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Abstract: In this paper, we apply multidimensional scaling (MDS) and parametric similarity

indices (PSI) in the analysis of complex systems (CS). Each CS is viewed as a dynamical

system, exhibiting an output time-series to be interpreted as a manifestation of its behavior.

We start by adopting a sliding window to sample the original data into several consecutive

time periods. Second, we define a given PSI for tracking pieces of data. We then compare

the windows for different values of the parameter, and we generate the corresponding MDS

maps of ‘points’. Third, we use Procrustes analysis to linearly transform the MDS charts for

maximum superposition and to build a global MDS map of “shapes”. This final plot captures

the time evolution of the phenomena and is sensitive to the PSI adopted. The generalized

correlation, the Minkowski distance and four entropy-based indices are tested. The proposed

approach is applied to the Dow Jones Industrial Average stock market index and the Europe

Brent Spot Price FOB time-series.

Keywords: clustering; complex systems; multidimensional scaling; parametric similarity

indices; visualization
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1. Introduction

Complex systems (CS) are frequent in many natural (e.g., geophysics, cosmology, ecology,

biology, genetics) and man-made (e.g., economy, computer science, chemical and physical apparatus)

systems [1–10]. They are often constituted by multiple interacting entities that contribute to a collective

behavior revealing surprising dynamical phenomena. CS modeling can adopt sophisticated mathematical

tools, but often, we verify that those methods are still far from capturing the overall richness of the system

evolution. Therefore, a fruitful interplay is possible by experimenting in a given case with mathematical

tools that are usual in distinct areas [11].

Multidimensional scaling (MDS) is a computer method for visualizing and comparing data that have

been applied in many distinct areas [12–15]. Polzella and Reid [16] used MDS in the study of pilot

performance data obtained during simulated combat. Costa et al. [17] considered MDS to analyze DNA

code in the perspective of identifying structural patterns in the nuclear and mitochondrial genomes.

Machado et al. [18] adopted MDS to study fifteen stock markets and to unveil time-varying correlations

between them. Oñate and Pou [19] analyzed the temperature time-series from eleven meteorological

stations over the Iberian Peninsula. Trends were identified by means of Mann–Kendall tests, while

MDS was employed to build automatic grouping. More recently, Stephenson and Doblas-Reyes [20]

used MDS as an exploratory tool for describing ensembles of forecasts. Lopes and Machado [11]

studied global temperature time-series, showing that MDS is able to provide an intuitive and useful

visual representation of the complex relationships present in the data.

In this paper, we combine MDS tools and parametric similarity indices (PSI) in the analysis of CS.

Each phenomenon is viewed as a dynamical system whose output is a time-series. The time-series are

interpreted as manifestations of the system behavior. The novel methodology is structured as follows.

First, we adopt a sliding time-window to convert the original data into smaller parts that reflect evolution

in time. Second, for a given PSI, we compare the time-windows for different values of the parameter, and

we generate the corresponding MDS maps of “points”. Third, we transform the individual MDS charts

for obtaining the maximum object superposition. The construction of the global MDS map unveils the

characteristics of the CS.

Our approach represents a generalization of MDS classical schemes. In fact, standard MDS

representations capture the system dynamics by means of a single similarity index. Such an index

depends of the researcher’s choice, and therefore, we can define distinct criteria. The MDS interpretation

is based on the emerging clusters and distances between “objects” (“points”) in the map, rather than on

their absolute coordinates or the geometrical form of the locus. We propose subdividing each time-series

into several smaller slices, to capture time dynamics, and to adopt PSI in each MDS map, providing

distinct comparisons for the same windows. The interpretation of the MDS map is now based on

“objects” consisting of “shapes” (a collection of points) instead of “points”, capturing the time evolution

of the phenomena and being sensitive to the parametric index adopted.

Loosely speaking, with the standard MDS methods, we are viewing “objects” under a monochrome

beam of light, while with the PSI approach, we vary the light wavelength, leading to a more colorful and

detailed characterization of the “objects”.



Entropy 2015, 17 1777

The generalized correlation, Minkowski distance and entropy are tested as candidates for the

parameter-dependent comparison indices. The proposed approach is applied to the Dow Jones Industrial

Average stock market index (DJ) and Europe Brent Spot Prices FOB (BR) time-series.

Bearing these ideas in mind, this paper is organized as follows. Section 2 introduces the main

mathematical tools used for processing the data. Section 3 analyses real data by means of several PSI

and MDS. Finally, Section 4 outlines the main conclusions.

