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Abstract: In this paper, we model discrete time series as discrete Markov processes of
arbitrary order and derive the approximate distribution of the Kullback-Leibler divergence
between a known transition probability matrix and its sample estimate. We introduce
two new information-theoretic measurements: information memory loss and information
codependence structure. The former measures the memory content within a Markov process
and determines its optimal order. The latter assesses the codependence among Markov
processes. Both measurements are evaluated on toy examples and applied on high frequency
foreign exchange data, focusing on 2008 financial crisis and 2010/2011 Euro crisis.
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1. Introduction

A century ago Markov [1] introduced a computational technique for time series that is now famously
known as Markov processes. The transitions from one state to the other are modeled as a stochastic
process, whereas the transition probabilities to the next state in the time series only depend on the
preceding states. The number of preceding states that the transition probabilities depend on is referred to
as the order of the process. Now, there is an active and diverse interdisciplinary community of researchers
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using Markov processes in computer science [2], statistics [3], pattern recognition [4], finance [5] and
many other areas.

In practice, both the transition probabilities and the order of the Markov process are unknown, hence
there arises the problem of making inferences about them from empirical data. In the last few decades
there has been a great number of research on estimation of the optimal order of a Markov process [6,7].
The two most popular methods are Akaike information criterion (AIC) [8] and Bayesian information
criterion (BIC) [9]. Both methods use the likelihood ratio statistics for model comparison and modify it
by a penalty term. AIC has had a fundamental impact in statistical model evaluation problems and has
been applied to the problem of estimating the order of autoregressive processes and Markov processes.
The estimator was derived as an asymptotic estimate of the Kullback-Leibler divergence and provides a
useful tool for evaluating models estimated by the maximum likelihood method. AIC is the most used
and successful estimator of the optimal order of Markov process at the present time, as it performs better
than BIC estimator for samples of relatively small size. On the other hand, both AIC and BIC do not
provide a test of a model in the sense of testing a null hypothesis, i.e., they can tell nothing about the
quality of the model in an absolute sense. Order selection is heuristic as the methods do not directly
minimize a certain measure of the error between the order estimate and the true order, and the order
estimator is usually defined as the minimizing value of this information criterion. In [7,10], different
statistical techniques have been developed to test different assumptions about the order of the Markov
process. For example, [10] develop a χ2 test to test that a Markov process is of a given order against
a larger order. In particular, with it we can test the hypothesis that a process has rth-order against
(r + 1)th-order, until the test rejects the null hypothesis and then choose the last r as the optimal order.
The statistical tests for optimal order of Markov process from information theoretic perspective are
currently missing and in this paper we fill that gap.

Very often, one has to consider multiple Markov processes (data sequences) at the same time. This
is because very often processes (sequences) can be correlated and therefore the information of other
processes can contribute to the process considered. Thus by exploring these relationships, one can
develop better models for better prediction rules. In view of this, [12] proposed a first-order multivariate
Markov process model. In [13], a multivariate Markov process model is used to build stochastic
networks for gene expression sequences. An application of the multivariate Markov process model to
modelling credit risk has been also discussed in [14]. A topic that has attracted little attention concerns
the identification of co-dependence among Markov processes. As discrete Markov processes can be
simultaneously observed and modeled, there is a natural desire to evaluate the transition probability
matrix of the joint Markov process to infer if the processes have co-dependences among them.

In this paper we model discrete time series as discrete Markov process of arbitrary order. We derive
the approximate distribution of Kullback-Leibler divergence between a known transition probability
matrix and its sample estimate, as a sum of gamma distributed random variables. We present the
procedure for Markov process extension that allows comparison of processes of different order and define
an information theoretic measurement termed information memory loss which evaluates the memory
content within time series and provides an information theoretic method to determine the optimal
order of Markov process. Finally, we present the construction of the so-called structureless transition
probability matrix that models codependence among processes and define an information theoretic
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measurement termed information codependence structure which measures the co-dependence among
Markov processes. Both measurement are validated on toy examples and evaluated on high frequency
foreign exchange (FX) data, finding that the presented measurements are successful in detecting changes
in memory of time series and breakdown of co-dependence among time series.

The rest of this paper is organized as follows; in Section 2 we derive the distribution of
Kullback-Leibler divergence. Section 3 defines information memory loss, that describes the memory
within time series. Section 4 describes information codependence structure that measures the
co-dependence among Markov processes.

