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Abstract: Thermosolutal convection in a square cavity filled with air and submitted to an 
inclined magnetic field is investigated numerically. The cavity is heated and cooled along 
the active walls with a mass gradient whereas the two other walls of the cavity are 
adiabatic and insulated. Entropy generation due to heat and mass transfer, fluid friction and 
magnetic effect has been determined in transient state for laminar flow by solving 
numerically the continuity, momentum energy and mass balance equations, using a Control 
Volume Finite—Element Method. The structure of the studied flows depends on four 
dimensionless parameters which are the Grashof number, the buoyancy ratio, the  
Hartman number and the inclination angle. The results show that the magnetic field 
parameter has a retarding effect on the flow in the cavity and this lead to a decrease of 
entropy generation, Temperature and concentration decrease with increasing value of the 
magnetic field parameter. 

Keywords: double diffusive convection; square cavity; entropy generation;  
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Nomenclature

B magnetic field (T) 
C dimensionless concentration 
C’ concentration (mol·m�3) 

'
hC  hot side concentration (mol·m�3)  
'
cC  cold side concentration (mol·m�3) 
'
0C  bulk concentration (mol·m�3) 

Cp specific heat (J·Kg·K�1)  
D mass diffusivity (m2·s�1) 
g gravitational acceleration (m·s�2) 
Grt thermal Grashof number 
Grc solutal Grashof number 
H (L) height (length) of the cavity (m) 
Ha Hartmann number 
Jk diffusion Flux (k = u, v, T, C) 
Le Lewis number 
N Buoyancy ratio 
Nu Nusselt number 

�,sΝ  dimensionless local entropy generation  

S  dimensionless total entropy generation  
P pressure (kg·m�1·s�2) 
Pr Prandtl number 
RaT Rayleigh number 
Sc Schmidt number 
Sh Sherwood number 

*

genS  local Volumetric entropy generation (J·m�3·s�1·K�1) 
T dimensionless temperature  
T’ temperature (K) 
t’ time (s) 
t dimensionless Time 
Th’ hot side temperature (K)  
T’c cold side temperature (K) 
T’o bulk temperature (K)  
u, v dimensionless velocity components  
U* characteristic Velocity (m·s�1) 
V velocity vector (m·s�1) 
u’, v’ velocity components along x’, y’ respectively (m·s�1)  
x, y, z  dimensionless Coordinates  
x’, y’, z’ cartesian coordinates (m) 
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Greek Symbols 

� magnetic field’s angle with horizontal direction (°) 
Tα  thermal diffusivity (m2·s�1) 

� inclination angle of the cavity (°) 
�T thermal expansion coefficient 
�c compositional expansion coefficient 

iλ  irreversibility distribution ratios, (I = 1, 2, 3, 4) 

� dynamic viscosity of the fluid (kg·m�1·s�1) 
� fluid density (kg·m�3) 
�e electrical conductivity (��1·m�1) 
	 kinematics’ viscosity (m2·s�1) 

T’ temperature difference (K)  

C’ concentration difference (mol·m�3) 

1. Introduction

The analysis of natural convection in enclosures has received increasing attention due to everyday 
practices and applications extending from the double paned windows in buildings to the cooling of 
electronic systems. Double-diffusion natural convection also occurs in a wide range of scientific fields 
such as oceanography, astrophysics, geology, biology, chemical vapor transformation processes and 
other fields where temperature and concentration differences are combined. Most studies on this topic 
are concerned with double diffusive convection in a vertical cavity, for which the flows induced by the 
buoyancy forces result from the imposition of both thermal and solutal boundary conditions on the 
vertical walls. Garandet et al. [1] proposed an analytical solution of the equations of magneto 
hydrodynamics that can be used to model the effect of a transverse magnetic field on buoyancy driven 
convection in a two-dimensional cavity. They observed that when the Hartmann number (Ha)  
gets high, velocity and temperature follow a Ha�2 power law. DeVahl Davis [2] studied the  
two-dimensional natural convection in a square cavity with differentially heated side walls and has 
suggested a bench mark solution. Valencia and Frederick [3] investigated the natural convection of air 
in square cavities with half-active and half-insulated vertical walls numerically for various Rayleigh 
numbers. They observed that the heat transfer rates could be controlled, to a certain extent, by varying 
the relative positions of the hot and cold elements. Saravanan and Kandaswamy [4] analyzed the 
convection in a low Prandtl number fluid driven by the combined mechanism of buoyancy and surface 
tension in the presence of a uniform vertical magnetic field. They showed that the heat transfer across 
the cavity from the hot wall to cold wall becomes poor for a decrease in thermal conductivity in the 
presence of a vertical magnetic field. Deng et al. [5] studied numerically a two-dimensional, steady 
and laminar natural convection in a rectangular enclosure with discrete heat sources on walls. They 
remarked that the heat source on the floor increases the thermal instability and acts as a proportional 
effect on convection, while the heat source on the side wall increases the thermal stability and acts as a 
reverse effect on convection. Nithyadevi et al. [6] investigated the effect of aspect ratio on the natural 
convection of a fluid contained in a rectangular cavity with partially thermally active side walls. They 
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found that heat transfer rate increases with increase in the aspect ratio and when the cooling location is 
at the top of the enclosure. 

