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Abstract: The Fisher information constitutes a natural measure for the sensitivity of a
probability distribution with respect to a set of parameters. An implementation of the
stationarity principle for synaptic learning in terms of the Fisher information results in a
Hebbian self-limiting learning rule for synaptic plasticity. In the present work, we study the
dependence of the solutions to this rule in terms of the moments of the input probability
distribution and find a preference for non-Gaussian directions, making it a suitable candidate
for independent component analysis (ICA). We confirm in a numerical experiment that a
neuron trained under these rules is able to find the independent components in the non-linear
bars problem. The specific form of the plasticity rule depends on the transfer function
used, becoming a simple cubic polynomial of the membrane potential for the case of the
rescaled error function. The cubic learning rule is also an excellent approximation for other
transfer functions, as the standard sigmoidal, and can be used to show analytically that
the proposed plasticity rules are selective for directions in the space of presynaptic neural
activities characterized by a negative excess kurtosis.
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1. Introduction

Many living systems, such as neurons and neural networks as a whole, are guided by overarching
constraints or principles. Energy [1] and metabolic costs [2] for the information processing of the brain
act in this context as basic physiological constrains for the evolution of neural systems [3,4], making,
e.g., efficient coding [5,6] a viable strategy.

Metabolic costs can be considered as special cases of objective functions [7], which are to be
minimized. Objective functions can however be used in many distinct settings; for example, to guide
data selection [8] in engineering applications [9] or to guide learning within neural networks in
terms of synaptic plasticity rules by minimizing an appropriate combination of moments of the neural
activity [10].

Objective functions can also be formulated in terms of the probability distribution of the neural
activity [11], allowing the formulation of information theoretical generative functionals for behavior
in general [12–16], for neural activity [17,18], for the derivation of neural plasticity rules in terms of
maximizing the relative information entropy [19] or the mutual information [20–22], and for variational
Bayesian tasks of the brain through free energy minimization [23].

1.1. Combining Objective Functions

A fundamental question in the context of guiding principles for dynamical systems regards the
combination of several distinct and possibly competing objective functions. For a survey of optimization
in the context of multiple objective functions, see [9]. For discreteness, we start by considering a generic
neural model in which the state of the system is determined by the neural activity yi of neuron i, by the
intrinsic parameters aki = (â)ki (with k = 1, 2, . . . indexing the different internal degrees of freedom)
of the neurons and by the inter-neural synaptic connectivity matrix wij = (ŵ)ij . Within the objective
functional approach, one considers evolution equations:

ẏi = − ∂
∂yi
Fact(y, â, ŵ)

ȧki = − ∂
∂aki
F int(y, â, ŵ)

ẇij = − ∂
∂wij
F syn(y, â, ŵ)

(1)

for the full dynamical neural system, where there is a specific objective function Fα(y, â, ŵ) for every
class α ∈ {act, int, syn} of dynamical variables. It is important to note that an overarching objective
function like:

Fact(y, â, ŵ) + F int(y, â, ŵ) + F syn(y, â, ŵ), (2)

does generically not exist. In a biological system, each objective function Fα may represent a different
regulatory mechanism whose coupling occurs only through the biological agent itself [18]. Indeed, how
exactly these mechanisms interact in neural systems, when formulated in terms of learning rules for
intrinsic and synaptic plasticity, has been subject of study in recent years [19,24]. Furthermore, for a
stationary input distribution, such an overarching functional would result in a gradient system having
only point attractors, since limit cycles are not possible in gradient systems [25]. Therefore, a formalism



Entropy 2015, 17 3840

F syn ⇐ Fisher information
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Figure 1. Organigram of the approach followed. The objective function F syn for synaptic
plasticity studied here can be motivated by the Fisher information for the synaptic flux. The
resulting plasticity rule ẇj for the synaptic weights will then be investigated both through
simulations and using a cubic approximation in x (which becomes exact, when using the
error functions as a transfer function y(x) = σ(x − b); see Section 2.2), which allows one
to derive analytic results for the dependence of the synaptic adaption with respect to the
kurtosis of the input statistics.

aiming to reproduce the wide variety of behaviors found in natural neural systems cannot be formulated
as a gradient system of a single overarching objective function.

One needs to keep in mind, however, that it is often not possible to evaluate rigorously gradients of
non-trivial objective functions, as in Equation (1). Generating functionals are hence implemented, in
many cases, only approximatively. For the case of information theoretical incentives, as considered in
the present work, objective functions are, in addition, formulated in terms of time-averaged statistical
properties, and the gradient descent can hence be achieved only through a corresponding time average.

