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Abstract: We present an information-theoretic method permitting one to find structure in a problem
space (here, in a spatial navigation domain) and cluster it in ways that are convenient to solve
different classes of control problems, which include planning a path to a goal from a known or an
unknown location, achieving multiple goals and exploring a novel environment. Our generative
nonparametric approach, called the generative embedded Chinese restaurant process (geCRP),
extends the family of Chinese restaurant process (CRP) models by introducing a parameterizable
notion of distance (or kernel) between the states to be clustered together. By using different
kernels, such as the the conditional probability or joint probability of two states, the same geCRP
method clusters the environment in ways that are more sensitive to different control-related
information, such as goal, sub-goal and path information. We perform a series of simulations in
three scenarios—an open space, a grid world with four rooms and a maze having the same structure
as the Hanoi Tower—in order to illustrate the characteristics of the different clusters (obtained using
different kernels) and their relative benefits for solving planning and control problems.

Keywords: clustering; information theory; generative model; structure learning; goal; sub-goal;
planning

1. Introduction

Learning efficient codes or representations of the environment is a key prerequisite for
several cognitive tasks. In vision research, information-theoretic and statistical methods have been
successfully used to study the coding properties of visual cortex neurons [1]. Here, a key assumption
is that these neurons are sensitive to the natural statistics and information content of visual scenes
and encode them efficiently in an information-theoretic sense [2]. If we apply the same logic to
neural coding besides vision, it is plausible that brain areas that have different inputs/outputs (and
computational demands) are sensitive to the different kinds of statistical regularities to which they
are exposed, especially if one conceives of the brain as a statistical machine [3].

In artificial intelligence (AI), reinforcement learning (RL) and related areas, it has been long
known that learning to code the problem space efficiently is paramount to finding efficient
solutions [4–6]. While in several practical AI and RL applications, the so-called state-space is
provided by programmers by hand, for example in the form of a grid of discrete cells that cover
the whole space, it is not guaranteed that this is the most efficient representation to solve the problem
at hand. Indeed, a recent approach consists of learning these representations using unsupervised
methods, such as deep learning, a method that has been successful in improving the performance of
RL agents [7].
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Furthermore, recent computational studies have shown that using information measures to find
structure in the environment, for example in the form of bottlenecks of sub-goals that permit splitting
navigation problems into subproblems, improves planning efficiency and lowers the demands (e.g.,
memory and cognitive load) of artificial agents [8–11]. These and other studies link well with
empirical studies showing that humans are indeed sensitive to the structure of their environment [12].

Therefore, from both a cognitive (neuro)science and a computational modeling perspective, a key
problem is how to find structure in the problem space. For most artificial agents, which solve multiple
problems simultaneously, this problem holds at various levels of complexity, from the problem of
visually recognizing and categorizing objects (analogous to the vision studies reviewed earlier), to
the problem of navigating, exerting efficient cognitive control, etc.

In analogy with the case of information approaches to vision discussed above, one might ask
which are the most important regularities, or in other words, what the natural statistics of control
tasks are. We hypothesize that control tasks are multifarious and might pose different demands,
from the identification of a path to a known goal, to the recognition of possible sub-goals, and that
each problem can benefit from a different task coding or decomposition. Therefore, one might need
a flexible system that selects the most appropriate representation depending on the task at hand.
Along these lines, recent neuroscientific evidence suggests that prefrontal codes are indeed sensitive
to multiple dimensions of the stimuli [13] and might quickly adapt to novel task demands, such as
the identification of specific goals [14–18].

In this article, we address the problem of finding efficient codes for various cognitive control
tasks from a computational perspective. We present a general information-based method to cluster
and split the problem space into ways that make control problems more efficient. To this aim, we
introduce a novel nonparametric approach: the generative embedded Chinese restaurant process
(geCRP). This approach builds on a variant of the Chinese restaurant process (CRP) [19], the
distance-dependent CRP [20], in which the notion of distance is added to the CRP to cope with
situations in which several observations mutually influence each other. We further generalize the
distance-dependent CRP by using model-based discriminant functions (generative kernels) instead
of the notion of distance, in such a way as to embed prior information on observations about how the
data were generated.

Here, we show that different parametrizations of the geCRP method permit one to derive task
clusterings that are more sensitive to different control-related information, such as goal, sub-goal and
path information. To support our analysis, we show that each of the resulting task clusterings has
specific benefits for a class of control problems, including planning a path to a goal from a known
location, from an unknown location, the achievement of multiple goals and the exploration of a
novel environment.

2. Methods

Traditionally, clustering techniques can be grouped into parametric and nonparametric [21]. In
the first ones, the clustering process is viewed as a density estimation of a mixture distribution for
whose components (the clusters) a specific parametric form has to be assumed (a Gaussian one, quite
commonly). This means restricting the clusters’ shapes to a precise statistical distribution family,
and this can compromise the result. In particular, the standard K-means approach and its popular
derivations crucially require the number of clusters to be fixed in advance [22]. Nonparametric
approaches do not have such strong constraints. Unlike parametric ones, nonparametric approaches
make no assumptions about the probability distributions of the variables being assessed. The
difference between parametric methods and nonparametric methods is that in the latter, the number
of parameters is potentially infinite and is determined by data, not by the model. Despite this,
nonparametric approaches use some meta-parameters governing the inference of the correct form and
size of the model.
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Our starting point is a recently introduced generative nonparametric mixture: the Chinese
restaurant process (CRP) [19]. CRP has proven to be able to infer the number of clusters from the
data and to be an effective tool for mining information from high dimensional data. Specifically, we
leverage a variant of CRP and extend it, using a framework that permits one to define algorithmic
probability distributions on discrete states. Below, we introduce the original CRP methods and the
ways we extended them.

2.1. Distance-Dependent Chinese Restaurant Process

The CRP [19] is a generative process determining prior distributions over infinite partitions of
combinatorial structures. The name “CRP” derives from the metaphor commonly used to describe
this stochastic process: a sequence of N customers enters a Chinese restaurant with an infinite number
of tables; they sit down randomly at a table with a probability depending on the number of the
customers already occupying it. The assignment of customers to tables represents a random partition
where tables are blocks and customers are elements of the set {1, . . . , N} partitioned.

More formally, we can denote as zi the table assignment of the i-th customer; i occupies the table
k with nk customers already sitting according to the distribution:

p(zi = k|z1:(i−1), α) ∝

{
α if k = T + 1
nk if k ≤ T

(1)

where z1:(i−1) is the assignment of the previously entered customers occupying T tables and α is a
concentration parameter controlling the probability of the i-th customer to choose an unoccupied
table. In practice, a larger α favors partitions with more tables.

An important feature of CRP is the marginal invariance: the probability distribution over
partitions does not depend on the ordering of the customers entering in the restaurant. This property
theoretically links CRP to the Dirichlet process (DP) mixture model [23], a Bayesian nonparametric
mixture model that is widely used to design flexible clustering algorithms for high-dimensional
data analysis.

However, in problems (like the ones we face here) where observations mutually influence
each other, marginal invariance needs to be relaxed. Several generalizations of CRP allow for
non-exchangeable distributions on partitions [24–27]. Among these methods, the distance-dependent
CRP (ddCRP) [20] is one of the most widely used. Different from the CRP, in which the table
assignment zi is directly modeled, ddCRP recreates table assignments based on the linkage between
customers.

Using a “culinary” metaphor for the ddCRP, the i-th customer enters the Chinese restaurant and
either receives a customer assignment ci = j, i.e., sits at the same table with another customer j with a
probability depending on a non-negative decreasing function f (dij) of the distance measurement dij
between the two, or stays alone at an empty table, with a probability proportional to α. Therefore,
ddCRP is a generative process of customer assignment described by the distribution:

p(ci = j|D, f , α) ∝

{
α if i = j
f (dij) if i 6= j

(2)

where D ⊆ RN ×RN is the set of the distance measurements between customers and f : R+ → R+,
the decay function, is non-increasing and satisfying f (∞) = 0. Customer assignments c1:N induce the
table assignments z(c1:N), corresponding to the cluster configuration, in a non-unique way (a table
configuration z(c1:N) can be derived from several customer configurations c1:N) and without any
conditioning on the other customers. More details about ddCRP properties can be found in [20] (of
note, the traditional CRP is a particular instance of ddCRP).
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2.2. Generative Embedded CRP

The nonparametric clustering methods introduced earlier are discriminative, but do not give
clues on the mechanisms generating the data. For example, CRP does not specify any metric relation
between the data (e.g., their spatio-temporal structure), and the ddCRP can only consider distances
between objects, but not other similarity metrics that are not induced by space or time or that are not
implicit in the data.

Here, instead, we are interested in using probabilistic distributions or information-related
measures as similarity metrics between data points. To this aim, we integrated in the nonparametric
clustering a generative model that permits incorporating problem-specific knowledge on how the
data were generated. Specifically, we revised the ddCRP by inserting generative models that explicitly
produce probability distributions over customers in place of their distances. In turn, this allows
reconsidering decay functions as kernel functions that estimate the similarity between two or more
customers on the basis of their probability measures.

