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Abstract: The article discusses two mutually-incompatible hypotheses about the stochastic
mechanism of the generation of texts in natural language, which could be related to entropy.
The first hypothesis, the finite energy hypothesis, assumes that texts are generated by
a process with exponentially-decaying probabilities. This hypothesis implies a logarithmic
upper bound for maximal repetition, as a function of the text length. The second hypothesis,
the strong Hilberg conjecture, assumes that the topological entropy grows as a power law.
This hypothesis leads to a hyperlogarithmic lower bound for maximal repetition. By a study
of 35 written texts in German, English and French, it is found that the hyperlogarithmic
growth of maximal repetition holds for natural language. In this way, the finite energy
hypothesis is rejected, and the strong Hilberg conjecture is partly corroborated.
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1. Introduction

Modeling texts in natural language by a stochastic process is a frequent approach in computational
linguistics. Classes of stochastic processes, such as hidden Markov processes, constitute state-of-the-art
models in natural language processing tasks, such as speech recognition [1] or parts-of-speech
tagging [2]. Whereas these kinds of statistical models have the advantages of being easily trained and
adapted to the modeled data, they do not capture long-distance dependence in texts, which are connected
to coherence of narration, transmission of knowledge or intentionality of language communication.
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Therefore, state-of-the-art models in natural language processing overestimate the actual amount of
randomness in texts.

In contrast, in this article, we would like to present some novel theoretical and experimental results
concerning fundamental properties of texts in natural language as modeled by a stochastic process. These
results suggest that the amount of randomness in natural language texts may be much smaller than
generally supposed. Briefly speaking, there are two disjoint classes of stochastic processes: finite energy
processes (cf. [3]), with a strictly positive entropy rate, and Hilberg processes (cf. [4]), with a vanishing
entropy rate. Experimentally-measuring maximal repetition in some empirical data, we may decide
whether the data have been generated by a finite energy processes or by a Hilberg process. Following
this idea, in a preliminary study by Dębowski [5], it was discovered that texts in English are not typical
of a finite energy process. In the present article, we would like, first, to extend this study by providing
empirical data also for French and German and, second, to show that the natural language data may be
typical of Hilberg processes.

The further organization of the article is as follows. In Section 2, we present the relevant mathematical
models. Section 3 concerns the empirical investigations of natural language. Section 4 contains the
conclusion. Finally, in Appendices A and B, we prove two theorems stated in Section 2.

2. Mathematical Models

Let (Ω,J , P ) be a probability space, i.e., Ω is the event space,J ⊂ 2Ω is the set of events on which the
probability measure is defined and P is the probability measure [6]. A discrete (nonstationary) stochastic
process (Xi)i∈Z is a sequence of random variables Xi : Ω → Y on probability space (Ω,J , P ), where
the indices i vary across the set of integers Z and the alphabet Y is a finite or countably infinite set
of values of Xi. Let X l

k = (Xk, Xk+1, ..., Xl) be blocks of consecutive random variables. A discrete
stationary stochastic process (Xi)i∈Z is such a discrete stochastic process that the distribution of blocks
X t+n
t+1 does not depend on the index t.
There are various classifications of particular stochastic processes. The first class we want to discuss

are finite energy processes. The defining feature of a finite energy process is that the conditional
probability of any block drawn from the process decreases exponentially with the block length. By |u|,
we denote the length of a fixed string u ∈ Y+ =

⋃∞
n=1 Yn, that is the number of symbols in it. Formally,

a discrete process (Xi)i∈Z is called a finite energy process if conditional probabilities of blocks satisfy:

P
(
X
t+|wu|
t+|w|+1 = u

∣∣∣X t+|w|
t+1 = w

)
≤ Kc|u| (1)

for all indices t ∈ Z, all strings u,w and certain constants 0 < c < 1 and K > 0 [3]. (Finite energy
processes have nothing to do with the concept of energy in physics. This is just some name coined by
a mathematician.)