Kandaswamy et al. [7] studied the natural convection in a square cavity filled with an electrically 
conducting fluid with partially thermally active vertical walls, for nine different combinations of active 
locations in the presence of external magnetic field parallel to gravity. They found that the heat 
transfer rate is enhanced in the middle thermally active locations, while it is poor for the top-bottom 
case. The average Nusselt number increases with increase of Grashof number, but decreases with 
increase in Hartmann number. As the strength of the magnetic field increases (Ha = 100), convection is 
completely suppressed and the heat transfer in the cavity is mostly due to conduction mode. The rate of 
flow also decreases for increase in Hartmann number in all different active positions. Increase in 
Prandtl number leads to increase in the average Nusselt number. Hossain et al. [8] numerically 
investigated buoyancy and thermo capillary driven convection of an electrically conducting fluid in an 
enclosure with internal heat generation. They found that the increase in the value of heat generation 
causes the development of more cells inside the cavity. A numerical study of unsteady two 
dimensional natural convection of an electrically conducting fluid in a laterally and volumetrically 
heated square cavity under the influence of a magnetic field is investigated by Sarris and al. [9].  
They showed that the heat transfer is enhanced with increasing internal heat generation parameter,  
but no significant effect of the magnetic field is observed due to the small range of the Hartmann 
number. Chenoweth and Paolucci. [10], Vierendeels et al. [11], Sivasankaran and Ho [12] and  
Nishimura et al. [13] studied this topic. Chamkha, Al-Naser and Sathiyamoorthy [14–17] numerically 
studied the hydromagnetic double-diffusive convection in a rectangular enclosure with opposing 
temperature and concentration gradients. A magnetic field and heat generation are imposed. Results 
showed that the magnetic field reduces the heat transfer and fluid circulation within the enclosure. 
Also, they concluded that the average Nusselt number increases owing to the presence of a heat sink 
while it decreases when a heat source is present. They reported that the periodic oscillatory behavior in 
the stream function inherent in the problem was decayed by the presence of the magnetic field. This 
decay in the transient oscillatory behavior was speeded up by the presence of a heat source. They 
found that the heat and mass transfer mechanisms and the flow characteristics inside the enclosure 
depended strongly on the strength of the magnetic field and heat generation or absorption effects. The 
effect of the magnetic field was found to reduce the heat transfer and fluid circulation within the 
enclosure. In addition, they concluded that the average Nusselt number was increased owing to the 
presence of a heat sink while it was decreased when a heat source was present. For the case of linearly 
heated left wall with cooled right wall, a two-cell (one primary and one secondary) feature was 
predicted. In general, the application of the magnetic field reduces the convective heat transfer rate in 
the cavity for any inclined angle. In addition, the local Nusselt number at the bottom wall of the cavity 
exhibited oscillatory behavior along the horizontal distance for the case of linearly heated side walls 
whereas it increased continuously for the case of linearly heated left wall and cooled right wall with 
the exception of large Hartmann numbers for a vertically-applied magnetic field. A numerical 
investigation of the steady of magneto-hydrodynamics free convection in a rectangular cavity has been 
studied by Grosan et al. [18] and Ralph and Ulrich [19]. They observed that the effect of the magnetic 
field is to reduce the convective heat transfer inside the cavity, the convection modes within the cavity 
were found to depend upon both the strength and the inclination of the magnetic field. The applied 



