef]

https://doi.org/10.3390/math11010151
https://doi.org/10.1038/s41598-020-69250-1
https://www.ncbi.nlm.nih.gov/pubmed/32724046
https://doi.org/10.1016/j.media.2021.101992
https://www.ncbi.nlm.nih.gov/pubmed/33601166
https://doi.org/10.1016/s0302-2838(21)01348-8
https://doi.org/10.3390/diagnostics12112835
https://www.ncbi.nlm.nih.gov/pubmed/36428895
https://doi.org/10.1016/j.jacr.2022.03.016
https://www.ncbi.nlm.nih.gov/pubmed/35483437
https://doi.org/10.3390/bdcc7010018
https://doi.org/10.3390/electronics11223767
https://doi.org/10.1038/s41746-020-00323-1


Eng. Proc. 2023, 59, 230 9 of 9

11. Rahman, A.; Hossain, S.; Muhammad, G.; Kundu, D.; Debnath, T.; Rahman, M.; Khan, S.I.; Tiwari, P.; Band, S.S. Federated
learning-based AI approaches in smart healthcare: Concepts, taxonomies, challenges and open issues. Clust. Comput. 2022, 26,
2271–2311. [CrossRef]

12. Yang, T.; Xu, J.; Zhu, M.; An, S.; Gong, M.; Zhu, H. FedZaCt: Federated Learning with Z Average and Cross-Teaching on Image
Segmentation. Electronics 2022, 11, 3262. [CrossRef]

13. Launet, L.; Wang, Y.; Colomer, A.; Igual, J.; Pulgarín-Ospina, C.; Koulouzis, S.; Bianchi, R.; Mosquera-Zamudio, A.; Monteagudo,
C.; Naranjo, V.; et al. Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions. Appl.
Sci. 2023, 13, 919. [CrossRef]

14. Shaheen, M.; Farooq, M.S.; Umer, T.; Kim, B.-S. Applications of Federated Learning; Taxonomy, Challenges, and Research Trends.
Electronics 2022, 11, 670. [CrossRef]

15. Halepmollası, R.; Zeybel, M.; Eyvaz, E.; Arkan, R.; Genc, A.; Bilgen, I.; Haklidir, M. Towards Federated Learning in Identification
of Medical Images: A Case Study. In Proceedings of the Conference: II International Artificial Intelligence in Health Congress,
Izmir, Turkey, 16–18 April 2021.

16. Cao, H.; Zhang, Y.; Baumbach, J.; Burton, P.R.; Dwyer, D.; Koutsouleris, N.; Matschinske, J.; Marcon, Y.; Rajan, S.; Rieg, T.; et al.
dsMTL: A computational framework for privacy-preserving, distributed multi-task machine learning. Bioinformatics 2022, 38,
4919–4926. [CrossRef] [PubMed]

17. Joshi, M.; Pal, A.; Sankarasubbu, M. Federated Learning for Healthcare Domain-Pipeline, Applications and Challenges. ACM
Trans. Comput. Health 2022, 3, 40. [CrossRef]

18. Alessandro, C.; Spyridon, B. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. In Proceedings of the
7th International Workshop, BrainLes 2021, Virtual Event, 27 September 2021; Lecture Notes in Computer Science. [CrossRef]

19. Ek, S.; Portet, F.; Lalanda, P.; Vega, G. Evaluation of federated learning aggregation algorithms. HAL (Le Centre Pour La
Communication Scientifique Directe). In Proceedings of the 2020 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and 2020 ACM International Symposium on Wearable Computers, New York, NY, USA, 12–17 September
2020. [CrossRef]

20. Abdel-Jaber, H.; Devassy, D.; Al Salam, A.; Hidaytallah, L.; El-Amir, M. A Review of Deep Learning Algorithms and Their
Applications in Healthcare. Algorithm 2022, 15, 71. [CrossRef]

21. Adnan, M.; Kalra, S.; Cresswell, J.C.; Taylor, G.W.; Tizhoosh, H.R. Federated learning and differential privacy for medical image
analysis. Sci. Rep. 2022, 12, 1953. [CrossRef] [PubMed]

22. Dara, S.; Kanapala, A.; Babu, A.R.; Dhamercherala, S.; Vidyarthi, A.; Agarwal, R. Scalable Federated-Learning and Internet-
of-Things enabled architecture for Chest Computer Tomography image classification. Comput. Electr. Eng. 2022, 102, 108266.
[CrossRef]

23. Díaz, J.S.-P.; García, L. Study of the performance and scalability of federated learning for medical imaging with intermittent
clients. Neurocomputing 2022, 518, 142–154. [CrossRef]