An important example of finite energy processes is uniformly-dithered processes; cf. a formally
unproven remark by Shields [3]. Let us recall that i.i.d. processes, called also sequences of independent
identically distributed random variables or unigram models in computational linguistics, are processes
for which the probability of a block is the product of probabilities of the individual random variables,
P (X l

k = xlk) =
∏l

i=k P (Xi = xi). Now, let (Y, ∗) be a group. A group (Y, ∗) is a pair of a set Y and
a binary operation ∗ : Y × Y → Y, which is associative, that is (a ∗ b) ∗ c = a ∗ (b ∗ c) has an identity
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element e ∈ Y, that is e ∗ a = a ∗ e = e, and for each a ∈ Y, there exists the inverse element a−1, that is
a−1 ∗ a = a ∗ a−1 = e. A discrete stochastic process (Xi)i∈Z is called uniformly dithered if it satisfies:

Xi = Wi ∗ Zi, (2)

where (Wi)i∈Z is an arbitrary discrete process and (Zi)i∈Z is an independent i.i.d. process with
maxa∈Y P (Zi = a) < 1. We have this result:

Theorem 1. Any uniformly-dithered process is a finite energy process.

Uniformly-dithered processes are processes that are contaminated by random noise in quite a general
way. Dębowski [7] supposed that texts in natural language may be contaminated in this way, and so, the
appropriate model for the generation of texts in natural language is finite energy. As we will see, this
hypothesis is false. Given some data typical of a stochastic process, we can check whether the process
is finite energy and, in particular, show for texts in natural language that this is not the case.

The pivotal statistics for our consideration is so-called maximal repetition. For a string of symbols (a
text) w ∈ Y+, we define the maximal repetition as:

L(w) := max {|s| : w = x1sy1 = x2sy2 and x1 6= x2} , (3)

where s, xi and yi range over all admissible substring partitions of text w [8]. In the above definition,
strings s, xi and yi may be empty, and overlapping repeats are admitted on purpose. For example,
L(w) = 10 for text w being “Then burst forth the unending argument between the believers and the
unbelievers in the societies of the wise and the scientific journals.” because string “believers_” contains
10 characters (nine letters and a space) and appears in the text twice, whereas there is no longer a
repeat. The properties of maximal repetition have been studied by both computer scientists [8–11] and
probabilists [3,7,12–14]. An efficient algorithm was found for computing the maximal repetition in
linear time, so we can compute maximal repetition efficiently for relatively long texts [10].

The object of our interest is how fast the maximal repetition L(w) grows with the length of text |w|.
In particular, for a finite energy process, the maximal repetition cannot grow faster than logarithmically,
i.e., proportionally to the logarithm of the text length.

Theorem 2 (Shields [3]). For a finite energy process (Xi)i∈Z, there exists a constant C > 0, such that
maximal repetition satisfies:

L(Xm
1 ) ≤ C logm (4)

for sufficiently large text lengths m with probability one.

Law (4) has been studied in mathematics for some time. It was first proven for independent identically
distributed (i.i.d.) processes [12,13]. Later, Shields [3] formulated Law (4) under the assumption that
the process is stationary finite energy over a finite alphabet. In fact, his proof does not make use of the
stationarity or finiteness of the alphabet, so these two conditions may be omitted as above. However,
when the process fails to be finite energy, Law (4) need not be satisfied. Shields [14] demonstrated
that there exist stationary stochastic processes for which maximal repetition L(Xn

1 ) grows faster than
an arbitrary sublinear function of the text length n.
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Now, we may return to the question of whether texts in natural language are typical of a finite
energy process. A short empirical study conducted by Dębowski [5] has shown that in printed texts
in English, the maximal repetition grows faster than for a finite energy process. The observed growth
is hyperlogarithmic, i.e., faster than the logarithm of the text length raised to a certain power α > 1.
That is, the maximal repetition for texts in English satisfies:

L(Xm
1 ) ≥ A (logm)α. (5)

The further question arises then what kind of a stochastic process can be responsible for the generation
of texts in natural language. As we are going to show, this question can be related to a hypothesis by
Hilberg [4] concerning natural language. This hypothesis involves the entropy of the hypothetical text
generation process.

