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Abstract: Many problems in business and engineering can be modeled as 0-1 knapsack
problems. However, the 0-1 knapsack problem is one of the classical NP-hard problems.
Therefore, it is valuable to develop effective and efficient algorithms for solving 0-1 knapsack
problems. Aiming at the drawbacks of the selection operator in the traditional differential
evolution (DE), we present a novel discrete differential evolution (TDDE) for solving 0-1
knapsack problem. In TDDE, an enhanced selection operator inspired by the principle of the
minimal free energy in thermodynamics is employed, trying to balance the conflict between
the selective pressure and the diversity of population to some degree. An experimental study
is conducted on twenty 0-1 knapsack test instances. The comparison results show that TDDE
can gain competitive performance on the majority of the test instances.
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1. Introduction

Many problems in business and engineering can be modeled as 0-1 knapsack problems [1,2], such as
project selection, resource distribution and investment decision-making problems. In the 0-1 knapsack
problem, given D items, each of them has a weight Wj and a profit Pj [3]. The aim is to choose a
subset from the D items to maximize the overall profit without exceeding the weight capacity C of the
knapsack [4]. Mathematically, the 0-1 knapsack problem can be formulated as follows:

Max f(X) =
D∑
j=1

Pj ·Xj

s.t.


D∑
j=1

Wj ·Xj ≤ C

Xj ∈ {0, 1}, j = 1, ..., D

(1)

where Xj is a binary decision variable, which indicates that item j is contained in the knapsack or
not. Wj and Pj are the weight and profit of item j, respectively. C is the maximum weight capacity
of the knapsack, and D is the number of items. However, the 0-1 knapsack problem is one of the
classical NP-hard problems [4–6], which means that no exact algorithms are known to obtain the
optimum solutions for this problem in polynomial computation time. Therefore, it is of significance
both in theory and in engineering applications to develop effective and efficient algorithms for the 0-1
knapsack problems.

Evolutionary algorithms (EAs) are effective heuristic algorithms for solving global optimization
problems [7–11]. Moreover, many kinds of evolutionary algorithms have been successfully applied
to solve the 0-1 knapsack problem in the past few decades. Shi [12] proposed an improved ant
colony algorithm for solving 0-1 knapsack problems. In the improved ant colony algorithm, a novel
pheromone updating strategy is designed according to the characteristics of the 0-1 knapsack problems.
Neoh et al. [13] introduced a layered encoding cascade evolutionary approach (LGAPSO) to solve 0-1
knapsack problems. In LGAPSO, genetic algorithm (GA) and particle swarm optimization (PSO) are
utilized for searching the global optimum. Shang et al. [14] proposed a quantum immune clonal selection
algorithm (QICSA) for solving the multi-objective 0-1 knapsack problem. QICSA uses a string of qubits
to represent the solutions and employs a chaotic search strategy to generate a new antibody. Layeb [15]
introduced a novel quantum-inspired cuckoo search for 0-1 knapsack problems. A quantum-inspired
tabu search algorithm (QTS) is proposed by Chiu et al. [16] for solving 0-1 knapsack problems.
The experimental results indicate that QTS performs much better than the other heuristic algorithms
on 0-1 knapsack problems. Zou et al. [4] presented a novel harmony search algorithm (NGHS) to
solve 0-1 knapsack problems. In NGHS, a position updating scheme and a genetic mutation operator
with a small probability are utilized to improve the performance of the traditional harmony search
algorithm. A modified binary particle swarm optimization algorithm is proposed by Bansal and Deep [5]
for 0-1 knapsack problems. Sabet et al. [17] presented a binary version of the artificial bee colony
algorithm to solve the 0-1 knapsack problem. In the proposed binary artificial bee colony algorithm,
a hybrid probabilistic mutation scheme is utilized for searching the neighborhood of food sources.
Gherboudj et al. [18] introduced a discrete binary version of the cuckoo search algorithm for solving
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0-1 knapsack problems. In the literature [19], a hybrid quantum inspired harmony search algorithm
is proposed by Layeb for solving 0-1 knapsack problems. Lu and Yu [20] introduced a quantum
multi-objective evolutionary algorithm with an adaptive population (APMQEA) to solve multi-objective
0-1 knapsack problems. In the search process, APMQEA fixes the number of Q-bit individuals assigned
to each objective solution, while it adaptively updates its population size according to the number of
found non-dominated solutions. Deng et al. [21] introduced a binary encoding differential evolution
for solving 0-1 knapsack problems. Truong et al. [6] presented a chemical reaction optimization with a
greedy strategy algorithm (CROG) for solving 0-1 knapsack problems. The experimental results reveal
that CROG is a competitive algorithm for solving 0-1 knapsack problems. In the literature [22], an
amoeboid organism algorithm is proposed by Zhang et al. to solve 0-1 knapsack problems.

Among the evolutionary algorithms, differential evolution, proposed by Storn and Price in 1997 [23],
is a simple, yet effective, global optimization algorithm. According to frequently reported theoretical and
experimental studies, differential evolution (DE) has demonstrated better performance than many other
evolutionary algorithms in terms of both convergence speed and solution quality over several benchmark
functions and real-life problems [24–26]. Due to its effectiveness, as well as global search capability,
DE has attracted many researchers’ interests since its introduction. Thus, it has become a research focus
of evolutionary computation in recent years [25,26].