2. Mathematical Tools

This section formulates the main mathematical tools adopted for data numerical analysis. Section 2.1

presents the PSI, namely the generalized correlation, the Minkowski distance and the entropy-based

indices. Section 2.2 addresses the MDS technique.

2.1. Parametric Similarity Indices

2.1.1. Generalized Correlation

Given two random variables X and Y , its generalized correlation coefficient is expressed by [21]:

ρq =
E [gq (Xi −Xj) gq (Yi − Yj)]

√

E
[

g2q (Xi −Xj)
]

E
[

g2q (Yi − Yj)
]

(1)

where E(·) denotes the expectation operator and (Xi, Yi) and (Xj , Yj) are independent bivariate vectors

with i 6= j, (i, j) = 1, 2, ..., n. The function gq(z) in Equation (1) is given by:

gq(z) = sign(z)|z|q, q ∈ [0, 1] (2)

The generalized correlation is always in the interval ρq ∈ [−1, 1] with lower and upper values

corresponding to the Kendall, ρK , and Pearson, ρP , correlation coefficients, respectively:

ρK =
E [sign (Xi −Xj) sign (Yi − Yj)]

√

E
[

sign2 (Xi −Xj)
]

E
[

sign2 (Yi − Yj)
]

(3)

ρP =
E [(Xi −Xj) (Yi − Yj)]

√

E
[

(Xi −Xj)
2]E

[

(Yi − Yj)
2]

(4)

Expression (1) is a general parametric statistics with an extra degree of freedom, q, that can be tuned

by the user according to the problem under analysis.

The generalized correlation coefficient of a sample, ρ̂q, can be estimated by means of:

ρ̂q =
Uq,XY

√

Uq,XXUq,Y Y

(5)
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where,

Uq,XY =
2

n(n− 1)

n
∑

i<j

gq (Xi −Xj) gq (Yi − Yj) (6)

Uq,XX =
2

n(n− 1)

n
∑

i<j

g2q (Xi −Xj) (7)

Uq,Y Y =
2

n(n− 1)

n
∑

i<j

g2q (Yi − Yj) (8)

2.1.2. Minkowski Distance

The Minkowski distance is a metric on the Euclidean space that generalizes other distances [22].

Given two points X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) in R
n, the q-order Minkowski distance

is expressed by:

dq =

(

n
∑

i=1

|xi − yi|
q

)1/q

, q ∈ R (9)

For q = 1, Expression (9) yields the Manhattan distance; for q = 2, we have the Euclidean distance;

and for q → ∞, we obtain the Chebyshev distance.

2.1.3. Entropy

Entropy has been used not only in the context of CS, but also in many other scientific areas [23–25].

In information theory, entropy was introduced by Shannon for studying the amount of information

contained in a message. Shannon entropy satisfies the so-called Khinchin axioms [26] and is given by:

S =
∑

i

(− ln pi)pi (10)

Entropy represents the expected value of the information content, I(pi) = − ln pi, of an event with

probability of occurrence pi, where
∑

i

pi = 1.

Rényi and Tsallis entropies are generalizations of Shannon’s entropy and are given by, respectively:

S(R)
q =

1

1− q
ln

(

∑

i

pqi

)

, q ∈ R
+ (11)

S(T )
q =

1

q − 1

(

1−
∑

i

pqi

)

, q ∈ R (12)

Inspired by the concepts of fractional calculus (FC), Ubriaco [27] proposed the following expression:

S(U)
q =

∑

i

(− ln pi)
q pi (13)

that has the same properties as the Shannon entropy, except additivity. Rényie, Tsallis and Ubriaco

entropies reduce to Shannon’s expression when q → 1.
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FC denotes the branch of calculus that extends the concepts of integrals and derivatives to non-integer

and complex orders. During the last few decades, FC was found to play a fundamental role in modeling

many important physical phenomena and emerged as an important tool in the area of dynamical systems

[28–30].

Recently, also inspired by FC, the concepts of information content and entropy of order q ∈ R, I
(G)
q

and S
(G)
q , were proposed [31,32]. These generalizations of the classical definitions are given by:

I(G)
q (pi) = DqI (pi) = −

p−q
i

Γ (q + 1)
[ln pi + ψ (1)− ψ (1− q)] (14)

S(G)
q =

∑

i

{

−
p−q
i

Γ (q + 1)
[ln pi + ψ (1)− ψ (1− q)]

}

pi (15)

where Dq (·) is the fractional derivative of order q and Γ (·) and ψ (·) represent the gamma and digamma

functions, respectively.