The relevant mathematical background is as follows. The Rényi entropy of order γ of a random
variable X is defined as:

Hγ(X) =
1

1− γ
log
∑
x

P (X = x)γ (6)

for γ ∈ (0, 1)∪(1,∞) [15]. The limiting cases, the topological entropyH0(X) and the Shannon entropy
H1(X), can be equivalently defined as:

H0(X) = lim
γ→0

Hγ(X) = log card {x : P (X = x) > 0} (7)

and:
H1(X) = lim

γ→1
Hγ(X) = −

∑
x

P (X = x) logP (X = x). (8)

It can be shown that the so-extended Rényi entropy is a decreasing function of γ. In particular, H0(X) ≥
H1(X). Subsequently, for a discrete stationary stochastic process (Xi)i∈Z, we define block entropy
Hγ(n) = Hγ(X

i+n
i+1 ) and entropy rate:

hγ = lim
n→∞

Hγ(n)

n
, (9)

if the limit exists. In particular, Limit (9) exists for γ = 0 [16] and γ = 1 [17,18].
We will say that a discrete stationary stochastic process (Xi)i∈Z is a strong Hilberg process of order

γ and exponent β if:
Hγ(n) ∈

[
B1n

β, B2n
β
]

(10)

for some 0 < β < 1 and B1, B2 > 0. In contrast, we will say that a discrete stationary stochastic process
(Xi)i∈Z is a relaxed Hilberg process of order γ and exponent β if:

Hγ(n) ∈
[
B1n

β + hγn,B2n
β + hγn

]
(11)

for some hγ ≥ 0, 0 < β < 1 and B1, B2 > 0. That is, the entropy rate hγ equals zero for a strong
Hilberg process, whereas it can be greater than zero for a relaxed Hilberg process. In particular, if
h1 = 0, then the process is asymptotically deterministic, i.e., there exist functions fi : YN → Y, such
that Xi = fi(Xi−1, Xi−2, Xi−3, ...) holds with probability one for all i ∈ Z (Lemma 4 in [19]).
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Let us come back to natural language modeling. Reinterpreting the estimates of entropy for printed
English by Shannon [20], Hilberg [4] supposed that texts in natural language can be generated by
a strong Hilberg process of order one and exponent β ≈ 1/2. However, any strong Hilberg process
of order one has entropy rate h1 = 0, so this condition would imply asymptotic determinism of human
utterances. Therefore, in some later works [7,21–24], it was expected that texts in natural language are
rather generated by a relaxed Hilberg process of order one with a strictly positive entropy rate h1 > 0.

Now, we want to suggest that a much stronger hypothesis might be true for natural language. In the
following, we will observe that for a strong Hilberg process of order zero, the maximal repetition cannot
grow slower than hyperlogarithmically.

Theorem 3. For a strong Hilberg process (Xi)i∈Z of order zero and exponent β, there exist constants
A,M > 0, such that the maximal repetition satisfies Condition (5) with probability one for α = β−1 and
m ≥M .

Theorem 3 does not preclude the possibility that a relaxed Hilberg processes (or some other processes)
may also satisfy Condition (5). Whereas finding such processes is an interesting open problem, at
this moment, let us remark that the empirical observation of the hyperlogarithmic growth of maximal
repetition (5) might be explained by a hypothesis that texts in natural language are generated by a strong
Hilberg process of order zero. This hypothesis will be called the strong Hilberg conjecture. Since
H0(X) ≥ H1(X), the strong Hilberg conjecture implies that natural language production is also
asymptotically deterministic.

Immediately, we would like also to remark that the strong Hilberg conjecture does not imply that
texts in natural language are easy to predict or to compress. If we do not know the exact probability
distribution of the process, all we can do is universal coding or universal prediction, done for example
via the Lempel–Ziv code [25]. It is known that, for a stationary process, the length of the Lempel–Ziv
code |C(Xn

1 )| divided by the block length n is a consistent estimator of the Shannon entropy rate h1.
However, the convergence rate of |C(Xn

1 )| /n to h1 is very slow, since by Theorem 3 of Dębowski [26],
we have:

|C(Xn
1 )| ≥ n

L(Xn
1 ) + 1

log
n

L(Xn
1 ) + 1

, (12)

where L(Xn
1 ) is the maximal repetition. Therefore, if the maximal repetition grows slower than a power

law and the process is a strong Hilberg process, then the length of the Lempel–Ziv code |C(Xn
1 )| is

orders of magnitude larger than block entropy H(n)! Consequently, we cannot estimate block entropy
H(n) by the length of the Lempel–Ziv code |C(Xn

1 )|.

