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Abstract: Polyvinylidene fluoride (PVDF)-coated ZnO nanorod piezoelectric sensors were prepared
on silicone-based polymer polydimethylsiloxane (PDMS) substrates using a hydrothermal method.
The effects of catalysts (sodium hydroxide, ammonium hydroxide, and hexamethylenetetramine)
on the lattice microstructure and piezoelectric properties of ZnO nanorods were analyzed. The
piezoelectric properties of polyvinylidene fluoride-coated ZnO nanorods’ tactile sensors with different
catalysts were measured under different forces. ZnO nanorods with hexamethylenetetramine have a
high c-axis (002)-preferred orientation hexagonal wurtzite crystal structure with a maximum length
of 5800 nm and an aspect ratio of 72.5. The Polyvinylidene fluoride/ZnO nanorod sensor with
hexamethylenetetramine showed an excellent linear response to external pressure in the range of
0.1~1.2 N, and the best sensitivity is 61.1 mV/N.

Keywords: ZnO; PVDF; nanorods; piezoelectric

1. Introduction

In recent years, there has been extensive research on tactile sensors for applications
involving human skin, leading to their widespread adoption across various fields such as
smart skin, wearable devices, the Internet of Things (IoT), and smart industries. Tactile
sensors are categorized based on their physical mechanisms into piezoelectric, piezore-
sistive, capacitive, and photoelectric types. Among these, piezoelectric sensors have
attracted considerable attention due to their numerous advantages, including high sensi-
tivity, rapid response speed, low power consumption, and independence from external
power sources [1–4]. The piezoelectric materials such as ZnO, PbZrxTi1−xO3 (PZT), and
polyvinylidene fluoride have been studied by many researchers and applied to tactile
sensors due to their high piezoelectric and sensitivity properties [5–8]. However, PZT has
limited applications because it contains lead. Polyvinylidene fluoride has good flexibility,
high sensitivity, and softness properties, which are appropriate for wearable tactile sen-
sors [9,10]. In addition, ZnO nanorods have gained widespread research interest due to
their high sensitivity, good flexibility, and high piezoelectric coefficient [11,12].

Therefore, we combined ZnO nanorods and polyvinylidene fluoride for tactile sensor
applications. The tactile sensors were prepared utilizing the high aspect ratio, large surface
area, and excellent piezoelectric properties of ZnO nanorods and the high responsiveness
and sensitivity of polyvinylidene fluoride to effectively convert the mechanical force into
electrical signals. In this study, ZnO nanorods were synthesized on the flexible substrates
using the hydrothermal method. The hydrothermal method is appropriate for preparing
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ZnO nanostructures on polymer plastic substrates due to its simplicity, low cost, and low
growth temperature. However, the crystal structure and morphology of ZnO nanorods are
affected by processing parameters such as catalysts, solution concentration, temperature,
and duration, which must be optimized. The crystal structure and morphology of ZnO
nanorods can be improved by optimizing the conditions.

To further clarify the relationship between the microstructure and piezoelectric prop-
erties of ZnO nanorods and improve their piezoelectric properties, the effects of various
catalysts (sodium hydroxide, ammonium hydroxide, hexamethylenetetramine) on the crys-
tal structure and morphology of ZnO nanorods were analyzed. In this research, polyvinyli-
dene fluoride was coated on the ZnO nanorod to form a polyvinylidene fluoride/ZnO
nanorod tactile sensor. The effects of catalysts on the crystallization properties of the ZnO
nanorods were studied, and the piezoelectric-sensing characteristics of polyvinylidene
fluoride/ZnO nanorod tactile sensors with different catalysts were also investigated.