2. Kullback-Leibler Divergence Distribution

In this section we derive the distribution of an information theoretic measurement between two
Markov processes. We present the definition of Kullback-Leibler divergence, an information theoretic
measurement between two discrete probability distributions. Next, we present the Kullback-Leibler
divergence for discrete Markov processes. Finally, we derive the distribution of Kullback-Leibler
divergence between known transition probability matrix and its sample estimate.

In information theory, the Kullback-Leibler divergence [15] is used as a non-symmetric measure of
the difference between two probability distributions. The Kullback-Leibler divergence of probability
distribution Q from probability distribution P, denoted DKL(P||Q), is a measure of the information
lost when Q is used to approximate P. The probability measure P represents the “true” distribution of
data, while the probability measure Q typically represents a model or approximation of P. For discrete
probability distributions P and Q, both on (Ω,F), the Kullback-Leibler divergence of Q from P, is
defined as

DKL(P||Q) =
∑

ω∈Ω

log

(
P(ω)

Q(ω)

)
P(ω) (1)

If the probability distributions coincide then the resulting Kullback-Leibler divergence of Q from P
equals zero.

Before presenting the Kullback-Leibler divergence for discrete Markov processes we present the
notation. The state space of a Markov process is denoted with S, the states are denoted with s ∈ S,
and the corresponding transition probability matrix with W . As a shorthand, we write the first order
transition probability from state sj to state si as

P(sj → si) (2)

In case the transition dynamics is modeled as a k-th order Markov process, the transition probabilities
is denoted as

P ((sik → · · · → si1)→ si) (3)

indicating the transition to state si is conditioned on the history of previous k transitions sik → · · · → si1 .
If the history of the previous transitions is known from the context or is irrelevant, we denote the previous
k transitions with Si = (sik → · · · → si1) ∈ Sk, and the resulting transition probabilities of the k-th
order Markov process with

W = [P(Si → si)] Si ∈ Sk, si ∈ S (4)
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Now we recall that the Kullback-Leibler divergence between two discrete Markov processes [17] for
state space Sk = {S1, . . . , SM} and transition probability matrices W and Ŵ of Markov processes of
order k, equals

DKL(W ||Ŵ ) =
M∑

i=1

µSi
DKL(PSi

||QSi
)

=
M∑

i=1

µSi

[ li∑

j=1

log

(
P(Si → sij)

Q(Si → sij)

)
P(Si → sij)

]
(5)

where µ = (µS1 , . . . ,µSM
) is the stationary distribution corresponding to W , M is the number of states,

while li is the number of possible transitions from state Si, i = 1, . . . ,M . Denoting with H(W ) the
entropy rate of the Markov process [15] corresponding to W

H(W ) = −
M∑

i=1

µSi

( li∑

j=1

log
(
P(Si → sij)

)
P(Si → sij)

)
(6)

while denoting with H(W, Ŵ ) the cross-entropy [15]

H(W, Ŵ ) = −
M∑

i=1

µSi

( li∑

j=1

log
(
Q(Si → sij)

)
P(Si → sij)

)
(7)

the Kullback-Leibler divergence can be rewritten as

DKL(W ||Ŵ ) = −H(W ) +H(W, Ŵ ) (8)

Having computed the divergence between transition probability matrices, we need to be sure the
divergence indeed is significant. We stress that even if W represents the true transition dynamics, and
Ŵ is obtained through finite sampling of a time series generated by W , the estimation error can result in
a non-zero divergence.

We derive the distribution of Kullback-Leibler divergence assuming Ŵ is estimated from a finite
time series generated by W . For simplicity, we present the derivation assuming the transitions are
modeled as a first order Markov process, stressing that the derivation does not change in case of higher
order processes. First, since transition probabilities of matrix Ŵ = [Q(si → sij)] are obtained via
sampling of a finite time series, we can express them as random variables counting the frequency of
event occurrences. Let N � 0 denote the number of transitions in the sample and ki the number of
times the system resided in state si and let si1 , . . . , sili denote the possible states to transition to. If the
transitions are drawn from a Markov process with transition probability matrix W = [P(si → sij)], we
estimate the probability of transitioning from state si to states si1 , . . . , sili with the following expression

Q(si → sij) =
1

ki

ki∑

k=1

1{∑j−1
r=1 P(si→sir )<Uk(0,1)≤

∑j−1
r=1 P(si→sir )+P(si→sij )}, j = 1, . . . , li − 1

Q(si → sili ) = 1−
li−1∑

j=1

Q(si → sij)
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where Uk(0, 1), k = 1, . . . , ki are uniformly distributed random variables on [0, 1] and 1A denotes the
indicator function of setA. We note that E

[
Q(si → sij)

]
= P(si → sij) and σ2

ij
= Var

(
Q(si → sij)

)
=

P(si → sij)
(
1− P(si → sij)

)
.