The generalized entropy (15) does not obey some of the Khinchin axioms, except for q = 0 [31]. In

this case, it leads to the classical Shannon entropy (10).

2.2. Multidimensional Scaling

MDS is a technique for visualizing information that explores similarities in data [33–37]. The main

idea is to detect underlying dimensions that allow the researcher to observe similarities between the items

under analysis. The MDS algorithm requires the definition of a similarity index and the construction of

a h × h matrix M of item to item similarities, where h is the total number of items. In classical MDS,

matrix M is symmetric, and its main diagonal is composed of “1”. MDS assigns a coordinate point to

each item in a multi-dimensional space and arranges the set of h coordinates in order to reproduce the

observed similarities. Often, instead of similarities, there are considered dissimilarities, or distances,

between the items. For low dimensional spaces (e.g., m = 2 or m = 3) the resulting “points” can

be displayed in a “map”. As mentioned, by rearranging the item positions in the space, MDS tries to

arrive at a configuration that best approximates the observed similarities. For this purpose, MDS uses

a function minimization algorithm that evaluates different configurations with the goal of maximizing

the goodness-of-fit. A common measure to evaluate how well a particular configuration reproduces the

observed distance matrix is the raw stress, S, in general defined as:

S = [dij − f(δij)]
2

(16)

where dij stands for the reproduced distances between items i and j, (i, j) = {0, 1, 2, ..., h − 1}, δij

represents the observed distances and f(·) indicates some type of transformation. The smaller the value

of S, the better is the fit between dij and δij .

We can rotate or translate the MDS map, since the distances between “points” remain identical.

The quality of the MDS approach can be evaluated by means of the stress and Shepard plots. The

stress plot represents S versus the number of dimensions m of the MDS map. We get a monotonic

decreasing chart, and we choose m as a compromise between reducing S and having a low dimension

for the MDS map. The Shepard diagram compares the dij distances, for a particular value m, versus
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the δij distances. Therefore, a narrow scatter around the 45-degree line indicates a good fit between dij

and δij .

3. MDS Analysis and Visualization of Complex Systems

In this section, we apply PSI and MDS tools in the analysis of real-world time-series. In Section 3.1,

we use a simple example to introduce the approach. In Sections 3.2, 3.3 and 3.4, we process data from

two CS by means of the generalized correlation index, the Minkowski distance and entropy, respectively.

We use DJ and BR time-series at a daily time horizon [38,39] to characterize the CS dynamics. The

data are available at the Yahoo Finance (https://finance.yahoo.com/) and the U.S. Energy Information

Administration (http://www.eia.gov/) websites. The time period of analysis is from 20 May 1987, up to

5 January 2015. Some missing values are estimated by means of a linear interpolation algorithm, applied

between neighbor values, so that all weeks have five values.

3.1. Illustrative Example

Given a time-series representative of a CS over the period T , x̃(t), 0 ≤ t < T , we divided the data

into h intervals, denoted by xk(t), kT/h ≤ t < (k + 1)T/h, k = {0, 1, 2, ..., h − 1}. For a PSI, we

calculate p similarity matrices, Mq, h× h dimensional, where q ∈ {q1, q2, ..., qp}. Matrices Mq feed the

MDS algorithm, which generates p intermediate maps of “points” (i.e., one map per value q). The charts

are then processed by means of Procrustes analysis in order to obtain a single global plot of “shapes”

where the “points” of the original maps are optimally “superimposed”.

Procrustes analysis performs linear transformations, namely translation, reflection, orthogonal

rotation and scaling, with the objective of minimizing a measure of the difference between the “points”

in the original maps. The algorithm: (i) chooses a reference MDS map (by selecting one of the available

instances); (ii) superimposes all other MDS instances into the current reference; (iii) computes the mean

form of the current set of superimposed maps; (iv) compares the distance between the mean and the

reference instances to a given threshold value and, if above, sets the reference to the mean form and

continues to Step (ii).

For illustrating our approach, we start by using a time-series consisting of the U.S. GDP per capita,

for the period from year 1800 up to 2010, with units of 1990 GK dollars per capita. This time-series

has the advantage of being simple and smooth over time, but rich enough to be used as an illustrative

example. The data are from the Maddison Project [40].

Figure 1 shows the GDP time-series divided into h = 42 non-overlapping intervals of five years each.

We adopt the Minkowski distance (9) with p = 22 parameter values and q varying uniformly in the

interval q ∈ [0.12, 1.20]. We then calculate the matrices Mq = [dijq ], (i, j) = 0, ..., 41, that constitute the

input for the MDS algorithm.