2. Materials and Methods

ZnO thin films were prepared as a seed layer on the polymer polydimethylsiloxane
(PDMS) substrates using the sol–gel method. A homogeneous mixture of Zn(C2H3O2)2·2H2O
and C3H8O2 was prepared at a concentration of 0.5 M and stirred at 60 ◦C for 3 h. The
seed layer was then deposited onto the PDMS substrate using spin-coating at 3000 rpm
for 30 s and was annealed at 600 ◦C for 2 min. ZnO nanorods were synthesized using the
hydrothermal method using a zinc acetate solution (10 mM) mixed with sodium hydrox-
ide (NaOH), ammonium hydroxide (NH4OH), or hexamethylenetetramine (C6H12N4) at
90 ◦C for 6 h. Subsequently, polyvinylidene fluoride films were deposited onto the ZnO
nanorods using sol–gel and spin coating methods. PVDF powder was dissolved in N,N-
dimethylformamide (DMF) solvent, and the solution was spin-coated onto the substrate
surface. The polyvinylidene fluoride/ZnO nanorods were annealed at 90 ◦C for 1 h to
remove the solvent and solidify the PVDF film. The copper electrodes adhered to both
sides of the polyvinylidene fluoride film through conductive silver gel to form electrodes of
the tactile sensor. Finally, the PDMS thin film with good flexibility was spin-coated on the
PVDF thin film to complete the tactile sensor structure, as shown in Figure 1. The pressure
was transferred to the piezoelectric layer using the PDMS thin film, protecting the sensor
from damage by the external environment.

Eng. Proc. 2024, 72, x FOR PEER REVIEW 3 of 7 
 

 

 
Figure 1. Structure of polyvinylidene fluoride/ZnO nanorod tactile sensor. 

3. Results and Discussion 
Figure 2 shows the X-ray diffraction crystallinity comparison of ZnO nanorods pre-

pared with different catalysts (sodium hydroxide, ammonium hydroxide, and hexameth-
ylenetetramine). All XRD patterns showed a hexagonal wurtzite structure and a strong c-
axis orientation along the (002) plane (JCPDS card number 36-1451). ZnO nanorods with 
hexamethylenetetramine have the highest (002) diffraction peak intensity and exhibit ex-
cellent crystallinity compared with other samples. The catalyst impacted the crystallinity 
and structural properties of the ZnO nanorods. Hexamethylenetetramine promoted fa-
vorable nucleation and growth conditions for ZnO crystallization than sodium hydroxide 
and ammonium hydroxide catalysts. 

 
Figure 2. X-ray diffraction pattern of ZnO nanorods with catalysts of (a) sodium hydroxide, (b) am-
monium hydroxide, and (c) hexamethylenetetramine. 

Figure 3a–c shows the plane SEM images of the ZnO nanorods with sodium hydrox-
ide, ammonium hydroxide, and hexamethylenetetramine, and Figure 3d presents the 
cross-sectional SEM image of ZnO nanorod with hexamethylenetetramine. The parame-
ters of the average diameter, aspect ratio, and length of the ZnO nanorods are presented 
in Table 1. The average diameters of ZnO nanorods with sodium hydroxide, ammonium 
hydroxide, and hexamethylenetetramine catalysts are 40, 60, and 80 nm, respectively. The 
average lengths for sodium hydroxide, ammonium hydroxide, and hexamethylenetetra-
mine were 1250, 3800, and 5500 nm, respectively. The average diameter, length, and aspect 

Figure 1. Structure of polyvinylidene fluoride/ZnO nanorod tactile sensor.

The lattice structure of ZnO nanorods was measured using an X-ray diffractometer
(Rigaku Dmax 2200 X, Rigaku Corporation, Tokyo, Japan). The X-ray source is CuKα

radiation (λ = 1.5418 Å), and the measurement angle range is 20–60◦. The surface mi-
crostructure of ZnO nanorods was measured using a field emission scanning electron
microscope (FE-SEM JEOL JSM-6700F, JEOL Ltd., Tokyo, Japan). The piezoelectric prop-
erties of PVDF/ZnO nanorod tactile sensors were measured using a charge amplifier to
convert the pressure-generated charge signal into an output voltage. The experiment
involved placing a polyvinylidene fluoride/ZnO nanorod tactile sensor on the measuring
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plate of a digital force gauge. When pressure was applied to the sensor with a finger,
the force exerted was recorded using the digital force gauge. Simultaneously, the output
voltage waveform of the tactile sensor was measured using a digital oscilloscope and was
subsequently subjected to post-processing.

