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Abstract: Renewable ethanol serves as a compelling source for generating clean hydrogen. In this
study, we conducted an in-depth exploration of the catalytic steam reforming of ethanol to produce
hydrogen employing four commercial catalysts under optimized reaction conditions, including
temperature, pressure, and the steam-to-ethanol ratio. Among the catalysts investigated, two nickel-
based catalysts with different nickel contents a exhibited superior performance, displaying the highest
hydrogen yield, ethanol conversion, and hydrogen selectivity. Notably, these nickel-based commercial
catalysts achieved a hydrogen selectivity of 75%, a hydrogen yield of 89%, and an ethanol conversion
rate of 100%.

Keywords: renewable hydrogen; stable nickel catalysts; decarbonization; ethanol reforming; high
pressure; molar feed ratio; performance; characterization

1. Introduction

The catalytic steam reforming of ethanol for hydrogen production has garnered signif-
icant attention in recent years, driven by the increasing demand for sustainable and clean
energy sources [1]. Ethanol, sourced from renewable feedstocks, has emerged as a com-
pelling precursor for clean hydrogen, offering environmental benefits and contributing to
the transition toward a low-carbon economy [2]. Numerous studies have explored the cat-
alytic conversion of ethanol to hydrogen, with a particular focus on optimizing the reaction
conditions for enhanced efficiency [2,3]. Temperature, pressure, and the steam-to-ethanol
ratio have been identified as the pivotal parameters influencing the catalytic performance
of various catalysts [4,5]. These studies underscore the importance of understanding the
intricate interplay between these factors to achieve optimal hydrogen yields [5]. Among
the diverse catalysts explored, nickel-based catalysts have consistently exhibited a superior
performance [6,7]. Nickel’s catalytic activity, coupled with its cost-effectiveness, makes it
an attractive choice for ethanol steam reforming. The literature highlights the versatility
of nickel-based catalysts in achieving high hydrogen selectivity and ethanol conversion
rates [7–9]. This study builds upon the existing knowledge by conducting an in-depth
exploration of the catalytic steam reforming of ethanol using various commercial catalysts
generously supplied by our industry partner, Proteum Energy. Specializing in non-methane
(SnMR) steam reforming, Proteum Energy is at the forefront of advancing hydrogen pro-
duction to facilitate the global transition toward clean energy. Their innovative modular
hydrogen-designer fuel system is designed to generate low-carbon hydrogen, seamlessly
integrating both renewable and non-renewable sources. Proteum Energy employs a diverse
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range of non-methane feedstocks, including ethanol, methanol, ethane, and other non-
methane hydrocarbons, to produce various grades of hydrogen. These grades encompass
fuel cell hydrogen, pipeline substitute natural gas (SNG), and customized blends, complete
with optional carbon dioxide (CO2) and hydrogen (H2) separation modules for enhanced
flexibility and efficiency (refer to Figure 1 for a detailed illustration). The collaboration
with Proteum Energy not only enriched our research endeavors, but also allowed us to
explore the dynamic landscape of hydrogen production, particularly in the context of clean
energy transitions. The incorporation of diverse feedstocks and the flexibility in hydrogen
grades underscore Proteum Energy’s commitment to advancing sustainable solutions for
hydrogen production, aligning with the evolving demands of a clean energy sector.
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Figure 1. Proteum Energy core technology showing designer fuel system and carbon dioxide and
hydrogen separation units.

Among the four commercial catalysts being studied here, two of them are nickel-
based, with varying nickel contents, while the third is zinc-based, and the fourth is a
lanthanum rare earth-promoted catalyst. The emphasis on optimized reaction conditions
further enhances our understanding of the intricate mechanisms governing ethanol steam
reforming to hydrogen. The findings of this study, particularly the exceptional performance
of the nickel-based catalysts, with 75% H2 selectivity, 89% H2 yield, and a 100% ethanol
conversion rate, align with the previous research trends [1,8,9]. Notably, the sustained
activity of the catalysts over an extended period addresses a common concern in long-term
catalytic processes. The investigation into the impact of nickel content variation on catalytic
performance adds depth to the existing literature, opening avenues for future investigations
on catalyst composition optimization. The comparative analysis of the four commercial
catalysts not only reinforces the established trends, but also introduces novel insights,
enriching our understanding of catalytic processes for sustainable energy solutions.

