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Abstract: The different kinds of boundary conditions for standard and fractional diffusion 

and advection diffusion equations are analyzed. Near the interface between two phases 

there arises a transition region which state differs from the state of contacting media owing 

to the different material particle interaction conditions. Particular emphasis has been 

placed on the conditions of nonperfect diffusive contact for the time-fractional advection 

diffusion equation. When the reduced characteristics of the interfacial region are equal to 

zero, the conditions of perfect contact are obtained as a particular case. 

Keywords: fractional calculus; non-Fickian diffusion; fractional advection diffusion 

equation; complex systems; nonperfect contact conditions 

 

1. Introduction 

In recent years considerable interest has been shown in fractional differential equations which 

describe important physical phenomena in amorphous, colloid, glassy and porous materials, in fractals 

and percolation clusters, comb structures, dielectric materials and semiconductors, biological systems, 

polymers, random and disordered media, geophysical and geological processes (see, for example, [1–7] 

and references therein). Fractional calculus also plays a significant part in studies of entropy. It should 

be emphasized that entropy is also used in the analysis of anomalous diffusion processes and fractional 

diffusion equations [8–18]. The entropy production rate for fractional diffusion processes was 

calculated in [8–10]. Well-posedness of the degenerate fractional convection-diffusion equation under 

the imposed entropy condition was investigated by Cifani and Jakobsen [11]. The spectral entropy for 
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the case of fractional diffusion equation was calculated by Magin and Ingo [12,13]. The behavior of 

the relative entropy for anomalous diffusion was studied in [14,15]. The entropy approach to 

anomalous diffusion was used to analyze the magnetic resonance images in biological issues [16–18]. 

Fractional reaction-diffusion and advection-diffusion equations were studied by many authors  

(see [19–34], among many others). Several numerical methods were used to solve the problem: the 

implicit and explicit difference schemes [19–22], the Adomian decomposition method [23], the 

homotopy perturbation method [24] and homotopy analysis method [25], the collocation  

methods [26,27], the finite element method [28]. The finite volume spatial discretization using the 

matrix transfer technique and the time discretization were employed in [29]. Jiang and Lin [30] 

constructed the orthonormal basis in the reproducing kernel space and gave a Fourier series 

representation of the solution. The authors of [31] considered the time-fractional advection-diffusion 

equation and used the Laplace transform technique to obtain the corresponding time-independent 

inhomogeneous equation in the transform domain. Next they employ the boundary particle method to 

solve the transformed problem and implement the Stehfest numerical inverse Laplace transform. The 

space-time-fractional advection-diffusion equation with derivatives of the variable order was studied  

in [32]; the implicit Eulerian scheme and a Lagrangian solver were applied to solve this equation. The 

fractal and fractional derivatives were used in [33] to model anomalous diffusion; the Crank–Nicholson 

finite difference discretization scheme was utilized. We have cited the papers in which the bounded 

spatial domains were considered. In the majority of papers mentioned above the Dirichlet boundary 

condition was employed; the boundary conditions with the given normal derivative were prescribed  

in [29,31,34]. For the fractional advection-diffusion equation, the formulation of the proper boundary 

conditions describing the peculiarities of heat or mass exchange is a significant task. 

Different kinds of boundary conditions for time-fractional diffusion equation were analyzed in [35–37]. 

Near the interface between two phases there arises a transition region which state differs from the state 

of contacting media owing to the different material particle interaction conditions. The transition 

region has its own physical, mechanical and chemical properties, and processes occurring in it differ 

from those occurring in the bulk. The properties of this region influence the course of processes such 

as diffusion, heat conduction, phase transition, corrosion, evolution of the defect structure, etc. Small 

thickness of the interface region allows us to consider it as a distinct two-dimensional phase and to 

formulate the corresponding two-dimensional equations for the interface. In this approach, mathematical 

description of processes occurring in the bulk phases consists in formulation and solution of some 

system of differential (or more complicated) equations with certain boundary conditions being the  

two-dimensional analogue of the corresponding three-dimensional equations [38]. 

