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Abstract: The widespread adoption and popularity of various applications have led to
large and frequent data transmissions, resulting in network congestion, high packet delays,
and packet loss. In 2016, Google proposed the Bottleneck Bandwidth and Round-trip
propagation time (BBR) algorithm to mitigate network congestion. However, its network
fairness is poor. Consequently, BBRv2 and BBRv3 were introduced in 2018 and 2023 as
improved versions. Although BBRv2 exhibited enhanced fairness, its bandwidth utiliza-
tion rate was lower than that of other existing methods. Meanwhile, BBRv3 still lacked
bandwidth fairness in its initial transmission. Therefore, we have improved the fairness
based on BBRv3 by considering the maximum sending rate and utilizing connections at
different times. Good fairness and bandwidth utilization are maintained on the bottleneck
bandwidth with the improved method. The method outperforms Cubic Binary Increase
Congestion Control (CUBIC) and BBRv3 in terms of bandwidth utilization and network
usage fairness.

Keywords: BBR; congestion control

1. Introduction
With the widespread adoption of the Internet, people’s demand for and reliance on it

has increased significantly. The proliferation of real-time and multimedia transmissions has
exposed the limitations of traditional network structures. Although Transmission Control
Protocol/Internet Protocol (TCP/IP) [1,2] has successfully addressed the challenge of
connecting data and messages between different computers, the growing network demand
and increased data transfer from connected devices have caused network overload. This
results in congestion or even paralysis, causing high latency, packet traffic congestion, and
packet loss.

The TCP congestion control mechanism has evolved to address these congestion issues.
Early TCP implementations used a timeout-based mechanism, assuming that packet loss
occurred when a packet took too long to traverse the network, reducing the transmission
rate. However, this approach proved too conservative, causing the TCP transfer rates to
drop too rapidly when real congestion occurred, thus undermining the overall network
performance. As time progressed, congestion control mechanisms such as Tahoe, Reno,
CUBIC, and their related extended versions were developed to better address the growing
demands of modern networks. However, these congestion control mechanisms continue to
compete with one another in terms of bandwidth utilization and fairness.
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In this context, Google proposed BBR in 2016, a new congestion control algorithm.
BBR aims to maximize network transmission rate utilization while keeping latency low to
provide a better user experience. One of BBR’s key features is its ability to proactively probe
the network environment. It monitors the network’s bandwidth and round-trip propagation
time in real time, adjusting the transmission rate based on this information. This active
probing capability allows BBR to adapt quickly to network changes and effectively avoid
congestion. BBR incorporates advanced congestion control algorithms, including ProbeBW
and ProbeRTT, to better handle various network environments in steady-state situations.
The successful application of BBR in Google’s services, such as YouTube and Google
Cloud, demonstrates its excellent performance in modern network environments. Due to
its effectiveness, BBR is gradually gaining attention from other ISPs and has become an
important trend in network congestion control.

However, BBR has shortcomings in terms of fairness during transmission. In BBRv1,
connections with different congestion control mechanisms such as CUBIC resulted in
almost 10 s of near-maximum bandwidth for each side, leading to unfair behavior. BBRv2
improved the ProbeBW stage and introduced Explicit Congestion Notification (ECN)
support and 3% packet loss tolerance, resulting in better fairness but with much lower
bandwidth utilization compared to that of CUBIC. BBRv3 reduces the sending rate and
adjusts parameters to better optimize fairness, but unfair situations still occur in the early
and mid-term stages of connections.

This study aims to address the drawbacks of BBRv3, which struggles to achieve fair
bandwidth allocation under different congestion control scenarios. The proposed method
involves restricting various parameters during the transmission process. Specifically, the
StartUP stage is used to probe the bandwidth status parameters, which are then adjusted to
optimize the network bandwidth fairness. This method mitigates the deficiencies observed
in BBRv3.

2. Related Work
Congestion controls based on packet loss and active probing are developed in

this study.

2.1. Congestion Control Based on Packet Loss

CUBIC is a congestion control algorithm stemming from BIC [3]. It differs from the
previously mainstream Reno version as its primary feature is the use of a cubic function to
adjust the congestion window. This adjustment is conducted based on the time elapsed
since the last decrease in the congestion window. The cubic function equation is defined as
shown in (1):

W(t) = C × (t − K)3 + Wmax (1)

where C is the CUBIC parameter, t is the time elapsed since the last window reduction, and
K is the time required to increase W to Wmax when no further packet loss occurs.