Entropy 2011, 13                            
 

1038

magnetic field in the horizontal direction was found to be most effective in suppressing the convection 
flow for a stronger magnetic field in comparison with the vertical direction. The flat isotherms in the 
core region indicated that there is negligible lateral heat conduction and the equal spacing of the 
streamlines implies a uniform vertical velocity in this region, and the magnetic field has a negligible 
effect on the heat transfer mechanism for small values of the inclination angle and Hartmann number 
(Ha) widely superior than unity. This is true since pure conduction becomes dominant when the 
magnetic field is applied in the horizontal direction. However, for Ra = 105 the parabolic profile is 
destroyed. For Rayleigh number, Ra = 103, and small Hartmann numbers, the flow and heat transfer 
are characterized by a parallel flow structure in the central region of the cavity. The conduction is the 
dominant mode of heat transfer and vertical velocity profiles and temperatures are almost parabolic. 
The number of convection rolls depends on the Rayleigh and the Hartmann numbers. The resulting 
Lorentz forces and their braking effect explain the seemingly strange shape of the velocity profiles 
with excessive intensities in regions near the corners. Unsteady double-diffusive magneto convection 
of water in an enclosure with Soret and Dufour effects around the density maximum has been 
numerically investigated by Nithyadevi and Yang [20]. They observed that the density inversion leaves 
strong effects on fluid flow, heat and mass transfer due to the formation of bi-cellular structure. The 
formation of dual cell structure and strength of each cell is always dependent on the density inversion 
parameter, thermal Rayleigh and Hartmann numbers. The heat and mass transfer rates decrease with an 
increase of Hartmann number. The heat and mass transfer rates are found to increase with increasing 
thermal Rayleigh number. The heat transfer rate increases and mass transfer rate decreases when the 
density inversion parameter increases in the presence of Soret and the absence of Dufour parameters. 
Hakan et al. [21] found in their numerical analysis that heat transfer increases with increasing 
amplitude of sinusoidal function and decreases with increasing of Hartmann number. However, heat 
transfer also increases with the increasing of Rayleigh number. Hartmann number can be a control 
parameter for heat transfer and flow field. 