We denoted the proposed method a generative embedded CRP (geCRP). The terms generative
embedded designates the adoption of a generative model inducing a model-based feature space,
also called a generative score space, where to project the data. Somehow, geCRP is inspired by
the generative kernel framework for classification [28,29], where model-based discriminant functions
(kernels) are defined over a probability measure to map data onto their statistical representations in
order to improve the discriminative classifier’s performance.

In summary, in our approach, we firstly consider a probability spaceM = (S, PM) on a discrete
set S, where PM : F (S) → [0, 1] is a probability distribution on the collection F (S) of subsets of S;
this corresponds to set an embedding function, from S to the unit interval. Secondly, we define a
kernel K : PM(F )× PM(F ) → R+ on the embedding space with the aim of inducing sparsity and
increasing discriminative efficacy.

Additionally, K has another important formal role: employing a standard kernel avoids worrying
about the positive semi-definite property of the adopted distribution PM, differently from the
generative kernel approaches, where it is necessary to check if a probability kernel corresponds to
an inner product (see the details in Section 2.2.2 and in [30]).

Starting from these two distinct mathematical objects, we can define a generative embedded
kernel KM : S × S → R+ by composing K with the Cartesian product of functions (PM × PM) :
S× S→ [0, 1]× [0, 1]:

KM(i, j) := (K ◦ (PM × PM))(si, sj) = K(PM(si), PM(sj)) (3)

Equation (3) produces a generative score space, which stipulates a similarity metric between states
and which affords a model-based explanation of why some states can be gathered in the same group.

In practice, KM acts as f (dij) in Equation (2), but it allows one to specify any data property
that can be described via a suitable probabilistic modelM. Furthermore, this approach can be easily
generalized to produce generative kernels KMΘ : MΘ ×MΘ → R+ whereMΘ =

⋃
iM`i is a space

of probabilistic models or a distribution family specified by the parameter set `i (refer to [31] for a
particular example).

The geCRP can thus be described as a generative process rendered by the distribution:

p(ci = j|M, K, α) ∝

{
α if i = j
KM(i, j) if i 6= j

(4)

here, as for the ddCRP, i and j denote the i-th and j-th customers, and ci is the i-th customer
assignment. However, different from Equation (2), KM(i, j) is the value of the generative embedded
kernel that evaluates the similarity between i and j.
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Similar to ddCRP, the generative embedded CRP can be used to mine data clusters. Clustering
with a geCRP is a posterior inference problem, which consists of determining the conditional
distribution of latent variables given the observations. In geCRP terms, and by focusing on our
specific application, what is needed is the computation of the distribution of customer assignments
c1:N , our latent variables, conditioned on the observed states s1:N and the generative modelM and
the chosen kernel K.

Therefore, to apply geCRP to data clustering, it is necessary to introduce three interacting
modules (see Figure 1 for a visual representation of their integration): (1) a generative model M
that transfers observed states in probability measures that compose the embedding space; (2) a
kernel function K defined on the generative score space; and (3) a Gibbs sampler that adopts KM,
obtained by composing the probability measure inMwith the kernel K, as the similarity measure for
cluster setting.

The following sections describe these components, showing their configurations in the specific
problem we face in this article.
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third case there should be estimated the gain or loss, in terms of likelihood of the observations, between191

the old and the new cluster configurations.192

To summarize up, the Gibbs sampler for the generative embedded CRP draws from the distribution:

p(c
(new)
i |c−i, s1:N , M, K,α) ∝





α if c
(new)
i = i

KM(i, j) if c
(new)
i = j does not join two clusters

KM(i, j)Γ(s, z, G0) if c
(new)
i = j joins clusters k and l

(17)

where the term

Γ(s, z, G0) =
p(sz(c−i)=k∪z(c−i)=l|G0)

p(sz(c−i)=k|G0)p(sz(c−i)=l|G0)
(18)

compares the likelihoods of the proposed cluster configuration, attained by merging together the clusters193

k and l, with the configuration in which k and l stay disjointed.194

To establish a form to use for expressing the factors of Equation (16), and consequently also Equation
(18), we need to consider the specific problem we deal with. In our particular application of geCRP
modeling, the form of the likelihood function of observations is inspired to that derivated by Anderson
in [25] to expound human categorization. Anderson used a categorical distribution on the probability pi

that an object i was displayed in a certain category and introduced a Dirichlet distribution of parameter
αj as prior distribution. This implies that the expected value of the posterior distribution of pi – again a
Dirichlet distribution – has the same probabilistic meaning of the likelihood of finding an object i in the
category k:

P (i|k) =
oi + αi

nk + α0

(19)

where nk is the number of objects in the kth category, oi is the number of occurrence of objects i in k195

and α0 =
�

i αi.196

Immersing this approach in our case, we gleans the following formula for the likelihood of
observations:

KM =




1 KM12 . . . KM1N

KM12 1 . . . KM2N

...
... . . . ...

KM1N
KM2N

. . . 1




(20)

where we state a flat Dirichlet distribution by setting all αi = 1 and we substitute the number of197

occurrence oi with the cumulative similarity that every state indexed by i in sz(c1:N )=k has with the198

others in the same cluster.199
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third case there should be estimated the gain or loss, in terms of likelihood of the observations, between191

the old and the new cluster configurations.192

To summarize up, the Gibbs sampler for the generative embedded CRP draws from the distribution:

p(c
(new)
i |c−i, s1:N , M, K,α) ∝





α if c
(new)
i = i

KM(i, j) if c
(new)
i = j does not join two clusters

KM(i, j)Γ(s, z, G0) if c
(new)
i = j joins clusters k and l

(17)

where the term

Γ(s, z, G0) =
p(sz(c−i)=k∪z(c−i)=l|G0)

p(sz(c−i)=k|G0)p(sz(c−i)=l|G0)
(18)

compares the likelihoods of the proposed cluster configuration, attained by merging together the clusters193

k and l, with the configuration in which k and l stay disjointed.194

To establish a form to use for expressing the factors of Equation (16), and consequently also Equation
(18), we need to consider the specific problem we deal with. In our particular application of geCRP
modeling, the form of the likelihood function of observations is inspired to that derivated by Anderson
in [25] to expound human categorization. Anderson used a categorical distribution on the probability pi

that an object i was displayed in a certain category and introduced a Dirichlet distribution of parameter
αj as prior distribution. This implies that the expected value of the posterior distribution of pi – again a
Dirichlet distribution – has the same probabilistic meaning of the likelihood of finding an object i in the
category k:

P (i|k) =
oi + αi

nk + α0

(19)

where nk is the number of objects in the kth category, oi is the number of occurrence of objects i in k195

and α0 =
�

i αi.196

Immersing this approach in our case, we gleans the following formula for the likelihood of
observations:

p(sz(c1:N )=k|z(c1:N), G0) =
�

i∈sz(c1:N )=k

�
j �=i KM(i, j) + 1

nk + N
(20)

where we state a flat Dirichlet distribution by setting all αi = 1 and we substitute the number of197

occurrence oi with the cumulative similarity that every state indexed by i in sz(c1:N )=k has with the198

others in the same cluster.199
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According to that, the conditional distribution p(si|sg) of a generic state si ∈ S respect a goal state127

sg can be straightly approximated by the joint probability distribution p(si, sg), provided that, in128

this case, the denominator of Equation (7), corresponding to P (sg), is constant at varying si.129

Path-sensitive model Planning could be cheaply defined as acting to find a trajectory in a symbolic or130

real space from an initial state to a final one. This means that it is crucial to carry out a succession131

of states which are ‘descriptive’ about provenance and destination.132

Hence, the probability of a state to be selected as a point of a planned trajectory is conditioned on
both the initial and final states. In algorithmic probability terms, denoted with so and sg the states
corresponding respectively to the origin and the goal of a planning task, the conditional probability
of a state si given so and sg can be written as:

P (si|so, sg) ∝
�

j

2−(|ci(g,j)|+|ci(o,j)|) (8)

The expression for conditional algorithmic probability distribution is consistent with the other133

definitions of joint and a priori probability distributions previously introduced as it is feasible to134

demonstrate by handling the probabilistic chain rule.135

Multiple goal-sensitive model It happens, in many real situations, that a domain presents a series of
states as goals for planning/decision tasks. The presence of multiple goals entails a different
distribution of the most relevant states on the basis of their contribution to achievement of a set of
goals. This relation between a state si and a set of goal-states {sg1 , . . . , sgG

} is probabilistically
ruled by the conditional distribution P (si|sg1 , . . . , sgG

). Algorithmically, P (si|sg1 , . . . , sgG
) has as

formulation the generalization of Equation (8):

p(si|g1, g2, g3) (9)