3. Empirical Data

In this section, we check empirically how fast the maximal repetition grows for texts in natural
language. Resuming the previous section, if we observe that the maximal repetition in a sample of
texts grows faster than the logarithm of the text length, we may infer that the generating process is not
finite energy, whereas the strong Hilberg conjecture becomes more likely if we observe hyperlogarithmic
growth (5). As we will see, this happens to be the case of natural language.
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Let us observe that it is possible to investigate the concerned probabilistic hypotheses on two levels.
In the first case, we assume that random variables Xi are consecutive characters of the text, whereas, in
the second case, we assume that random variables Xi are consecutive words of the text. Respectively,
we have to compute the repetitions in texts as repeated strings of characters or as repeated strings of
words. We will test both levels. Moreover, we will show that the maximal repetitions in texts in natural
language scale quite differently than for i.i.d. processes, that is the unigram models of the text.

For the experiment, we have downloaded 14 texts in English, 10 texts in German and 11 texts in
French from the Project Gutenberg (http://www.gutenberg.org/). To make the finite energy hypothesis
more plausible, we have removed legal notices, tables of contents and strings of repeated spaces
from the considered text, since they contain long repeats, which dominate repeats in the proper text;
cf. Dębowski [5]. However, we have not excluded prefaces and afterwords, which sometimes also contain
long quotations, but otherwise seem to be non-singular parts of the text. Moreover, using the statistics for
the English texts, we have generated four-character-based unigram texts and four-word-based unigram
texts (the texts have been generated via sampling with replacement rather than as random permutations).
All so prepared texts are presented in Tables 1–4.

Table 1. The selection of texts in German.

Text Maximal Repeated Substring
Mark Twain, Die Abenteuer
Tom Sawyers

“selig sind, die da arm sind im Geiste, denn” (9 words, close)

Lewis Carroll, Alice’s
Abenteuer im Wunderland

“Edwin und Morcar, Grafen von Mercia und” (7 words)

Friedrich Nietzsche, Also
sprach Zarathustra

“stiftete mehr Leid, als die Thorheiten der Mitleidigen? Wehe allen
Liebenden, die nicht noch eine Höhe haben, welche über ihrem Mitleiden ist!
Also sprach der Teufel einst zu mir: «auch Gott hat seine Hölle: das ist seine
Liebe zu den Menschen.» Und jüngst hörte ich ihn diess Wort sagen: «Gott ist
todt; an seinem Mitleiden mit den Menschen ist Gott gestorben.»” (61 words)

Thomas Mann, Buddenbrooks
“Mit raschen Schritten, die Arme ausgebreitet und den Kopf zur Seite
geneigt, in der Haltung eines Mannes, welcher sagen will: Hier bin ich! Töte
mich, wenn du willst!” (28 words)

Goethe, Faust “Kühn ist das Mühen, Herrlich der Lohn! Und die” (9 words)
Dante Alighieri,
Die Göttliche Komödie

“Da kehrt er sich zu mir” (6 words)

Immanuel Kant, Kritik der
reinen Vernunft

“als solche, selbst ein von ihnen unterschiedenes Beharrliches, worauf in
Beziehung der Wechsel derselben, mithin mein Dasein in der Zeit, darin sie
wechseln, bestimmt werden” (25 words, in quotes)

Thomas Mann, Der Tod in
Venedig

“diesem Augenblick dachte er an” (6 words)

Sigmund Freud,
Die Traumdeutung

“ich muß auch auf einen anderen im sprachlichen Ausdruck enthaltenen
Zusammenhang hinweisen. In unseren Landen existiert eine unfeine
Bezeichnung für den masturbatorischen Akt: sich einen ausreißen oder sich
einen” (29 words, in footnote)

Franz Kafka, Die Verwandlung “daß sein Körper zu breit war, um” (7 words)

http://www.gutenberg.org/
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In the proper experiment, for each text, we have considered initial blocks of the text of
exponentially-growing length, and the maximal repetition was computed for each block. We report the
results in terms of figures and examples of maximal repeats. First, also in Tables 1–4, we have presented
the maximal repeated substring in each whole text. For each maximal repeated substring, we give its
length and sometimes short comments about its location: “close” means that the repeat was observed
within a few paragraphs; “in quotes” means that the repeat was located within quotes one or more times.
Further analysis of these repeats is left to more linguistically-oriented researchers.

Table 2. The selection of texts in French.