Figure 2 depicts the two- and three-dimensional global MDS maps that result from the Procrustes

analysis. In these charts, we get a continuous set of p points for each time-window, meaning that we

have maps of “shapes”, instead of merely “points”. We verify that the “shapes” have a one-dimensional

nature and that their length varies along time. For example, “shapes” of windows {27, 31, 32, 34, 36,

42} exhibit a larger length, meaning that they are more sensitive to the variation of q.

(https://finance.yahoo.com/)
(http://www.eia.gov/)
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Figure 1. Time-series of the U.S. GDP per capita, for the period from year 1800 up to 2010.

Superimposed to the global maps, we represent the time behavior of the CS by means of a set of

oriented arrows that connect the window “shapes” and indicate the flow of time. We verify longer

“jumps” between certain time-windows, namely {29–30, 30–31, 31–32, 32–33, 33–34}, which means

that they have different characteristics from the rest.

The following list emphasizes the relationships between the GDP time-series and the MDS global

maps:

• During the time period 1800–1930, the GDP had a moderate growth with small oscillations over

time. In the MDS maps, we observe small “shapes”, representing Windows 1 up to 26, appearing

in sequence and close to each other;

• In the time period 1930–1935, corresponding to the worst years of the Great Depression, the GDP

had a strong oscillation, increasing (with small fluctuation) during the subsequent five-year period,

1935–1940. Such behavior is observed in the MDS maps as two moderate length “jumps” from

Window 26 towards Window 27 and then towards Window 28;

• Periods 1940–1945, 1945–1950 and 1950–1955 had contrasting behavior, characterized by growth

and recession, mostly determined by World War II. In the MDS maps, we observe large “jumps”

across Windows 29 up to 31;

• For the time period 1955–1960, GDP growth became slower and then recovered during the period

1960–1965. This corresponds to large “jumps” across Windows 31, 32 and 33 in the MDS;

• From year 1960 onward, we observe a GDP moderate growth trend, with oscillations over

time. This behavior translates into moderate, and similar, length “jumps” between shapes in the

MDS maps.
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Figure 2. MDS maps of “shapes” and the flow of time, obtained after Procrustes analysis:

(a) m = 2; (b) m = 3. The Minkowski distance, dq, is used with the U.S. GDP per capita

time-series.

3.2. MDS Based on the Generalized Correlation Index

We start by dividing the total DJ series into h = 27 non-overlapping intervals of approximately a

one-year time-length each. This value of h mitigates the problems related to the non-stationarity of the

data and establishes a good compromise between time discrimination and solid histogram representation.

We then adopt p = 22 distinct parameter values, uniformly distributed in the interval q ∈ [0, 1], and we

calculate the corresponding matrices Mq = [ρijq ], (i, j) = 0, ..., 26, where ρijq represents the generalized

correlation between xi(t) and xj(t).
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Figure 3 shows the two- and three-dimensional MDS maps obtained after Procrustes analysis. We

can see that the generalized correlation index leads successfully to maps of one-dimensional “shapes”.

Windows {1, 5, 14, 18, 19, 21, 22, 23, 25} are more sensitive to the variation of q, since they are larger

than the others. Furthermore, we observe the emergence of two main clusters of “shapes”: A = {1, 13,

14, 15, 17, 18, 21, 24} and B = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 19, 20, 22, 23, 25, 26, 27}.
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Figure 3. Multidimensional scaling (MDS) maps of “shapes” and the flow of time, obtained

after Procrustes analysis: (a) m = 2; (b) m = 3. The generalized correlation index, ρq , is

used with the Dow Jones (DJ) data.

We verify longer “jumps” between certain time-windows, namely {1–2, 3–4, 15–16, 20–21, 21–22},

which means that they have distinctive characteristics. Nevertheless, we can see that ρq reveals

difficulties with time flow discretization, since we obtain a large number of chaotic “jumps” between

“shapes”.
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Figure 4. MDS maps of “shapes” and the flow of time, obtained after Procrustes analysis:

(a) m = 2; (b) m = 3. The generalized correlation index, ρq, is used with the Brent Spot

(BR) data.

The length of the “shapes” seems to be closely related to the annual volatility of the DJ stock market.