According to the central limit theorem, centred and rescaled random variables Q(si → sij), j =

1, . . . , li − 1 converge to normal distribution

√
ki
Q(si → sij)− P(si → sij)√

σ2
ij

→ N(0, 1) for ki →∞ (9)

Therefore, we can approximate Q(si → sij) as follows

Q(si → sij) ≈ P(si → sij) +

√
σ2
ij

ki
Zij (10)

where Zij ∼ N(0, 1), j = 1, . . . , li − 1 are normally distributed random variables. Hence Equation (10)
allows us to quantify the error of transition probability estimate Q(si → sij).

We next define a function that reflects cross-entropy between probability distributions P and
Q, then using the Expression (10) and the Taylor expansion, we show that cross-entropy can be
approximated with a sum of entropy rate and gamma distributed random variables. Let pr ∈ [0, 1],

r = 1, . . . , li,
∑li

r=1 pr = 1 and we denote with f{p} : Df{p} → R the function that reflects the cross
entropy between P and Q

f{p}(ε1, . . . , εli−1) =

li−1∑

r=1

pr log(pr + εr) + (1−
li−1∑

r=1

pr) log
(
1−

li−1∑

r=1

(pr + εr)
)

(11)

where Df{p} is the natural domain of function f{p} such that the Expression (11) is well defined. Using a
Taylor expansion up to second order for function f{p} we obtain the following approximation

f{P(si→·)}



√
σ2
i1

ki
Zi1 , . . . ,

√
σ2
ili−1

ki
Zili−1


 ≈

li∑

j=1

P(si → sij) log
(
P(si → sij)

)
−

(Zi1 + · · ·+ Zili−1
)2

2ki

Hence, assigning the transition probabilities of Ŵ to equal

Ŵ = [Q(si → sij)] si, sij ∈ S (12)

and using the approximation of stationary distribution for state si

µsi ≈
ki
N

(13)
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we obtain the approximation of the cross-entropy

H(W, Ŵ ) = −
M∑

i=1

µsi

( li∑

j=1

log
(
Q(si → sij)

)
P(Si → sij)

)

≈ −
M∑

i=1

µsi

( li∑

j=1

log
(
P(si → sij) +

√
σ2
ij

ki
Zij

)
P(si → sij)

)

≈ −
M∑

i=1

µsif{P(si→·)}



√
σ2
i1

ki
Zi1 , . . . ,

√
σ2
ili−1

ki
Zili−1




≈ H(W ) +
1

2N

M∑

i=1

(Zi1 + · · ·+ Zili−1
)2 (14)

Returning to the Kullback-Leibler divergence between transition probability matrices W and Ŵ we
obtain the approximate distribution

DKL(W ||Ŵ ) = −H(W ) +H(W, Ŵ )

≈ −H(W ) +H(W ) +
1

2N

M∑

i=1

(Zi1 + · · ·+ Zili−1
)2

=
1

2N

M∑

i=1

(Zi1 + · · ·+ Zili−1
)2 (15)

We know that the squared sum of normally distributed random variables has χ2 distribution, the
sample mean of n independent, identical χ2 random variables of degree 1, is gamma distributed with
shape n

2
and scale 2

n
(see [16]), therefore we obtain that the distribution of Kullback-Leibler divergence

is approximately

DKL(W ||Ŵ ) ∼
M∑

i=1

Γ

(
Mi(i− 1)

2
,

1

N

)
(16)

where Mi is the number of states with i possible transitions

Mi = |{s : P(s→ sk) > 0, k = 1, . . . , i}| (17)

N is the number of the transitions and | · | is the counting operator. In other words, the approximate
distribution is a sum of gamma distributed random variables with parameters Mi(i−1)

2
and 1

N
,

i = 1, . . . ,M . We stress that the distribution derived in Equation (16) does not depend on the actual
transition probability matrices W and Ŵ , but only on the number of transitions N in the sample and Mi

the number of states with i possible transitions, i = 1, . . . ,M .
The distribution of Kullback-Leibler divergence presented in Equation (16) is indeed an

approximation, as we have used the central limit theorem for convergence of probability sampling, a
Taylor expansion related to the cross-entropy and approximation of stationary probabilities.