However, DE adopts a one-to-one greedy selection operator between each pair of the target vector and
its corresponding trial vector, which exhibits weak selective pressure due to unbiased selection of parents
or target vectors [25,26]. Furthermore, this weakness may lead to inefficient exploitation when relying
on differential mutation, especially on the rotated optimization problems [26]. A straightforward way
to alleviate this shortcoming may be to enhance the selection operator to improve the selective pressure.
In fact, such mechanism indeed can promote the exploitation capacity of DE. However, high selective
pressure may often lead to rapid loss of population diversity and, thus, increase the probability of being
trapped in local minima. Therefore, increasing the selective pressure in DE is often in conflict with
promoting the population diversity, which indicates that a feasible solution to alleviate this weakness of
DE cannot merely improve one of the selective pressures or the population diversity [25,26].

Nevertheless, to the best of our knowledge, it is one of the most challenging issues of DE to keep a
balance between the selective pressure and the diversity of population. Thus, in this paper, we propose a
promising discrete DE (TDDE) using an enhanced selection scheme (MFES) inspired by the principle of
the minimal free energy in thermodynamics, trying to palliate the conflict between the selective pressure
and the population diversity to some degree. Further, the proposed algorithm is applied to the 0-1
knapsack problems.

The rest of the paper is organized as follows. The conventional DE and discrete DE are introduced
in Section 2. Section 3 presents the improved selection operator of DE inspired by the principle of
the minimal free energy in thermodynamics, which is useful for elaborating the implementation of the
proposed algorithm, TDDE, in Section 4. Numerical experiments are presented in Section 5 for the
comparison and analysis. Finally, Section 6 concludes this paper.
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2. Differential Evolution

Like other evolutionary algorithms (EAs), DE is a simple, yet efficient, stochastic optimization
technique, which has a simple structure, only consisting of easy operators, namely, mutation, crossover
and selection operators [23,27,28]. Therefore, it is easy to understand and implement. However, it
exhibits better search performance than many other evolutionary algorithms in terms of convergence
speed and solution accuracy in many practical applications [26,29,30].

Because the 0-1 knapsack problem is a maximization optimization problem, we only consider
maximization problems in this study. We assume that the objective function to be maximized by DE
is Max f(X), X = [X1, X2, ..., XD], and the search space is:

Ω =
D∏
j=1

[Loj, Upj] (2)

where D is the dimensionality of the problem to be optimized and Loj and Upj are the lower and upper
boundaries of the search space. In the search process, DE starts with an initial population P (t) = {X t

i}
randomly sampled from the search space, where X t

i = [X t
i,1, X

t
i,2, ..., X

t
i,D], i = 1, 2, ..., NP ; NP is

the population size and t is the generation. After initialization, DE executes its mutation, crossover and
selection operators repeatedly to move its population toward the global optimum until the termination
condition is satisfied [31]. Next, we will elaborate the evolutionary operators of DE as follows.

2.1. Mutation Operator

In the mutation operator, DE generates a mutant vector V t
i by a preset mutation strategy for each

individual X t
i , called a target vector, in the current population [26,30]. There are many mutation

strategies used in the DE implementations [26,32], such as DE/rand/1, DE/best/1, DE/rand-to-best/1,
DE/best/2/ and DE/rand/2. The most frequently used one is DE/rand/1, which is described as
follows [23,26].

V t
i = X t

r1 + F × (X t
r2 −X t

r3) (3)

where the indices r1, r2, r3 are mutually exclusive integers randomly selected from the set
{1, 2, ..., NP} \ {i}. F is a scaling factor, which scales the difference vector X t

r2 −X t
r3.

2.2. Crossover Operator

After mutation, a crossover operator is utilized for each pair of target vector X t
i and its corresponding

mutant vector V t
i to create a trial vector U t

i [26,29,33]. Binomial and exponential crossovers are two
commonly used crossover schemes in the current popular DE. The binomial crossover is expressed in
the following form [23,26].

U t
i,j =

{
V t
i,j , if rand(0,1) < CR or j == jrand

X t
i,j , otherwise

(4)

where rand(0,1) is a uniformly distributed random number within the range [0, 1], which is produced
for each j, and CR ∈ [0, 1] is called a crossover probability, controlling the number of components
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duplicated from the mutant vector V t
i . jrand is a random integer selected from the range [1, D], which

ensures that the trial vector U t
i differs from its corresponding target vector X t

i by at least one dimension.

2.3. Selection Operator

Generally, if the values of some parameters of the trial vector U t
i violate the predefined corresponding

upper and lower boundary constraints, we randomly and uniformly reset the violating components within
the preset range [27]. Then, the objective function values of all of the trial vectors are evaluated. Next,
DE executes the selection process in order to select the better individuals to enter the next generation.
For maximization problems, the selection operator can be formulated as follows [23,26].

X t+1
i =

{
U t
i , if f(U t

i ) ≥ f(X t
i )

X t
i , otherwise

(5)

where f(X t
i ) and f(U t

i ) are the objective function values of the target vector X t
i and its corresponding

trial vector U t
i , respectively.

2.4. Discrete Mutation Operator

As is known, the individuals of the traditional DE are represented as real-value vectors. Therefore,
the traditional DE cannot directly handle the combinatorial optimization problems. To this end, many
researchers have improved the mutation operators of the traditional DE for solving combinatorial
optimization problems, presenting discreet DE, among which novel hybrid discrete differential evolution
(W_DDE) is proposed by Wang [34]. The enhanced mutation operator of W_DDE is represented as
follows [34].