In fact, windows exhibiting a larger length correspond to higher volatility time periods of the DJ. On

the other hand, longer “jumps” seem to be related to periods of stock market crashes and bear markets,

namely the “Black Monday of 1987” (Windows 1–2), the “Friday the 13th 1989 mini-crash” (3–4) the

“Stock market downturn of 2002” (Windows 15–16) and the “United States bear market of 2007–2009”

(Windows 20–21 and 21–22).

Identically to the DJ data, we process the BR time-series. Figure 4 shows the two- and

three-dimensional MDS maps of “shapes” and the time behavior of the CS obtained after Procrustes

analysis. In this case, two main clusters of “shapes” emerge: A = {1, 4, 5, 6, 7, 10, 11, 14, 16, 25, 26,
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27} and B = {2, 3, 8, 9, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24}. Larger length “shapes” correspond

to Windows {1, 2, 9, 11, 13, 14. 27}, while longer “jumps” correspond to Periods {4–5, 12–13, 17–18,

20–21, 21–22, 24–25, 26–27}. As for the DJ, ρq leads to a poor time discrimination between the data.

To assess the quality of the p intermediate MDS maps that are used to construct the global map of

“shapes”, we plot the Shepard and the stress diagrams. We illustrate the results obtained for the DJ

time-series and ρq. For the BR data, and for all PSI, the results are similar. Figure 5 represents the p

Shepard diagrams superimposed in a single chart. We can observe a scatter of points distributed around

the 45-degree line, which means a good fit of the observed distances to the dissimilarities. As expected,

for m = 3, we get slightly better results than for m = 2. Figure 6 depicts the superposition of the

stress diagrams, revealing that, for the p intermediate MDS maps, a three-dimensional space describes

the data well.
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Figure 5. Superposition of the p MDS Shepard diagrams: (a) m = 2; (b) m = 3. The

generalized correlation index, ρq, is used with the DJ data.
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Figure 6. Superposition of the p MDS stress diagrams. The generalized correlation index,

ρq, is used with the DJ data.
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3.3. MDS Based on Minkowski Distance

In this subsection, we embed the Minkowski distance (9) into the MDS. The parameter q varies

uniformly in the interval q ∈ [0.12, 1.20]. The remaining parameters stay unchanged with respect to

Section 3.2. We calculate the matrices Mq = [dijq ], and we use them as the input for the MDS algorithm.

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

26
27

20

25

21

24

141319

23
18

17

12

15

22

16
11

10

98

7
5
6

4
3

2

1

(a)

0.6

27

0.4

26

20

0.2

25

24

13

23
19

14

18

12

17

21

0

22

15

16

11

-0.2

10
98

-0.4

76

54

3

2

1

-0.6
-0.04

0

0.04

0.03

0.05

-0.05

0.01

-0.03

-0.01

0.08

(b)

Figure 7. MDS maps of “shapes” and the flow of time, obtained after Procrustes analysis:

(a) m = 2; (b) m = 3. The Minkowski distance, dq, is used with the DJ data.

Figures 7 and 8 depict the two- and three-dimensional MDS maps for the DJ and BR time-series,

respectively. As before, the global charts show continuous sets of points, i.e., “shapes” for each

time-window. Furthermore, both for DJ and BR, dq is able to discriminate time. Here, we consider

‘good time discrimination’ as the ability to depict charts with a small content of discontinuities over time

evolution. For the DJ, we observe three distinct clusters of “shapes”: A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
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B = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25} and C = {26, 27}. For A and C, the

time-windows that are closer to each other in time appear closer to each other in the MDS map. For

cluster C, the time behavior is more “random”.
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Figure 8. MDS maps of “shapes” and the flow of time, obtained after Procrustes analysis:

(a) m = 2; (b) m = 3. The Minkowski distance, dq, is used with the BR data.

For the BR, we have identical results, but now with two distinct clusters: A = {1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15}, B = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}.



Entropy 2015, 17 1788

3.4. MDS Based on Entropy Measures

In this subsection, we embed entropy-based PSI into the MDS. For data comparison, we compute the

p matrices, Mq = [cijq ], where cijq represents the Canberra distance between the entropy values of the

time-windows xi(t) and xj(t):

cijq =
|S

(·)i
q − S

(·)j
q |

|S
(·)i
q |+ |S

(·)j
q |

(17)

The entropy, S
(·)
q , is estimated by means of the histograms of relative frequencies. For constructing the

histograms, we use N = 10 bins.
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Figure 9. MDS maps of “shapes” and the flow of time, obtained after Procrustes analysis:

(a) m = 2; (b) m = 3. The generalized entropy index, S
(G)
q , is used with the DJ data.