In order to evaluate the quality of the distributional approximation we have performed numerical
simulations and compared the density of the approximate distribution in Equation (16) with density
obtained through Monte Carlo simulations. We have generated densities of Kullback-Leibler divergence
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through Monte Carlo simulations for 2-by-2, 3-by-3, 4-by-4 and 5-by-5 transition probability matrices
modeling first order Markov processes. The matrix W is selected in a random manner and we generate
50,000 realizations ofDKL(W ||Ŵ ), whereas Ŵ is obtained through sampling from the time series drawn
from W , while N , the number of transitions, is set to 1000, 2500, 5000 and 10, 000, respectively.

Figure 1 shows a good agreement between Monte Carlo simulations and approximation Equation (16).
We conclude that Equation (16) is suitable for approximating Kullback-Leibler divergence distributions.
We note that there is a slight divergence between the numerically simulated density and the
approximation, for the 2-by-2 matrices.
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Figure 1. Graph of densities for Kullback-Leibler divergence obtained through Monte
Carlo simulations and approximation (Equation (16)), for 2-by-2, 3-by-3, 4-by-4 and 5-by-5
transition probability matrices. The number of transitions N is set to 1000, 2500, 5000 and
10, 000 corresponding to red, blue, green and yellow curves, while the black curves draw the
approximate density of distribution as DKL(W ||Ŵ ) ∼∑M

i=1 Γ
(

Mi(i−1)
2

, 1
N

)
.

3. Information Memory Loss

In this section, we present a novel method to evaluate memory within time series modeled as discrete
Markov processes. First, we describe the procedure of Markov process extensions, whereas we extend
the transition probabilities of Markov process to arbitrary high order. Applying the results presented
in Section 2 on distributional properties of Kullback-Leibler divergence, we introduce an information
theoretic measurement termed information memory loss that describes the memory content within time
series modeled as discrete Markov process. We present the measurement on toy examples and on FX
data during the unraveling of 2008 financial crisis.



Entropy 2015, 17 2613

We start by describing the procedure to compare Markov processes of different orders. Let W denote
the transition probability matrix of order k

W = [P ((sik → · · · → sil → · · · → si1)→ s1)] si, si1 , . . . , sik ∈ S (18)

and let W ′ denote the transition probability matrix of order l

W ′ = [P ((sil → · · · → si1)→ s1)] (19)

Let us assume, without loss of generality that l < k. We extend the lower l-th order Markov process
to a k-th order Markov process by assigning the new probabilities

Q ((sik → · · · → sil → · · · → si1)→ s1) = P ((sil → · · · → si1)→ s1) . (20)

In other words, we create an artificial k-th order Markov process prescribed by transitions
probabilities Q ((sik → · · · → sil → · · · → si1)→ s1) whereas the transition probabilities are ignorant
of the history beyond the l-th state, since they are set by transition probabilities of the l-th order Markov
process. Therefore, if we denote with Ŵ the transition probability matrix of the extended k-th order
Markov process, we obtained two matrices W and Ŵ , both of k-th order

W = [P ((sik → · · · → sil → · · · → si1)→ s1)] (21)

Ŵ = [Q ((sik → · · · → sil → · · · → si1)→ s1)]. (22)

We refer to the mentioned procedure as Markov process extension and are set to compare matrices of
Markov processes of different orders.

According to the results on distributional properties of Kullback-Leibler divergence presented in
Section 2, viewing the transition probability matrix Ŵ as an estimate from a finite time series drawn
from W , the Kullback-Leibler divergence DKL(W ||Ŵ ) has the following approximate distribution
(Equation (16)). We denote with FΓ the cumulative distribution function of sum of gamma distributed
random variables with parameters Mi(i−1)

2
and 1

N
, i = 1, . . . ,M and we call the percentile

Iml = FΓ

(
DKL(W ||Ŵ )

)
(23)

information memory loss. Hence, the Iml is an information theoretic measurement of memory embedded
within the time series. Values close to 0 indicate the lower order Markov is suitable approximation for the
higher order Markov process, as there is no loss of information using the lower order Markov process.
On the other hand, values close to 1 indicate the lower order Markov process does not appropriately
approximate the higher order Markov process, implying there is significant memory embedded within
the process beyond what is modeled by the lower order Markov process.