Equation (9) describes the probability of a state si to be the output of a set of computable programs136

depending on the fixed goals and it can be used, in a more general sense, to establish how much a137

state is related to others. This is, for example, the case of multiobjective decision making where138

the solutions have to satisfy multiple criteria simultaneously.139

Viceversa, one could be interested to grouping the states according to the goal of the set
{sg1 , . . . , sgG

} to which they are greatly probabilistically connected. Answering to that request
results in a Maximum A Posteriori (MAP) estimation, a very widespread method adopted in
fault-causes diagnostics and expert systems. MAP consists in solving the probabilistic inference:

sg∗ = arg

�
max
sgi

P (sgi
|si)

�
= arg

�
max
sgi

(P (si|sgi
)P (sgi

))

�
(10)

where P (sgi
|si) is the posterior probability distribution of each goal sgi

and it can be led back the140

probability distribution defined in Equation(7) and Equation (5) by means of Bayes’rule, while the141

state sg∗ represents the goal that more influences the state si, thence the goal which si is mainly142

connected to. It is the case, for example, of multinomial optimization where one is interested to143

figure out a collection of equivalent solutions to a given problem.144
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Figure 1. Schematization of the generative embedded Chinese restaurant process. A generative
embedded Chinese restaurant process (geCRP) can be viewed as the composition of three different
modules. Initially, in Stage 1, a probabilistic model M = (S, PM) of the problem at hand has to
be defined. M is a probability space where PM is a distribution on the space of events coinciding
with the subsets of the problem state space. PM acts as an embedding function that projects
(collections of) states in [0, 1]. To this aim, any probabilistic framework can be adopted. Here, we
adopt a methodology of information theory, the algorithmic probability theory, to construct different
distributions, as detailed in Section 2.2.1. Thereafter, in Stage 2, a generative embedded kernel
KM : S × S → R+ is defined that represents a similarity metric and determines a generative score
space. This stage is described in Equation (3) and can be thought of as being split into two steps:
first, the introduction of a kernel function K : PM(F ) × PM(F ) → R+ by choosing, according
to the characteristics of the problem, among those ones of common use (Section 2.2.2); second, the
composition of K with the function PM × PM, whose domain is the Cartesian product S × S of the
space of states S with itself. In the last stage, Stage 3, the generative embedded kernel is used in
a Gibbs sampling scheme (Section 2.2.3) to figure out the cluster partitioning that best explains the
observations. The clusters can then be visualized and interpreted according to the generative model
adopted in Stage 1.
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2.2.1. Algorithmic Generative Models

Proposing a probabilistic model permits having approximate knowledge about the invariances,
the features and the similarities intrinsic in the data. In geCRP, it is possible to adopt one among the
several representations for the probability distributions.

Here, we adopt algorithmic probability (AlP) theory [32], a mathematical model derived
by computability theory, introduced by Solomonoff [33,34] and having important applications in
inductive reasoning [35], reinforcement learning [36], space/time complexity of algorithms [32] and
incompleteness theorems [37]. AlP assigns an a priori probability to objects derived by a computable
process. The a priori probability, in a theoretic sense, does not depend on the particular computational
model adopted. AlP distinguishes between the a priori probability of discrete objects, like natural
numbers or finite binary strings, and the a priori probability density function of continuous objects,
like the family of all finite and infinite binary sequences. In the discrete version, the a priori probability
mU(x) of some string x is the probability of the output of a universal prefix Turing machine U, x being
provided with a random binary string on the input tape. Formally, mU(x) can be defined as:

mU(x) = ∑
c : U(c)=x

2−|c| (5)

where the sum is over many finite halting binary programs c of length |c| for which U returns the
string x as output. Here, 2−|c| is the probability that the random input is the program c; consequently,
mU(x) is the sum of the probabilities of all of the ways in which a string x could be generated by U.
It is easy to note that 2−K(x) is the maximum term in Equation (5). For this, the distribution mU(x)
is strongly related to Kolmogorov complexity K(x) and has similar remarkable properties. First, it
entails a rigorous formulation of Occam’s razor: the shorter the programs, the higher the probabilities
assigned to the described strings. Second, if U is a universal prefix Turing machine, mU(x) is
somewhat independent of the particular universal machine used, as one can always obtain programs
for one universal machine by adding a finite sequence of translation instructions to programs of
another universal machine.

Here, we use AlP theory as a framework to represent probability distributions over discrete
spaces. In a discrete state space, symmetric transitions can be represented as sequences of instructions
(enclosed in a policy πj) executed by an agent in order to reach a fixed final state si′ , starting from
an initial one si and passing through other states. Intuitively, this sequence of instructions can be
described as a binary program ci′(si, πj) relying on πj, having si as input and returning the state
si′ as output. By denoting as |ci′(si, πj)| the length of ci′(si, πj), the probability that si′ could be the

output of a computing machine having ci′(si, πj) as input is 2−|ci′ (si ,πj)|, as explained in the remarks
of Equation (5). This probability depends on ci′(si, πj) encoding a specific sequence of instructions,
which are strongly affected by the valid transitions admitted for the considered state space. Its value
ranges from 0 to 1: it goes to 0 in the limit of |ci′(si, πj)| → ∞, if a program does not halt in si′ or it
cyclically runs, i.e., it does not halt at all, and we assume it is equal to 1 when |ci′(si, πj)| = 0, namely
when the initial state si and the arrival state si′ coincide.

Essentially, if one fixes the size of the state space, distinct programs without cycles exist,
depending on a finite subset of policies, that return si′ and contribute to its algorithmic probability.
This makes the probability computable, but at the same time, entails a considerable computational
cost, because the number of policies can be remarkable also for a relatively small state space.
However, here, we adopt a strategy that makes the required computations efficient [11]. The state
space of the problem can be arranged as a graph having the states as its n vertices and the transitions
between states as its e edges. The graph can be represented as an adjacency list: a collection of
unordered lists, one for each state, composed of the neighbors of the related vertex. Given two
states, si and si′ , we exploit a standard depth-first search algorithm to figure out all of the paths
` ∈ L(si, si′) between them. Every path ` corresponds intuitively to a distinct program with code
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c`, but each program can be attained by different policies. As a consequence, various policies give
the same contribution to the algorithmic probability computation. Their number can be estimated by
considering every possible combination of the neighbors of the states not involved in the specified
path ` (and, thus, not encoded in the c`). We call this value multiplicity of the program c`, and we
indicate it as µ(c`). Therefore, the probability that there exists a code as a description of si′ is:

P(si′) = ∑
si

∑
`∈L(si ,si′ )

µ(c`)
(

2−|c` |
)

(6)

which dramatically reduces the computational complexity of probability computation to O(n + e),
equal to the depth-first search complexity.

This algorithmic approach permits us to obtain a collection of probability distributions that can
be used to characterize, in a task-dependent way, the states of the problems at hand (in this study,
planning problems).

Below, we illustrate the probabilistic models used in this study, along with the planning
problems that they permit to address:

(i) Sub-goal-sensitive model: This model assigns to each state a probability value proportional to how
much the state is likely to be a stage of a plan or, in the algorithmic metaphor, to be the execution
of some program’s instruction.

By considering every potential program, namely every permitted combination of input states
and policies, returning the state si′ , one can affirm that, up to a normalization factor, the prior
probability of the state si′ can be defined as:

P(si′) ∝ ∑
i

∑
j

2−|ci′ (si ,πj)| (7)

and can be computed through the aforementioned method summed up by Equation (6).

Of course, Equation (7) can be extended to every element of the space state, generating an a priori
algorithmic probability distribution (or prior distribution), which assigns the highest probability
value to the states that are useful to decompose a planning task into multiple steps [11,38].
This class of states can be denoted as sub-goal states, because they allow splitting problems into
less demanding and less complicated sub-problems. Sub-goaling, namely breaking the original
problem down into smaller and more manageable problems whose achievement corresponds to
landmarks (or “sub-goals”) of the original problem, has long been recognized as a fundamental
strategy of problem solving in humans (and possibly other animals) [39].

(ii) Structure-sensitive model: Analogously to Equation (7), one can define the probability that two or
more states co-occur. The joint probability of a subset of states depends on the number and the
length of the programs passing simultaneously through the states. Hence, for two states si, sl ,
the whole set of programs with such characteristics is built by considering every policy that starts
from a generic state sk and ends both in si and in sl . Formally, P(si, sl) is defined as:

P(si, sl) ∝ ∑
k

∑
j

2−(|ci(sk ,πj)|+|cl(sk ,πj |) = ∑
j

2−|ci(sl ,πj)| (8)

where the equality on the right side follows by two properties of the model: (1) two states co-occur
if and only if the programs that have si (sl) as output are prefixes of the programs returning sl (si)
[35]; and (2) if a program from sk to sl exists, then, having assumed that transitions are symmetric,
there is also the opposite one from sl to sk.