2. Different Kinds of Boundary Conditions 

2.1. The Classical Diffusion Equation 

The standard theory of diffusion is based on the balance equation for mass: 

J⋅∇−=
∂
∂

t

cρ  (1)

and the Fick law relating the matter flux J to the concentration gradient: 
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,c∇−= κJ  (2)

where c is the concentration, ρ  the mass density, κ  the diffusive conductivity, respectively. From (1) 

and (2) we get the parabolic diffusion equation: 

.c
t

c Δ=
∂
∂ κρ  (3)

Generally speaking, we can consider the balance equation for the transported quantity and a 

phenomenological law which states the proportionality of the flux to the gradient of this quantity (the 

Fourier law, the Fick law, the Darcy law, etc.). Some of extensions of the laws mentioned above were 

formulated in terms of heat conduction, other in terms of diffusion or the flow of fluid in a porous 

medium. In what follows we will discuss diffusion, but in point of fact the consideration concerns 

various transport phenomena. 

When the diffusion Equation (3) is studied in a bounded domain, the corresponding boundary 

conditions should be imposed. The boundary condition of the first kind (the Dirichlet boundary 

condition) specifies the concentration over the surface of a body: 

( )tgc SS ,x=  (4)

with Sx  being a point at the surface S. 

If the surface of a body is under the given matter flux eJ  from the environment, then at the 

boundary we have: 

( ) 0=⋅+⋅ See JnJn  (5)

and, according to (2), the boundary condition of the second kind specifying the boundary value of the 

normal derivative of concentration (the Neumann boundary condition): 

( )tg
sn

c
S ,x=

∂
∂κ , (6)

where ( ) ( )ttg SeeS ,, xJnx ⋅= , n is the outer unit normal to the surface S. 

The Newton condition of convective mass exchange between a body and the environment with the 
concentration ec : 

( ),eSS ccH −=⋅ nJ  (7)

where H is the convective mass transfer coefficient, leads to a specification of a linear combination of 

the values of concentration and the values of the normal derivative of concentration at the boundary of 

a domain (the boundary condition of the third kind or the Robin boundary condition): 

( ) ., tg
s

Hc
n

c
sx=






 +

∂
∂κ  (8)

where ( ) ( ).,, tHctg ses xx =  

When the surfaces of two bodies are in perfect diffusive contact, the concentrations at the contact 

surfaces are equal: 

SS cc 21 =  (9)
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and the sum of the normal components of the matter fluxes should be equal to zero: 

( ) ,02211 =⋅+⋅ SJnJn  (10)

which gives: 

,2
2

1
1 sn

c

sn

c

∂
∂

=
∂
∂ κκ  (11)

where the subscripts 1 and 2 refer to the first and second body, respectively, and n  is the common 

normal at the contact surface. 

The boundary conditions presented above are well known and can be found in every textbook on 

diffusion or heat conduction. We have recalled them here to facilitate obtaining the proper boundary 

conditions for generalized equations. 

2.2. The Standard Advection Diffusion Equation 

The following constitutive equation for the matter flux (see, for example, [39]): 

cc vJ ρκ +∇−=  (12)

in combination with the balance equation for mass (1) results in the standard advection diffusion 

equation: 

.cc
t

c ∇⋅−Δ=
∂
∂

vρκρ  (13)

For the sake of simplicity we have restricted ourselves to the case const=ρ  and const=v . 

Equation (13) can be interpreted in terms of diffusion or heat conduction with additional velocity field 

v  as well as in terms of Brownian motion, transport processes in porous media, groundwater 

hydrology, etc. [39–44]. The specification of boundary conditions for the advection diffusion  

Equation (13) with taking into account the constitutive Equation (12) for the matter flux gives the 

following kinds of conditions. The Dirichlet boundary condition (4) with the given value of the 

concentration at the surface of a body remains unchanged. The prescribed boundary value of the matter 

flux yields: 

( ).,)( tgcv
n

c
S

S
n x=






 −

∂
∂ ρκ  (14)

The convective mass exchange between a body and the environment provides: 

( ) ( ).,)( tgcvH
n

c
S

S
n x=



 −+

∂
∂ ρκ  (15)

The boundary conditions of the perfect diffusive contact have the following form: 

,21 SS cc =  (16)

.22)(2
2

211)(1
1

1
S

n
S

n cv
n

c
cv

n

c






 −

∂
∂

=





 −

∂
∂ ρκρκ  (17) 
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2.3. The Time-Fractional Diffusion-Wave Equation 

The nonclassical theories in which the Fick law (2) or the constitutive Equation (12) as well as the 

standard diffusion Equation (3) and advection diffusion Equation (13) are replaced by more general 

equations, constantly attract the attention of the researchers. 