The irreversibility phenomena which are expressed by entropy generation are of important interest 
during the design of any thermodynamic system. Many studies concerning entropy generation have 
been carried out. However, the entropy generation during the double diffusive convection in enclosed 
cavities submitted to a magnetic field has not received much attention. Numerical analyses of entropy 
generation in rectangular cavities were done by Rejane et al. [22], Gamze et al. [23] and Achintya 
[24]. The total entropy generation in steady state linearly increases in both cases, the aspect ratio and 
the irreversibility coefficient, and exponentially with the Rayleigh number. The influence of the aspect 
ratio on Bejan number is proportional to Rayleigh number and inversely proportional to the 
irreversibility coefficient for the same aspect ratio. Entropy generation due to viscous effects increases 
with the Rayleigh number and, for a certain Rayleigh number, entropy generation due to viscous 
effects also increases with the aspect ratio. Entropy generation in rectangular cavities with the same 
area but for different aspect ratios is numerically investigated. It was found that heat transfer and fluid 
friction irreversibilities varied considerably with aspect ratio. For cavities with low values of Rayleigh 
number (i.e., Ra = 102) and irreversibility coefficient (i.e., � = 10�4), the heat transfer irreversibility is 
strongly dominant and the total entropy generation increases with the increase of the aspect ratio. For 
cavities with high Ra values (i.e., Ra = 105) and � = 10�4, fluid friction irreversibility is dominant and 
total entropy generation increases with the aspect ratio, reaches a maximum, then decreases. A peak 
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point for the maximum total entropy generation exists. For irreversibility coefficient, � = 10�2, the 
magnitudes of fluid friction irreversibilities are considerably greater than for those for � = 10�4. Hence, 
the fluid friction entropy generation for a cavity with � = 10�2 is more dominant compared to that for  
� = 10�4. Similar peak points for the total entropy generation are also observed for a cavity with  
� = 10�2. The average Bejan number is a proper criterion to predict the domination of heat transfer or 
fluid friction irreversibilities for the entire domain. The total entropy generation in a cavity increases 
with Rayleigh number, however, the rate of increase depends on the aspect ratio. For the same 
Rayleigh number, the total entropy generation for a tall cavity may be less than that for a shorter one. 
The dominant contribution to entropy generation came from heat transfer irreversibilities, with fluid 
friction accounting for only a small fraction of the total entropy generation. Entropy generation in 
convective heat and mass transfer through an inclined enclosure is numerically investigated by 
Magherbi et al. [25]. They showed that entropy generation increases with the thermal Grashof number 
and the buoyancy ratio for moderate Lewis number. At local level, irreversibility due to heat and mass 
transfer are nearly identical and are localized in the bottom heated and the top cooled walls of the 
enclosure. The inclination angle of the cavity has more effect on entropy generation for thermal 
Grashof number Grt � 104. In this case, irreversibility increases towards a maximum value obtained for 
� = 45°, then decreases and tends towards unity value for inclination angle �  180°. The influence of 
an oriented magnetic field on entropy generation in natural convection flow for air and liquid gallium 
is numerically studied by Eljery et al. [26], they showed that transient entropy generation exhibits 
oscillatory behavior for air when Grt � 104 at small values of Hartmann number. Asymptotic behavior 
is obtained for considerable values of Hartmann number. A transient irreversibility always exhibits 
asymptotic behavior for liquid gallium. They also showed that heat transfer rate is always described by 
pure conduction mode for liquid gallium, whereas it presents oscillatory behavior for air Grt � 104. 
Local irreversibility is strongly dependent on magnetic field direction, magnitude of irreversibility 
lines increases up to 30°, and then gradually decreases. 

Recent studies on entropy generation analysis [27–35] reveal new methods for reducing 
computational cost and in which entropy generation due heat/mass transfer is analyzed. Chen et al. [27] 
introduced a simple lattice Boltzmann model to investigate convectional phenomena at higher Rayleigh 
number up to 107.They obtained that the flow is primarily dominated by thermal buoyancy effects, 
whereas for N > 1, the flow is mainly dominated by compositional buoyancy effects. The average 
Nusselt number Nu and the average Sherwood number Sh at the inner wall both are monotonic 
increasing functions of aspect ratio for N > 1. Compositional convection in a rotating annulus with 
opposing temperature and concentration gradients is investigated by [28]. Results show that the flow will 
keep steady even with very high frequency rotation. But for RaT = 106, the flow will become unsteady 
either when the ratio of buoyancy forces approaches to unity or when rotation frequency increases. A 
new LB-based entropy generation analysis algorithm is developed for complex systems [29,30]. Firstly, 
important features of entropy generation in a vertically concentric annular space are revealed: when Pr 
and curvature ratio are equal to unity, the time-averaged total entropy generation number is a monotonic 
increasing function of Ra, and there is an approximate linear relationship between the logarithm of Stotal 
and Ra. But the time-volume-averaged Bejan number has an inverse trend. The entropy intensely 
generates within two layers along the vertical walls. The differences between these two layers become 
being erased with curvature ratio increasing and they are point symmetric with respect to the geometric 
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center of the cavity when this parameter is sufficiently big. The variations of total entropy generation and 
time-volume-averaged Bejan numbers with curvature ratio are slight, and they approach asymptotically 
to the values of their planar counterparts. The maximum of entropy generation number will jump from 
the inner wall to the outer wall with Ra and curvature ratio increasing. The total entropy generation 
number and average Bejan number both increase monotonously with Pr. Entropy generation inside disk 
driven rotating convectional flow is secondly investigated. The situation becomes complex when the 
influences of rotating of the disk and the buoyancy force both should be considered. The variations of the 
total entropy generation number and Bejan number depend on the detailed combination of Reynolds and 
Grashof numbers. Entropy generation due to heat/mass transfer of turbulent natural convection due to 
internal heat generation in a cavity is studied by [31]. It was found that the time-volume averaged Bejan 
number almost equals one and then decreases quickly against Ra increasing. Though the maximum of 
entropy generation number increases quickly with Ra, the time-averaged total entropy generation number 
changes in the opposite trend. 