V t
i,j = X t

r1,j ⊕ F ⊗ (X t
r2,j −X t

r3,j) (6)

where the indices r1, r2, r3 are the same as those in Formula (3). The above formula includes two parts.
The first part is,

∆t
i,j = F ⊗ (X t

r2,j −X t
r3,j)

⇐⇒ ∆t
i,j =

{
X t

r2,j −X t
r3,j , if rand(0,1) < F

0 , otherwise
(7)

and the second part is,
V t
i,j = X t

r1,j ⊕∆t
i,j

⇐⇒ V t
i,j = mod((X t

r1,j + ∆t
i,j +D), D)

(8)

where mod is the modulus function.

2.5. Algorithmic Description of DE

Based on the above detailed descriptions of the mutation, crossover and selection operators of DE,
the algorithmic description of DE with the DE/rand/1/bin strategy is summarized in Algorithm 1, where
FEs is the number of fitness evaluations and Max_FEs is the maximum number of evaluations.
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Algorithm 1 Differential Evolution (DE) Algorithm.
1: t = 0;
2: FEs = 0; . /* Initialize the population */
3: for i=1 to NP do
4: for j=1 to D do
5: Xt

i,j =Loj + rand(0,1)×(Loj − Upj);
6: end for
7: Evaluate the fitness value of individual Xt

i ;
8: FEs = FEs + 1;
9: end for

10: while FEs < MAX_FEs do
11: for i= 1 to NP do
12: Randomly select three mutually exclusive integers r1, r2, r3
13: from the set {1, 2, · · · , NP} \ {i};
14: jrand = randint(1, D);
15: for j=1 to D do
16: if rand(0,1)< CR or j==jrand then
17: U t

i,j = Xt
r1,j + F × (Xt

r2,j −Xt
r3,j);

18: else
19: U t

i,j = Xt
i,j ;

20: end if
21: end for /* Selection step */
22: if f(Xt

i ) ≤ f(U t
i ) then

23: Xt+1
i = U t

i ;
24: if f(Xt

Best) < f(U t
i ) then

25: Xt
Best = U t

i ;
26: end if
27: else
28: Xt+1

i = Xt
i ;

29: end if
30: FEs = FEs + 1;
31: end for
32: t = t+ 1;
33: end while

3. Proposed Selection Operator for DE

3.1. Motivations

As is known, both selective pressure and population diversity are significant for EAs [35–38].
However, in the traditional DE, a one-to-one competition mechanism is utilized as the selection operation
between each pair of the target vector and its corresponding trial vector, which may induce weak
selective pressure owing to its unbiased selection of parents or target vectors [26]. In addition, the
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traditional DE selects individuals for the next generation merely based on the fitness values [26]. As a
result, the selection operator may cause deficient exploitation when depending on differential mutation,
especially on the rotated optimization problems [25,26]. In order to enhance the selection operator of
the traditional DE, in this section, we propose an improved selection operator, MFES, which is inspired
by the principle of the minimal free energy in thermodynamics, trying to palliate the conflict between
the selective pressure and the population diversity to some degree. The principle of the minimal free
energy refers to [39–42], in the annealing process, a metal, beginning with high temperature and chaotic
state, is gradually cooled, so that the system at any temperature approximately reaches thermodynamic
equilibrium. This cooling process can be regarded as an adaptation procedure to reach the stability of
the final crystalline solid. In addition, any change from non-equilibrium to equilibrium of the system
at each temperature abides by the principle of the minimal free energy. This means the system will
change spontaneously to reach a lower total free energy and the system achieves equilibrium when its
free energy seeks a minimum [40–42]. The free energy F is defined by:

F = E − T ·H (9)

where E is the mean energy of the system, H is the entropy and T is the temperature. According
to the principle of the minimal free energy, we can realize that any change from non-equilibrium to
equilibrium of the system can be regarded as a consequence of the competition between the mean energy
and the entropy, and the temperature T determines their relative weights in the competition [39,41,42].
Accordingly, the competition between the mean energy and the entropy in the annealing process is
the same as the competition between the selective pressure and the population diversity of DE during
the evolution process. Therefore, we can alleviate the conflict between the selective pressure and the
diversity of population according to the principle of the minimal free energy.

Inspired by [41–43], in the improved selection scheme, we firstly map the selective pressure and the
population diversity of DE into the mean energyE and the entropyH in the principle of the minimal free
energy, respectively. Then, the criterion of the proposed selection scheme is converted to the minimal
free energy, which means that we select individuals for the next generation from the parent, and the
offspring population should satisfy the principle of the minimal free energy. More specifically, in the
selection process, we start with computing the free energy of each individual in the parent and offspring
population; then, the top NP individuals with minimal free energy are selected for the next generation.
Therefore, the selected individuals for the next generation satisfying the principle of the minimal free
energy indicate that the improved selection scheme maintains the fitness value of the next generation
population as well as possible, while preserving the most possible diversity. Thus, the proposed selection
scheme simultaneously considers the factors of solution quality and the diversity of the population.

3.2. Energy

As discussed above, we should map the selective pressure of DE into the mean energy E in the
principle of the minimal free energy. In general, the higher selective pressure may directly lead to the
better individuals selected for the next generation. Therefore, we can measure the selective pressure
by the fitness values of the selected individuals [41]. The energy E of each individual is mapped into
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the normalized fitness value of the corresponding individual. Mathematically, the energy E(X t
r) of any

individual X t
r is defined by:

E(X t
r) =

blt − (−f(X t
r))

blt − but
=
blt + f(X t

r)

blt − but
(10)

Because the 0-1 knapsack problem is a maximization optimization problem, whereas the criterion of
the proposed selection scheme is the minimal free energy, the energy E(X t

r) of any individual X t
r

is defined by the normalized −f(X t
r), where f(X t

r) is the objective function value of individual X t
r,

the characteristic of whose fitness value is that the larger fitness value reflects the individual better.
blt, but are the lower and upper boundaries of the fitness values of the parent population Pt and offspring
population Ot at generation t, respectively. blt, but are defined by:

blt = min{f(X t
r)|X t

r ∈ Pt ∪Ot} (11)

but = max{f(X t
r)|X t

r ∈ Pt ∪Ot} (12)