The joint probability between two states of the scenario represented in Equation (8) rests upon
the number of programs that connect them. This model thus conveys relevant information on the
problem structure and the degree of connectedness between its states.
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(iii) Goal-sensitive model: In goal-directed planning, the identification of a state as a goal changes the
relations between every state of the domain. Practically speaking, the probability of each state
depends on how many effective paths toward the goal pass through it. In probabilistic terms, this
corresponds to the fact that the goal state conditions the state probabilities.

More formally, this corresponds to the conditional probability that a state si is reached given that
sl has been returned. This conditional probability can be obtained from Equations (7) and (8) by
the probabilistic product rule:

P(si|sl) =
P(si, sl)

P(sl)
(9)

The conditional distribution p(si|sg) of a generic state si ∈ S with respect to a goal state sg can be
straight forwardly approximated by the joint probability distribution p(si, sg), provided that, in
this case, the denominator of Equation (9), corresponding to P(sg), is constant as si varies.

(iv) Path-sensitive model: Planning could be inexpensively defined as acting to find a trajectory in
a (symbolic or real) problem space, from an initial state to a final one. This means that it is
crucial to carry out a succession of states that are “descriptive” about the agent’s provenance
and destination.

Hence, the probability of a state to be selected as a point of a planned trajectory is conditioned
on both the initial and final states. In algorithmic probability terms, denoted with so and sg, the
states corresponding respectively to the origin and the goal of a planning task, the conditional
probability of a state si given so and sg can be written as:

P(si|so, sg) ∝ ∑
j

2−(|ci(g,πj)|+|ci(o,πj)|) (10)

The expression for the conditional algorithmic probability distribution is consistent with the
previous definitions of joint and a priori probability distributions, as easily provable by using
the probabilistic chain rule.

(v) Multiple goal-sensitive model: In many real situations, a domain can include not just one goal,
but a series of goals. The presence of multiple goals entails a different distribution of the most
relevant states on the basis of their contribution to the achievement of a set of goals. This relation
between a state si and a set of goal states {sg1 , . . . , sgG} is probabilistically ruled by the conditional
distribution P(si|sg1 , . . . , sgG ).

Algorithmically, P(si|sg1 , . . . , sgG ) has as its formulation the generalization of Equation (10):

P(si|sg1 , . . . , sgG ) ∝ ∑
j

2−(|ci(g1,πj)|+···+|ci(gG ,πj)|) (11)

Equation (11) describes the probability of a state si as the output of a set of computable programs,
which depend on the fixed goals. More broadly, it can be used to establish how much a state is
related to others (this is the case, for example, in multi-objective decision making tasks, where the
solutions have to satisfy multiple criteria simultaneously).

At the same time, as we consider in our experiments, one could be interested in grouping the
states according to the goal of the set {sg1 , . . . , sgG} to which they are greatly probabilistically
connected. Answering this question results in a maximum a posteriori (MAP) estimation: a
very widespread method adopted in fault-cause diagnostics and expert systems. MAP consists of
solving the probabilistic inference:

sg∗ = arg
(

max
sgi

P(sgi |si)

)
= arg

(
max

sgi

(
P(si|sgi )P(sgi )

))
(12)
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where P(sgi |si) is the posterior probability distribution of each goal sgi , and it can be led back to
the probability distribution defined in Equations (9) and (7) by means of Bayes’ rule, while the
state sg∗ represents the goal that influences the state si more, thence the goal to which si is mainly
connected. This is the case, for example, of multimodal optimizations, where one is interested in
figuring out a collection of equivalent solutions to a given problem.

2.2.2. Kernels

Once the generative model is determined (and thence, the distribution P : F (S) → [0, 1]),
our method consents to select the most suitable kernel K : P(F ) × P(F ) → R+ to compare the
probabilistic measures of two distinct events of F .

In general, a kernel is a function K : X × X → R; it is positive defined if and only if for any
two objects x; x′ ∈ X it is symmetric (that is, K(x, x′) = K(x′, x)) and ∑n

i ∑n
j cicjK(xi, xj) ≥ 0, for any

choice of n > 0, x1, . . . , xn ∈ X and c1, . . . , cn ∈ R.
Kernel functions have the property of being defined by inner products. For instance, if X = Rp

and x ∈ X, then x = (x1, . . . , xp)> represents a real vector and the inner product K(x, x′) = x>x′ =
∑

p
i xix′i , for any x,x′, is a kernel.

This suggests a systematic way to define kernels, also for sets X that are not vector spaces: by
first introducing a mapping φ : X → Rp (p ≥ 0), one can define a kernel, such that, for any x, x′ in the
set X, K(x, x′) = φ(x)>φ(x′).

On the other side, for any kernel K on a space X, there exists a Hilbert space F called the feature
space and a mapping φ : X → F, such that K(x, x′) = 〈φ(x), φ(x′)〉, where 〈·, ·〉 represents the
dot product in F. This provides a geometric interpretation for K and, consequently, confers metric
properties upon it [40].

Additionally, a kernel function K(x, x′) on a countable space X can also define a joint probability
distribution P(x, x′) on pairs from the product space X × X (P-kernel [30]) provided P(x, x′) =

K(x, x′)/Z, where Z = ∑x∈X ∑x′∈X K(x, x′). The contrary is not generally true: not every probability
distribution can be considered a kernel function.

There exists a wide assortment of standard kernel functions where it is possible to choose the
most fitting one on the basis of the particular analyzed task. The radial basis function kernel class is a
collection of nonlinear kernels inducing an infinite dimensional feature space where the elements are
orthogonal when their distance is much greater than a positive scaling parameter λ [41]. Among the
kernels belonging to this class, we have chosen the exponential (or Laplacian) kernel:

K(x, x′) = e−
‖x−x′‖

λ (13)

that allows one to effectively estimate the empirical local density of distribution values by polarizing
the distance, and it is less sensitive than the Gaussian kernel to λ.

A simpler kernel adoptable as an alternative is the uniform kernel:

K(x, x′) = 1(‖x− x′‖ < λ) (14)

where 1(·) is the characteristic function with value 1 when the distance between x and x′ is greater
than λ, and 0 otherwise.

Compared to the exponential kernel, the uniform kernel is much more coarse by mapping inputs
in a rougher similarity space, but it entails an increase of the sparsity degree in the feature space, a
fundamental property for clearly discriminating the elements of the same group.

Once the kernel function is selected, the definition of the generative embedded kernel is
straightforward. Let us suppose to opt in the sub-goal-sensitive model, with the distribution reported
in Equation (7), as generative embedding, and let us imagine deciding to use an exponential kernel
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to map the generative score space into a feature space; replacing Equations (7) and (13) in Equation
(3), it results:

KM(i, j) =
(

e−
‖P(si)−P(sj)‖

λ

)/
Z (15)

where Z is a normalization factor.
It is possible to define in the same way the other generative embedded kernels used in this work,

except those derived from the structure-sensitive model and the multiple goal-sensitive model. In the
first case, we use the probabilistic distribution in Equation (8) as a P-kernel and define the following
generative embedded kernel:

KM(i, j) =

(
e−

(1−P(si ,sj))
λ

)/
Z (16)

In the second case, the generative embedded kernel implements an inference process that, given
two states si and sj, finds out the respective goal sĝ and sg̃ representing the modes of the posterior
distributions (see Equation (12)) before comparing them:

KM(i, j) =





(
e−
‖P(sĝ |si)−P(sg̃ |sj)‖

λ

)/
Z if sĝ = sg̃

0 otherwise
(17)

Compared to Equation (15), Equation (16) uses a joint probability to measure the similarity of
the states, while Equation (17) sums up a probabilistic estimation method as a whole, rather than
exploiting a simple distance between probability values. This is a consequence of the pliability of the
generative embedding involved in our approach.

In order to point out which generative embedded kernel variant is used in a geCRP, we introduce
the notation:

geCRP/a/b (18)

where:

a: specifies the generative model adopted. If we consider the models introduced in Section 2.2.1,
it can be “subg” (sub-goal sensitive), “struc” (structure sensitive), “goal” (goal sensitive), “path”
(path sensitive) and “multig” (multiple goal sensitive).

b: denotes the standard kernel. For example, we can use “L” for the Laplacian kernel (this is the
only kernel involved in the experiments reported in Section 3) or “U” for the uniform kernel, and
so on, with other kernels not shown here.

We could say that the notation in Equation (18) denotes a strategy or a scheme of geCRP. For
example, the scheme geCRP/subg/L points out the geCRP with the generative embedded kernel
described in Equation (15). This beneficial notation, inspired by the differential evolution classical
notation [42], is used for all of the experiments reported later on.