2. Experimental
2.1. Materials

The four commercial catalysts used in this study are Ar-401, NGPR-2, MS-901, and
NG-608 L. All four catalysts were provided to us by our industry partner, Proteum Energy.

2.2. Catalyst Characterizations

Various characterization techniques were employed to gain crucial insights into the
catalysts. Figure 2 presents SEM images of the four catalysts, with insets displaying EDX
mapping that delineates distinct elements present in each catalyst. This comprehensive
analysis enhances our understanding of the catalysts’ structural and elemental composition.
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In addition to SEM, various characterization techniques, including TEM, BET, PXRD,
and TPR, were employed to extract crucial information about the catalysts. The primary
emphasis was on the two most active catalysts: Ar-401 and NGPR-2. Summarized data can
be found in Table 1.

Table 1. Comparative analysis of surface area, pore size, pore volume, nanoparticle size, and reduction
temperature for Ar-401 and NGPR-2 catalysts.

Characterization Ar-401 NGPR-2

BET Surface Area (m2/g) 66.47 89.9

Pore Size (nm) 12.06 10.47

Pore Volume (cm3/g) 0.20 0.24

Nanoparticle Size (nm) 90.3 65.4

TPR Reduction Temperature (◦C) 295.3 306.2 and 828.9

2.3. Catalyst Testing Procedure

The steam reforming process was conducted in a fixed-bed reactor, as illustrated in
Figure 3. Constructed from Inconel material capable of withstanding high temperatures,
the reactor features external and internal diameters of 1.050” and 0.514”, respectively.
Engineered with a thickness designed to withstand pressures exceeding 500 bar, the reactor
was situated within an electric furnace. To regulate the flow rates, a Cisco pump delivered
the ethanol/water mixture, while the temperature of the catalyst was monitored using
a thermocouple inserted into the reactor. Before assessing the catalysts’ performance, a
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500 mg sample placed at the center of the packed-bed reactor was reduced at 400 ◦C in
10% H2 for one hour. During the reaction, the ethanol/water mixture was vaporized in a
preheater before entering the reactor. Subsequently, the reaction products were condensed
in a condenser and passed through a gas–liquid separator, where the liquid products were
collected for analysis, while the gaseous products were sampled for analysis using online
gas chromatography.
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Figure 3. A schematic diagram of the reactor system, detailing the process flow and various compo-
nents employed for conducting the ethanol steam reforming process.

3. Results and Discussion

This paper presents the comparative analysis of the performance of four catalysts in
ethanol steam reforming. Specifically, two of these catalysts, AR-401 and NGPR-2, exhibit a
nickel-based composition, while the third, MS-901 is comprised of zinc and copper, and
the fourth, NG-608 L, is a lanthanum aluminate-based catalyst. AR-401 is characterized
by its formulation with a low nickel content and is supported on an activated magnesium
alumina spinel. In contrast, NGPR-2 functions as a pre-reformer catalyst, featuring a
significantly higher nickel content compared to that of AR-401. Furthermore, the MS-
901 catalyst predominantly consists of highly dispersed CuO, supplemented by a minor
amount of ZnO, all supported on an alumina base. The NG-608 L catalyst is a lanthanum
rare earth-promoted catalyst that contains NiO supported on magnesium aluminate. This
research explores and compares the distinct properties of these catalysts, shedding light on
their respective performances in the ethanol steam reforming process.

The performance parameters used to evaluate the commercial catalysts include ethanol
conversion, the hydrogen yield, and hydrogen selectivity. These three performance param-
eters are defined according to Equations (1)–(3), where the F terms are the molar flow rates
of the respective components.