When congestion occurs, CUBIC records the current congestion window and decreases
it in a multiplicative manner to alleviate network congestion. Then, it rapidly increases
the window to Wmax using a concave segment of a cubic function to restore the congestion
window to the maximum traffic level that existed before packet loss occurred. Once
the congestion window reaches Wmax, CUBIC maintains this level for a period, carefully
probing for packet loss to determine if the limits of the available bandwidth have been
reached. If no packet loss occurs, CUBIC uses convex functions to start increasing the
congestion window until another packet loss event occurs. Notably, CUBIC’s design is
not related to the Round-Trip Time (RTT) but to the time interval between two packet loss
events, as shown in Figure 1. CUBIC has three phases: to find current bandwidth, to avoid
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congestion, and to probe more bandwidth. When a timeout occurs, packets will be lost,
and the process ends the “to find the current bandwidth” phase and enters the “to avoid
congestion” phase. At this time, W is Wmax. In the “to avoid congestion” phase, when
W = Wmax/2, it enters the “to probe more bandwidth” phase. If a Timeout occurs during
this phase, the process returns to the “to avoid congestion” phase. The threshold is defined
as the difference between the congestion window values at the end of the most recent “to
avoid congestion” phase.
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2.2. Congestion Control Based on Active Probing

BBRv1 probes the maximum available bandwidth and delay state to constantly detect
the maximum bandwidth (maxBw) and the minimum RTT (minRTT) of packet transmis-
sion [4–6]. It controls the pacing_gain and cwnd_gain parameters to increase the packet
transmission rate and expand the congestion window, allowing more packets to be trans-
mitted. BBRv1 permits a 3% packet loss rate to probe for the maximum bandwidth. The
transmission bandwidth size is determined based on the ratio of the total transmission
to delay to reduce buffer congestion and increase the transmission speed. This approach
enables better adaptation to various network environments.

BBRv2 optimizes the bandwidth-hogging in multiple connections to achieve higher
fairness and reduce transmission delay [7]. Key additions include the calculation of the
packet loss rate and the incorporation of ECN in congestion determination. It allows
for a packet loss of 3% and an ECN of 50% to minimize the accumulation in the buffer
queue. BBRv2 introduces four stages to ProbeBw and adds limits on the minimum (in-
flight_lo) and maximum (inflight_hi) number of packets transmitted. These changes reduce
bandwidth-hogging issues when interacting with other congestion-controlled connections,
thus improving bandwidth sharing. The modifications address the problem of slow conver-
gence to optimal fairness in larger buffer zones. However, while BBRv2 makes significant
improvements, it does not fully realize optimized fair sharing in all scenarios.

Based on the result of Ref. [8], BBRv3 makes the following adjustments. The packet
sending rate gain in the StartUP stage is changed from 2.89 to 2.77, the packet loss threshold
is modified, and the ECN threshold parameter is adjusted. Additionally, the congestion
window gain is altered from 2.89 to 2.0, along with parameter settings for bandwidth
stabilization. Upon exiting the StartUP stage, the inflight_hi parameter is set based on the
greater value between the estimated Bandwidth-Delay Product (BDP) and the maximum
number of packets successfully transmitted in the last RTT. The criteria for exiting the
StartUP stage due to packet loss have also been revised.
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3. Improved BBR
3.1. Congestion Control Based on BBR

Congestion control relies on actively detecting the bottleneck bandwidth and estimat-
ing the round-trip propagation delay. The first version of BBR uses four stages to adjust
congestion control. There are two important gain parameters, pacing_gain and cwnd_gain.
Pacing_gain is used to control the delivery rate, while cwnd_gain manages the number of
packets being transmitted in flight. When the StartUP stage begins detecting the bottleneck
bandwidth and estimating the round-trip propagation delay, BBR sets both pacing_gain
and cwnd_gain to 2/ln 2, which is approximately 2.89. BBR considers the maximum
transmission rate in the last 10 RTTs as the bottleneck bandwidth (BtlBw) and the minimum
latency measured within the last 10 s as the round-trip propagation time (RTprop). BBR
controls its transmission behavior using pacing_gain and cwnd_gain, exponentially increas-
ing the sending rate to fully utilize the bottleneck link. If the sending rate is not increased
significantly (less than 25% change within three RTTs) after three sending attempts, the
actual sending rate reaches BtlBw. The bottleneck bandwidth is defined as shown in (2):

BtlBw = max{dt} ∀t ∈ [T − WB , T] (2)

where dt is the delivery rate, WB is 6 to 10 RTTs, and T is the transmission time during
probing. The final result obtained is the BDP as the baseline for determining the congestion
control. It is assessed whether congestion is present. The congestion control operation is
expressed as shown in (3):

BDP = BtlBw × RTprop (3)

where RTprop is a physical characteristic of the connection.
The approximate value is obtained indirectly by monitoring the RTT of the packets,

taking the maximum transmission among 10 RTTs as the criterion. After confirming the con-
gestion control point, in the Drain stage, pacing_gain is set to the reciprocal of ln 2/2 from
the StartUP stage since buffering occurs during detection and there is also the problem of
packet loss. This clears the queue that appears during reprobing. When the number of
inflight packets matches the BDP, it is determined if the queue is emptied, allowing BBR to
leave the Drain stage and enter the ProbeBW stage.