3.3. Entropy

As pointed out in Section 3.1, we should also map the population diversity of DE into the entropy
H in the principle of the minimal free energy. Generally, the distribution of the individuals can directly
reflect the population diversity [41]. Thus, we divide the fitness values of the individuals into K ranks.
Then, we count the number of individuals in each rank to measure the population diversity. The i-th rank
βt
i is defined by:

βt
i = (blt +

ai−1 − 1

aK−1 − 1
· (but − blt), blt +

ai − 1

aK−1 − 1
· (but − blt)] ∩ [blt, but] (13)

where i = 0, 1, ..., K − 1; a is a factor related to the width of each rank, set to two in the proposed
approach, and K ≥ 2 is the number of ranks. For any individual X t

r, if E(X t
r) ∈ βt

i , this means that
X t

r is located in the rank βt
i . For any individual X t

r located in the rank βt
i , assuming the number of

individuals within the rank βt
i is ni, the entropy H of individual X t

r is defined as follows:

H(X t
r) = −logK(

ni

NP +M
) (14)

where NP is the number of individuals in the parent population Pt and M is the size of the offspring
population Ot at generation t. It is known that the population diversity is better while the value of
logK( ni

NP+M
) is larger [41]. However, the criterion of the proposed selection scheme is the minimal free

energy. Thus, the entropy H of individual X t
r is defined as −logK( ni

NP+M
). Based on the definitions of

the energy E and the entropy H above, for any individual X t
r, its free energy is calculated as:

F (X t
r) = E(X t

r)− T ·H(X t
r) =

blt + f(X t
r)

blt − but
+ T · logK(

ni

NP +M
) (15)

where T is the temperature, which is gradually cooled as the evolutionary process proceeds.
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3.4. Description of Thermodynamical Selection Operator for DE

Based on the notations and terminologies of the MFES selection scheme in DE, the procedure of
MFES in DE is described as follows. Firstly, a temporary population P ′t+1 is created by combining the
parent population Pt with the offspring population Ot at generation t. Then, the free energy of each
individual in the temporary population P ′t+1 is calculated according to Equation (15). After that, the
top M individuals with maximal free energy are chosen to delete from the temporary population P ′t+1.
Subsequently, all of the remaining individuals in the temporary population P ′t+1 are selected for the next
generation population Pt+1. The detailed procedure of the MFES selection scheme in DE is shown
in Algorithm 2.

Algorithm 2 MFES selection scheme for differential evolution.
Input: Temperature T , the parent population Pt and the offspring population Ot;
Output: The next generation population Pt+1;

1: Combine the parent population Pt with the offspring population Ot to constitute a temporary population P ′t+1;
2: Calculate the free energy of each individual in the temporary population P ′t+1 according to Equation (15);
3: Choose the top M individuals with maximal free energy;
4: Remove the chosen M individuals from P ′t+1;
5: Create the next generation population Pt+1 by the remaining individuals in P ′t+1.

4. Proposed TDDE

Based on the description of the thermodynamical selection operator for DE, in this section, we propose
an enhanced discrete DE for the 0-1 Knapsack problem, which selects the individuals for the next
generation using the proposed thermodynamical selection operator.

4.1. Population Initialization

In the population initialization process, NP 0-1 vectors with D dimensions are randomly generated.
For the i-th individual X t

i , it is initialized by:

X t
i,j =

{
1, if rand(0,1) < 0.5

0, otherwise
(16)

where rand(0,1) is a uniformly distributed random number within the range [0, 1], which is produced for
each j; j = 1, 2, .., D; i = 1, 2, ..., NP ; NP is the population size, and D is the number of items.

4.2. Discrete Mutation Operator

Inspired by [34], we design a 0-1 discreet mutation operator in TDDE as follows:

V t
i,j = X t

r1,j ⊕ F ⊗ (X t
r2,j −X t

r3,j) (17)

where the indices r1, r2, r3 are distinct integers uniformly chosen from the set {1, 2, ..., NP} \ {i}, and
F is the scaling factor. The above formula contains two parts. The first part is,
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∆t
i,j = F ⊗ (X t

r2,j −X t
r3,j) ⇐⇒ ∆t

i,j =

{
X t

r2,j −X t
r3,j, if rand(0,1) < F

1, otherwise
(18)

The second part is,
V t
i,j = X t

r1,j ⊕∆t
i,j ⇐⇒ V t

i,j = mod((X t
r1,j + ∆t

i,j + 2), 2) (19)

where mod is the modulus function.

4.3. Crossover Operator

In the traditional DE for continuous optimization problems, the crossover operator is not related to
the continuous or discrete characteristics of the problems. Thus, the crossover operator in the traditional
DE can be directly used in the proposed TDDE, which is the same as Formula (4).