Text Maximal Repeated Substring
Voltaire, Candide ou
l’optimisme

“voyez, tome XXI, le chapitre XXXI du Précis du Siècle de Louis XV. B.”
(14 words, in footnote)

Alexandre Dumas,
Le comte de
Monte-Cristo, Tome I

“le procureur du roi est prévenu, par un ami du trône et de la religion, que le
nommé Edmond Dantès, second du navire le Pharaon, arrivé ce matin de
Smyrne, après avoir touché à Naples et à Porto-Ferrajo, a été chargé, par
Murat, d’une lettre pour l’usurpateur, et, par” (49 words, in quotes)

Victor Hugo, L’homme
qui rit

“trois hommes d’équipage, le patron ayant été enlevé par un coup de mer, il
ne reste que” (17 words, in quotes)

Gustave Flaubert,
Madame Bovary

“et madame Tuvache, la femme du maire,” (7 words)

Victor Hugo, Les
miserables, Tome I

“livres Pour la société de charité maternelle” (7 words, close)

Descartes, Oeuvres.
Tome Premier

“que toutes les choses que nous concevons fort clairement et fort
distinctement sont toutes” (14 words, many times in paraphrases)

François Villon,
Oeuvres completes

“mes lubres sentemens, Esguisez comme une pelote, M’ouvrist plus que tous
les Commens D’Averroys sur” (15 words, in quotes in footnote in preface)

Stendhal, Le Rouge et
le Noir

“Which now shows all the beauty of the sun And by and by a cloud takes all
away!” (18 words, in quotes)

Alexandre Dumas, Les
trois mousquetaires

“murmura Mme Bonacieux. «Silence!» dit d’Artagnan en lui” (9 words,
close)

Jules Verne, Vingt
mille lieues sous
les mers

“à la partie supérieure de la coque du «Nautilus», et” (10 words)

Jules Verne, Voyage au
centre de la terre

“D0 E6 B3 C5 BC D0 B4 B3 A2 BC BC C5 EF «Arne” (14 words, in quotes)
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Table 3. The selection of texts in English.

Text Maximal Repeated Substring
Jacques Casanova de Seingalt,
Complete Memoirs

“but not deaf. I am come from the Rhone to bathe you. The hour of Oromasis
has begun.»” (18 words, in quotes)

Thomas Babington Macaulay,
Critical and Historical Essays,
Volume II

“therefore there must be attached to this agency, as that without which none
of our responsibilities can be met, a religion. And this religion must be that of
the conscience of the” (32 words, in quotes, close)

Charles Darwin, The Descent of
Man and Selection in Relation
to Sex

“Variability of body and mind in man-Inheritance-Causes of variability-Laws
of variation the same in man as in the lower animals–Direct action of the
conditions of life-Effects of the increased use and disuse of parts-Arrested
development-Reversion-Correlated variation-Rate of increase-Checks to
increase-Natural selection-Man the most dominant animal in the
world-Importance of his corporeal structure-The causes which have led to his
becoming erect-Consequent changes of structure-Decrease in size of the
canine teeth-Increased size and altered shape of the skull-Nakedness-Absence
of a tail-Defenceless condition of man.” (86 words, in the table of contents,
undeleted by omission)

Jules Verne, Eight Hundred
Leagues on the Amazon

“After catching a glimpse of the hamlet of Tahua-Miri, mounted on its piles as
on stilts, as a protection against inundation from the floods, which often
sweep up” (28 words, close, probably by mistake)

William Shakespeare, First
Folio/35 Plays

“And so am I for Phebe Phe. And I for Ganimed Orl. And I for Rosalind Ros.
And I for no woman Sil. It is to be all made of” (30 words, close)

Jules Verne, Five Weeks in
a Balloon

“forty-four thousand eight hundred and forty-seven cubic feet of” (9 words,
close)

Jonathan Swift, Gulliver’s
Travels

“of meat and drink sufficient for the support of 1724” (10 words, in quotes,
close)

Jonathan Swift, The Journal to
Stella

“chocolate is a present, madam, for Stella. Don’t read this, you little rogue,
with your little eyes; but give it to Dingley, pray now; and I will write as plain
as the” (32 words, in quotes in preface)

George Smith, The Life of
William Carey, Shoemaker
& Missionary

“I would not go, that I was determined to stay and see the murder, and that I
should certainly bear witness of it at the tribunal of” (27 words, in quotes)