In the ProbeBW stage, BBR remains in this stage for an extended period. The value
of cycle_gain = pacing_gain is used to detect the bottleneck bandwidth and adjust the
sending rate with values of 1.25, 0.75, and 1 to achieve continuous detection. To detect
more bandwidth, the sending rate is increased by 1/4. If RTprop is not updated for more
than 10 s, BBR enters the ProbeRTT stage. In this stage, cwnd is reduced to four packets
and maintained for 200 ms or one RTT. If the time exceeds this value, the network channel
becomes full.

The key feature of BBRv2 is the enhancement of ProbeBW and the addition of four
stages to adjust congestion control under steady-state conditions, as shown in Figure 2.
Different pacing_gain values are used in various sub-stages of ProbeBW, and the bandwidth
detection time is adaptive. This improves the coexistence of BBR and CUBIC. Additionally,
an ECN threshold greater than 50% is used to alert the receiving end that congestion is
imminent. A 3% packet loss rate is used to determine whether to exit the StartUP stage
early and inflight_hi.
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The down stage is illustrated in Figure 2(b,c). In the Cruise stage, several bandwidths
are reserved for other connections, with inflight kept between inflight_lo and inflight_hi
(Figure 2(f,g)). In the Refill stage, the sending rate gradually increases to approach the
upper limit of the estimated bandwidth (Figure 2(h,i)).

In the ProbeBW_UP stage, the sending rate is accelerated until it reaches the upper
limit of the estimated bandwidth to maintain steady-stage behavior. If packet loss occurs,
the status transitions to the ProbeRTT stage (Figure 2(j,k)). This allows BBRv2 to maximize
the use of the available bandwidth. If an ECN mark is detected or a packet is lost, the
sending rate is reduced by 30%. BBRv2 uses an exponential growth method, starting
slowly and then accelerating, to detect the available bandwidth. The inflight_hi value
is not updated until packet loss occurs or the newly available bandwidth is greater than
1.25 times the estimated bandwidth, coinciding with packet loss.

In the adjustments mentioned, although BBRv2 sets inflight_hi and inflight_lo, the
detection bandwidth cannot be effectively increased due to the influence of inflight_hi
when striving for bandwidth. With a larger buffer, CUBIC detects the bandwidth based on
packet loss, but BBRv2 sets inflight_hi to limit the maximum detection bandwidth. As a
result, BBRv2 deviates further from fairness and cannot converge back.

BBRv3 [8,9] adjusts cwnd_gain to 2.0 during the StartUP stage and also modifies
pacing_gain from 2.89 to 2.77. When exiting the StartUP stage, BBRv3 sets the inflight_hi
parameter based on the maximum value between the estimated BDP and the highest
number of successfully transmitted packets during the last RTT. Additionally, the criteria
for exiting the StartUP stage due to packet loss are updated to reduce queuing delays during
both the StartUP stage and subsequent stages, thereby decreasing the packet loss rate.
Bandwidth detection continues until the packet loss rate or ECN exceeds the predefined
1% threshold. Detection stops if no packets are transmitted and the available bandwidth
reaches the maximum inflight_hi.

While CUBIC congestion control offers excellent fairness, it falls short compared to
the various versions of BBR in terms of bandwidth utilization. Each version of BBR actively
detects and increases the bandwidth, but this aggressive approach leads to significantly
poorer fairness compared to CUBIC. Although BBRv2 improves fairness compared to
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BBRv1 by setting inflight_hi to limit the maximum transmission bandwidth, it does not
achieve optimal fairness in larger buffers. In BBRv3, pacing_gain and cwnd_gain are
reduced in the StartUP stage, and bandwidth detection is stopped if inflight_hi is not
reached. This approach balances fairness and bandwidth utilization better, as illustrated in
Figure 3.
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3.2. Fair Congestion Control Mechanism

BBRv3 and CUBIC are used in this study because CUBIC is based on packet loss and
offers superior bandwidth detection and fairness compared to other packet loss-based
congestion controls. To obtain better bandwidth fairness, we adjust pacing_gain to observe
its impact on fairness with the generally low bandwidth of BBRv3. In the StartUP stage,
BBRv3 sets pacing_gain to 4ln(2) for bandwidth detection. Increasing pacing_gain to
2/ln(2) significantly reduces fairness. The proposed pacing_gain setting in the StartUP
stage is shown in Algorithm 1.