Ethanol Conversion = [F(C2H5OH)in − F(C2H5OH)out]/F(C2H5OH)in × 100 (1)

Hydrogen Yield = F(H2)out/6[F(C2H5OH)in –F(C2H5OH)out] (2)

Hydrogen Selectivity = Moles o f (H2)out × 100/Total moles o f products (3)

The performances of the four catalysts were compared under optimal reaction condi-
tions of 700 ◦C, a steam-to-ethanol ratio of nine, and atmospheric pressure. The hydrogen
selectivities, hydrogen yields, and ethanol conversions of the four catalysts were evaluated
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and are summarized in Table 2. It was observed that the Ar-40 and NGPR-2 catalysts
exhibited superior performances compared to those of the NG-608 L and MS-901 catalysts.

Table 2. Comparative performance analysis of commercial catalysts in terms of hydrogen selectivity,
hydrogen yield, and ethanol conversion.

Catalysts H2 Selectivity (%) H2 Yield (%) Ethanol Conversion (%)

Ar-401 74.8 85.1 100

NGPR-2 72.6 88.7 100

NG-608 L 63.1 79.5 94.8

MS-901 55.5 76.8 87.5

Furthermore, the product selectivities of the four catalysts were compared, as illus-
trated in Figure 4. In Figure 4a, Ar-401 had hydrogen, carbon dioxide, and carbon monoxide
selectivities of 75% 15%, and 10%, respectively, with a negligible amount of less than 1%
of CH4. The product selectivities of the NGPR-2 catalyst (Figure 4b) were similar to those
of Ar-401.
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Figure 4. Product selectivities over time via stream of four commercial catalysts tested at 700 ◦C, with
steam-to-ethanol ratio of 9, and at atmospheric pressure. (a) Ar-401, (b) NGPR-2, (c) NG-608 L, and
(d) MS-901.

However, both NG-608 L (Figure 4c), and MS-901 (Figure 4d) showed hydrogen
selectivities significantly lower than those of Ar-401 and NGPR-2. Consequently, the
subsequent sections of this paper focus on the comparative performances of the Ar-401 and
NGPR-2 catalysts. Specifically, the effects of the different parameters on the performance of
the Ar-401 and NGPR-2 catalysts in terms of hydrogen selectivity, ethanol conversion, and
the hydrogen yield were studied, as discussed below.

3.1. Effects of Steam-to-Ethanol Ratio

The impacts of the steam–ethanol ratio on the hydrogen selectivities and hydrogen
yields of the Ar-401 and NGPR-2 catalysts were analyzed. It is important to note that the
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catalysts were tested under atmospheric pressure and at 700 ◦C. The evaluations were
conducted at steam-to-ethanol ratios of six, nine, and twelve. For Ar-401, the hydrogen
selectivities were 70.3%, 74.8%, and 71.1% for the steam-to-ethanol ratios of six, nine, and
twelve, respectively. In comparison, NGPR-2 exhibited hydrogen selectivities of 69.8%,
72.6%, and 70.3% for the corresponding steam-to-ethanol ratios, as illustrated in Figure 5.
Furthermore, the hydrogen yields of Ar-401 were 85.2%, 85.1%, and 84.8% for the steam-
to-ethanol ratios of six, nine, and twelve, respectively. Meanwhile, the hydrogen yields of
the NGPR-2 catalyst were recorded as 91.2%, 92.7%, and 91.9% for the steam-to-ethanol
ratios of six, nine, and twelve, respectively. This reveals a consistent trend where both the
catalysts exhibit similar hydrogen selectivities, but NGPR-2 shows a higher hydrogen yield.
This observation is consistent with the higher nickel content in NGPR-2, providing more
active sites for breaking the ethanol C-C bonds and catalyzing the reforming reaction to
produce hydrogen. Furthermore, the selectivity of each catalyst increases with an increase
in steam-to-ethanol ratio from six to nine, but decreases when further increased from nine
to twelve. This suggests the competitive adsorption of steam at higher concentrations,
occupying more active sites and leaving fewer sites for ethanol adsorption [10]. Therefore,
there is no advantage in using more water in the ethanol steam reforming reaction beyond
a steam-to-ethanol ratio of nine. Notably, both the Ar-401 and NGPR-2 catalysts achieved
100% ethanol conversion at all the three steam-to-ethanol ratios.
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Figure 5. (a) The hydrogen selectivities and (b) the hydrogen yields as a function of the steam-to-
ethanol ratio for the Ar-401 and NGPR-2 catalysts conducted at 700 ◦C, atmospheric pressure, and
WHSV of 56.7 h-1.