Albert Bigelow Paine, Mark
Twain. A Biography

“going to kill the church thus with bad smells I will have nothing to do with
this work of” (19 words, in quotes, close)

Etienne Leon Lamothe-Langon,
Memoirs of the Comtesse du
Barry

“M. de Maupeou, the duc de la Vrilliere, and the” (10 words)

Jules Verne, The Mysterious
Island

“we will try to get out of the scrape” (9 words, in the same sentence)

Willa Cather, One of Ours “big type on the front page of the” (8 words, close)
Jules Verne, Twenty Thousand
Leagues under the Sea

“variety of sites and landscapes along these sandbanks and” (9 words, close)
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Table 4. The selection of unigram texts.

Text Maximal Repeated Substring

Character-based unigram Text 1 “ u ti t r ”
Character-based unigram Text 2 “e t tloeu ”
Character-based unigram Text 3 “o d t eie”
Character-based unigram Text 4 “s ei er e”

Word-based unigram Text 1 “of that A for”
Word-based unigram Text 2 “was the of in”
Word-based unigram Text 3 “in of of the”
Word-based unigram Text 4 “of of of of a”

From the tables, we can learn that there appear repeats in texts in natural language whose lengths
exceed a dozen of words. More quantitative data are presented in Figures 1–4, where we study the
dependence between the block length and the maximal repetition within the block for both natural
language and unigram models. Figures 1 and 2 concern variablesXi being characters, whereas Figures 3
and 4 concern variables Xi being words. It can be seen that there is much variation in the data, but let us
try to fit some functional dependence to the data points.

 0

 50

 100

 150

 200

 250

 1  10  100  1000  10000  100000  1e+06  1e+07

m
a

x
im

a
l 
le

n
g

th
 o

f 
re

p
e

a
t 

[c
h

a
ra

c
te

rs
]

block length [characters]

German
English
French

character unigram

Figure 1. Character-based maximal repetition on the logarithmic-linear scale. The lines are
the regression lines.



Entropy 2015, 17 5912

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000  1e+06  1e+07

m
a

x
im

a
l 
le

n
g

th
 o

f 
re

p
e

a
t 

[c
h

a
ra

c
te

rs
]

block length [characters]

German
English
French

character unigram
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are the regression lines.
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Figure 4. Word-based maximal repetition on the doubly-logarithmic scale. The lines are
the regression lines.

In Figures 1 and 3, the abscissa is on the logarithmic scale, and the cloud of points forms a convex
(∪) shape. Thus, on average, the maximal repetition grows faster than logarithmically. On the other
hand, the clouds of points are concave (∩) in Figures 2 and 4, where both the abscissa and the ordinate
are on the logarithmic scale. Hence, on average, the maximal repetition grows slower than a power law.
Therefore, let us try to fit the hyperlogarithmic function:

L(Xm
1 ) ≈ A(logm)α, (13)

where A and α are free parameters. If we obtain α significantly larger than one, the investigated process
cannot be finite energy. Since the distributions of L(Xm

1 ) for fixed n are skewed towards large values,
to make the finite energy hypothesis more plausible, we fit parameters A and α using the least squares
method in the doubly-logarithmic scale. In this way, we obtain smaller values of parameters A and α
than when applying the least squares method in the linear scale.

It can be seen in the figures that the maximal repetition behaves quite comparably for texts in English,
German and French, whereas it is strikingly different for the unigram texts, for which the mean and
variance of L(Xm

1 ) are much lower. The fitted parameters of Model (13) and their standard errors are
presented in Table 5. They were obtained using the standard fitting procedure of the Gnuplot program.

The unigram texts are in theory a finite energy process, so parameter α should not exceed one in that
case. In Table 5, we see however that α ≈ 1.21 on the level of characters and α ≈ 1.14 on the level
of words, where the second digit is significant. This observation needs a definite explanation, which we
cannot provide at the moment. The reviewers of this paper suggested that our simple fitting procedure
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may overestimate parameter α and underestimate its error, analogically as in using the least squares
method to fit power law distributions [27]. However, here, we cannot use the improved method of fitting
power law distributions by Clauset et al. [27], since we are not fitting a probability distribution. As
an alternative explanation, let us note that our observation of α > 1 for the unigram texts might be due
to generating these texts using an imperfect pseudorandom number generator, which does not satisfy the
finite energy property. In fact, to generate the unigram texts, we have used the pseudorandom number
generator built in the Perl programming language, which need not be the best choice.