3. Results and Discussion

Figure 2 shows the X-ray diffraction crystallinity comparison of ZnO nanorods pre-
pared with different catalysts (sodium hydroxide, ammonium hydroxide, and hexam-
ethylenetetramine). All XRD patterns showed a hexagonal wurtzite structure and a strong
c-axis orientation along the (002) plane (JCPDS card number 36-1451). ZnO nanorods with
hexamethylenetetramine have the highest (002) diffraction peak intensity and exhibit excel-
lent crystallinity compared with other samples. The catalyst impacted the crystallinity and
structural properties of the ZnO nanorods. Hexamethylenetetramine promoted favorable
nucleation and growth conditions for ZnO crystallization than sodium hydroxide and
ammonium hydroxide catalysts.
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Figure 2. X-ray diffraction pattern of ZnO nanorods with catalysts of (a) sodium hydroxide, (b) am-
monium hydroxide, and (c) hexamethylenetetramine.

Figure 3a–c shows the plane SEM images of the ZnO nanorods with sodium hydroxide,
ammonium hydroxide, and hexamethylenetetramine, and Figure 3d presents the cross-
sectional SEM image of ZnO nanorod with hexamethylenetetramine. The parameters of
the average diameter, aspect ratio, and length of the ZnO nanorods are presented in Table 1.
The average diameters of ZnO nanorods with sodium hydroxide, ammonium hydroxide,
and hexamethylenetetramine catalysts are 40, 60, and 80 nm, respectively. The average
lengths for sodium hydroxide, ammonium hydroxide, and hexamethylenetetramine were
1250, 3800, and 5500 nm, respectively. The average diameter, length, and aspect ratio of
the ZnO nanorods with hexamethylenetetramine were the largest. This is because when
hexamethylenetetramine was added to the aqueous solution, it was cleaved to form amines
and provide OH groups to nucleate ZnO on the surface of the ZnO seed layer. Moreover,
the amine cleavage rate of hexamethylenetetramine was slowed, and the pH value of the
aqueous solution changed little, resulting in a low concentration of metal ion complexes [13].
Therefore, the nucleation reaction of ZnO was carried out at low supersaturation, which
facilitated heterogeneous growth and made ZnO crystals easily grow into nanorods [14].
When sodium hydroxide and ammonium hydroxide catalysts were added to aqueous
solutions, the pH of the solution changed significantly, resulting in high concentrations
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of metal complexes. ZnO enabled uniform nucleation, resulting in smaller diameters and
lengths of nanorods [15].
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Figure 3. Plane SEM images of ZnO nanorods with the catalysts of (a) sodium hydroxide, (b) am-
monium hydroxide, and (c) hexamethylenetetramine, and the cross-sectional SEM images of ZnO
nanorods with hexamethylenetetramine (d).

Table 1. Structure parameters of ZnO nanorods with different catalysts.