24. Yoo, J.H.; Jeong, H.; Lee, J.; Chung, T.-M. Open problems in medical federated learning. Int. J. Web Inf. Syst. 2022, 18, 77–99.
[CrossRef]

25. Ng, D.; Lan, X.; Yao, M.M.-S.; Chan, W.P.; Feng, M. Federated learning: A collaborative effort to achieve better medical imaging
models for individual sites that have small labelled datasets. Quant. Imaging Med. Surg. 2021, 11, 852–857. [CrossRef] [PubMed]

26. Elmas, G.; Dar, S.U.H.; Korkmaz, Y.; Ceyani, E.; Susam, B.; Ozbey, M.; Avestimehr, S.; Çukur, T. Federated Learning of Generative
Image Priors for MRI Reconstruction. IEEE Trans. Med. Imaging 2022, 42, 1996–2009. [CrossRef] [PubMed]

27. Veiga, R.; Both, C.B.; Medeiros, I.; Rosário, D.; Cerqueira, E. A Federated Learning Approach for Authentication and User
Identification based on Behavioral Biometrics. In Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos;
SBC: Brasília, Brazil, 2023; pp. 15–28.

28. Mouhni, N.; Elkalay, A.; Chakraoui, M.; Abdali, A.; Ammoumou, A.; Amalou, I. Federated Learning for Medical Imaging: An
Updated State of the Art. Ingénierie Des Systèmes D’information 2022, 27, 143–150. [CrossRef]

29. Prayitno; Shyu, C.-R.; Putra, K.T.; Chen, H.-C.; Tsai, Y.-Y.; Hossain, K.S.M.T.; Jiang, W.; Shae, Z.-Y. A Systematic Review of
Federated Learning in the Healthcare Area: From the Perspective of Data Properties and Applications. Appl. Sci. 2021, 11, 11191.
[CrossRef]

30. Florescu, L.M.; Streba, C.T.; Şerbănescu, M.-S.; Mămuleanu, M.; Florescu, D.N.; Teică, R.V.; Nica, R.E.; Gheonea, I.A. Federated
Learning Approach with Pre-Trained Deep Learning Models for COVID-19 Detection from Unsegmented CT images. Life 2022,
12, 958. [CrossRef] [PubMed]

31. Hameed, B.Z.; Naik, N.; Ibrahim, S.; Tatkar, N.S.; Shah, M.J.; Prasad, D.; Hegde, P.; Chlosta, P.; Rai, B.P.; Somani, B.K. Breaking
Barriers: Unveiling Factors Influencing the Adoption of Artificial Intelligence by Healthcare Providers. Big Data Cogn. Comput.
2023, 7, 105. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10586-022-03658-4
https://doi.org/10.3390/electronics11203262
https://doi.org/10.3390/app13020919
https://doi.org/10.3390/electronics11040670
https://doi.org/10.1093/bioinformatics/btac616
https://www.ncbi.nlm.nih.gov/pubmed/36073911
https://doi.org/10.1145/3533708
https://doi.org/10.1007/978-3-031-08999-2
https://doi.org/10.1145/3410530.3414321
https://doi.org/10.3390/a15020071
https://doi.org/10.1038/s41598-022-05539-7
https://www.ncbi.nlm.nih.gov/pubmed/35121774
https://doi.org/10.1016/j.compeleceng.2022.108266
https://doi.org/10.1016/j.neucom.2022.11.011
https://doi.org/10.1108/IJWIS-04-2022-0080
https://doi.org/10.21037/qims-20-595
https://www.ncbi.nlm.nih.gov/pubmed/33532283
https://doi.org/10.1109/TMI.2022.3220757
https://www.ncbi.nlm.nih.gov/pubmed/36350868
https://doi.org/10.18280/isi.270117
https://doi.org/10.3390/app112311191
https://doi.org/10.3390/life12070958
https://www.ncbi.nlm.nih.gov/pubmed/35888048
https://doi.org/10.3390/bdcc7020105

	Introduction 
	Deep Learning Models Used in Healthcare Are as Follows 
	Deep Belief Networks 
	Convolutional Neural Networks 
	Recurrent Neural Networks 
	Adversarial Generative Networks 

	The Comparison of Deep Learning Models Is as Follows 

	Challenges Associated with Healthcare Data 
	Variations in the Quality of Data Due to Noise 
	Incorrect Data Annotation 
	Data Heterogeneity 
	Privacy and Security 
	Standard Medical Datasets 
	Data Partitions 

	Literature Review 
	Secure Aggregation Based Privacy Preservation Algorithms for Federated Learning 
	Federated Averaging (FedAvg) 
	Federated Personalization (FedPer) 
	Federated Match Averaging (FedMA) 
	Secret Sharing 
	Homomorphic Encryption 

	Conclusions 
	References