The time-nonlocal dependence between the matter flux and the concentration gradient with the 

“long-tail” power kernel [45–49] can be interpreted in terms of fractional integrals and derivatives: 

.20,grad1 ≤<−= − ακ α cDRLJ  (18)

Here ( )tfDRL
α  is the Riemann–Liouville fractional derivative of the order α  (see [50–52]): 

( ) ( ) ( ) ( ) .1,
1

0

1 mmdft
mdt

d
tfD

t
m

m

m

RL <<−











−

−Γ
=  −− ατττ

α
αα  (19)

Following [4,51], we will not use a separate notation for the Riemann–Liouville fractional integral: 

( ) ( ) ( ) ( ) ;0,
1

0

1 >−
Γ

=  − ατττ
α

αα dfttfI
t

 (20)

the fractional integral of the order 0>α  will be denoted as 

( ) ( ) .0, >= − ααα tfDtfI RL  (21)

The constitutive Equation (18) yields the time-fractional diffusion-wave equation: 

,20, ≤<Δ=
∂
∂ ακρ α

α
c

t

c
 (22)

with the Caputo fractional derivative: 

( )
( ) ( ) ( )

.1,
1

0

1 mmd
d

fd
t

mdt

tfd
m

mt
m <<−−

−Γ
=  −− ατ

τ
ττ

α
α

α

α
 (23)

The corresponding boundary conditions for the time-fractional diffusion-wave Equation (22) were 

fully analyzed in [35–37]. Here we recall them very briefly. Once again, the Dirichlet boundary 

condition (4) remains unaltered. The prescribed boundary value of the matter flux reads: 

( ) .20,,1 ≤<=
∂
∂− ακ α tg

sn

c
D SRL x  (24)

The condition of convective mass exchange between a body and the environment is written as: 

( ) .20,,1 ≤<=





 +

∂
∂− ακ α tg

s
Hc

n

c
D sRL x  (25)

The conditions of perfect diffusive contact are the following: 

,21 SS cc =  (26)

.20,20,21
2

11
1 ≤<≤<

∂
∂

=
∂
∂ −− βακκ βα

sn

c
D

sn

c
D RLRL  (27)
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2.4. The Time-Fractional Advection Diffusion Equation 

The time-nonlocal generalization of the constitutive Equation (12) for the matter flux with the 

“long-tail” power kernel [53]: 

( ) ,20,1 ≤<+∇−= − αρκα ccDRL vJ  (28)

leads to the time-fractional advection diffusion equation: 

.cc
t

c ∇⋅−Δ=
∂
∂

vρκρ α

α
 (29)

The boundary conditions for Equation (29) are the following. The Dirichlet condition (4) remains 

unaffected. The prescribed boundary value of the matter flux provides: 

( ).,)(
1 tgcv

n

c
D S

S
nRL x=






 −

∂
∂− ρκα  (30)

The convective mass exchanged between a medium and the environment yields: 

( ) ( ).,1
)(

1 tgcDvH
n

c
D S

S
RLnRL x=



 −+

∂
∂ −− αα ρκ  (31)

The boundary conditions of the perfect diffusive contact are of the form: 

,21 SS cc =  (32)

.22)(2
2

2
1

11)(1
1

1
1

S
nRL

S
nRL cv

n

c
Dcv

n

c
D 







 −
∂
∂

=






 −
∂
∂ −− ρκρκ βα  (33)

3. Generalized Conditions of Nonperfect Contact 

Consider a composite body consisting of three parts: the domain 1, the domain 2, and the 

intermediate domain designated by the index 0. Matter transport is described by the time-fractional 

advection diffusion equations appropriate to each domain: 