Table 5. The fitted parameters of Model (13). The values after the sign ± are the
standard errors.

Level of Description Class of Texts A α

characters German 0.076± 0.011 2.71± 0.07

characters English 0.093± 0.012 2.64± 0.06

characters French 0.074± 0.009 2.69± 0.06

characters unigram 0.42± 0.03 1.21± 0.03

words German 0.059± 0.014 2.18± 0.13

words English 0.086± 0.019 2.09± 0.11

words French 0.069± 0.010 2.08± 0.08

words unigram 0.24± 0.03 1.14± 0.06

Having made this remark, let us note that it is obvious by looking at the plots that texts in natural
language are of a different class than the unigram texts. The value of α is twice larger, α ≈ 2.6 on the
level of characters and α ≈ 2.1 on the level of words, for texts in natural language. Hence, we may
conclude that texts in natural language, as far as we can trust the estimated parameters and extrapolate
the data, are not generated by a finite energy process on the level of characters or on the level of words.
Repeats as long as 20 words are expected if they appear in samples of one million word tokens, which is
close to the observed maximal length of a text. That the repeats can be so long may seem surprising, but
the empirical data, such as the examples in Tables 1–4, confirm this claim. This behavior is strikingly
different than for the unigram texts.

4. Conclusions

In this article, we have studied two hypotheses about a possible probabilistic mechanism of generating
texts in natural language. According to the first hypothesis, texts are in a certain sense uniformly
contaminated by random noise. As we have shown, this conjecture implies that the stochastic process
of generating texts is finite energy. According to the second hypothesis, the strong Hilberg conjecture,
the number of different admissible texts of a given length is severely restricted, namely the logarithm
of it grows as a power law. In other words, the strong Hilberg conjecture assumes some mechanism
of intense and very selective replication of texts. According to the presented mathematical results, the
finite energy hypothesis and the strong Hilberg conjecture are mutually incompatible and can be tested
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by investigating the growth rate of the maximal repetition: the maximal length of a repeated substring in
a text.

The empirical study performed in this article confirms that in written texts, the maximal repetition
grows hyperlogarithmically, i.e., the maximal repetition grows as a power of the logarithm of the text
length. As far as we can trust our fitting procedure and extrapolate the empirical data, this falsifies
the finite energy hypothesis and partly corroborates the strong Hilberg conjecture. Rejection of the
finite energy hypothesis implies that texts written in natural language cannot be formed by transmission
through a specific noisy channel without any correction after the transmission. Thus, some mechanism
of reducing randomness must be at work during the composition of texts written in natural language.

Although the strong Hilberg conjecture implies the asymptotic determinism of human utterances, it
should not be discarded on a purely rational basis. For the further evaluation of the strong Hilberg
conjecture, it might be useful to exhibit some abstract examples of strong Hilberg processes. So far,
we have constructed some processes, so-called Santa Fe processes and some hidden Markov processes,
which are relaxed Hilberg processes with entropy rate h1 > 0 [7,28,29]. There are also known some
stationary processes, such as the Thue–Morse process, for which H1(n) ≈ B log n and h1 = 0 [30,31].
We are now on the way to construct a strong Hilberg process, but this is a topic for a separate paper.

The present study, although extending the previous study by Dębowski [5], covers still a narrow
selection of Indo-European languages, for which we obtain very similar results. In future research,
it may be interesting to extend the scope to some non-Indo-European languages, especially Chinese
or Japanese, which use a very different script, featuring a very large alphabet. However, we suppose
that the results may be comparable. The reason is that the strong Hilberg conjecture appears to be not
a hypothesis about a particular ethnic language, but rather a hypothesis about fundamental limitations of
human memory and attention. On this ground, let us claim that we may have discovered a new language
universal. This claim should be thoroughly verified.

In future research, it may be also illuminating to contrast our observation for natural language with
genetics, as suggested by Shields [3]. DNA sequences are certain sequences that have been generated
by the process of biological evolution, which, like human communication, may be conceptualized as
a complicated stochastic process combining randomness and computational mechanisms that decrease
the observed disorder. According to Chandrasekaran and Betrán [32], imperfect copying of very long
sequences is the main mechanism of creating new genes. Hence, we suppose that repeated strings
in DNA are much longer than in texts in natural language. Although we have not found any article
concerning the maximal repetition as a function of DNA sequence length, there are publications that
concern tools for computing repetitions in DNA [33], topological entropy of DNA [34] and a power law
for frequencies of repeated strings in DNA, which resembles Zipf’s law for natural language [35].