4.4. Repair Operator

Since the individuals generated in the initialization phase or trial individuals created by the
evolutionary operators may violate the knapsack capacity constraint, we should repair each newly created
individual, so that it can satisfy the knapsack capacity constraint. Assume individual X t

i violates the
knapsack capacity constraint. In the repair operator, we examine each parameter of individual X t

i by
descendant order according to the Pj

Wj
value of the items (note that we have sorted the items by descendant

order according to the Pj

Wj
value of the items before initialization population). In the examination process,

IfX t
i,j is equal to one and individualX t

i violates the knapsack capacity constraint, item j will be removed
from the knapsack, namely we change X t

i,j from one to zero. Then, we judge whether individual X t
i

satisfies the knapsack capacity constraint or not. If individual X t
i still violates the knapsack capacity

constraint, we will examine the next item; otherwise, individualX t
i is already well repaired. The detailed

process of the repair operator is described in Algorithm 3, where TW is is the total weight of individual
X t

i . After repairing the individual X t
i , its fitness value is calculated by:

f(X t
i ) =

D∑
j=1

Pj ·X t
i,j (20)

Algorithm 3 Repair Operator in TDDE

Input: Individual Xt
i to repair;

Output: Repaired Individual Xt
i ;

1: TW =
D∑
j=1

Wj ·Xt
i,j ;

2: j = 1;

3: while TW > C and j ≤ D do
4: if Xt

i,j == 1 then
5: Xt

i,j = 0;

6: TW = TW −Wj ;

7: end if
8: j = j + 1;

9: end while
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4.5. Procedure of TDDE

Based on the above designed operators, the procedure of the proposed TDDE algorithm for solving the
0-1 knapsack problem is summarized as follows. At each temperature T , TDDE evolvesLK generations.
At each generation, TDDE creates M offspring individuals by the discrete mutation, crossover and
repair operators, then selects NP individuals from the NP + M individuals for the next generation
using the proposed thermodynamical selection operator. The aforementioned steps are repeated until the
termination criterion is met. The framework of TDDE algorithm is summarized in Algorithm 4.

4.6. Runtime Complexity of TDDE

As pointed out in [44], the runtime complexity of the traditional DE is O(MAX_FES · D). We
use the same method as in [44] to analyze the runtime complexity of TDDE. In the initial process
of TDDE, sorting the items requires O(D · log(D)) runtime and generating, repairing and evaluating
the initial population cost O(D · NP ), O(D · NP ), O(NP ) runtime, respectively. In the evolutionary
loop, the number of generations is MAX_FES/(LK ·M). Moreover, each generation is completed in
O(LK · (D ·M +M +D ·M +M +M)) runtime. Therefore, the runtime complexity of the TDDE is
O(D · log(D)+D ·NP +D ·NP +NP +MAX_FES · (D+1+D+1+1)) = O(MAX_FES ·D),
and thus, TDDE does not add serious cost to the runtime complexity of the traditional DE.

Algorithm 4 Algorithmic description of TDDE.
1: t = 0, k = 0, T = T0;
2: Sort the D items by descendant order according to Pj

Wj
value;

3: Generate an initial population Pt with NP individuals;
4: Repair each individual in the initial population;
5: Evaluate the fitness value of each individual in the initial population;
6: FEs = NP ;
7: while FEs < MAX_FEs do
8: for i= 1 to LK do
9: Create M offspring individuals by the discrete mutation, crossover operators;

10: Constitute the offspring population Ot by the newly created M offspring individuals;
11: Repair each individual in the offspring population Ot;
12: Evaluate the fitness value of each individual in population Ot;
13: Select NP individuals from Pt ∪ Ot for the next generation population Pt+1 using the

proposed MFES selection scheme;
14: Save the best individual;
15: FEs = FEs+M ;
16: t = t+ 1;
17: end for
18: k = k + 1;
19: T = T0/k;
20: end while
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5. Numerical Experiments

5.1. Experimental Setup

In order to evaluate the performance of the proposed TDDE algorithm for solving 0-1 knapsack
problems, twenty 0-1 knapsack test instances are produced by using the method as recommended
by [4], which is widely used in the field of 0-1 knapsack problem research [15,16,19]. To generate
each 0-1 knapsack test instance, we randomly generate the weight Wj and profit Pj for item j, where
j = 1, · · · , D; Wj is a uniformly distributed random number in the range [5, 20], Pj is randomly
generated from a uniform distribution in the range [50, 100] and the maximum weight capacity of a
knapsack C is set to:

C =
3

4
·

D∑
j=1

Wj (21)

The dimensions of the twenty 0-1 knapsack test instances are set to 500, 1000, 1500 and 2000,
respectively, and the number of the 0-1 knapsack test instances for each dimension is set to five. The
twenty 0-1 knapsack test instances are summarized in Table 1.

Table 1. The twenty 0-1 knapsack test instances.

Instance D

B1 500
B2 500
B3 500
B4 500
B5 500
B6 1000
B7 1000
B8 1000
B9 1000
B10 1000
B11 1500
B12 1500
B13 1500
B14 1500
B15 1500
B16 2000
B17 2000
B18 2000
B19 2000
B20 2000
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Table 2. Experimental results of various numbers of ranks K over 30 independent runs for the twenty test instances.