The Iml provides us with a procedure to establish optimal order of Markov process. Given a sample
time series, we estimate the transition probability matrix W of the (l + 1)-th order Markov process and
we estimate transition probability matrix Ŵ of the l-th order Markov process. Then we compute Iml and
for a pre-specified level of significance α ∈ [0, 1] we either accept or reject the hypothesis that there is no
loss of information if we use a lower order process to approximate a higher order process. In other words,



Entropy 2015, 17 2614

if Iml > 1 − α we reject the hypothesis that l-th order process adequately approximates an (l + 1)-th
order process. We repeat this procedure for all l > 1, until we no longer reject the hypothesis for a
pre-specified level of significance α and chose the last l as the optimal order of the Markov process.

We address the Iml measurement against three methods for determining the optimal order of Markov
process: AIC [8], BIC [9] and χ2 test [10]. AIC has had a fundamental impact in statistical model
evaluation problems and has been applied to the problem of estimating the order of autoregressive
processes and Markov processes. The estimator was derived as an asymptotic estimate of the
Kullback-Leibler divergence. AIC is the most used and successful estimator of the optimal order of
Markov process at the present time, as it performs better than BIC estimator for samples of relatively
small size. Both AIC and BIC do not provide a test of a model in the sense of testing a null hypothesis,
i.e., they can tell nothing about the quality of the model in an absolute sense—order selection is heuristic
as the order estimator is usually defined as the minimizing value of this information criterion. χ2 test
can evaluate that a Markov process is of a given order against a larger order. In particular, with it we
can test the hypothesis that a process has rth-order against (r + 1)th-order, until the test rejects the
null hypothesis and then choose the last r as the optimal order. We note that as the χ2 test relies on
asymptotic distribution of χ2 statistics, it does not take into account the sample size. On the other hand,
the Iml is a theoretical information measurement that determines the optimal order of a Markov process
in an absolute sense, i.e., it provides a statistical test, and it takes into account both the sample size and
the number of estimated parameters.

To illustrate the measurement, we first present the Iml on a toy examples where we prescribe the
order of a Markov process, and then evaluate the suitable order. We arbitrarily set the Markov process
to be of fifth order, i.e., the history of previous five states impacts the transition probabilities to next
possible states, while the transition probability matrix is set in a random manner. Equipped with this
process, we then generate a time series of 1000 transitions, and estimate both W and Ŵ . For each
pair of lower and higher order Markov processes we repeat the procedure 10, 000 times and obtain
the average Kullback-Leibler divergence and compute the Iml. Table 1 reports Iml values, along with
Kullback-Leibler divergence in brackets, for all possible combinations of lower and higher order Markov
processes. As we can notice, the Iml correctly diagnoses suitable order of the Markov process—for all
cases when the lower order is less than five, the measurement has a value of 1, indicating that the lower
order process does not correctly approximate the higher order process, as there is memory embedded
within the process that is not correctly modeled by a Markov process of order smaller than five. For
the purpose of comparison to other methods, we have also used AIC, BIC and χ2 test to determine the
optimal order on the toy example. χ2 test correctly identifies that the Markov process is of fifth order.
On the other hand, both AIC and BIC do not correctly identify the optimal order of Markov process in
all evaluated cases. For instance, both methods claim that the second order Markov process is the best
approximation of the seventh order Markov process-false, as we have prescribed the Markov process
to be of fifth order. We note that the mistake might be due to heuristic order selection criteria for AIC
and BIC.

Second, we illustrate the dynamics of Iml within an empirical setting, on the AUD/JPY exchange
rate during the unfolding of 2008 financial crisis. Financial time series returns exhibit fast decaying
autocorrelation function[18] and nonlinearity [19], hence we find it suitable to model the price trajectory
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with low order Markov process and evaluate price trajectory with information theoretic measurements. If
the dynamics of the financial time series rapidly changes, we try to capture it with a fourth order Markov
process. We map the exchange rate price trajectory onto an 0.025% price grid, therefore the state space
S consists of two states 0 and 1; 0 denotes a downward price move of 0.025% while 1 denotes an
upward price move of 0.025%. Assigning the price grid in the mentioned manner assures that according
to empirical scaling laws [23], on average we have a transition every 8 s. We chose a sliding window of
one day, and with the transitions within the sliding window we estimate the transition probability matrix
W = [P ((si4 → · · · → si1)→ si)] as a fourth order Markov process

P ((si4 → · · · → si1)→ si) =
n(si4→···→si1 )→si

n(si4→···→si1 )→·
(24)

and another transition probability matrix W ′ describing a first order Markov process estimated as

P(si1 → si) =
nsi1→si

nsi1→·
(25)

where n(si4→···→si1 )→si and nsi1→si denotes the number of transitions within a sliding time window of
one day with dynamics (si4 → · · · → si1)→ si and si1 → si, respectively and

n(si4→···→si1 )→· =
∑

s∈S

n(si4→···→si1 )→s

nsi1→· =
∑

s∈S

nsi1→s.