1.2. Hebbian Learning in Neural Networks

Within the neurosciences, synaptic plasticity is generally studied under the paradigm of Hebbian
learning [26], stating generically that neurons that fire together, wire together. Depending on whether
one considers the frequency (also denoted firing rate), or the timing, of spikes, this principle can have
different interpretations. In terms of the firing frequency of neurons, Hebbian learning is understood
as a strengthening of the synaptic connection between two neurons (known as potentiation) when both
neurons have simultaneously a high activity level or a weakening (depression) of the connectivity if the
respective periods of high and low activity do not match [10,27]. In the case of spike timing-dependent
plasticity (STDP) [28,29], where synaptic modification is expressed as a function of the precise timing
of spikes, on the other hand, the principle of Hebbian learning is understood in terms of causality, stating
that a directional synaptic connection should be potentiated if two neurons fire in a causal order, and
depressed otherwise [30,31].

In the present work, we consider rate-encoding neurons and, therefore, formulate plasticity in terms of
an information theoretical measure of the activity distribution, or alternatively, in terms of the moments
of this distribution. While the requirement of any such rule with respect to the Hebbian principle of
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learning will naturally constrain the manifold of learning rules, the particular details of each rule will
determine its functionality. Oja’s rule [27], for instance, is tailored to find the first principal component
of a multi-dimensional input distribution. The rules we present in this paper, while able to find the
first principal component of a distribution under certain conditions, as we show in [32], will generically
perform an independent component analysis by selecting directions of maximal non-Gaussianness.

1.3. Instantaneous Single Neuron

In order to concentrate on the generating principle for synaptic plasticity, we consider here a single
instantaneous point neuron, defined by an activity level y,

y = σ(x− b), σ(z) =
1

1 + e−z
, x =

Nw∑
j=1

wj(yj − ȳj) , (3)

representing the average firing rate of the neuron, where σ(z) is a monotonically increasing sigmoidal
transfer function, denoted in physics as the Fermi function, that converts the total weighed input x (also
referred to as the membrane potential of the neuron) into an output activity. Nw represents the number
of incoming inputs yj , which represent in this case either an external input or the activities of other
neurons in a network. b is a bias in the neuron’s sensitivity, and ȳj represents the (trailing) average of the
input activity, such that only deviations from this average contribute to the integrated input. An objective
function for the neural activity is, in this case, not present, and the evolution Equations (1) reduce to: ḃ = −εb ∂

∂b
F int(y, b,w)

ẇj = −εw ∂
∂wj
F syn(y, b,w)

with y = σ
(∑

wj (yj − ȳj)− b
)
, (4)

where we are left only with the objective function for the intrinsic F int and for the synaptic F syn

plasticity. Here, we have, with εb and εw, separated the adaption rates from the definition of the respective
objective functions.

1.4. Information Theoretical Incentives for Synaptic Plasticity

In the context of stochastic information processing systems, tools from information theory, such as
the entropy of a given code or the mutual information between input and output [8], permit one to
formulate objective functions for learning and plasticity in terms of the probability distributions of
the stochastic elements that constitute the system [6,10–12,14,18,19]. Principles such as maximizing
the output entropy of a system to improve the representational richness of the code [19], maximal
information transmission for signal separation and deconvolution in networks [33] or maximal predictive
information within the sensorimotor loop as a guiding principle to generate behavior [34], have proven
successful in the past in both generating new approaches to learning and plasticity and in furthering the
understanding of already available rules, integrating them into a broader context by formulating them in
terms of a guiding principle [10].

In the present work, we discuss a novel synaptic plasticity rule [32] resulting in self-limiting Hebbian
learning and its interaction with known forms of intrinsic plasticity [19,35]. The novelty of this approach
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relies on the objective function employed, which can be derived from the Fisher information [36] of
the output probability distribution with respect to a synaptic flux operator, as shown in Section 2.3.
In previous work [32,37], we had shown numerically how a non-linear point neuron employing the
Fermi function or the inverse tangent as its transfer function from membrane potential to output activity
was able to find the first principal component of an ellipsoidal input distribution, but showed a preference
for directions of large negative excess kurtosis otherwise. In the present work, however, we show how, by
use of the rescaled error function as a transfer function y(x) = σ(x−b), the resulting learning rule, while
qualitatively equivalent to the ones previously studied, takes the form of a simple cubic polynomial in the
membrane potential x. This fact, as we will show, represents an important step forward, since it allows
us to study the attractors of the learning procedure and their stability analytically. In particular, the rule
is shown to have interesting properties in terms of the moments of the input distributions, resulting in a
useful tool for independent component analysis, which is thought to be of high relevance for biological
cognitive systems [27,38,39].