Finally, let us recall the idea of memetic cultural evolution, an analogue of biological evolution [36].
The principle of that theory is that the human mind tends to select and imitate previously-encountered
strings of symbols or ideas, according to their utility, regardless of whether being produced on their own
or provided by the environment. It may be obvious that this process occurs heavily in music at the level
of melodies or during language acquisition at the level of single words or grammatical constructions;
cf. Bloom et al. [37]. However, the empirical data we provide show that the self-imitation process
operates on many length scales of text composition and leads to surprisingly long literal repeats in spite of
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a conscious intention of not repeating long phrases too often. Moreover, according to the strong Hilberg
conjecture, the number of different admissible texts of a given length is severely restricted, that is there
must exist some mechanism of intense and very selective replication of texts. Thus, we suppose that
the strong Hilberg conjecture may describe a certain idealized equilibrium state in the cultural/biological
evolution. This idea may deserve further research. Let us note that a completely different approach to
mathematics of cultural/biological evolution has been proposed by Chaitin [38]. In the research of the
strong Hilberg conjecture, it might be fruitful to use his ideas.
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Appendix

A. Proof of Theorem 1

Consider process Xi = Wi ∗ Zi. First, let K = 1 and c = maxa∈Y P (Zi = a). Then:

P (Z
t+|wu|
t+|w|+1 = u) ≤ Kc|u|. (A1)

For strings w = w1...wn and z = z1...zn, where wi, zi ∈ Y, let us write w ∗ z = (w1 ∗ z1)...(wn ∗ zn) and
z−1 = z−1

1 ...z−1
n . Using the fact that (Wi)i∈Z and (Zi)i∈Z are independent, we can further write:

P (X
t+|wu|
t+|w|+1 = u|X t+|w|

t+1 = w)

=
∑
z∈Y|u|

P (W
t+|wu|
t+|w|+1 = u ∗ z−1, Z

t+|wu|
t+|w|+1 = z|X t+|w|

t+1 = w) (A2)

=
∑
z∈Y|u|

P (W
t+|wu|
t+|w|+1 = u ∗ z−1|X t+|w|

t+1 = w)P (Z
t+|wu|
t+|w|+1 = z) (A3)

≤
∑
z∈Y|u|

P (W
t+|wu|
t+|w|+1 = u ∗ z−1|X t+|w|

t+1 = w)Kc|u| ≤ Kc|u| (A4)

since: ∑
z∈Y|u|

P (W
t+|wu|
t+|w|+1 = u ∗ z−1|X t+|w|

t+1 = w)

=
∑
v∈Y|u|

P (W
t+|wu|
t+|w|+1 = v|X t+|w|

t+1 = w) = 1. (A5)

Hence, process (Xi)i∈Z is a finite energy process.
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B. Proof of Theorem 3

We begin with the following auxiliary result:

Lemma 1. For a discrete stationary process (Xi)i∈Z, where H0(n) < log(m − n + 1), inequality
L(Xm

1 ) ≥ n holds with probability one.

Proof. String Xm
1 contains m − n + 1 substrings of length n (on overlapping positions). Among

them there can be at most exp(H0(n)) different substrings if Xm
1 has a positive probability. Since

exp(H0(n)) < m− n+ 1, there must be some repeat of length n. Hence, L(Xm
1 ) ≥ n.

Now, let us suppose that H0(n) ≤ B2n
β . Then, using Lemma 1, we obtain L(Xm

1 ) ≥ n for B2n
β <

log(m − n + 1). Now, for a constant C > B2, let N be the smallest number, such that exp(B2N
β) +

N − 1 < exp(CNβ). Then, for n ≥ N , condition B2n
β < log(m − n + 1) follows from condition

Cnβ = logm or, equivalently n = A(logm)α, where α = 1/β and A = C−α. Hence, for m ≥ M =

exp(CNβ), we obtain:

L(Xm
1 ) ≥ A (logm)α (B1)

with probability one.
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