Instance
K = 0.1×NP K = 0.2×NP K = 0.3×NP K = 0.4×NP K = 0.5×NP

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD
B1 31,462.00±000.00 31,462.00±000.00 31,462.00±000.00 31,454.33±010.84 31,460.67±001.89
B2 31,548.00±001.41 31,546.67±003.30 31,549.00±000.00 31,547.00±001.63 31,549.00±000.00
B3 31,551.00±007.07 31,556.00±000.00 31,556.00±000.00 31,555.67±000.47 31,555.67±000.47
B4 32,065.00±000.00 32,065.00±000.00 32,065.00±000.00 32,064.33±000.94 32,065.00±000.00
B5 31,826.33±024.98 31,842.67±000.94 31,843.67±000.47 31,844.00±000.82 31,843.00±000.82
B6 63,352.67±035.26 63,396.00±004.32 63,365.67±024.85 63,352.33±031.90 63,394.33±017.93
B7 64,832.33±047.44 64,855.00±020.83 64,854.67±010.21 64,836.00±035.19 64,847.67±024.50
B8 64,288.67±036.54 64,258.00±025.57 64,257.00±041.09 64,267.33±009.98 64,240.67±051.88
B9 63,105.67±033.16 63,041.00±063.89 63,089.33±021.67 63,058.67±044.78 63,084.67±016.44
B10 62,792.67±004.64 62,827.00±058.90 62,874.67±008.58 62,815.00±058.09 62,804.67±072.67
B11 95,047.00±121.99 95,141.33±070.28 95,069.67±098.85 95,121.00±086.56 95,004.67±068.56
B12 95,198.00±078.69 95,262.00±058.38 95,119.67±054.38 95,172.00±125.32 95,067.67±202.71
B13 95,204.00±074.57 95,090.00±109.24 95,104.33±055.80 95,079.00±121.69 95,205.00±031.97
B14 95,406.00±102.60 95,225.33±100.69 95,351.33±065.73 95,293.67±069.28 95,207.00±091.88
B15 95,206.33±056.25 95,186.67±031.14 95,178.33±117.24 95,266.33±018.26 95,023.33±091.27
B16 126,582.00±182.78 126,898.33±045.47 126,528.67±213.34 126,629.67±155.39 126,502.67±264.36
B17 127,524.33±125.49 127,548.33±141.44 127,467.67±158.69 127,619.67±041.25 127,574.67±133.35
B18 126,411.33±292.01 126,885.33±039.16 126,232.67±246.37 126,450.00±102.54 126,360.00±167.51
B19 126,659.67±098.80 126,532.33±105.85 126,457.33±198.15 126,519.33±155.84 126,476.00±234.06
B20 127,236.33±170.00 127,501.67±012.97 127,264.33±058.22 127,248.00±075.98 127,119.33±106.58
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5.2. Adjusting Parameter Settings

There are two important parameters in TDDE, namely the number of ranks K and the size of
offspring population M . In this section, we carry out experiments to investigate the impacts of these two
parameters. In the experimental studies, TDDE conducts 30 independent runs with D × 1000 function
evaluations (FEs) as the termination criterion; the population size NP of TDDE in all experiments is
set to 100. As recommended in [4], the average and standard deviation of the maximal total profit is
recorded for measuring the performance of TDDE.

As discussed in Section 3.3, the number of ranks K is related to the measurement of the population
diversity. In order to investigate the impacts of various numbers of ranks K, the parameters of TDDE,
M,LK, T0, F and CR are set to 20, 100, 10, 0.5 and 0.9, respectively, while K is set to range from
NP ×0.1 to NP ×0.5 with a step of 10. The experimental results are shown in Table 2. The best results
among different values of K are highlighted in bold. “Mean Error” and “SD” stand for the mean and
standard deviation of the maximal total profit obtained in 30 independent runs, respectively. From the
results in Table 2, we can conclude that TDDE can achieve the best performance when the number of
ranksK is set in the range [NP ×0.1, NP ×0.2]. In order to find the most suitable parameter value ofK
at a statistical level, we carry out the average ranking of the Friedman test, as recommended by [45–47].

Table 3 shows the average ranking of TDDE with various values of K. From the results shown in
Table 3, we can know that K = NP × 0.2 obtains the best ranking, which indicates that K = NP × 0.2

is the relatively most suitable parameter value of K for these twenty 0-1 knapsack test instances.

Table 3. Average rankings of various numbers of ranks K for the twenty test instances
achieved by the Friedman test.

Values of K Ranking

K = 0.2×NP 3.60
K = 0.3×NP 3.08
K = 0.1×NP 3.03
K = 0.4×NP 2.93
K = 0.5×NP 2.38

As pointed out in Section 3.2, the size of offspring population M is associated with the measurement
of the selective pressure. In order to study the effects of different sizes of offspring population M , the
parameters of TDDE, K,LK, T0, F and CR are set to 20, 100, 10, 0.5 and 0.9, respectively, while M
varies from NP × 0.1 to NP × 0.5 with a step of 10. The best results among different values of M
are shown in bold. The results are shown in Table 4. From the results, we can see that TDDE performs
best when the size of offspring population M is chosen in the range [NP × 0.1, NP × 0.3]. In order to
choose the best parameter value of M at a statistical level, we also conduct the average ranking of the
Friedman test as recommended by [45–47]. Table 5 shows the average ranking of TDDE with different
sizes of offspring population M . From the results shown in Table 5, we can see that M = NP × 0.2

achieves the highest ranking, which reveals that M = NP × 0.2 is the relatively best parameter value of
M for these twenty 0-1 knapsack test instances.
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Table 4. Experimental results of different sizes of offspring population M over 30 independent runs for the twenty test instances.