It is worth mentioning at this point that, while the Fisher information is usually associated with the
task of parameter estimation via the Cramér–Rao bound [40–42], it generically encodes the sensitivity
of a probability distribution with respect to a given parameter, making it also a useful tool, both in
the context of optimal population codes [43–45], or as here, for the formulation of objective functions.
Indeed, this procedure has been successfully employed in the past in other fields, to derive, for instance,
the Schrödinger equation in quantum mechanics [46].

We will start in the following, as illustrated in Figure 1, with the primary objective function F syn

for synaptic plasticity, discussing its relation with the Fisher information for the synaptic flux later on
in Section 2.3. Simulation results of the synaptic adaption rules will then be presented in Section 3,
in comparison with the results obtained using an analytically-treatable cubic approximation in the
membrane potential, as presented in Section 2.1.

2. Objective Functions for Synaptic Plasticity

Our primary objective function for synaptic plasticity is [32]:

F syn = E
[(
N + x (1− 2y)

)2]
, (5)

where E[.] denotes the expected value with respect to the input probability distribution, which can be
equated to a time-average whenever the input probability distributions are stationary. The objective
function F syn can be expressed entirely in terms of either x or y, which are related by Equation (3). The
current form Equation (5) is chosen just for clarity. In Section 2.3, we show how F syn can be derived
from the Fisher information with respect to an operator denoted as the synaptic flux operator.

From Equation (5), one can derive easily, via stochastic gradient descent, the update rule:

ẇj = εwG(x)H(x)(yj − ȳj), (6)

with H(x) = −G′(x) and:

G(x) = N + x(1− 2y(x)), H(x) = (2y(x)− 1) + 2x(1− y(x))y(x) . (7)
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Figure 2. (a) The plasticity functions G and H , as defined by Equation (7), here expressed
entirely in terms of the output activity y ∈ [0, 1], for clarity. H represents the Hebbian
contribution of the rule, with G acting as a limiting factor, reverting the sign of Equation (6)
for activity values close to 0/1. (b) Plot of the learning rule from Equation (6) together with
the cubic approximation (Equation (8)), expressed this time as a function of the membrane
potential x. Parameters: b = 0 and N = 2.

N is a parameter that allows one to shift the positions of the roots of G. The synaptic functions G and
H can also be entirely expressed either in terms of x or y, as shown in Figure 2. For N = 2, the two
synaptic functions are proportional to each other’s derivatives, G(x) = 2y(1 − y)H ′(x), viz. they are
conjugate to each other [32].
H(y) is an essentially linear function of positive slope throughout most of the activity range of the

neuron; see Figure 2a, saturating only for y → 1/0. The product H(y)(yj − ȳj) constitutes hence
the Hebbian part of the plasticity rule (Equation (6)), resulting in an increase of the synaptic weight
whenever the input yj and the output y are correlated.

The plasticity function G(y), however, reverts the sign of the learning rule if the activity level
approaches the extremes, y → 1/0, serving hence as a limiting factor. The process hence adapts
the synaptic weights over time, such that the the membrane potential x remains close to the roots of
G(x). The synaptic weight will consequently also remain finite, making the adaption rules (Equation (6))
self-limiting.

2.1. Cubic Approximation

In order to describe the stationary solutions of Equation (6) in terms of the moments of the input
probability distributions, we consider a polynomial expansion in x. The two roots ±x0 of the limiting
function G(x) (compare Figure 2a) are symmetric for the case b = 0, considered in the following, and
scale ∼ N for large N [32]. The Hebbian function H(x) has, on the other hand, only a single root at
x = 0 (viz at y = 0.5), for b = 0. We are then led to the cubic approximation:

ẇj = εwG(x)H(x)(yj − ȳj) ≈ − εwx(x− x0)(x+ x0)(yj − ȳj)/N2

= εwx(x20 − x2)(yj − ȳj)/N2
(8)

of Equation (6). Note, that the scaling factor 1/N2 > 0 could also be absorbed into the adaption rate εw.
In Figure 2b, the learning rule from Equation (6) is compared to the cubic approximation (Equation (8)).
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For convenience, we denote γj = (yj − ȳj), and compute with:

〈ẇj〉 = εw
1

N2
E

γj
( Nw∑

i=1

wiγi

)
x20 −

(
Nw∑
i=1

wiγi

)3
 , (9)

the time-averaged expectation value of the synaptic weight changes, equating the time average with the
statistical averageE[.] over the distributions p(yj) of the input activities yj . We now assume uncorrelated
and symmetric input distributions,

E[γiγj] = 0 = E[γki ] , k = 1, 3, 5, . . .