Catalysts Length (nm) Diameters (nm) Aspect Ratio

Sodium hydroxide 1250 40 31.3
Ammonium hydroxide 3800 60 63.3

Hexamethylenetetramine 5800 80 72.5

To measure the piezoelectric response of the nanorod tactile sensor, the charge signal
generated by the sensor was converted into an output voltage using a charge amplifier,
which was then captured and processed using a digital oscilloscope. Figure 4a–c shows
the piezoelectric voltage of the PVDF/ZnO nanorod sensor with sodium hydroxide, am-
monium hydroxide, and hexamethylenetetramine. The piezoelectric voltage peaks of the
ZnO nanorod tactile sensors with sodium hydroxide, ammonium hydroxide, and hexam-
ethylenetetramine were measured at 10, 35, and 53 mV, respectively, under a force of 1 N.
The polyvinylidene fluoride/ZnO nanorod tactile sensor with hexamethylenetetramine
showed a maximum voltage peak amplitude of 61 mV, as shown in Figure 4d, as the en-
hanced radial stress of ZnO nanorods with hexamethylenetetramine had the largest aspect
ratio of 72.5 under the same pressure, resulting in enhanced piezoelectric displacement on
the Z-axis of the nanorods [16]. In addition, when the piezoelectric polymer polyvinylidene
fluoride film was coated on the ZnO nanorods, the voltage peak of the tactile sensor also
increased. This was attributed to the fact that polyvinylidene fluoride is a piezoelectric ma-
terial that can generate electrical charges in response to mechanical stress or pressure and
increase the sensitivity of tactile sensors. ZnO nanorods enhanced the piezoelectric output
of polyvinylidene fluoride films. This phenomenon has been reported in prior research,
which the piezoelectric enhancement output of the polyvinylidene fluoride/ZnO nanorod
structure was attributed to the synergistic effect of both polyvinylidene fluoride and ZnO
nanorods [17–19]. The combination of ZnO nanorods and polyvinylidene fluoride film
enhanced the overall responsiveness and performance of the tactile sensor when pressure
is applied to the sensor [20].
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Figure 4. Comparison of piezoelectric sensing voltages of the ZnO nanorods tactile sensors with
(a) sodium hydroxide, (b) ammonium hydroxide, (c) hexamethylenetetramine, which (d) is the
polyvinylidene fluoride/ZnO nanorods with hexamethylenetetramine.

Figure 5 illustrates the influence of various catalysts on the voltage response of the
polyvinylidene fluoride/ZnO nanorod tactile sensors across a range of external forces from
0.1 to 1.1 N. The corresponding voltage peak amplitudes in the dynamic piezoelectric re-
sponse waveform of the tactile sensor are extracted upon the application of different forces.
The voltage response of all tactile sensors exhibits a linear increase with rising pressure.
The output voltages and sensitivities of the polyvinylidene fluoride/ZnO nanorods tactile
sensors with different catalysts are shown in Table 2. The sensitivities of polyvinylidene
fluoride/ZnO nanorod tactile sensors with sodium hydroxide, ammonium hydroxide, and
hexamethylenetetramine are 31.8, 39.6, and 61.1 mV/N respectively. The polyvinylidene
fluoride/ZnO nanorod tactile sensor with hexamethylenetetramine achieves a high sensitiv-
ity of 61.1 mV/N. Compared with sodium hydroxide, the sensitivity of ZnO nanorods with
hexamethylenetetramine increased by about 2-fold. This was attributed to the significant
aspect ratio c-axis orientation of ZnO nanorods with hexamethylenetetramine.
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Table 2. Comparison of piezoelectric sensing voltage and sensitivity of the polyvinylidene fluo-
ride/ZnO nanorods tactile sensors.

Catalysts Piezoelectric Sensing Voltages
(mV)

Sensitivity
(mV/N)

Sodium hydroxide 22 31.8
Ammonium hydroxide 40 39.6

Hexamethylenetetramine 61 61.1

4. Conclusions

The polyvinylidene fluoride/ZnO nanorod piezoelectric tactile sensors were pre-
pared on PDMS substrates using the hydrothermal method to study the effects of cat-
alysts (Sodium hydroxide, Ammonium hydroxide, and Hexamethylenetetramine) on
the lattice structure and surface microstructure of ZnO nanorods. The largest diameter,
length, and aspect ratio of the ZnO nanorods were obtained using hexamethylenetetramine.
The polyvinylidene fluoride/ZnO nanorod’s tactile sensor with hexamethylenetetramine
showed a maximum voltage peak of 61 mV and sensitivity of 61.1 mV/N, which was
attributed to the high aspect ratio of the ZnO nanorod and the coating of polyvinylidene
fluoride. The prepared polyvinylidene fluoride/ZnO nanorod piezoelectric tactile sensor
has great potential for applications in robot tactile sensing and wearable devices.
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