Algorithm 1: Pacing_gain setting in StartUP stage

Set α = 4, β = 2, γ = 1 //Initial Setup for BBRv3
Flag = False
Pacing_gain = α × (ln β)γ

Do {
Increasing/decreasing Pacing_gain with different α, β, γ

If Fairness of network increase and it closed to 1 then
Store α, β and γ

Accepted the Paceing_gain with α, β and γFlag = True
End if
} While (Flag == True)
Return Paceing_gain

4. Results
The network setup includes four virtual machines (two sending nodes and two re-

ceiving nodes) and two switches (SW1 and SW2), connected through bottleneck links for
congestion control experiments (Figure 4). The GNS3 network simulator is used for the
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experiment. The bottleneck bandwidth is 50 Mbps, and the transmitter sending rate is
150 Mbps. Additionally, iperf3 is used for transmitting packets.
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Figure 4. Network topology diagram.

In the first stage of the experiment, Flow1 and Flow2 start transmitting at the same
time. The pacing_gain is set to 3ln2, approximately 2.07, in the StartUP stage to obtain
better bandwidth fairness. As shown in Figure 5, when there are two flows, Flow1 uses
CUBIC and Flow2 uses BBRv3+ simultaneously in stage 1, and the bandwidth of the two
flows is close to 25 Mbps with similar performance (Figure 4).

In the second stage of the experiment, Flow1 begins transmission at the 0 s mark,
while Flow2 commences transmission 2 s later. The pacing_gain is set to 4ln2, using BBRv3
in the StartUP stage of Flow2. The throughput of the two flows is shown in Figure 6. At
the 0 s mark, only Flow1 uses the connection, fully utilizing the bandwidth. When Flow2
begins with the 2 s delay, bandwidth competition starts. An obvious fairness issue is visible
at the 40 s mark. By the 100 s mark, Flow2 utilizes the entire bandwidth (Figure 6).

Similarly, the proposed BBRv3+ is implemented in Flow2, which began transmission
two seconds after Flow1 started. At the 0 s mark, Flow1 exclusively utilizes the connection,
maximizing bandwidth usage. The competition for bandwidth begins at the 2 s mark when
Flow2 initiates. The proposed congestion control mechanism enables improved bandwidth
fairness between the flows. As Flow1 concludes its transmission at the 100 s mark, Flow2
subsequently occupies the entire bandwidth (Figure 7).

The experimental results are shown in Table 1. With a bandwidth of 50 Mbps, each
flow is allocated 25 Mbps if the bandwidth is fairly distributed between the two flows.
BBRv3+ produces an output of nearly 25 Mbps, regardless of whether the transmissions
start simultaneously or with a 2 s delay. This demonstrates that BBRv3+ shows a better
output and fairness performance compared to the other methods.
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BBRv3 35.6 15.7 24.9 30.4 15.7 22.1 

BBRv3+ 37.7 12.6 22.7 33.6 17.8 24.5 
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Figure 6. Comparison of throughput between CUBIC and BBRv3 (2nd stage).
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Table 1. Throughput with different congestion controls.

Flow2
Throughput Flow1: CUBIC Flow2

Max. Min. Avg. Max. Min. Avg.

1st Stage

BBRv1 40.9 2.1 23.0 45.1 7.34 24.3
BBRv2 32.5 24.1 28.5 35.6 13.6 18.6
BBRv3 35.6 15.7 24.9 30.4 15.7 22.1

BBRv3+ 37.7 12.6 22.7 33.6 17.8 24.5

2nd Stage
BBRv3 52.4 21 26.1 48.2 11.5 21.9

BBRv3+ 52.4 15.7 23.6 48.2 19.9 25.1

5. Conclusions
BBRv3+, the improved congestion control algorithm addresses the unfair bandwidth

distribution of BBRv3. When connections are established at different times, fairness in
the early and mid-term stages is significantly improved, surpassing the performance of
previous BBRs. However, unfair situations persist compared to CUBIC. Therefore, it is
required to improve fairness in the early and middle stages of connections by incorporating
adaptive adjustments to sending rates and congestion windows across various congestion
control scenarios.
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