,11111
1

1 cc
t

c
∇⋅−Δ=

∂
∂

vρκρ α

α
 (34)

,22222
2

2 cc
t

c
∇⋅−Δ=

∂
∂

vρκρ β

β
 (35)

.00000
0

0 cc
t

c
∇⋅−Δ=

∂
∂

vρκρ γ

γ
 (36)

At the boundary surfaces 1S  and 2S  between the intermediate domain and the corresponding body, 

the conditions of perfect diffusive contact are fulfilled: 

,
11 01 SS cc =  (37)
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11

00)(0
0

0
1

11)(1
1

1
1

S
nRL

S
nRL cv

n

c
Dcv

n

c
D 







 −
∂
∂

=






 −
∂
∂ −− ρκρκ γα  (38)

and: 

,
22 02 SS cc =  (39)

.

22

00)(0
0

0
1

22)(2
2

2
1

S
nRL

S
nRL cv

n

c
Dcv

n

c
D 







 −
∂
∂

=






 −
∂
∂ −− ρκρκ γβ  (40)

To investigate the transport processes in such a composite body in the general case is a very 

complicated problem. When the thickness h2  of the intermediate domain is small with respect to two 

other sizes and is constant, we can introduce the median surface Σ. Let 1R  and 2R  be the principal 

radii of curvature of the median surface. If 1/ 1 <<Rh  and 1/ 2 <<Rh , then a thin shell is obtained 

which allows us to reduce a three-dimensional problem in the intermediate layer to a two-dimensional 

one for the median surface. Thus we introduce the mixed coordinate system ( )z,,ηξ , where ξ  and η  

are the curvilinear coordinates in the median surface and z  is the normal coordinate ( hzh ≤≤− ), see 

Figure 1. 

 

Figure 1. Thin intermediate layer between two media. 

The time-fractional advection diffusion equation in the intermediate layer (36) is rewritten as: 

,0
0)(0002

0
2

000
0

0 z

c
vc

z

c
c

t

c
n ∂

∂
−∇⋅−

∂
∂

+Δ=
∂

∂
ΣΣΣ ρρκκρ γ

γ
v  (41)

where ΣΔ  is the surface Laplace operator, Σ∇  denotes the surface del operator taking effect along  

a surface. 

Next we average Equation (41) introducing the averaged characteristics of concentration: 

( ) ,),,,(
2

1
,, 01 dztzc

h
t

h

h


−
=Θ ηξηξ  (42)

( ) .),,,(
2

3
,, 022 dzztzc

h
t

h

h


−
=Θ ηξηξ  (43)
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Introducing the averaged characteristics of concentration 1Θ  and 2Θ  is similar to introducing the 

stress resultants (forces and moments) in the theory of thin elastic shells. The interested reader is 

referred to the extended literature on this subject (see, for example, [54–57]). From Equation (41)  

we obtain: 

0 ( )0 0 0 ( )0 00 0 0 01
0 0 1 0 1 2 2 2 2

n n

z h z h z h z h

v c v cc c

t h z h z h h

γ

γ

ρ ρκ κρ κ ρΣ Σ Σ
= =− = =−

∂ ∂∂ Θ = Δ Θ − ⋅∇ Θ + − − +
∂ ∂ ∂

v  (44)

0 ( )0 0 0 0 02
0 0 2 0 2 1

0 ( )0 0 0 ( )0 00 0
0 02 2

3 3 3

2 2

3 33 3
                

2 2 2 2

n

z h z h

n n
z h z h

z h z h

v c c

t h h z h z

v c v c
c c

h h h h

γ

γ

ρ κ κρ κ ρ

ρ ρκ κ

Σ Σ Σ
= =−

= =−
= =−

∂ ∂∂ Θ = Δ Θ − ⋅∇ Θ + Θ + +
∂ ∂ ∂

− + − −

v

 (45)