2.2.3. Posterior Inference with Gibbs Sampling

As previously mentioned, geCRP clustering is realized by posterior inference. The problem is
that the posterior:

p(c1:N |s1:N ,M, K, α, G0) =

(
∏N

i=1 p(ci|M, K, α)
)

p(s1:N |z(c1:N), G0)

∑c1:N

(
∏N

i=1 p(ci|M, K, α)
)

p(s1:N |z(c1:N), G0)
(19)

of customer assignments c1:N given the observed states s1:N , where z(c1:N) is the cluster
representation derived from c1:N and G0 is the base distribution of customer tables (typically a
Dirichlet distribution), is not computationally tractable directly due to the combinatorial sum of
possible customer configurations present in the denominator.
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A general methodology for posterior approximation has been provided by Blei and Frazier [20]
and it relies on Gibbs sampling [43], a variant of the Monte Carlo Markov chain (MCMC) inference
method [44]. The strategy is to construct a Markov chain whose stationary distribution is the posterior
of Equation (19); one can realize that by iteratively sampling each ci conditioned on both the others
c−i, the collection of assignments c1:N without ci, and the observations s1:N [45],

p(ci|c−i, s1:N ,M, K, α) ∝ p(ci|M, K, α)p(s1:N |z(c1:N), G0) (20)

where the first term is the geCRP prior given in Equation (4) and the second term is the likelihood of
the observations under the partition set by z(c1:N).

The likelihood can be factorized into a product of terms describing the probability of a set of
observations in each cluster. Let |z(c1:N)| be the number of clusters in the customer assignments
z(c1:N) and sz(c1:N)=k the set of observations assigned to the k-th cluster; we can decompose the second
term of Equation (20) as:

p(s1:N |z(c1:N), G0) =
|z(c1:N)|

∏
k=1

p(sz(c1:N)=k|z(c1:N), G0) (21)

Likelihood factorization has a computational utility: at each iteration, the Gibbs sampler needs to
compute again only those terms affected by changes in the partition.

The Gibbs sampler draws from Equation (20) through performing the following two stages
for each customer i: (1) transforming the partition z(c1:N) into z(c−i) by removing the link ci; and
(2) proposing a new link c(new)

i and estimating how the resulting partition z(c−i ∪ c(new)
i ) affects the

likelihood of observations p(s1:N |z(c−i ∪ c(new)
i ), G0).

In the first stage, ci removal entails two possible situations: either the cluster configuration
remains unaltered, i.e., z(c1:N) = z(c−i), or it is split into two new clusters. In the second stage,
ci is randomly reset to c(new)

i , leading to one among these three potential cases: (1) c(new)
i links to

itself, a self-link for the i-th customer, determining no change in the likelihood function; (2) c(new)
i

links to another customer, leaving intact the cluster configuration, i.e., z(c−i) = z(c−i ∪ c(new)
i ); and

(3) c(new)
i links to another customer joining together the k-th and the l-th clusters. An illustration of

what happens by removing or adding a link in the configuration is depicted in Figure 2.
The first two cases do not yield any change in the likelihood function, so

p(c(new)
i |c−i, s1:N ,M, K, α) is proportional to geCRP prior p(c(new)

i |M, K, α). Differently, in the
third case, the gain or loss, in terms of the likelihood of the observations, between the old and the
new cluster configurations, should be estimated.

To summarize, the Gibbs sampler for the generative embedded CRP draws from the distribution:

p(c(new)
i |c−i, s1:N ,M, K, α) ∝





α if c(new)
i = i

KM(i, j) if c(new)
i = j does not join two clusters

KM(i, j)Γ(s, z, G0) if c(new)
i = j joins clusters k and l

(22)

where the term:

Γ(s, z, G0) =
p(sz(c−i)=k∪z(c−i)=l |G0)

p(sz(c−i)=k|G0)p(sz(c−i)=l |G0)
(23)

compares the likelihoods of the proposed cluster configuration, attained by merging together the
clusters k and l, with the configuration in which k and l stay disjointed.
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Figure 2. Effects of adding/removing a link in the customer link and table assignment representations.
Illustration of the potential effects on cluster configurations considered by the Gibbs sampler when
adding/removing a link between two customers, in the customer link (left side) and table assignment
(right side) representations. When the gray link is removed, it could leave the cluster configuration
unaltered (the first two examples from the top) or separate a cluster into two (the example down in
the figure). When it is added, it could leave the clustering (the first two examples) or it might merge
two distinct clusters into one (the last example).

To establish a way for expressing the factors of Equation (21), and consequently also
Equation (23), we need to consider the specific problem with which we are dealing. In our particular
application of geCRP modeling, the form of the likelihood function of observations is inspired by
that derived by Anderson in [46] to expound human categorization. Anderson used a categorical
distribution on the probability pi that an object i was displayed in a certain category and introduced
a Dirichlet distribution of parameter αj as the prior distribution. This implies that the expected value
of the posterior distribution of pi, again a Dirichlet distribution, has the same probabilistic meaning
of the likelihood of finding an object i in the category k:

P(i|k) = oi + αi
nk + α0

(24)

where nk is the number of objects in the k-th category, oi is the number of the occurrences of objects i
in k and α0 = ∑i αi.

Immersing this approach in our case, we glean the following formula for the likelihood of
observations:

p(sz(c1:N)=k|z(c1:N), G0) = ∑
i∈sz(c1:N )=k

∑j 6=i KM(i, j) + 1
nk + N

(25)
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where we state a flat Dirichlet distribution by setting all αi = 1, and we substitute the number of
occurrences oi with the cumulative similarity that every state indexed by i in sz(c1:N)=k has with the
others in the same cluster.

2.3. Properties Captured by the Five Clustering Schemes

So far, we have introduced a generic clustering approach (geCRP) and discussed five possible
schemes that use different information measures (within geCRP) to derive different clusters; or, so to
speak, to carve the problem space in different ways.

However, one can ask what the properties captured by these different clusterings are; for
example, whether the clusters that emerge under the five geCRP schemes capture properties that
are useful to solve specific cognitive control and planning tasks (e.g., planning a path to a known
goal versus to an unknown goal). We stress that the output of our method is not only the resulting
cluster partition, but also an ordering of the clusters found based on the computation of the mean
model probability of each cluster. This means that clusters that are next to each other share similar
properties with respect to the selected model. Such an output can be helpful in various applications,
e.g., in order to build an exploration procedure based on gradient climbing.

We first shortly discuss the functional properties captured by the five schemes, and we
successively expand this analysis using computer simulations (see Section 3).

(i) The sub-goal-sensitive model clusters the state space ways that unveil the differences between states
that are central to many paths (like sub-goals or bottlenecks) and from which many actions are
possible, versus states that are only visited by fewer paths. This method is related to measures,
such as graph centrality and network flow [47] and empowerment [48], at least in the sense that
reaching states that are part of many paths and permit accessing many other states can enhance
an agent’s empowerment.

(ii) The goal-sensitive model and the multiple goal-sensitive model resemble the sub-goal-sensitive model,
but with one important difference: here, the information that is extracted is also conditioned
on (and influenced by) the agent’s goal(s). This implicitly creates a kind of gradient to the goal
that can, in principle, be used to direct a planning algorithm from any start location, with some
analogies to the concept of a value function in RL [6].

(iii) The path-sensitive model can be considered as another sub-case of the sub-goal-sensitive model, in
which both the initial and the final goal states are known. Different from the goal- (or multiple
goal) sensitive models, here, an intuitive metaphor is that of a valley created by a river, where
essentially, the very structure of the state space prescribes a (high probability) path. It can be
related to diffusion measures introduced in network analysis where vertices can be ranked on the
basis of their aptitude to spread information, infection or whatever through a target vertex [49].

(iv) The structure-sensitive model is different from the aforementioned schemes, in that it is not directly
related to a goal-directed navigation, but is more revelatory of structural information, such as
connectedness in graph theory. Basically, it decomposes the space into subsets that could be used
to subdivide a large and complex task in a hierarchy of simpler tasks. Such decomposition can
simplify the planning problem by squeezing the effective size of the original state space into a
smaller number of abstract states considered by every sub-task [50].

3. Experiments and Results

To exemplify the aforementioned functional properties of the five geCRP schemes, below, we
analyze in detail their clustering capabilities in three different illustrative 2D scenarios composed of
discrete states: an open space, a grid world composed of four rooms and a maze having the same
structure as the Hanoi Tower; see Figure 3. In each of the three scenarios, we analyze the clustering
results of the five different geCRP schemes obtained by combining the five generative models
presented in Section 2.2.1 with the Laplacian kernel. In keeping with the notation introduced in
Section 2.2.2, the five examined schemes are: sub-goal sensitive (geCRP/subg/L), structure sensitive
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(geCRP/struc/L), goal sensitive (geCRP/goal/L), path sensitive (geCRP/path/L) and multiple goal
sensitive (geCRP/multig/L). The comparison of the cluster configurations emerging from using
different generative models in the same scenario permits us to showcase the functional properties
that they underpin.
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Figure 3. 2D discrete scenarios used in the experimental analysis. (a) Open space, a scenario without
restrictions and bottlenecks; (b) grid world, four different groups of states linked together by four
bottlenecks; (c) Hanoi Tower, a model of the tower of Hanoi game in the configuration of three disks
and three rods.