3.2. Effects of Reaction Temperature

The impact of temperature on the performance of the Ar-401 and NGPR-2 catalysts
was examined. Both the catalysts were evaluated at a steam-to-ethanol ratio of nine and at-
mospheric pressure. The experiments were conducted at four different temperatures, which
are 400, 500, 600, and 700 ◦C. As depicted in Figure 6, hydrogen selectivity, the hydrogen
yield, and ethanol conversion increase with rising temperature. At lower temperatures of
400 and 500 ◦C, the reaction by-products, such as CO2, CO, and CH4 resulting from ethanol
decomposition predominate. Furthermore, acetaldehyde was produced at temperatures of
400 and 500 ◦C. Elevating the temperature to 600 and 700 ◦C enhances hydrogen production,
accompanied by a decrease in the CH4 and CO yields due to favorable hydrogen-producing
reactions, such as water gas shift and methane reforming reactions [10]. Additionally,
although CH4 was significantly more abundant than CO in the product stream at lower
temperatures, CO concentrations surpassed CH4 at higher temperatures, accounting for
approximately 10% of the gaseous reaction products’ selectivity.



Eng. Proc. 2024, 76, 95 7 of 8Eng. Proc. 2024, 76, x FOR PEER REVIEW 7 of 8 
 

 

 
Figure 6. Variation in (a) hydrogen selectivity, (b) hydrogen yield, and (c) ethanol conversion with 
temperature for Ar-401 and NGPR-2 catalysts conducted at steam-to-ethanol ratio of 9, atmospheric 
pressure, and WHSV of 56.7 h-1. 

3.3. Effects of Pressure 

The influence of pressure on ethanol steam reforming was examined on the Ar-401 
and NGPR-2 catalysts. Both the catalysts were assessed under identical conditions of 700 
°C and a steam-to-ethanol ratio of nine. The pressure was systematically adjusted from 
atmospheric pressure to 3 bar, and finally to 6 bar. The recorded hydrogen selectivity and 
hydrogen yield at the different pressures are depicted in Figure 7. 

 
Figure 7. (a) Hydrogen selectivity and (b) hydrogen yield as function of pressure for Ar-401 and 
NGPR-2 catalysts conducted at 700 °C, steam-to-ethanol ratio of 9, and WHSV of 56.7 h-1. 

While pressure had a negligible effect on hydrogen selectivity (see Figure 7a), its im-
pact on the hydrogen yield was evident, as illustrated in Figure 7b. 

4. Conclusions 
This study conducted ethanol steam reforming experiments using commercial cata-

lysts provided by Proteum Energy, a leading innovator in non-methane steam reforming 
for hydrogen production. This research compares the performances of four catalysts—
AR-401, NGPR-2, MS-901, and NG-608 L—in ethanol steam reforming. The catalysts ex-
hibit different compositions and properties. AR-401 and NGPR-2, both nickel-based, out-
perform NG-608 L and MS-901 in terms of hydrogen selectivity, yield, and ethanol con-
version. This research further explores the impacts of reaction parameters, such as the 

0

20

40

60

80

100

1 3 6

H
2

Se
le

ct
iv

ity
 (%

)

Pressure (atm)

HHR NGPR-2

0

20

40

60

80

100

120

1 3 6

H
2

Yi
el

d 
(%

)

Pressure (atm)

HHR NGPR-2
(a) (b)

Figure 6. Variation in (a) hydrogen selectivity, (b) hydrogen yield, and (c) ethanol conversion with
temperature for Ar-401 and NGPR-2 catalysts conducted at steam-to-ethanol ratio of 9, atmospheric
pressure, and WHSV of 56.7 h-1.