Instance
M = 0.1×NP M = 0.2×NP M = 0.3×NP M = 0.4×NP M = 0.5×NP

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD
B1 31,462.00±000.00 31,462.00±000.00 31,462.00±000.00 31,462.00±000.00 31,451.67±014.61
B2 31,549.00±000.00 31,546.67±003.30 31,549.00±000.00 31,549.00±000.00 31,549.00±000.00
B3 31,556.00±000.00 31,556.00±000.00 31,556.00±000.00 31,547.00±012.73 31,555.00±001.41
B4 32,055.67±013.20 32,065.00±000.00 32,065.00±000.00 32,065.00±000.00 32,065.00±000.00
B5 31,834.33±000.94 31,842.67±000.94 31,844.00±000.00 31,835.67±011.09 31,842.33±002.05
B6 63,380.67±032.05 63,396.00±004.32 63,366.67±029.33 63,381.00±033.95 63,360.33±033.72
B7 64,812.00±025.02 64,855.00±020.83 64,819.00±051.66 64,678.33±097.82 64,789.67±039.33
B8 64,257.33±046.29 64,258.00±025.57 64,287.67±019.60 64,237.00±055.16 64,257.33±008.58
B9 63,106.00±039.60 63,041.00±063.89 63,084.00±057.04 63,100.33±022.37 63,102.67±019.60
B10 62,817.33±040.71 62,827.00±058.90 62,812.67±108.64 62,823.00±036.85 62,815.33±015.69
B11 95,095.00±102.10 95,141.33±070.28 95,083.00±085.64 94,994.67±104.21 95,065.67±086.77
B12 95,194.67±077.71 95,262.00±058.38 95,287.67±079.33 95,112.00±143.97 95,291.67±065.60
B13 95,202.67±054.90 95,090.00±109.24 95,196.33±019.57 95,166.67±094.41 95,109.33±009.88
B14 95,295.67±092.67 95,225.33±100.69 95,305.33±079.48 95,300.00±041.86 95,400.00±046.73
B15 95,188.67±059.23 95,186.67±031.14 95,191.67±095.16 95,115.33±118.52 95,150.67±069.00
B16 126,661.33±139.66 126,898.33±045.47 126,605.33±149.14 126,609.00±092.22 126,747.67±107.25
B17 127,552.00±153.08 127,548.33±141.44 127,471.33±180.70 127,643.33±063.88 127,597.33±087.01
B18 126,620.00±198.44 126,885.33±039.16 126,464.00±281.26 126,378.33±133.23 126,437.67±128.61
B19 126,659.00±084.58 126,532.33±105.85 126,644.33±098.15 126,645.00±249.43 126,642.00±105.11
B20 127,323.33±142.60 127,501.67±012.97 127,243.33±107.85 127,075.00±177.79 127,342.33±152.07
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5.3. Comparison with Existing Algorithms

In order to verify the effectiveness of the proposed TDDE algorithm, we compare the TDDE algorithm
with W_DDE[34], NGHS [4] and TDGA [41] algorithms on the twenty 0-1 knapsack test instances.
In addition, W_DDE was originally applied to the blocking flow shop scheduling with the makespan
criterion. In order to solve the 0-1 knapsack problems, we use the discrete mutation of W_DDE to
improve the traditional DE and also utilize the repair operator presented in Section 4.4 to repair the
unfeasible individuals.

In the comparative study, for each algorithm and each test instance, 30 independent runs are conducted
withD×1000 function evaluations (FEs) as the termination criterion. The average and standard deviation
of the maximal total profit is recorded for measuring the performance of each algorithm. In order to have
a fair comparison, the population size of all of the algorithms is set to 100. Additionally, the other
parameters value of NGHS and TDGA remain the same as in their original papers. For W_DDE and
TDDE, F and CR are set to 0.5 and 0.9, respectively. K,M,LK, T0 of TDDE are set to 20, 20, 100 and
10, respectively.

Table 5. Average rankings of different sizes of offspring population M for the twenty test
instances achieved by the Friedman test.

Values of M Ranking

M = 0.2×NP 3.35
M = 0.1×NP 3.23
M = 0.3×NP 3.18
M = 0.5×NP 2.83
M = 0.4×NP 2.43

The mean and standard deviation of the maximal total profit obtained by each algorithm for the twenty
0-1 knapsack test instances are shown in Table 6. For clarity, the best results among the algorithms are
marked in boldface. In order to obtain statistically significant conclusions, we perform a two-tailed t-test
at a 0.05 level of significance [48–50] on the experimental results. The summary comparison results are
presented in the last three rows of Table 6. “+”, “-” and “≈” imply that TDDE performs better than,
worse than and similarly to the corresponding algorithm according to the two-tailed t-test, respectively.

From the results in Table 6, we can see that TDDE achieves better results than all of the other
algorithms on the majority of the twenty 0-1 knapsack test instances. Specifically, TDDE significantly
surpasses all of the other algorithms on test instances B3, B6, B7, B8, B11, B12, B15, B16, B18 and
B20 according to the two-tailed t-test. In addition, TDDE yields significantly better performance
than TDGA on all twenty test instances. Comparing TDDE with TDGA, we can conclude that the
designed 0-1 discreet mutation operator has efficient search ability. NGHS obtains better performance
than TDDE on test instances B17 and B19 and performs similarly to TDDE on test instances B13

and B14. However, TDDE outperforms NGHS on the remaining test instances. Further, W_DDE is
better than TDDE on test instances B2, B5, B10, B13 and B19 and is similar to TDDE on test instances
B1, B4 andB9, whereas TDDE surpasses W_DDE on the rest of the test instances. The potential reason
for the better results achieved by TDDE is that TDDE can keep a balance between the selective pressure
and the population diversity during the evolutionary process.
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Table 6. Experimental results of thermodynamical genetic algorithm (TDGA), novel harmony search algorithm (NGHS), W_DDE and
novel discrete differential evolution (TDDE) over 30 independent runs for the twenty test instances.