In other words, the matrix W contains the memory of price trajectory from the four previous states,
while the matrix W ′ contains the memory only of the current state. We then extend the lower, first order
Markov process as described in Equation (20) and compute the Kullback-Leibler divergence to obtain
the Iml. The sliding window is moved forward by one hour, each time obtaining transitions for estimation
procedure described above.

Table 1. The table presents the Iml and Kullback-Leibler divergence in brackets, for all
possible combinations of higher and lower order Markov processes.

Ŵ (Lower Order Markov Process)
1st 2nd 3rd 4th 5th 6th

W

higher
order
Markov
process

2nd 0.99 (0.02) - - - - -
3rd 1.00 (0.07) 1.00 (0.28) - - - -
4th 1.00 (0.11) 1.00 (0.31) 1.00 (0.30) - - -
5th 1.00 (0.17) 1.00 (0.34) 1.00 (0.32) 1.00 (0.14) - -
6th 1.00 (0.16) 1.00 (0.32) 1.00 (0.30) 1.00 (0.14) 3.22× 10−6(0.02) -
7th 0.99 (0.14) 1.00 (0.29) 1.00 (0.27) 0.98 (0.13) 7.87× 10−22(0.02) 4.91× 10−51(0.01)

Figure 2 shows the tick-by-tick AUD/JPY exchange rate (black curve) during the period from August
2008 till end of November 2008, along with the Iml (blue curve) and Iml smoothed with 20 point moving
average (orange curve). While during the month of August 2008 as the exchange rate was slowly moving
lower, the measurement gently oscillated around values close to zero, indicating the AUD/JPY exchange
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rate exhibits usual property of fast decaying autocorrelation. The rapid decline in the exchange rate
of almost 30% corresponds to the month of September 2008 when the measurement has a value close
to 1, indicating that the lower order Markov process is not a good approximation of the higher order
Markov process. In other words, over this dramatic period the price movement as mapped onto a fixed
grid exhibits memory beyond the first order Markov process. This is intuitive as the sharp downward
movement of the FX rate, when autocorrelation drastically increases, cannot be captured by low order
Markov processes. As it turns out, during the month of September 2008 many financial markets around
the world crashed as Lehman Brothers filed for bankruptcy, and our measurement seems to be able to
capture this unusual activity.
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Figure 2. The AUD/JPY exchange rate (black curve) during the unfolding of 2008 financial
crisis, the Iml (blue curve) and Iml smoothed with 20 point moving average (orange curve),
whereas W is estimated as a fourth order Markov process, while Ŵ is estimated as a first
order Markov process.

4. Information Codependence Structure

In this section we present a novel method to evaluate co-dependence among times series modeled as
Markov processes. We construct a transition probability matrix that assumes no co-dependence among
the transitions of Markov processes, and applying the results presented in Section 2 on distributional
properties of Kullback-Leibler divergence we introduce an information theoretic measurement that
indicates the co-dependence structure among Markov processes. We illustrate the application of the
measurement on a toy example and on EUR/USD and USD/CHF exchange rates during 2010/2011 Euro
crisis, when USD/CHF weakened almost 20% in one month.

We start by presenting how to create a process comprised of Markov processes, a joint Markov
process. Let us assume we have m Markov processes with states denoted as si ∈ Si and let
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Wi, i = 1, . . . ,m denote the accompanying transition probability matrices. We construct the states
s ∈ S1 × · · · × Sm of joint Markov process in the following manner

s = (s1, . . . , sm) ∈ S1 × · · · × Sm (26)

Therefore, the transition probability matrix of a joint Markov process is denoted with W

W = [P(s′ → s′′)] s′, s′′ ∈ S1 × · · · × Sm (27)

We assume that when a transition occurs on the joint Markov process, it is a manifest of transition on
some i-th Markov process. In other words, only one Markov process can experience a transition at any
given moment.

We now present the construction of the structureless transition probability matrix that assumes
no co-dependence structure among the transitions of Markov processes comprising the joint Markov
process. For simplicity, we present the derivation when the transitions are modeled as a first order
Markov processes, stressing the procedure is the same in case the transitions are modeled as higher order
Markov processes.