Furthermore, we use the conditions of perfect diffusive contact at the surfaces hz =  and hz −=  

along with the assumption of linear dependence of concentration 0c  on the coordinate z  and proceed 

to the limit 0→h  keeping 02 ρρ h=Σ , 02 κκ h=Σ , 0/2 κhR =Σ  and )2/(0)(){ hvv nn =Σ constant. It 

should be noted that more general polynomial dependence of the concentration 0c  on the coordinate z  

or the operator method can also be used (see [58,59]). As a result we obtain the generalized boundary 

conditions at the median surface Σ (see Figure 2): 

( ) ( ) ( )1 2
1 2 1 2

1 2
1 1 ( )1 1 2 2 ( )2 2                         2 ,RL n RL n

c c
c c c c

t

c c
D v c D v c

n n

γ

γ

γ α γ β

ρ κ ρ

κ ρ κ ρ

Σ Σ Σ Σ Σ Σ

− −

∂ +
= Δ + − ⋅∇ +

∂
 ∂ ∂    + − − −    ∂ ∂    

v

 (46)

( ) ( ) ( ) ( )

( )

1 2
1 2 1 2 ( ) 1 2

1 2
1 1 ( )1 1 2 2 ( )2 2 1 2

6

12
                         6 .

n

RL n RL n

c c
c c c c v c c

t

c c
D v c D v c c c

n n R

γ

γ

γ α γ β

ρ κ ρ ρ

κ ρ κ ρ

Σ Σ Σ Σ Σ Σ Σ Σ

− −

Σ

∂ −
= Δ − − ⋅∇ − + +

∂
 ∂ ∂    + − + − − −    ∂ ∂    

v

 (47)

 

Figure 2. A contact surface Σ having its own physical characteristics. 

When the drift terms are not considered, Equations (46) and (47) reduce to the following equations [7]: 
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( ) ( ) ,2 2
2

1
121

21 







∂
∂

−
∂
∂

++Δ=
∂

+∂ −−
ΣΣΣ n

c
D

n

c
Dcc

t

cc
RLRL

βγαγ
γ

γ
κκκρ  (48)

( ) ( ) ( ).12
6 21

2
2

1
121

21 cc
Rn

c
D

n

c
Dcc

t

cc
RLRL −−








∂
∂

+
∂
∂

+−Δ=
∂

−∂

Σ

−−
ΣΣΣ

βγαγ
γ

γ
κκκρ  (49)

For the classical diffusion equation ( 1=== γβα ) we arrive at the result of Podstrigach [58,59]: 

( ) ( ) ,2 2
2

1
121

21 







∂
∂

−
∂
∂

++Δ=
∂
+∂

ΣΣΣ n

c

n

c
cc

t

cc κκκρ  (50)

( ) ( ) ( ) .
12

6 21
2

2
1

121
21 cc

Rn

c

n

c
cc

t

cc
−−








∂
∂

+
∂
∂

+−Δ=
∂
−∂

Σ
ΣΣΣ κκκρ  (51)

When the reduced diffusive characteristics of the median surface are equal to zero ( 0=Σρ , 0=Σκ , 

0=ΣR , 0)( =Σnv ), from (46) and (47) we get the conditions of perfect diffusive contact (32) and (33) 

whereas from (50) and (51) we obtain the conditions of perfect contact (9) and (11). 

4. Conclusions 

We have analyzed different kinds of boundary conditions for the standard diffusion equation and 

advection diffusion equation as well for their fractional counterparts. It should be emphasized that due 

to the generalized constitutive equations for the matter flux the boundary conditions for the  

time-fractional diffusion equations have their particular traits in comparison with those for the standard 

ones. The proper physical boundary conditions should be formulated in terms of the matter flux, not in 

terms of the normal derivative of concentration alone. Specifying the boundary value of the matter flux 

in the case of the diffusion equation leads to the Neumann boundary condition, but in the case of the 

advection diffusion equation leads to the Robin boundary condition. The drift parameter v alters the 

convective mass transfer coefficient H. The transition region between two phases has been considered 

as a distinct phase having its own reduced characteristics (the reduced mass density Σρ , the reduced 

diffusive conductivity Σκ , the reduced diffusive resistance ΣR , and the reduced drift parameter Σ)(nv  

of the median surface), and the generalized conditions of nonperfect contact have been obtained.  
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