Instance
Mean ± SD

TDGA NGHS W_DDE TDDE

B1 31,356.00±023.28+ 31,315.00±015.90+ 31,462.00±000.00≈ 31,462.00±000.00
B2 31,458.67±008.96+ 31,399.33±009.43+ 31,549.00±000.00- 31,546.67±003.30
B3 31,424.33±006.65+ 31,399.00±027.60+ 31,555.33±000.94+ 31,556.00±000.00
B4 31,975.00±025.35+ 31,926.33±018.45+ 32,065.00±000.00≈ 32,065.00±000.00
B5 31,740.00±007.48+ 31,734.00±026.17+ 31,843.00±000.82- 31,842.67±000.94
B6 61,893.00±115.52+ 63,155.67±020.81+ 63,282.33±067.24+ 63,396.00±004.32
B7 63,223.00±084.40+ 64,504.67±052.36+ 64,820.67±026.55+ 64,855.00±020.83
B8 62,772.00±036.85+ 64,063.00±020.05+ 64,224.00±029.44+ 64,258.00±025.57
B9 61,697.00±107.26+ 62,810.00±023.93+ 63,020.00±050.62≈ 63,041.00±063.89
B10 61,476.33±092.11+ 62,661.33±029.78+ 62,877.00±012.33- 62,827.00±058.90
B11 91,259.00±253.15+ 95,071.33±071.97+ 95,101.67±036.61+ 95,141.33±070.28
B12 91,537.00±246.98+ 95,052.33±086.45+ 95,208.00±076.46+ 95,262.00±058.38
B13 91,398.67±129.50+ 95,120.33±105.00≈ 95,266.67±070.52- 95,090.00±109.24
B14 91,352.33±136.79+ 95,239.33±009.67≈ 95,145.67±084.32+ 95,225.33±100.69
B15 91,488.00±086.73+ 95,061.00±007.35+ 94,961.67±145.06+ 95,186.67±031.14
B16 119,789.00±239.59+ 126,804.33±047.26+ 126,563.00±150.65+ 126,898.33±045.47
B17 120,460.67±051.69+ 127,829.33±063.47- 127,433.67±143.84+ 127,548.33±141.44
B18 119,701.67±130.91+ 126,744.00±019.20+ 126,518.33±054.36+ 126,885.33±039.16
B19 119,645.67±220.88+ 126,937.00±016.87- 126,580.67±049.94- 126,532.33±105.85
B20 120,389.33±186.34+ 127,447.67±024.31+ 127,038.00±071.16+ 127,501.67±012.97

- 0 2 5
+ 20 16 12
≈ 0 2 3
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In summary, TDDE is significantly better than TDGA, NGHS and W_DDE on twenty, sixteen
and twelve test instances according to the two-tailed t-test, respectively. In addition, TDDE achieves
similar performance to NGHS and W_DDE on two and three test instances, respectively. Moreover,
TDGA cannot be significantly better than TDDE on any test instance, while NGHS and W_DDE
only outperform TDDE on two and five test instances, respectively. These results are understandable
according to the no free lunch theorems [51], because there is no single algorithm that always performs
better than other algorithms when considering all of the possible cases. In order to compare the total
performance of the four algorithms on all twenty test instances, we carry out the average ranking of the
Friedman test on the experimental results following the suggestions in [45–47]. Table 7 presents the
average ranking of the four algorithms on all twenty test instances. We can sort these four algorithms
by the average ranking into the following order: TDDE, W_DDE, NGHS and TDGA. Therefore, TDDE
obtains the best average ranking, and its total performance is better than the other three algorithms on all
twenty test instances.

Table 7. Average rankings of the four algorithms for the twenty test instances achieved by
the Friedman test.

Algorithm Ranking

TDDE 3.50
W_DDE 2.95
NGHS 2.30
TDGA 1.25

To compare the performance differences between TDDE and the other three algorithms, we perform
the Wilcoxon signed-ranks test [52–54] with a significance level of 0.05 on the experimental results.
Table 8 shows the resultant p-values when comparing between TDDE and the other three algorithms.
p-values less than 0.05 are shown in bold. From the p-values in Table 8, we can know that TDDE is
significantly better than TDGA, NGHS and W_DDE according to the Wilcoxon signed-ranks test. The
efficient performance of TDDE can be because the proposed MFES selection scheme used in TDDE can
alleviate the conflict between the selective pressure and the population diversity in the search process to
some degree.

Table 8. Wilcoxon test between TDDE and the other three algorithms for the twenty test
instances. p-values below 0.05 are typed in bold.

TDDE vs. p-values

TDGA 8.86× 10−5

NGHS 1.69× 10−2

W_DDE 2.79× 10−2
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6. Conclusions

The 0-1 knapsack problem is widely used to model problems in the fields of business and engineering.
However, the 0-1 knapsack problem is one of the classical NP-hard problems. Therefore, it has important
and useful applications to develop effective and efficient algorithms for solving 0-1 knapsack problems.
DE is a promising algorithm for solving 0-1 knapsack problems. However, the traditional DE utilizes a
one-to-one competition mechanism in the selection operation, which may easily lead to weak selective
pressure. Aiming at this weakness of the traditional DE, in this study, we propose an improved discrete
differential evolution (TDDE) for 0-1 knapsack problems, which employs a novel selection operator
inspired by the principle of the minimal free energy in thermodynamics. Experiments are conducted on
twenty 0-1 knapsack test instances. In the experiments, we have investigated the important parameters
of TDDE. Moreover, we compare TDDE with TDGA, NGHS and W_DDE algorithms. The comparison
results indicate that the performance of TDDE is competitive on the majority of the test instances. The
experimental results also validate that the proposed selection operator can alleviate the conflict between
the selective pressure and the population diversity to some degree.

In the future, we will apply TDDE to large-scale hard combinatorial problems. Furthermore, it is also
interesting to investigate how to automatically and adaptively adjust the control parameters of TDDE.
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