Let s′ = (s′1 . . . , s
′
m), s′′ = (s′′1, . . . , s

′′
m) ∈ S1 × · · · × Sm and we observe the following transition

probability
P(s′ → s′′) (28)

The underlying dynamics of transitions on the joint Markov process implies that the transition occurs
on some i-th Markov process, therefore the probability in Equation (28) equals

P(s′ → s′′) = P ({s′ → s′′} ∩ {i-th Markov process transitioned}) (29)

= P ({s′ → s′′}|i-th Markov process transitioned)P (i-th Markov process transitioned)

(30)

In case there is no dependence among the Markov process the resulting probability equals

Pi(s
′
i → s′′i )P (i-th Markov process transitioned) (31)

where the probability Pi(s
′
i → s′′i ) is obtained from Wi of i-th Markov process, since independence

implies that the transitions in i-th Markov process does not depend on states on other Markov processes.
We need to obtain the probability P (i-th Markov process transitioned); we denote with s(1)

i , . . . , s
(ki)
i

the possible transitions from state s′i (with s′′i being one of them) and letN(s′i → s
(j)
i ) denote the number

of transitions in the sample from s′i to s(j)
i . Therefore, the aforementioned probability equals

P (i-th Markov process transitioned) =

∑ki
j=1N(s′i → s

(j)
i )

∑m
l=1

∑kl
j=1N(s′l → s

(j)
l )

(32)

We denote the structureless transition probability matrix with W1⊕ . . .⊕Wm and set the transition
probabilities to

W1⊕ . . .⊕Wm = [Pi(s
′
i → s′′i )P (i-th Markov process transitioned)] s′i, s

′′
i ∈ Si, i = 1, . . . ,m (33)
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Hence the matrix W1⊕ . . .⊕Wm models the transitions of a joint Markov process assuming there is
no co-dependence structure among Markov processes i = 1, . . . ,m.

We denote with FΓ the cumulative distribution function of Kullback-Leibler divergence distribution
presented in Equation (16). We call the percentile

Ics = FΓ

(
DKL(W ||W1⊕ . . .⊕Wm)

)
(34)

information codependence structure that provides information theoretic measurement of co-dependence
among Markov processes i = 1, . . . ,m comprising the joint Markov process.

In order to validate the Ics as a method to evaluate the co-dependence among Markov processes, we
test it on a toy example where two Markov processes are Brownian motions linked by a correlation
coefficient ρ

dSi
t = σdW i

t , i = 1, 2 (35)

〈dW 1
t , dW

2
t 〉 = ρ (36)

where the volatility σ is set to 25% and we vary ρ along an equidistant grid, from −1.0 to 1.0 with a
step of0.01, obtaining a total of 201 values. We map the price movement of both time series onto a
fixed grid of 0.1%, where 1 denotes an upward move of 0.1% while 0 denotes a downward move of
0.1%. Therefore, both Markov processes have the state space Si = {0, 1}, i = 1, 2 and we can create
the joint Markov process with state space S1 × S2 = {0, 1}2. We generate 1500 transitions for the joint
Markov process, estimate the joint transition probability matrix W , construct the structureless transition
probability matrixW1⊕W2 and compute the Kullback-Leibler divergenceDKL(W ||W1⊕W2). We repeat
this procedure 10, 000 times and obtain the average Kullback-Leibler divergence, finally computing Ics.

Figure 3 graphs the average Kullback-Leibler divergence and the Ics as a function of correlation
coefficients ρ. We notice that for values of ρ smaller than −0.10 and larger than 0.10, the measurement
correctly identifies the Markov processes are in fact not independent as the Ics has a value of 1. For the
values of correlation within interval [−0.10, 0.10] the measurement is not able to identify co-dependence.
As we would increase the number of transitions, the procedure would be able to identify co-dependence
for values of correlation within [−0.10, 0.10].

We illustrate the dynamics of the Ics on the EUR/USD and USD/CHF exchange rates during
the unfolding of 2010/2011 Euro Crisis, when USD/CHF weakened almost 20% in one month. The
codependence between financial time series returns exhibits Epps effect, the phenomenon that the
empirical correlation decreases as sampling frequency increases [20]. The phenomenon is caused by
asynchronous trading, nonlinearity, discretisation and herding behavior [21,22]. Therefore, we find the
event based framework and information theoretic measurement suitable for capturing codependence
among financial time series. We map both exchange rate price trajectories onto an 0.025% price grid:
downward move of 0.025% is denoted with 0, while an upward move of 0.025% is denoted with 1.
Assigning such a price grid assures that according to empirical scaling laws [23], on average the
transitions on the joint Markov process occur approximately every 4 seconds. The Markov process,
both for EUR/USD and USD/CHF exchange rate have the state space Si = {0, 1}, i = 1, 2 and we create
the joint Markov process with state space S1 × S2 = {0, 1}2. We arbitrary model the transitions on
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both the joint Markov process and Markov processes i = 1, 2 describing the transitions on individual
exchange rates as third order processes