The odd moments hence vanish. Here, it is important to note that any learning rule defined purely
in terms of the overall input x = w · γ will be fully rotational invariant. Therefore, the result does not
depend on the direction one chooses for the PCs. In particular, if one chooses the principal components to
lie along the axes of reference, one can eliminate the linear correlation terms, without loss of generality.

The synaptic weights are quasi-stationary for small adaption rates εw → 0, and we obtain:

〈ẇj〉 = εw
1

N2
wjσ

2
j

(
x20 − w2

jσ
2
jKj − 3Φ

)
(10)

from Equation (9), where we have defined with:

σ2
j = E[γ2j ], Kj =

E[γ4j ]

σ4
j

− 3, Φ =
∑
j

w2
i σ

2
j (11)

the standard deviation (SD) σj of the j-the input, the excess kurtosis Kj and the weighed average Φ of
the afferent standard deviations.

2.1.1. Scaling of Dominant Components

The stationary solutions w∗j of Equation (10) satisfy:

w∗j = 0 ∨ w∗2j σ2
jKj = x20 − 3Φ , (12)

which implies that there is a competition between small components w∗j ≈ 0 of the synaptic weight
vector and large components.

In [32], the authors trained a neuron with ellipsoidal distributions, consisting of normal distributions
truncated to [0, 1], with one direction having a large SD σ1 (the first principal component, or FPC) and the
rest of the directions having a small SD. In this context, the weight vector aligns with the FPC, resulting
in one large weight (w1). All other synaptic weight adapt to small values. Solving Equation (12) for the
large component yields:

|wcub1 | =
x0

σ1

√
K1 + 3

. (13)

We note that the excess kurtosis is bounded from below [47], K ≥ −2 (the probability distribution
having the lowest possible excess kurtosis of −2 is the bimodal distribution made of two δ-peaks) and
that, consequently, K + 3 > 0.

In Section 3.1, a quantitative comparison between Equation (13) and the numerical result of the
learning rule is presented.
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K2

K1

Figure 3. Sketch of the fixpoints of Equation (10), which approximates Equation (9), for
two competing weights w1 and w2 as a function of the kurtosis K1 and K2 of the respective
input directions. Open, full and half-full circles represent unstable fixpoints, stable fixpoints
and saddles, respectively. The axes are expressed in terms of w2

i , since the solutions are
determined only up to a sign change.

2.1.2. Sensitivity to the Excess Kurtosis

We are interested now in examining the stability of the solutions obtained via the cubic approximation,
in order to explain why a particular solution could be selected in a given setting and not others. To
simplify the computations, we study the case of two competing inputs with standard deviations σi and
excess kurtosis Ki, for i = 1, 2. Three types of solutions can then, in principle, exist:

(0, 0), (w∗1 6= 0, 0), (w∗1 6= 0, w∗2 6= 0) ,

with the (0, w∗2 6= 0) being the analog of (w∗1 6= 0, 0). One can compute the eigenvalues λ1,2 in each
case and evaluate the stability of the fixpoints. A sketch of the fixpoints and their stability is presented
in Figure 3.

• The trivial fixpoint (0, 0) is always unstable, with positive eigenvalues:

λ1,2(0, 0) = εw
x20
N2

(
σ2
1 , σ

2
2

)
. (14)

• For (w∗1 6= 0, 0), one finds the eigenvalues:

λ1,2(w
∗
1 6= 0, 0) = εw

x20
N2

(
−2σ2

1 ,
σ2
2K1

K1 + 3

)
. (15)

The first eigenvalue λ1 is hence always negative with the sign of the second eigenvalue
λ2 depending exclusively on K1. The fixpoint (w∗1 6= 0, 0) is hence stable/unstable for
negative/positive K1.
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• The last term 3Φ − x20 in Equation (12) is identical for all synapses. Two non-zero synaptic
weights (w∗1 6= 0, w∗2 6= 0) can hence only exist for identical signs of the respective excess kurtosis,
K1K2 ≥ 0. It is easy to show that (w∗1 6= 0, w∗2 6= 0) is unstable/stable whenever both K1,2 are
negative/positive, in accordance with Equation (15).