Results showed that for increasing Rayleigh number viscous irreversibility begins to dominate heat 
transfer irreversibility. Entropy generation is spread over the whole domain at small Rayleigh 
numbers, but is confined to the neighborhood of the boundaries at high Rayleigh numbers. The 
numerical results also showed the time-volume-averaged Bejan number, the time-averaged total 
entropy generation number and the maximum of entropy generation number decrease quickly against 
Pr increasing. In [32,33], entropy generation in multi-components flow with combustion are analyzed. 
Entropy generation in counter-flow premixed 

Hydrogen-air flames confined by planar opposing jets are investigated for the first time. Results 
revealed that the contribution of viscous effect on entropy generation cannot be ignored, while the 
contribution of mass transfer is negligible; the relative total entropy generation rates are nearly 
insensitive to the change of equivalence ratio; the order of the relative total entropy generation rates 
changes significantly depending on the inlet Reynolds number. As Re < 60 entropy generation due to 
chemical reaction is predominant. However, when Re > 100 the largest share of entropy generation 
comes from fluid friction. The whole domain can be divided into two parts according to predominant 
irreversibilities: Zone I and II. Zone I is dominated by irreversibility due to chemical reaction, heat 
transfer and mass transfer while in Zone II it is predominated by irreversibility due to mass transfer 
and fluid friction. The relationship among the total entropy generation number Stotal, the inlet Reynolds 
number Re and the equivalence ratio can be approximated as a linear increasing function. For the 
second time, entropy generation in hydrogen-enriched ultra-lean counter-flow methane-air  
non-premixed combustion confined is analyzed. Entropy generation in this kind of combustion is 
different from that reported in previous case: despite the fact that the whole domain can be divided into 
two parts similar to premixed case, the area of Zone I is expanded with equivalence ratio increasing, 
which is contrary to its premixed counterpart. In this kind of combustion, with more fuel mixture being 
injected into the combustion, the share of irreversibility due to mixing is reduced while that due to heat 
transfer increases, which is fully contrary to its premixed counterpart. However, with more H2 being 
added into the fuel blends of this kind of non-premixed combustion, the share of irreversibility due to 
heat transfer is reduced while that, due to mixing increases, which is consistent with its premixed 
counterpart and is quite different from the co-flow non-premixed combustion. 



Entropy 2011, 13                            
 

1041

Entropy generation due to heat/mass transfer during transient state in micro-systems is discussed for 
the micro-Couette flow by [34]. Results show that the total entropy generation has a maximum value at 
the onset of transient state, which is a monotonically decreasing function of Knudsen number  
but depends non-monotonously on Prandtl and Eckert numbers. The same scene emerges for the  
volume-averaged Bejan number. The maximum appears when the front of the disturbance induced by 
the top moving wall arrives at the bottom wall. The entropy generation at the bottom usually is higher 
than that at the top wall. In steady state, the location where the extremum of the volumetric entropy 
generation number emerges depends on Prandtl and Eckert numbers. The Bejan number is mainly 
dominated by Eckert number. Less entropy generates within more rarefied flow. Chen and Du [35] 
investigated the entropy generation of turbulent double-diffusive natural convection in a rectangle 
cavity. They obtained that The total entropy generation number (Stotal) increases with Ra, and the 
relative total entropy generation rates are nearly insensitive to Ra when Ra � 109; Since N > 1, Stotal 
increases quickly and linearly with N and the relative total entropy generation rate due to diffusive 
irreversibility becomes the dominant irreversibility; Stotal increases nearly linearly with aspect ratio. 
The relative total entropy generation rate due to diffusive and thermal irreversibilities both are 
monotonic decreasing functions against aspect ratio while that due to viscous irreversibility is a 
monotonic increasing function with aspect ratio. 