3.1. The Three Experimental Scenarios

(i) Open space scenario. This scenario is composed of 25 discrete states arranged in a square with
all transitions enabled for the neighboring states. In this scenario, no structure restrictions (e.g.,
bottlenecks) are present. See Figure 3a.

(ii) Grid world scenario. This scenario consists of an environment of 29 states grouped into four
rooms. Here, rooms are groups of states linked together by restrictions (bottlenecks), i.e., states
that allow the transition from a room to another (States S3, S12, S13, S22). In our scenario, we
can identify four rooms: Room 1 (states S1, S2, S7, S8), Room 2 (S4, S5, S6, S9, S10, S11), Room 3
(S14, S15, S16, S19, S20, S21, S25, S26, S27) and Room 4 (S17, S18, S23, S24, S28, S29). See Figure 3b.

(iii) Hanoi Tower scenario. This scenario models a tower of Hanoi (ToH) game of three disks of different
sizes that can slide into three rods. Using a well-known mapping [51], the “three pegs-three rods”
ToH problem is converted into a path planning problem of 27 states. In this scenario, a recursive
community structure can be identified [12], i.e., sets of similar moves separated by bottlenecks
represented by different kinds of transitions. In this scenario, it is possible to identify bottlenecks
at different hierarchical levels: third order bottlenecks (S9–S11, S6–S10 and S23–S24), second
order bottlenecks (e.g., S3–S5, S2–S4 and S7–S8) and first order bottlenecks (e.g., S1–S2, S1–S3
and S2–S3. Transitions among states are shown in Figure 3c.

3.2. Simulations and Results

Our simulations compared the five aforementioned geCRP schemes on all three scenarios, plus
two ancillary simulations, for a total of 17 simulations. For each simulation, we performed 25
repetitions (runs) by fixing to 50 the maximum number of iterations for the Gibbs samplings. Results
are presented by means of two kinds of graphs:

• The clustering matrix graph illustrates a symmetric matrix whose elements represent the empirical
probabilities PCk (si, sj), k = 1, . . . , T, that two states si and sj belong to the same cluster Ck in
the 25 repetitions. The matrix values are shown in gray scale with lighter (darker) colors for
higher (lower) frequency to find two states in the same cluster. The size of the clustering matrix
for a scenario of N states is N × N. The states are sorted in rows and columns by reflecting the
best clustering partition of the 25 repetitions, where by the best clustering, we mean the one that
maximize Equation (26) (see below). States within the same cluster follow no particular order.
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The ordering of the different clusters is assigned with an intuitive criterion: when selecting a
geCRP scheme, it is possible to assign to every state an algorithmic probability value computed
according to the adopted geCRP scheme. Consequently, we can assign to clusters the mean of the
probabilities of the states that belong to them, and then, we can order the clusters as a function of
these mean values. Intuitively, clusters that are close in this ordering are clusters containing states
with similar probability values. As a consequence, the presence of a “block” in the matrix reveals
how frequent a cluster appears in the cluster configurations carried out in the 25 runs;

• The best clustering graph shows the best clustering result found in 25 runs. The best clustering
result is acknowledged as the cluster configuration that maximizes the log-likelihood:

L(C1, . . . , CT |s1:N) =
T

∑
k=1

log p(sz(c1:N)=k|z(c1:N)) (26)

where C1, . . . , CT are the clusters and p(sz(c1:N)=k|z(c1:N)) is the likelihood of observations defined
in Equation (25).

3.3. Results in the Open Space Scenario

In this section, we show the results of five tests, one for each geCRP scheme (from OS1–5), in the
open space scenario. Experimental parameters are summed up in Table 1.

Table 1. Parameter setup for Tests OS1–5 in the open space scenario. geCRP, generative embedded
Chinese restaurant process.

Test OS1 OS2 OS3 OS4 OS5

geCRP scheme geCRP/subg/L geCRP/struc/L geCRP/goal/L geCRP/path/L geCRP/multig/L
α 0.08 0.08 0.008 0.008 0.08
λ 1× 10−5 1× 10−5 1× 10−4 1× 10−5 0.1

case-specific setup – – sg = 19 so = S1, sg = S25 goals: S1, S21, S5, S25

In Figure 4, we show the results for the Test OS1 where geCRP/subg/L is employed. Figure 4a,b
shows how the states are partitioned as a function of their probability value. The first cluster
is constituted by central state S13, then the cluster {S8, S12, S14, S18} down to the last cluster
constituted {S1, S5, S21, S25} by states in the corners. In particular, from Figure 4a, the stability of
the solutions found in the 25 runs is evident.
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Figure 4. Test OS1: geCRP/subg/L results in the open space scenario (rectangles highlight the first
cluster of sub-goals {S13}). (a) Clustering matrix; (b) best clustering. See Table 1 for the parameters
and the text for details.
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In Test OS2, geCRP/struc/L failed to find a stable cluster configuration. In fact, as we
mentioned, no bottlenecks are present, so all model values are very close, and consequently, as
we expected, a clusterization based on the structure does not make sense. This means that from a
structural point of view, either all states belong to the same cluster or all states are different clusters.
Figure 5a shows that no stable cluster configuration exists: each state has a considerable probability
of falling in a cluster with every state of the environment.
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Figure 5. Test OS2: geCRP/struc/L results in the open space scenario. (a) Clustering matrix; (b) best
clustering. See Table 1 for the parameters and the text for details.

In Test OS3, we search for clusters with geCRP/goal/L, where the goal state is sg = 19.
Results are shown in Figure 6. With the absence of a bottleneck structure, it is evident that the
series of radial clustering degrades with the number of transitions toward the goal state. It starts
with the first cluster in which the only goal state is present, then the next cluster is formed by the
neighboring states {S14, S18, S20, S24}, and so on, down to the last cluster of more distant states, i.e.,
{S1, S2, S3, S4, S5, S5, S7, S11, S16, S21}.

Test OS4 is performed with geCRP/path/L, setting so = S1 as the starting state and sg = S25
as the final state. Figure 7 shows the corresponding clustering results. Clusters are divided into
groups with respect to the number of transitions from the starting and final states. Thus, S1 and S25
are in two separate clusters, then a unique cluster with the set {S2, S2, S10}, and so on, down to the
“peripheral” clusters formed by {S13} and {S5, S21}.
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Figure 6. Test OS3: geCRP/goal/L results in the open space scenario (sg = S19, highlighted with
rectangles in both panels). (a) Clustering matrix; (b) best clustering. See Table 1 for the parameters
and the text for details.
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Figure 7. Test OS4: geCRP/path/L results in the open space scenario (so = S1, sg = S25, highlighted
with rectangles in both panels). (a) Clustering matrix; (b) best clustering. See Table 1 for the
parameters and the text for details.

Figure 8 shows Test OS5 with the results of geCRP/multig/L with goals = S1, S21 and S15 and
S25. In Figure 8b, it is possible to see four clusters in the best clustering: one for each goal, and a
further cluster for states peripheral for the other three ones. In Figure 8a, the clustering matrix, we
can notice that this cluster configuration is very stable.
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Figure 8. Test OS5: geCRP/multig/L on the open space scenario(goals = {S1, S21, S5, S25},
highlighted with rectangles in both panels). (a) Clustering matrix; (b) best clustering. See Table 1
for the parameters and the text for details.

3.4. Results in the Grid World Scenario

In this section, we show the results for six tests in the grid world scenario, GW1–6, in which the
ability of the different geCRP schemes is explored (see Table 2 for the experimental parameter set up.)

Table 2. Parameter setup for Grid World Tests GW1–6 in the grid world scenario.

Test GW1 GW2 GW3 GW4 GW5 GW6

geCRP scheme geCRP/subg/L geCRP/struc/L geCRP/goal/L geCRP/path/L geCRP/multig/L geCRP/multig/L
α 0.008 0.08 0.008 0.008 0.01 0.01
λ 1× 10−3 1× 10−4 1× 10−6 1× 10−7 1× 10−7 1× 10−7

case-specific – – sg = S25 so = S6, sg = S25 goals: S25, S1, S13 goals: S25, S1,
setup S13, S6, S29
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Figure 9 shows clustering results for the GW1 test with geCRP/subg/L. Figure 9b shows the
best cluster partition found in the 25 runs. The number of clusters is five: it is possible to note that the
least likely states, as the bottleneck states, are put in the same cluster, while the most likely are the
ones inside the rooms, near the bottlenecks (see [8]) and are put in the same cluster. Figure 9a shows
that another successful solution is to group two clusters together and to obtain four total clusters.
Moreover, by changing the scaling parameter (λ) and the concentration parameter (α), it is possible
to get a finer partition grouped into smaller clusters.

Figure 10 shows clustering results for the GW2 test, i.e., the application of the geCRP/struc/L
scheme. Figure 10b shows the best clustering in the 25 runs. As is appreciable, this scheme was able to
cluster the 27 states into four clusters, each one representing a different room. Moreover, in Figure 10a,
it is possible to see four blocks, meaning that this configuration is stable with respect to different runs.
Note that bottleneck States S3, S12, S13, S22 do not always belong to the same room (as expected), but
are alternatively assigned to one of the neighboring clusters: for example, S3 has equal probability to
be assigned to Room 1 (cluster {S1, S2, S7, S8}) or to Room 2 (cluster {S4, S5, S6, S9, S10, S11}).