The solutions of the type (w∗1 6= 0, 0) are hence the only stable fixpoints when the excess kurtosis of
the corresponding direction, in this case K1, is negative.

2.1.3. Principal Component Analysis

The observation [32] that the update rules from Equation (6) perform a principal component analysis
(PCA) can be understood on two levels.

It is firstly evident from Equation (10) that 〈ẇj〉 ∼ σ2
j , and that synaptic weight tends hence to grow

fast whenever the corresponding presynaptic input has a large variance σ2
j .

Alternatively, one can consider the respective phase-space contractions λ(α)1 +λ
(α)
2 (see Equation (15))

around the two competing fixpoints w(α=1) = (w∗1 6= 0, 0) and w(α=2) = (0, w∗2 6= 0). Using the
expression in Equation (15) for the case K1 = K2 < 0, one finds that the phase space contracts faster
around w(1) when σ2

1 > σ2
2, and vice versa.

2.2. Alternative Transfer Functions

The objective function from Equation (5) can be expressed generically [37] as:

F syn = E
[(
N + A(x)

)2]
, A(x) =

xy′′

y′
, (16)

where y′ and y′′ represent the first and second derivative of the transfer function y(x) = σ(x − b) with
respect to x. This expression, which appears as an intermediate step in the derivation of the objective
function from the Fisher information (compare Section 2.3), reduces to Equation (5) for the sigmoidal
transfer function defined in Equation (3).

The qualitative behavior of the learning rule remains unchanged when considering alternative
functional forms for the transfer function y(x), whenever they fulfill the basic requirement of being
smooth monotonic functions with limx→∓∞ y(x) = 0/1. For example, in [37], the authors showed that
this is indeed the case for an arc-tangential transfer function. An interesting transfer function to consider
in this context is the rescaled error function erf(x− b),

y =
1

2
+

1

2
erf

(
x− b
s
√

2

)
=

1

2
+

1√
π

∫ (x−b)/(s
√
2)

−∞
e−z

2

dz =
1√
2πs

∫ x−b

−∞
e−

z2

2s2 dz , (17)

as defined by the integral of the normal distribution of variance s. The constant s sets the slope of
the transfer function, and if one wants to have the same slope as for the original transfer function
(Equation (3)), one simply sets s = 4/

√
2π. The derivatives of Equation (17) are:

y′ =
1√
2πs

e−
(x−b)2

2s2 , y′′ = −(x− b)
s2

y′ . (18)
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Using Equation (16), one obtains:

F syn = E

[(
N − x(x− b)

s2

)2
]

(19)

for the objective function and, consequently:

ẇj = εw (x− b/2)
(
Ns2 − x(x− b)

)
(yj − ȳj)

= εw (x− b/2)
(
x20 − x(x− b)

)
(yj − ȳj) (20)

for the synaptic plasticity rule, where we have replaced Ns2 by x20, the squared roots for b = 0.
Equation (20) reduces, interestingly and apart from an overall scaling factor, to the cubic approximation
from Equation (20) for b = 0:

ẇj = −εwx (x− x0) (x+ x0) (yj − ȳj) = εwx
(
x20 − x2

)
(yj − ȳj) . (21)

For non-vanishing b, we can rewrite Equation (20), as:

ẇj = −εw (x− b/2)
(
x− x−

) (
x− x+

)
(yj − ȳj) . (22)

with:
x± = − b

2
±
√
b2/4 + x20 ≈ −

b

2
± x0 , (23)

where the last expression holds for small b. The whole learning rule from Equation (21) is therefore, for
small bias b, simply shifted by a factor b/2.

Finally, in analogy to Equation (7), we can again write Equation (20) as a product of a Hebbian term
(H) and a self-limiting term (G):

ẇj = εwH(x)G(x)(yj − ȳj), H(x) = (x− b/2) , G(x) =
(
x20 − x(x− b)

)
. (24)

In order to compare to Figure 2a, functions G and H , now as defined in Equation (24), are plotted as
a function of the activity level y in Figure 4a.

We can now easily compute the average weight change for Equation (20) in the same way we did for
Equation (8), obtaining:

〈ẇj〉 = εwwjσ
2
j

[(
x20 −

b2

2

)
+

3b

2
wjσjSj − w2

jσ
2
jKj − 3Φ

]
, (25)

where Sj is the skewness of input distribution yj , as defined by:

Sj =
E[γ3j ]

σ3
j

. (26)

In Expression (25), the interaction between intrinsic and synaptic plasticity becomes evident through
b. We note that for symmetric input distributions (Sj = 0) as the ones we have been treating, small
values of b produce only a shift in the effective x0 (provided that b2 is smaller than x20/2).