3.3. Effects of Pressure

The influence of pressure on ethanol steam reforming was examined on the Ar-401
and NGPR-2 catalysts. Both the catalysts were assessed under identical conditions of
700 ◦C and a steam-to-ethanol ratio of nine. The pressure was systematically adjusted from
atmospheric pressure to 3 bar, and finally to 6 bar. The recorded hydrogen selectivity and
hydrogen yield at the different pressures are depicted in Figure 7.

Eng. Proc. 2024, 76, x FOR PEER REVIEW 7 of 8 
 

 

 
Figure 6. Variation in (a) hydrogen selectivity, (b) hydrogen yield, and (c) ethanol conversion with 
temperature for Ar-401 and NGPR-2 catalysts conducted at steam-to-ethanol ratio of 9, atmospheric 
pressure, and WHSV of 56.7 h-1. 

3.3. Effects of Pressure 

The influence of pressure on ethanol steam reforming was examined on the Ar-401 
and NGPR-2 catalysts. Both the catalysts were assessed under identical conditions of 700 
°C and a steam-to-ethanol ratio of nine. The pressure was systematically adjusted from 
atmospheric pressure to 3 bar, and finally to 6 bar. The recorded hydrogen selectivity and 
hydrogen yield at the different pressures are depicted in Figure 7. 

 
Figure 7. (a) Hydrogen selectivity and (b) hydrogen yield as function of pressure for Ar-401 and 
NGPR-2 catalysts conducted at 700 °C, steam-to-ethanol ratio of 9, and WHSV of 56.7 h-1. 

While pressure had a negligible effect on hydrogen selectivity (see Figure 7a), its im-
pact on the hydrogen yield was evident, as illustrated in Figure 7b. 

4. Conclusions 
This study conducted ethanol steam reforming experiments using commercial cata-

lysts provided by Proteum Energy, a leading innovator in non-methane steam reforming 
for hydrogen production. This research compares the performances of four catalysts—
AR-401, NGPR-2, MS-901, and NG-608 L—in ethanol steam reforming. The catalysts ex-
hibit different compositions and properties. AR-401 and NGPR-2, both nickel-based, out-
perform NG-608 L and MS-901 in terms of hydrogen selectivity, yield, and ethanol con-
version. This research further explores the impacts of reaction parameters, such as the 

0

20

40

60

80

100

1 3 6

H
2

Se
le

ct
iv

ity
 (%

)

Pressure (atm)

HHR NGPR-2

0

20

40

60

80

100

120

1 3 6

H
2

Yi
el

d 
(%

)

Pressure (atm)

HHR NGPR-2
(a) (b)

Figure 7. (a) Hydrogen selectivity and (b) hydrogen yield as function of pressure for Ar-401 and
NGPR-2 catalysts conducted at 700 ◦C, steam-to-ethanol ratio of 9, and WHSV of 56.7 h-1.

While pressure had a negligible effect on hydrogen selectivity (see Figure 7a), its
impact on the hydrogen yield was evident, as illustrated in Figure 7b.

4. Conclusions

This study conducted ethanol steam reforming experiments using commercial catalysts
provided by Proteum Energy, a leading innovator in non-methane steam reforming for
hydrogen production. This research compares the performances of four catalysts—AR-
401, NGPR-2, MS-901, and NG-608 L—in ethanol steam reforming. The catalysts exhibit
different compositions and properties. AR-401 and NGPR-2, both nickel-based, outperform
NG-608 L and MS-901 in terms of hydrogen selectivity, yield, and ethanol conversion.
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This research further explores the impacts of reaction parameters, such as the steam-to-
ethanol ratio, the reaction temperature, and pressure, on the catalysts’ performance. The
results indicate that higher temperatures enhance hydrogen production, while pressure
has a notable impact on the hydrogen yield. These collaborative efforts with Proteum
Energy emphasize the importance of diverse feedstocks and hydrogen grades in advancing
sustainable hydrogen production for a clean energy sector.
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