The aim of the present study is to examine the influence of a magnetic field on entropy generation 
in convective heat and mass transfer for the case of a binary gas mixture with a single diffusive species 
in a square cavity. The numerical resolution is based on control volume finite-element method for 
resolving the governing equations in 2D approximation. Entropy generation in double diffusive 
convection in presence of an oriented magnetic field is firstly derived. Local and total irreversibilities 
are then studied by using four dimensionless independent variables which are: The Grashof number, 
the buoyancy ratio, the Hartmann number and the inclination angle of the magnetic field.  

2. Governing Equations  

Let us consider a 2D square cavity submitted to an oriented magnetic field, B  with an inclination 
angle, � as shown in Figure 1.  

Figure 1. Schematic view of the physical model.  
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The two active left and right walls are at different but uniform temperatures and concentrations  
(T’h, C’h) and (T’c, C’c), respectively while the two other walls are insulated and adiabatic. The fluid, is 
considered mixture (air and a gas diffusing species) as a Newtonian, Boussinesq incompressible fluid, 
their properties are described by its kinematic viscosity �, its thermal and solutal diffusivities, �T and D, 
respectively and its thermal and solutal volumetric expansion coefficients �T and �c respectively. The 
mass density of the fluid is considered to vary linearly with temperature and concentration such as: 

ρ = ρo [1 � βT (T � To) � βc (C � Co)] (1)

where: 
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The appropriate initial and boundary conditions to the laminar flow within the cavity are: 

at, t = 0 for whole space: 

u = v = 0; P = 0; C = 0.5 � x and T = 0.5 � x (11) 

Adiabatic walls: 

0=
∂
∂

y
ϕ  at y = 0 and y = 1 (12) 

Active walls: 

5.0=ϕ  at x = 0 

5.0−=ϕ  at x = 1 
(13) 

where ϕ  is a physical parameter representing temperature or concentration 

3. Formulation 

The existence of thermal and diffusive gradients between the active walls of the cavity, in addition 
to magnetic field effects, set the fluid in a non-equilibrium state which causes entropy generation in the 
system. According to local thermodynamic equilibrium with linear transport theory, the local entropy 
generation is given by [38]: 
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iJ 'α  and iμ are mass diffusion flux of species i in phase �’ and its chemical potential, respectively. As 

it can be seen from Equation (14), the right hand side this equation represents four terms which are: 
Irreversibility due to heat transfer, the second is due to mass transfer, the third is due to fluid friction 
and the fourth is due to magnetic force. 

For a two dimensional flow and by assuming bulk concentration (C’0) and temperature (T’0) in the 
denominator of Equation (14) with a single diffusing species, Equation (14) can therefore be written  
as follows: 
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The local entropy generation can be putted in a dimensionless form by using the dimensionless 
variables listed in Equation (10) in the following way: 
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where hΝ , fΝ , CC
d

.Ν , CT
d

.Ν and BΝ  are defined as local dimensionless entropy generation due to heat 

transfer (Sth), fluid friction (Svis), mass transfer (Sdiff) by pure concentrations gradients, mass transfer 
by mixed product of concentration and thermal gradients and magnetic field (Smag), respectively. 

1λ , 2λ , 3λ and 4λ  are irreversibility distribution ratios related to velocity gradients, concentrations 

gradients, mixed product of concentration and thermal gradients and magnetic field, respectively. 
Total dimensionless entropy generation is obtained by a numerical integration of dimensionless 

local entropy generation through the entire volume of the cavity, �. That is:  

Ω⋅Ν⋅�= Ω dS lS .  (23) 

The temperature and concentration gradients are computed through the heat wall of the cavity, and 
then used to calculate the average Nusselt and Sherwood numbers, they are given respectively by: 

dx
y
Tu � ⋅

∂
∂−=Ν

1

0

)(
 

(24) 

and: 

dx
y
CSh � ⋅

∂
∂−=

1

0

)(        (25) 