We note that the trivial solution wj = 0 would become stable for negative x20−b2/2. This has however
not happened for the numerical simulations we performed, which resulted in values of b ≈ 1, for target
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Figure 4. (a) Functions G and H , as in Figure 2a, now for Equation (7), here expressed
entirely in terms of the output activity y ∈ [0, 1], for clarity. (b) Final absolute value of
the weight w1 after training, with both learning rules (Equation (6) and Equation (20)),
together with the prediction from the cubic approximation (Equation (13)), as a function
of the kurtosis K1 for the direction of the principal component. For b = 0, σ1 = 0.1,
σi 6=1 = σ1/2 and Nw = 100. One observes that the prediction is practically exact in the
case of the error transfer function, remaining qualitatively similar for the case of the Fermi
transfer function (Equation (6)).

activity levels 〈y〉 as low as 0.1, while x0 = 2.4 for N = 2 (which we used). Even sparser activity levels
〈y〉 � 1 would require larger firing thresholds b � 1, and stable synaptic plasticity would be achieved
be selecting then appropriately large N , corresponding to values of x0, such that x20 − b2/2 remains
positive.

For non-symmetric distributions, the skewness of the input distribution, together with the sign of
b, will determine the sign w, which was before undetermined, since the learning rules are rotationally
invariant.

2.3. The Stationarity Principle of Statistical Learning

In statistical learning, one considers an agent trying to extract information from data input streams
having stationary statistical properties. In a neural setting, this corresponds to a neuron adapting the
afferent synaptic weights, and learning is complete when the synaptic weights do not change any more.
At this point, the probability distribution function p(y) of the neural activity y also becomes stationary,
and its sensitivity with respect to changes in the afferent synaptic weight vector vanishes. This is the
stationarity principle of statistical learning.

2.3.1. The Fisher Information with Respect to the Synaptic Flux

The Fisher information [36]:

Fθ =

∫
pθ(y)

(
∂

∂θ
ln
(
pθ(y)

))2

dy (27)
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encodes the average sensitivity of a given probability distribution pθ(y) with respect to a certain
parameter θ, becoming minimal whenever θ does not influence the statistics of y. The Fisher information
is hence a suitable information theoretical functional for the implementation of the stationarity principle
of statistical learning.

We drop the index θ in the following and consider in the first step a neuron with Nw = 1 afferent
neurons. We define with:

F synNw=1 =

∫ (
w1

∂

∂w1

ln (p(y(y1)))

)2

p(y1)dy1 (28)

an objective function for synaptic plasticity, measuring the sensibility of the neural activity with respect
to the afferent synaptic weight w1. Here, y(y1) is given by σ(w1(y1− ȳ1)−b), as defined in Equation (3).
There are two changes with respect to the bare Fisher information (Equation (27)).

• The operator w1∂/∂w1 corresponds to a dimensionless differential operator and, hence, to the
log-derivative. The whole objective function F synNw=1 is hence dimensionless.
• The average sensitivity is computed as an average over the probability distribution p(y1) of the

presynaptic activity y1, since we are interested in minimizing the time average of the sensitivity
of the postsynaptic activity with respect to synaptic weight changes in the context of a stationary
presynaptic activity distribution p(y1).

For a distribution p(y(y1)), for which y is a monotonic function of y1, we have:

p(y(y1))dy = p(y1)dy1, p(y(y1)) =
p(y1)

∂y/∂y1
, (29)

which allows us to rewrite Equation (28) as:

F synNw=1 =

∫ (
w1

∂

∂w1

ln

(
p(y1)

∂y/∂y1

))2

p(y1)dy1 . (30)

Defining with y = (y1, . . . , yNw) the vector of afferent synaptic weights and with p(y) the
corresponding probability distribution function, we may generalize Equation (30) as:

F synNw
=

∫ ( Nw∑
j=1

wj
∂

∂wj
ln

(
p(yj)

∂y/∂yj

))2

p(y)dy , (31)

where we have replaced p(y(y)) from Equation (28) by p(yj)

∂y/∂yj
, in what constitutes the independent

synapse extension, and which represents the Fisher information with respect to the flux operator:

∂

∂θ
→

∑
j

wj
∂

∂wj
= w · ∇w , (32)

which is a dimensionless scalar. We give some comments:

• Minimizing F synNw
, in accordance with the stationarity principle for statistical learning, leads to a

synaptic weight vector w that is perpendicular to the gradient∇w(log(p)), restricting consequently
the overall growth of the modulus of w.
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• In F synNw
, there is no direct cross-talk between different synapses. Expression Equation (32) is

hence adequate for deriving Hebbian-type learning rules in which every synapse has access only to
locally-available information, together with the overall state of the postsynaptic neuron in terms of
its firing activity y or its membrane potential x. We call Equation (32) the local synapse extension
with respect to other formulations allowing for inter-synaptic cross-talk.
• It is straightforward to show [37] that Equation (31) reduces to Equation (5), when using the

relations from Equation (3), viz. F synNw
= F syn when we identify N → Nw. We have, however,

opted to retain N generically as a free parameter in Equation (5), allowing us to shift appropriately
the roots of G(x).

3. Results and Discussion

3.1. Quantitative Comparison of the Model and the Cubic Approximation

In the present section, we test the prediction of Equation (13) for the dependence of the weight size on
the standard deviation σj and kurtosis Kj of the input distribution. Given that the input distribution has
a finite width, the integrated input x cannot fall into the minima of the objective function for every point
in the distribution, but rather the cloud of x points generated will tend to spread around these minima.
The discrepancies in the rule from the cubic approximation in the vicinity and away from the minima are
then expected to affect the final result of the learning procedure.

In order to test Equation (13), we use as an input for the direction of the first principal component
(FPC, which is chosen to be along y1, without loss of generality), the sum:

1

2

[
N

(
x− 1 + 2d

2
,σs

)
+N

(
x− 1− 2d

2
,σs

)]
of two normal distributions N(x,σs) with individual standard deviations σs, whose peaks are at a
distance ±d from the center of the input range (0.5).

• σs is adjusted, changing d, such that the overall standard deviation σ1 remains constant. In this
way, one can select with d different kurtosis levels, while retaining a constant standard deviation.
For d = 0, one gets a bound (since y1 ∈ [0, 1]) normal distribution with K1 ≈ 0 (slightly negative,
since the distributions are bound). In this way, we can evaluate the size of w1 after training for a
varying K1 ∈ [−2, 0) for any given σ1.
• For the other Nw − 1 directions, we use bound normal distributions with standard deviations
σi = σ1/2 as in [32].

We tested training the neuron using both the original learning rule (Equation (6)), derived for the
Fermi transfer function, and the cubic rule (Equation (20)) for the error function.

In Figure 4b, the value of w1 after training is presented together with the prediction (Equation (13))
from the cubic approximation, as a function of K1 (the kurtosis in the y1 direction), for a constant b = 0.
In this case, we have used σ1 = 0.1 and σi 6=1 = σ1/2.

The prediction of the cubic approximation is indeed practically exact for the error transfer function,
as expected, since the input distributions are symmetric and, if one sets the axes parallel to the
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principal components, as we did in this case, the correlation terms indeed vanish, therefore fulfilling the
assumptions made during the averaging procedure. Apart from this procedure, no other approximations
were made in this case, since the rule for the error function is identical to the cubic approximation in the
b = 0 case.

As shown in Figure 2b, even though the cubic approximation is able to reproduce the roots of
the learning rule derived for the Fermi transfer function, the cubic approximation grows faster in the
outer region, restricting the growth of the synaptic weight more than the original rule would. One
therefore expects the cubic approximation to underestimate the final value of w1, as indeed is observed
in Figure 4b. When K = −2, the input distribution becomes the sum of two deltas, and the rule is able
to assign each delta to a root. The prediction is of course once again exact in this case. Otherwise, while
the quantitative result differs from one rule to another, the qualitative behavior remains unchanged.

3.2. Independent Component Analysis: An Application to the Nonlinear Bars Problem

Incoming signals may result from the sum of non-Gaussian independent sources, and the process of
extracting these sources is denoted independent component analysis (ICA) [48].

The non-Gaussianness of the independent sources may be characterized in principle by any quantity
that is zero for the normal distribution and non-zero otherwise. Common measures include the kurtosisK
and the skewness S or the negentropy in general. For a comprehensive summary of the principles behind
typical ICA procedures, as well as a description of independent components in terms of the cumulative
moments of the probability distributions, see [49]. Our learning rule is functionally dependent both on
the kurtosis in general, as is evident within the cubic approximation (Equation (10)), and on the skewness
for non-zero bias b (Equation (25)) and, hence, prone to perform an ICA. We note, however, that this
dependency does not result from maximizing a given measure of non-Gaussianness, as performed in
the past by several groups [50,51]. The resulting preference for non-Gaussianness is in the case of the
present work a by-product of the stationarity principle of statistical learning. In [27], the author shows
how, under certain conditions, a neural network evolving under a nonlinear principal component analysis
learning rule, is also capable of performing ICA.

