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Abstract: Tests for dependence of continuous, discrete and mixed continuous-discrete variables are
ubiquitous in science. The goal of this paper is to derive Bayesian alternatives to frequentist null
hypothesis significance tests for dependence. In particular, we will present three Bayesian tests for
dependence of binary, continuous and mixed variables. These tests are nonparametric and based
on the Dirichlet Process, which allows us to use the same prior model for all of them. Therefore,
the tests are “consistent” among each other, in the sense that the probabilities that variables are
dependent computed with these tests are commensurable across the different types of variables being
tested. By means of simulations with artificial data, we show the effectiveness of the new tests.
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1. Introduction

Tests for dependence of continuous, discrete and mixed continuous-discrete variables are
fundamental in science. The standard way to statistically assess if two (or more) variables are
dependent is by using null-hypothesis significance tests (NHST), such as χ2-test, Kendall’s τ, etc.
However, these tests are affected by the drawbacks which characterize NHST [1–3]. An NHST
computes the probability of getting the observed (or a larger) value of the statistics under the
assumption that the null hypothesis of independence is true, which is obviously not the same as the
probability of variables being dependent on each other, given the observed data. Another common
problem is that the claimed statistical significance might have no practical impact. Indeed, the usage
of NHST often relies on the wrong assumptions that p-values are a reasonable proxy to the probability
of the null hypothesis and that statistical significance implies practical significance.

In this paper, we propose a collection of Bayesian dependence tests. The questions we are actually
interested in—for example, Is variable Y dependent on Z? or Based on the experiments, how probable is Y
dependent on Z?—are actually questions about posterior probabilities. Answers to these questions
are naturally provided by Bayesian methods. The core of this paper is thus to derive Bayesian
alternatives to frequentist NHST and to discuss their inference and results. In particular, we present
three Bayesian tests for dependence of binary, continuous and mixed variables. All of these tests
are nonparametric and based on the Dirichlet Process. This allows us to use the same prior model
for all the tests we develop. Therefore, they are “consistent” in the sense that the probabilities of
dependence we compute are commensurable across the tests. This is another main difference about
such an approach and the use of p-values, since the latter usually cannot be compared across different
types of tests.

To address the issue of how to choose the prior parameters in case of lack of information,
we propose the use of the Imprecise Dirichlet Process (IDP) [4]. It consists of a family of Dirichlet
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processes with fixed prior strength and and prior probability measure free to span the set of all
distributions. In this way, we obtain as a byproduct a measure of sensitivity of inferences to the
choice of the prior parameters.

Nonparametric tests based on the Dirichlet Process and on similar ideas to those presented in this
paper have also been proposed in [4] to develop a Bayesian rank test, in [5] for a Bayesian signed-rank
test, in [6] for a Bayesian Friedman test and in [7] for a Bayesian test that accounts for censored data.

Several alternative Bayesian methods are available for testing of independence. The test of linear
dependence between two continuous univariate random variables can be achieved by fitting a linear
model and inspecting the posterior distribution of the correlation coefficient. A more sophisticated
test based on a Dirichlet Process Mixture prior is instead presented in [8] to deal with linear and
nonlinear dependences. Other methods were proposed for testing of independence based on a
contingency table [9–11]. The main difference between these works and the work presented in this
paper is that we provide tests for continuous, categorical (binary) and mixed variables using the
same approach. This allows us to derive a very general framework to test independence/dependence
(these tests could be used for instance for feature selection in machine learning [12–15]).

By means of simulations on artificial data, we use our test to decide if two variables are
dependent. We show that our Bayesian test achieves equal or better results than the frequentist
tests. We moreover show that the IDP test is more robust, in the sense that it acknowledges when
the decision is prior-dependent. In other words, the IDP test suspends the judgment and becomes
indeterminate when the decision becomes prior dependent. Since IDP has all the positive features of
a Bayesian test and it is more reliable than the frequentist tests, we propose IDP as a new test for
testing dependence.