4. Numerical Procedure 

Governing Equations (4)–(8) could be solved for the determination of the temperature, the 
concentration and the velocity scalar fields which depend on the choice of the numerical support of 
resolution. In this study, a Control Volume Finite-Element Method (CVFEM) of Saabas and  
Baliga [36] is used. A standard grid at which diagonals are added to form triangular elements around 
each node where velocity components are calculated is considered. For pressure, temperature and 
concentration scalar field a staggered grid is used. Pressure and the other scalar field are calculated at 
different points to avoid the problem of oscillations.  
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The system of the governing equations is resolved by applying the SIMPLE algorithm of  
Patankar [37]. The SIMPLER algorithm and the SIMPLEC approximation of Van Doormal and 
Raithby are used in conjunction with an Alternating Direction Implicit (ADI) Scheme for performing 
the time evolution. The used numerical Code written in FORTRAN language was described and 
validated in details in Abbassi et al. [39, 40] 

5. Results and Discussion 

The used numerical code to solve the governing equations was validated by an important physical 
parameter which is Nusselt number by comparison with results found in literature. As it can be seen 
from Table 1, numerical results are in good agreements with those given in literature. The thermal 
Grashof number, the irreversibility distribution ratios and the inclination angle of the magnetic field 
are in the following ranges: 103 � Grt � 105, 10�7 ≤ 1λ ≤ 10�4, 10�1 ≤ 2λ ≤ 0.5, 10�5 ≤ 3λ ≤ 10�2 and  
0° � � � 180°. 2λ  and 3λ  are equal to 0 in natural convection. Grids of sizes of 31 × 31, 41 × 41 and  

51 × 51 nodal points are used for Grt = 103, 104 and 105, respectively. A step time, Δ t = 10�4 for is 
used for all the studied thermal Grashof numbers. 

Table 1. Comparison of average Nusselt number for different values of Rayleigh number 
in a square cavity with Pr = 0.71, N = 0, Ha = 0. 

Ra = Gr × Pr Davis [2] Nithyadevi et al. [6] Present Study 
103 1.118 1.123 1.099 
104 2.243 2.304 2.295 
105 4.519 4.899 4.664 

Figure 2 shows the influence of the magnetic field on the transient entropy generation for the case 
of natural convection (i.e., N = 0) and for relatively high value of thermal Grashof number (Grt = 105). 
In absence of the magnetic field (i.e., Ha = 0), entropy generation quickly passes from a minimum 
value at the very beginning of the transient state towards a maximum value, then exhibits an 
oscillatory behaviour before reaching a constant value in steady state.  

Figure 2. Dimensionless total entropy generation versus time for: N = 0; � = 90°; � = 0°; 
Ra = 105. 
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On increasing Hartmann number (i.e., 0 < Ha � 50), a similar situation is also observed but with 
more flattened maximum entropy generation value and a decreased of both oscillations of transient 
entropy generation and its magnitude. For higher Hartmann number value (i.e., Ha � 100), entropy 
generation slowly increases at the beginning of the transient state without oscillations towards a 
constant value at steady state. 

As an important conclusion, the presence of a magnetic field tends to reduce entropy generation  
where the system passes from an oscillatory behavior describing non linear branch of irreversible process  
towards an asymptotic behaviour showing the linear branch of thermodynamics for irreversible processes.  

Figures 3 illustrates the effect of inclination angle on average Nusselt number and total entropy 
generation at different values of Hartmann number and thermal Rayleigh number (105). Maximum 
value of Nusselt number is obtained at about � = 90° for which entropy generation is also maximum 
for both studied Hartmann number values (see Figure 3b). This is due to the increased value of thermal 
and velocity gradients at this point. Increasing Hartmann number induces the decrease of heat transfer 
and consequently the dissipated energy expressed by entropy generation. It is important to notice that 
minimum of entropy generation is obtained for �  140°. 

Figure 3. (a) Average Nusselt number and (b) Dimensionless total entropy generation 
versus inclination angle for different Hartmann numbers: Ra = 105; � = 90°; N = 0. 

(a)

(b) 

The increase of Hartmann number for both cooperating and opposite double-diffusive induces a 
decrease of entropy generation value and of average Nusselt and Sherwood numbers as can be seen in 
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Figures 4–5. Profiles of different origins of irreversibility were plotted, the main irreversibility was due 
to viscous effect in the absence of magnetic effect (Ha = 0) and to magnetic term in the presence of a 
magnetic field (Ha = 25). 

Figure 4. (a) Dimensionless total entropy generation versus Hartmann number for different 
buoyancy ratios and (b) Thermal entropy generation versus buoyancy ratio for different 
Hartmann numbers: Ra = 105; � = 90°; � = 0°. 