W = [P
(
(s4 → s3 → s2)→ s1

)
] (37)

Wi = [P
(
(s4

i → s3
i → s2

i )→ s1
i

)
], i = 1, 2 (38)

We choose the sliding time window for transitions to equal one day and use the transitions within the
sliding window to estimate the transition probabilities

P
(
(s4 → s3 → s2)→ s1

)
=
n(s4→s3→s2)→s1

n(s4→s3→s2)→·
(39)

P
(
(s4

i → s3
i → s2

i )→ s1
i

)
=
n(s4i→s3i→s2i )→s1i

n(s4i→s3i→s2i )→·
, i = 1, 2 (40)

where n(s4→s3→s2)→s1 denotes the number of transitions within the sliding time window on the joint
Markov process with dynamics (s4 → s3 → s2) → s1, and n(s4i→s3i→s2i )→s1i

denote the number of
transitions the sliding time window on i-th Markov process with dynamics (s4

i → s3
i → s2

i ) → s1
i ,

i = 1, 2 and
n(s4→s3→s2)→· =

∑

s∈S1×S2

n(s4→s3→s2)→s (41)

n(s4i→s3i→s2i )→· =
∑

s∈Si

n(s4i→s3i→s2i )→s, i = 1, 2 (42)

The sliding window is moved forward by one hour, each time obtaining transitions for estimation
procedure described above. We construct the structureless transition probability matrix W1⊕W2 as
described above, compute the Kullback-Leibler divergence DKL(W ||W1⊕W2) and obtaining the Ics.
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Figure 3. The upper graph shows the Kullback-Leibler divergence, while the lower graph
shows the Ics, between the joint Markov process modeled by W and its independent
counterpart modeled by the structureless transition probability matrix W1⊕W2, as a function
of correlation coefficient ρ linking two time series together.
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Figure 4. The figure graphs the EUR/USD (blue) and USD/CHF (orange) exchange
rate during the unfolding of 2010–2011 Euro Crisis and hourly Ics (green curve) and Ics
smoothed with 20 point moving average (red curve), whereas all processes are modeled as
third order Markov processes.

In Figure 4, the upper graph shows tick-by-tick EUR/USD (blue curve) and USD/CHF (orange curve)
exchange rates during the period from January 2010 till January 2012. In the lower graph the green curve
graphs hourly Ics, while the red curve graphs hourly Ics smoothed with a 20 point moving average. For
the first six months of year 2010 the measurement Ics had a value of 1 indicating the exchange rate
movements as mapped onto a fixed grid are not independent; this is intuitive as the exchange rates
during that period look as mirror images of each other. In other words, the exchange rates were strongly
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codependent. For the period of next twelve months the measurement experiences periods that indicate the
co-dependence is breaking apart, which finally culminated in the month of July 2011, as the USD/CHF
exchange rate weakened by almost 20%. During the mentioned period Figure 4 shows that the exchange
rates ceased to look as mirror images of each other—the USD/CHF exchange rate started its depreciation
and there are several moments when Ics briefly dropped indicating the codependence is weakening. It is
easy to notice from the upper graph that from July till October 2011 the exchange rates codependence
broke apart as the USD/CHF significantly weakened, while the EUR/USD moved in a narrow range.
The Swiss National Bank intervened in the FX market on 6 September 2011 to stop the strengthening
of the Swiss Franc, at which point the exchange rate codependence re-emerged and the Ics achieved
again a value of 1. We have also computed correlation and mutual information on 5 min logarithmic
returns, with a sliding window of one day, noticing both measurement oscillate a lot more than Ics, even
during period from January 2010 till July 2010, when it is clear EUR/USD and USD/CHF exhibit strong
negative codependence.

5. Conclusions

We have presented novel information theoretic based methods to determine the optimal order as well
as co-dependence relationships between Markov processes. To establish the new measurements, we have
derived an approximate for the distribution of Kullback-Leibler divergences between an known transition
probability matrix and its sample estimate, as a sum of gamma distributed random variables that has
been validated with Monte-Carlo simulations. We have tested the validity of both measurements by
considering toy examples as well as empirical financial data.
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