9 12 13 14 16 22 27 3 11 18 25 28 1 6 7 29 2 4 5 8 17 19 24 26 10 15 20 21 23

9

12

13

14

16

22

27

3

11

18

25

28

1

6

7

29

2

4

5

8

17

19

24

26

10

15

20

21

23

(a) Clustering Matrix

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21

S22

S23

S24

S25

S26

S27

S28

S29

(b) Best Clustering

Figure 9. Test GW1: geCRP/subg/L results in the grid world scenario (rectangles highlight the first
sub-goal cluster {S10, S15, S20, S21, S25}). (a) Clustering matrix; (b) best clustering. See Table 2 for
the parameters and the text for details.
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Figure 10. Test GW2: geCRP/struc/L results in the grid world scenario (rectangles highlight
bottlenecks S3, S12, S13, S22). (a) Clustering matrix; (b) best clustering. See Table 2 for the parameters
and the text for details.



Entropy 2016, 18, 61 19 of 28

Figure 11 shows clustering results for the GW3 test where geCRP/goal/L is used with S25 as
the goal state. In Figure 11b, the best cluster configuration is depicted. It is noticeable how clusters
form a kind of “gradient field” originating from the goal state and degrading with the length of the
path needed to reach the goal. In Figure 11a, it is possible to recognize the 12 clusters found and the
stability of the computed solutions.
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Figure 11. Test GW3: geCRP/goal/L results in the grid world scenario (sg = S25. highlighted with
rectangles in both panels). (a) Clustering matrix; (b) best clustering. See Table 2 for the parameters
and the text for details.

Figure 12 shows the GW4 test results attained by geCRP/path/L with starting state so = S6
and final state sg = 25. The best cluster in Figure 12b shows how states are divided into groups with
respect to the number of transitions from the starting and final states. Figure 12a shows the 12 clusters
found and their stability in the set of 25 repetitions.

1 7 9 16 18 24 28 29 2 3 4 8 12 15 5 6 10 13 17 21 22 23 11 14 19 20 25 26 27

1

7

9

16

18

24

28

29

2

3

4

8

12

15

5

6

10

13

17

21

22

23

11

14

19

20

25

26

27

(a) Clustering Matrix

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21

S22

S23

S24

S25

S26

S27

S28

S29

(b) Best Clustering

Figure 12. Test GW4: geCRP/path/L results in the grid world scenario (so = S6, sg = S25,
highlighted with rectangles in both panels). (a) Clustering matrix; (b) best clustering. See Table 2
for the parameters and the text for details.

Figure 13 shows the results for Test GW5 with geCRP/multig/L and goals = {S25, S1, S13}. In
Figure 13b is shown the best clustering. As one can discern, if one of the goals is a bottleneck state,
then the scheme produces a unique cluster that merges the two rooms (Rooms 2 and 4, in this case),
while Room 1 (where S1 is) and Room 2 (where S25 is) are clustered apart. S25 is here inserted alone
in a different cluster. However, it is possible to note from Figure 13a that, often, it is assigned to the
same cluster of Room 2. A similar consideration can be done for state S1.
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Figure 13. Test GW5: geCRP/multig/L in the grid world scenario (goals = {S25, S1, S13},
highlighted with rectangles in both panels). (a) Clustering matrix; (b) best clustering. See Table 2
for the parameters and the text for details.

Figure 14 shows the GW6 test results for geCRP/multig/L with goals = {S25, S1, S13, S6, S29},
in which the importance of the generative model in modifying the “information geometry” of the
scenario is even more evident. In Figure 14b, the best clustering shows for each goal a cluster formed
by neighboring states taking into account the shape of the rooms. In Figure 14a, the five clusters are
evident, and it is possible to get that the “central” states of the clusters are very stable, while “frontier”
states are possibly assigned to different clusters.
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Figure 14. Test GW6: geCRP/multig/L in the grid world scenario (goals = {S25, S1, S13, S6, S29},
highlighted with rectangles in both panels). (a) Clustering matrix; (b) best clustering. See Table 2 for
the parameters and the text for details.

3.5. Results in the Hanoi Tower Scenario

Similarly to the previous scenarios, we show the clustering results for six tests, ToH1–6,
performed in the Hanoi Tower scenario by means of the five geCRP schemes proposed (see Table 3
for details on parameter set up).
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Table 3. Parameter set-up for Tower of Hanoi Tests ToH1–6 in the Hanoi Tower scenario.

Test ToH1 ToH2 ToH3 ToH4 ToH5 ToH6

geCRP scheme geCRP/subg/L geCRP/struc/L geCRP/goal/L geCRP/path/L geCRP/multig/L geCRP/multig/L
α 0.08 0.08 0.008 0.08 0.1 0.1
λ 1× 10−5 1× 10−5 1× 10−7 1× 10−8 1× 10−3 1× 10−3

case-specific – – sg = S20 so = S27, sg = S20 goals: S27, S20 goals: S1, S11,
setup S20, S27

Figure 15 shows the ToH1 test with geCRP/subg/L. The states are partitioned into clusters of
different probability values. From Figure 15b, notice for instance that vertex states, corresponding to
the final configurations of the ToH game, are put in the first cluster {S1, S20, S27}, while the second
cluster {S6, S9, S10, S11, S23, S24} consists of third order bottlenecks. In Figure 15a, it is possible to
see both the five clusters that the geCRP/subg/L scheme finds and how stable they are in all 25 runs.

Figure 16 shows the ToH2 test where geCRP/struc/L is applied. Figure 16a shows the best
clustering found. The states of the Hanoi Tower scenario are divided into three clusters, each one
forming a community structure and separated by third order bottlenecks (e.g., S23–S24). Figure 16b
illustrates that these three clusters are empirically the most probable solution in this scheme.
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Figure 15. Test ToH1: geCRP/subg/L results in the Hanoi Tower scenario (rectangles highlight the
first sub-goal cluster {S2, S3, S16, S19, S21, S26}). (a) Clustering matrix; (b) best clustering. See
Table 3 for the parameters and the text for details.
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Figure 16. Test ToH2: geCRP/struc/L results in the Hanoi Tower scenario (rectangles highlight third
order bottlenecks). (a) Clustering matrix; (b) best clustering. See Table 3 for the parameters and the
text for details.
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Figure 17 reports the results for the ToH3 test obtained by means of geCRP/goal/L, with the
goal state set to sg = S20. In Figure 17b, similarly for the corresponding test in the grid world
scenario, it is possible to identify the sequence of clusters arranged in a gradient-like fashion,
starting from the goal state, up to the farthest cluster, i.e., the set {S1, S3, S5, S9, S11, S15, S19,
S27}. In Figure 17a, the clustering matrix for the 25 repetitions is shown. Note that another
possible solution is to group together the last two clusters of the best solutions, {S2, S8, S13, S26}
and {S1, S3, S5, S9, S11, S15, S19, S27}.

Figure 18 depicts ToH4 results with geCRP/path/L used as the scheme with starting state
so = S27 and final state sg = 20. Figure 18b presents the best clustering solution: clusters are
divided into groups with respect to the number of moves necessary to go from the starting to the
final state. Thus, we can see that the start and final states belong to two different clusters and are
followed by other intermediate clusters with a “central”, more distant cluster composed of the states
S1, S2, S3, S4, S5, S6, S7, S8, S9. Figure 18a shows the ordered 12 clusters found, and also, in this case,
the achieved solutions result in being very stable.
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Figure 17. Test ToH3: geCRP/goal/L results in the Hanoi Tower scenario (sg = S20, highlighted with
rectangles). (a) Clustering matrix; (b) best clustering. See Table 3 for the parameters and the text for
details.
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Figure 18. Test ToH4: geCRP/path/L results in the Hanoi Tower scenario (so = S27, sg = S20,
highlighted with rectangles). (a) Clustering matrix; (b) best clustering. See Table 3 for the parameters
and the text for details.

Figure 19 is related to the results of the test ToH5 attained with geCRP/multig/L and the set
{S27, S20} as goals. Figure 19b shows the best cluster configuration, while from the clustering matrix,
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in Figure 19a, we can estimate six (symmetric) clusters. In contrast with the geCRP/path/L scheme,
here, the multiple goal-sensitive model builds up clusters as a function of the community structure
and bottlenecks of first (e.g., S20–S21), second (e.g., S21–S22) and third (e.g., S23–S24) order. That
determines substantial differences between the two cluster configurations, though they both have
{S27, S20} as reference states: geCRP/path/L focuses on the shortest path, while geCRP/multig/L
forms two gradient-like cluster sequences centered on the selected goals.