Entropy 2015, 17 1789

The results obtained with Expressions (11), (12), (13) and (15) are similar for both the DJ and the BR

time-series. We opt for presenting the MDS maps generated with the generalized entropy (15), since it

is more sensitive to the data.

The parameter q varies uniformly in the interval q ∈ [0, 0.3], and h and p take the values adopted in

the previous subsections.
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Figure 10. MDS maps of “shapes” and the flow of time, obtained after Procrustes analysis:

(a) m = 2; (b) m = 3. The generalized entropy index, S
(G)
q , is used with the BR data.

Figures 9 and 10 depict the two- and three-dimensional MDS maps for the DJ and BR time-series,

respectively. As before, we observe that the global charts exhibit continuous sets of points (“shapes”)

for all time windows. On the other hand, as for ρq , the entropy-based indices reveal difficulties with

time discrimination, giving rise to a large number of “jumps” between “shapes”. For the DJ time-series,

windows A = {1, 18, 19, 21} and B = {14} have different behavior, being located far apart from the
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remaining. Regarding the BR data, windows A = {4, 9} and B = {27} unveil different characteristics

of those exhibited by the other time periods.

The proposed methodology yields two orthogonal descriptions, namely the set of “shapes” and the

set of time discrete steps, referred previously as “jumps”. Therefore, it is of interest to check how the

two concepts evolve along the series, for distinct indices. Figure 11 depicts the locus of “jump” versus

“shape” lengths (T and Σ, respectively), where the labels represent the windows numbers. For avoiding

having distinct ranges and scales that could mislead, both variables are normalized to the interval [0, 1].

We show the results obtained for the DJ data; however identical conclusions can be drawn for the BR

data series.

We observe a pattern where time is an irregular flux, but where it visits often the same trail. The pattern

varies with the comparison index, so it is not an intrinsic property, but rather the results of the observation

perspective provided by each individual index. The patterns reveal trains, somehow in a tree structure.
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Figure 11. Locus of T versus Σ for the DJ time-series and h = 27: (a) generalized

correlation; (b) Minkwoski distance; (c) generalized entropy.
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Figure 12. Locus of T versus Σ for the DJ time-series: (a) h = 2×27 and ρq; (b) h = 3×27

and ρq; (c) h = 2×27 and dq; (d) h = 3×27 and dq; (e) h = 2×27 and S
(G)
q ; (f) h = 3×27

and S
(G)
q .
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Another aspect to investigate is the effect of the window length over the time MDS map. Therefore,

we consider shorter time windows, namely h = 2 × 27 and h = 3 × 27, corresponding to periods

of approximately six and four months, respectively. Figure 12 shows the locus of T versus Σ for the

DJ time-series, where the labels represent the windows. We observe the emergence of more complex,

fractal-like, trees. Moreover, we verify that the CS revisits the same areas of the locus over time. The

study of their properties needs to be pursuit, but it seems to reveal that for the CS under analysis time

flow has a non-smooth texture.

In conclusion, we have demonstrated that the choice of the comparison index leads to distinct

sensitivities to the variation of the parameter and the evolution of time. While the graphical layout of the

MDS “points” is usually of smaller importance, their clustering is fundamental in tracing conclusions.

Therefore, the construction of MDS “shapes” can be explored to get an extra insight into the phenomena

under analysis. This study constitutes a step towards building a more general formulation of the standard

MDS method, and several questions emerge. Since we can explore indices with several parameters, do

they lead to useful multidimensional “shapes” in the MDS maps? How can we analyze more assertively

the sensitivity of different time windows? While the standard visualization of the flux of time as a

constant velocity process, is MDS pointing to a variable speed time arrow? We plan to apply the new

methodology to several data series in the future, aiming to clarify some of these issues.

4. Conclusions

We proposed a generalization of MDS classical schemes and their application to the study of CS. Each

CS is viewed as a dynamical system that exhibits an output time-series reflecting the system behavior.

The time-series are subdivided into several smaller slices and compared by means of a given PSI. Each

value of the parameter leads to a intermediate map of “points”. The collection of p maps processed

by means of Procrustes analysis allows the construction of a MDS map of “shapes”. Therefore, the

interpretation of this global map is now based on “shapes” instead of “points”. Furthermore, we capture

the time evolution of the phenomena using several time-windows, and we verify their influence on the

final MDS locus. For supporting our study, we used the generalized correlation, Minkowski distance and

entropy PSI, and we applied the new approach to the Dow Jones Industrial stock market and the Europe

Brent Spot Price time-series.
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