The classical ICA is, strictly speaking, defined only for linear superpositions of sources. One can
generalize this concept to non-linear tasks, and we test our multiplicative learning rule (Equation (6))
using a classical example for a non-linear ICA, the non-linear bars problem [35], in which a neuron,
or a network of neurons, is trained with a set of inputs, each representing an image consisting on the
non-linear superposition of horizontal and vertical bars.

In a grid of Nw inputs where Nw = L×L, each horizontal and vertical bar has a constant probability
of being present of p = 1/L. Each input or pixel can take only two values: a low-intensity and a
high-intensity value. Each bar then corresponds to a whole row or a column of high-intensity pixels,
where at the intersection of two bars, the pixel has the same value (high) as in the rest of the bar, making
the problem non-linear.

The here examined synaptic plasticity rules (Equation (6)) are able, as illustrated in Figure 5, to
discriminate individual bars, the independent components of the input patterns or points [37]. One might
argue that, given that in the original training set of [35] single bars will occur in the training set with
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Figure 5. A single neuron, whose synaptic weights evolve according to Equation (6) is
presented with a set of input images consisting of the non-linear superposition of a random
set of bars. We find that, on subsequent iterations, the neuron becomes selective to either
single bars (the independent components of the input distribution) or to points.

a finite probability, the neuron is simply selecting this particular input. To rule out this possibility, we
trained the neuron also with sets having at least one horizontal and one vertical bar each time, so that no
bar is ever presented in isolation. No appreciable change in the performance was observed.

4. Conclusions

We presented guiding principles for deriving plasticity rules for the synaptic weight of interconnected
neurons, which are motivated by considering an information theoretical measure, namely the Fisher
information, for the implementation of the stationarity principle of statistical learning. We showed
how, in the case of ellipsoidal input distributions, the resulting plasticity rules find, as usual for
Hebbian learning, the dominant principal component in the data input stream, when present, being
selective otherwise for non-Gaussianness in terms of the excess kurtosis and the skewness of the input
activities. The plasticity rules are hence also prone to perform an independent component analysis, as
we demonstrated by considering the non-linear bars problem.

The here examined adaption rules are self-limiting. This is a natural consequence of implementing
the stationarity principle of statistical learning, which states that the statistics of the postsynaptic neural
firing will become stationary whenever learning is complete and when the statistics of the input activity is
itself stationary. The self-limitation is achieved through a multiplicative factor to the usual Hebbian-type
plasticity function, in contrast to other approaches, where runaway growth of the synaptic weights is
avoided by performing either an overall renormalization of the synaptic weights or by adding an explicit
weight decay term.
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In previous work [32], a numerical comparison between the learning rules here proposed and
the traditionally-employed Oja’s rule was performed, showing differences in the sensitivity to higher
moments of the input distribution (Oja’s rule is tailored to be sensitive to the second moment of the input
distribution only), as well as a stark contrast in terms of transient dynamics. While Oja’s rule predicts the
neuron to learn and unlearn the direction of the PCA within the same timescale when a new interesting
direction is presented, a fading memory effect is observed when the present rules are employed. We
believe then that, depending on the application at hand and the level of noise in the environment, one or
the other might prove more suitable.

The objective function from Equation (16) and the learning rules discussed here depend on the specific
form y(x) of the transfer function, becoming a cubic polynomial in the membrane potential x when the
transfer function is a rescaled error function. This cubic plasticity rule (Equation (20)) is, at the same
time, an excellent approximation for the update rule (Equation (6)) valid for sigmoidal transfer functions,
allowing one to derive analytically the sensibility of our learning rules to the excess kurtosis, as discussed
in Section 2.1.2. The polynomial update rules allow also to study, given its polynomial character, the
stability of the learning dynamics quite generally in terms of the moments of the input distribution.

Finally, we have shown here and in [37] how neurons operating under several transfer functions,
and with learning rules that are only qualitatively equivalent to the cubic function, are able to perform
identical computational tasks. We have also tested whether a neuron defined by one particular transfer
function can be trained using the learning rule derived for another choice of sigmoidal function, finding
no major changes to the results. The procedure is then very robust to quantitative deviations from the
derived rules, as long as the plasticity rule remains qualitatively similar to a cubic polynomial in the
membrane potential, an important requirement for biological plausibility.
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