(a) 

(b) 

Figure 5. (a) Magnetic and Viscous entropy generation and (b) Diffusion entropy 
generation versus buoyancy ratio: Ra = 105; � = 90°; � = 0°. 

(a) 
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Figure 5. Cont. 

(b) 

It was remarked from these figures the existence of minimum values in Nu and Sh for a critical 
buoyancy ratio Ncr. Both Nu and Sh tend to decrease with increasing values of N for N < Ncr and to 
increase with increasing values of N for N > Ncr. Both average Nu and Sh increase and decrease when 
the buoyancy forces assist or oppose, respectively those from thermal origin. The profiles of Nu and Sh 
with N tended to be symmetric about the value of Ncr. For a horizontal magnetic field, results show that 
average Nu and Sh increase in the beginning, reach maximums values and then decrease towards the 
pure conduction regime.

To explain these results, Figures 6–9 illustrate the behaviors of midsection velocity components, 
temperature and concentration profiles in both cases of natural and thermosolutal convection. These 
profiles show a non symmetric trend about the mid horizontal direction of the enclosure. The 
magnitude of the net velocity tends to decrease as the strength of the magnetic field increases. The left 
vertical wall temperature and concentration tend to decrease as the Hartmann number increases. The 
influence of the magnetic field combined with thermosolutal effect was illustrated in Figures 8–9 on 
the temperature and concentration profiles. The effect of the magnetic field was found to reduce the 
overall heat transfer and fluid circulation within the enclosure. 

Figure 6. (a) Midsection x-component velocity at y = 0.5 and (b) midsection y-component 
velocity at x = 0.5 for different Hartmann numbers: Ra = 105; � = 90°; � = 0°; N = 0. 

(a) 
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Figure 6. Cont. 

(b) 

Figure 7. Midsection y-component temperature at y = 0.5 for different Hartmann numbers: 
Ra = 105; � = 90°; � = 0°; N = 0. 

 

Figure 8. Midsection y-component temperature (a) and concentration (b) at y = 0.5 for 
different buoyancy ratios Ra = 105; Ha = 25; � = 90°; � = 0°. 

(a) 
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Figure 8. Cont. 

(b) 

Figure 9. Average Nusselt number (a) and Total entropy generation (b) versus Hartmann 
number for different buoyancy ratios and Rayleigh numbers, � = 90°; � = 0°. 

(a) 

(b) 

At local level, Maximum values of entropy generation are illustrated in Figure 10: isothermal, 
streamlines and isentropic lines for different values of Hartmann number at natural convection are then 
plotted. Entropy generation is localized on lower heated and upper cooled walls of the cavity. As 
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Hartmann number increases, amplitudes of isentropic lines decreases due to the decrease of 
temperature and velocity gradients as plotted by isothermal and streamlines. 

Figure 10. Isotherms, Streamlines and Isentropic lines for N = 0 with different values of 
Hartmann number for � = 0°; Gr = 104. 

 
Isotherms Streamlines   Isentropic Lines 



Entropy 2011, 13                            
 

1052

6. Conclusions

Entropy generation due to natural and thermosolutal convection in a square cavity is numerically 
calculated using the Control Volume Finite-Element Method (CVFEM). Results show that the total 
entropy generation increases for high thermal Grashof number and with the buoyancy ratio in 
cooperative case. The transient state study shows that entropy generation increases in the beginning of 
this regime, reaches a maximum, then decreases asymptotically at low thermal Grashof number and 
with oscillations at high thermal Grashof number towards a constant value at the steady state. 
Maximum entropy generation is obtained at around 90° for Grt = 104. Contributions of thermal, 
diffusive, friction and magnetic terms on entropy generation are investigated. The more effect was due 
to heat transfer and then to mass transfer. Results showed that magnetic effect is more pronounced 
than friction one. The magnetic field parameter suppresses the flow in the cavity and this lead to a 
decrease of entropy generation, temperature and concentration decrease with increasing value of the 
magnetic field parameter. At local level, results show that entropy generation lines are localized on 
lower heated and upper cooled regions of the active walls. 
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