A similar behavior is confirmed in the ToH6 test (Figure 20) performed with geCRP/multig/L
with the set {S1, S11, S20, S27}. Figure 20a,b reports solutions found for this set up: it is possible to
notice the clusters arranged in a gradient field fashion induced by the selected goals. It is interesting
to notice that the selection of the goal S11 breaks the symmetry of the solutions, and the “isolated”
goal S20 forms with neighboring states a cluster that is similar to a structure-based one.
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Figure 19. Test ToH5: geCRP/multig/L results in the grid world scenario (goals = {S27, S20},
highlighted with rectangles). (a) Clustering matrix; (b) best clustering. See Table 3 for the parameters
and the text for details.
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Figure 20. Test ToH6: geCRP/multig/L in the Hanoi Tower scenario (goals = {S1, S11, S20, S27},
highlighted with rectangles). (a) Clustering matrix; (b) best clustering. See Table 3 for the parameters
and the text for details.

4. Discussion

We presented a novel nonparametric approach, the generative embedded Chinese restaurant
process (geCRP), which essentially creates clusters in data, and thus task decompositions, that can
reflect different information measures (encoded as generative embedded kernels). Using different
generative embedded kernels within the same nonparametric clustering method, we realized five
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algorithmic probabilistic models (sub-goal-sensitive, structure-sensitive, goal-sensitive, path-sensitive and
multiple-goal-sensitive models), which are able to support a variety of cognitive control tasks, ranging
from exploration to the achievement of one or more goals (see Section 2.2.1).

We tested and compared these five models in three scenarios: (1) an open space, an environment
without any geometric characteristics, i.e., with no bottlenecks; (2) a grid world, which is an instance
of a structured environment with four rooms; and (3) a Hanoi Tower, a classical problem used to
investigate human executive function, which has a self-similar state space, i.e., it is composed of small
communities that recursively compose other communities with larger sizes.

For each scenario, we compared the planning performance of the (best cluster configurations of
the) five models, in a series of tasks that required exploring the environment, to reach a goal from a
known or an unknown solution or to reach multiple goals. Our analysis reveals that each of the five
models decomposes the task (or finds clusters in the data) in a way that is more appropriate for one
of these tasks. Specifically:

• The sub-goal-sensitive model is able to reveal useful sub-goal- or bottleneck-related information (i.e.,
extract states that can act as useful sub-goals or bottlenecks), if present in the environment. This
can be considered a clustering method that is “agnostic” with regard to the specific behavioral
goal of the agent, but can be used for planning from any start state to any goal state.

• The structure-sensitive model clusters the environment into coherent geometric partitions or shapes,
e.g., rooms in a four-room scenario (grid world). However, in the open space, this method
does not find coherent partitions; because every couple of states has the same similarity metric,
each clustering experiment produces a different partitioning, due to the stochasticity of Gibbs
sampling.

• The goal-sensitive model generates a clustering that groups the states according to a gradient-field
that culminates in the goal site and affords effective navigation to a known goal. This method
shares some resemblances with value functions that are widely used in reinforcement learning
methods, which essentially create gradients to reward locations [6]. Our results indicate that this
clustering method is appropriate for planning a path to a known goal location, from any start
location.

• The path-sensitive model groups states on the basis of their probability values with respect to
both a starting and a goal state, both of which are known a priori. The results indicate that this
clustering method is appropriate for planning a path from a known start location to a known goal
location.

• The multiple goal-sensitive model groups states in a way that is similar to the goal-sensitive model, but
for several (known) goal states. The results show that this clustering method is appropriate when
the planning problem includes multiple goal locations. Interestingly, the number and location of
goals entail a modification, in an informational sense, of the geometry of the scenario. Consider
for example the case of the grid world with three goals, one of which is a bottleneck. Although the
scenario is characterized by the presence of four rooms, the model only produces three clusters,
thus clustering together two rooms. The dependence of the clustering from the agent’s objectives
(here, reaching multiple goal locations) is a hallmark of flexible coding schemes.

Taken together, these results show that the geCRP method can create different clusters that are
most effective to address different cognitive control tasks. Key to solving these tasks efficiently is
devising a task decomposition that extracts the most relevant structure from the data. A contribution
of this paper is showing that such a structure can be formally related to information theoretic and
probabilistic measures, such as the conditional or the joint probability between two states, and that
these information measures can all be used within the same generative geCRP method to obtain
a variety of clusters, each with a different sensitivity to goal, sub-goal, path or other kinds of
control-related information. Regardless, it should be pointed out that the introduced definitions
of the algorithmic probabilities hinge on the assumption that transitions between states need to
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be symmetric (this is especially true for Equation (8)). A potential extension of this work would
be aimed to reconsider those definitions in the case of asymmetric transitions and to study their
feasible applications.

Of note, the generative kernels used in this work can have different forms: they can depend on
the distance between probability values or, as in the case of the structure-sensitive control task, they are
functions of joint probabilities. This requirement motivates our choice of the geCRP over other related
schemas (e.g., ddCRP), which do not have this flexibility. Many other generative kernels can be
designed by starting from various probability distributions, in order to address particular problems.
Identifying the best kernels for different families of problems is an open objective for future research.

It can also be noted that the probability values computed by any of the five geCRP schemes
might be useful per se during (for example) path planning, rather than just for clustering; see [11]
for an example. However, here, we are interested in clustering methods that afford dimensionality
reduction (as the number of cluster is smaller than the number of states) and ultimately efficiency
in representation, learning and inference. For example, the clusters emerging using the geCRP
schemes might be used by hierarchical algorithms [52,53] that represent information at different levels
of granularity at the different hierarchical layers, thus permitting one to plan in terms of macro-actions
and not elementary actions. Here, a key thing to note is that besides extracting a set of clusters, our
procedure also distinguishes them for their relative informational value (e.g., in the figures, the more
probable states are colored darker). In principle, this information can be exploited (for example) by
planning algorithms that “climb” a probability gradient. Studying whether the clusters studied here
can improve hierarchical learning and inference schemes is an important objective for future research.

5. Conclusions

It is well known in fields like AI and RL that finding appropriate task decomposition is key
to solving complex problems [4–6]. The contribution of this paper to the literature is identifying a
mapping between different control problems and corresponding information measures, all of which
can be used within a unitary method to derive task-relevant decompositions or clusters. Indeed,
the results we report show that, first, different control problems can benefit from different task
decompositions and, second, that it is possible to characterize these decompositions in terms of a
unitary computational scheme (geCRP), where different well-known information measures are used
as kernels.

From a cognitive perspective, the information measures presented here might be used by the
brain to efficiently represent and solve different classes of control problems. Analogous to the way
the visual system is hypothesized to be sensitive to the natural statistics of visual scenes, some brain
areas or networks might be sensitive to the natural statistics of control tasks. A plausible neuronal
substrate for the acquisition of task-relevant representations is the prefrontal cortex (PFC), which
has been consistently linked to both cognitive control and flexible coding schemes, in the sense that
PFC neurons can be broadly tuned to multiple attributes, and adapt to the attributes that are more
relevant to the task at hand [13,17]. The contribution of this article to this body of evidence is showing
that task representations that afford various forms of cognitive control can be characterized in terms
of well-known information measures, which can have a plausible neuronal implementation [3]. In
principle, the method illustrated here can be used to identify neuronal equivalents of the geCRP
clusters in the PFC or other brain areas.

An open problem in this field is how task-relevant representations might be created in the first
place, with alternative theories that link to statistical learning in the PFC proper or assign a role
for the hippocampus in rapidly creating these clusters (or schemas [54]) and transferring them to
cortical structures [18,55,56]. Either way, it is unclear whether and how the brain addresses the
computational complexity of the learning and inference problems studied here. For example, a
growing body of evidence supports the view that the PFC can perform nonparametric statistical
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learning and inference. Nevertheless, given the computational complexity of full Bayesian inference
processes, it is still unclear whether specific approximations or heuristics might be used [17,57–59].

Even if one assumes that the PFC is able to learn different clusterings or task representations,
another open problem is understanding how it might flexibly select among them depending on the
task at hand. Various studies suggest that the PFC can rapidly shape its codes through learning,
even with very few examples, and rapidly modify them when the task demands change; in this way,
the PFC might support behavioral flexibility and rapid rule learning. However, the computational
principles underlying these abilities are disputed [60,61]. It is appealing to speculate that the
PFC might implement a unitary statistical process (analogous to geCRP) that is however able to
differentiate its output (and thus support various cognitive control tasks) by flexibly selecting among
different task representations or, in terms of our approach, by selecting the best kernel depending
on the task at hand. In principle, the PFC might learn over time the best kernel to use for a given
task in the same way it learns the best rule or task set to use [17,58,62], and this mechanism might
provide the necessary flexibility to face a number of different problems. A prediction stemming from
this hypothesis is that PFC neurons would be sensitive to different information measures (equivalent
to the clusters used here) depending on the task at hand. This hypothesis, however, remains to be
assessed in future studies.
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