2. Dirichlet Process

The Dirichlet Process was developed by Ferguson [16] as a probability distribution on the space
of probability distributions. Let X be a standard Borel space with Borel σ-field BX and P be the space
of probability measures on (X,BX) equipped with the weak topology and the corresponding Borel
σ-field BP. Let M be the class of all probability measures on (P,BP). We call the elements µ ∈ M
nonparametric priors.

An element of M is called a Dirichlet Process distribution D(α) with base measure α if for every
finite measurable partition B1, . . . , Bm of X, the vector (P(B1), . . . , P(Bm)) has a Dirichlet distribution
with parameters (α(B1), . . . , α(Bm)), where α(·) is a finite positive Borel measure on X. Consider the
partition B1 = A and B2 = Ac = X\A for some measurable set A ∈ X, then if P ∼ D(α) from the
definition of the DP we have that (P(A), P(Ac)) ∼ Dir(α(A), α(X)− α(A)), which is a β distribution.
From the moments of the β distribution, we can thus derive that:

E [P(A)] =
α(A)

α(X) , E [(P(A)− E [P(A)])2] =
α(A)(α(X)− α(A))

(α(X)2(α(X) + 1))
, (1)

where we have used the calligraphic letter E to denote expectation with respect to the Dirichlet
process. This shows that the normalized measure α(·)/α(X) of the DP reflects the prior expectation
of P, while the scaling parameter α(X) controls how much P is allowed to deviate from its mean
α(·)/α(X). Let s = α(X) stand for the total mass of α(·) and α∗(·) = α(·)/s stand for the
probability measure obtained by normalizing α(·). If P ∼ D(α), we shall also describe this by
saying P ∼ Dp(s, α∗) or, if X = R, P ∼ Dp(s, G0), where G0 stands for the cumulative distribution
function of α∗.

Let P ∼ Dp(s, α∗) and f be a real-valued bounded function defined on (X,B). Then the
expectation with respect to the Dirichlet Process of E[ f ] is

E
[
E( f )

]
= E

[∫
f dP

]
=
∫

f dE [P] =
∫

f dα∗. (2)
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One of the most remarkable properties of the DP priors is that the posterior distribution of
P is again a DP. Let X1, . . . , Xn be an independent and identically distributed sample from P and
P ∼ Dp(s, α∗), then the posterior distribution of P given the observations, denoted as PX|Xn , is

PX|Xn ∼ Dp

(
s + n,

s
s + n

α∗ +
1

s + n

n

∑
i=1

δXi

)
, (3)

where δXi is an atomic probability measure centered at Xi and Xn = {X1, . . . , Xn}. This means that
the Dirichlet Process satisfies a property of conjugacy, in the sense that the posterior for P is again a
Dirichlet Process with updated unnormalized base measure α + ∑n

i=1 δXi . From Equations (1)–(3), we can
easily derive the posterior mean and variance of P(A) and, respectively, posterior expectation of f .
Hereafter we list some useful properties of the DP that will be used in the sequel (see Chapter 3 in [17]).

(a) In case X = R, since P is completely defined by its cumulative distribution function F, a-priori
we say F ∼ Dp(s, G0) and a posteriori we can rewrite (3) as follows:

FX|Xn ∼ Dp

(
s + n,

s
s + n

G0 +
n

s + n
1
n

n

∑
i=1

I[Xi ,∞)

)
, (4)

where I is the indicator function and 1
n ∑n

i=1 I[Xi ,∞) is the empirical cumulative distribution.
(b) Consider an element µ ∈ M which puts all its mass at the probability measure P = δx for some

x ∈ X. This can also be modeled as Dp(s, δx) for each s > 0.
(c) Assume that P1 ∼ Dp(s1, α∗1), P2 ∼ Dp(s2, α∗2), (ω1, ω2) ∼ Dir(s1, s2) and P1, P2, (ω1, ω2) are

independent, then Section 3.1.1. in [17]:

ω1P1 + ω2P2 ∼ Dp
(

s1 + s2,
s1

s1 + s2
α∗1 +

s2

s1 + s2
α∗2

)
. (5)

(d) Let PX|Xn have distribution Dp(s + n, s
s+n α∗ + 1

s+n ∑n
i=1 δXi ). We can write

PX|Xn = ω0P +
n

∑
i=1

ωiδXi , (6)

where ∑n
i=0 ωi = 1, (ω0, ω1, . . . , ωn) ∼ Dir(s, 1, . . . , 1) and P ∼ Dp(s, α∗). This follows

from (b)–(c).

An issue in the use of the DP as prior measure on P is how to choose the infinite dimensional
parameter G0 in case of lack of prior information. There are two avenues that we can follow. The first
assumes that prior ignorance can be modelled satisfactorily by a so-called noninformative prior. In the
DP setting, the only noninformative prior that has been proposed so far is the limiting DP obtained
for s → 0, which has been introduced by [16] and discussed by [18]. The second approach suggests
that lack of prior information should be expressed in terms of a set of probability distributions.
This approach known as Imprecise Probability [19–21] is connected to Bayesian robustness [22–24] and
it has been extensively applied to model prior (near-)ignorance in parametric models. In this paper,
we implement a prior (near-)ignorance model by considering a set of DPs obtained by fixing s to a
strictly positive value and letting G0 span the set of all distributions. This model has been introduced
in [4] with the name of Imprecise Dirichlet Process (IDP).
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3. Bayesian Independence Tests

Let us denote by X the vector of variables [Y, Z]T so that the n observations of X can be
rewritten as

Xn = {X1, . . . , Xn}, (7)

that is, a set of n vector-valued i.i.d. observations of X. We also consider an auxiliary variable
X′ together with X. We assume that X, X′ are independent variables from the same unknown
distribution and that X′n = Xn, that is, we have the same observations of X and X′.

Let P be the unknown distribution of X, X′ and assume that the prior distribution of P is
Dp(s, α∗). Our goal is to compute the posterior of P. The posterior of P is given in (3) and,
by exploiting (6), we know that

PX|Xn ∼ ω0P +
n

∑
i=1

ωiδXi , (8)

with (ω0, ω1, . . . , ωn) ∼ Dir(s, 1, . . . , 1) and P ∼ Dp(s, α∗). The distribution PX′ |X′n of X′ is
similarly defined.

The questions we pose in a statistical analysis can all be answered by querying this posterior
distribution in different ways. We adopt this posterior distribution to devise Bayesian counterparts
of the independence hypothesis tests.

3.1. Bayesian Bivariate Independence Test for Binary Variables

Let us assume that the variables Y, Z ∈ {0, 1} (that is, they are binary). Our aim is to devise
a Bayesian independence test for binary variables based on the DP. We will also show that our test
is a Bayesian generalisation of the frequentist χ2-test for independence applied to binary variables.
We start by defining the following quantities:

E
(

I{0,0}(X)I{1,1}(X′)|Xn, X′n
)
=
∫∫

I{0,0}(X)I{1,1}(X′)dF(X|Xn)dF(X′|X′n),

where we have exploited the independence of X, X′ and here F(X|Xn) denotes the posterior
cumulative distribution of PX|Xn defined in (8). From (8), it can easily be verified that

E
(

I{0,0}(X)I{1,1}(X′)|Xn, X′n
)
= ω00ω11,

where

ω00 = ω0

∫
I{0,0}(X)dF(X) +

n

∑
i=1

ωi I{0,0}(Yi, Zi), (9)

and

ω11 = ω0

∫
I{1,1}(X)dF(X) +

n

∑
i=1

ωi I{1,1}(Yi, Zi), (10)

where in the last equality we have exploited the fact that X′ has the same distribution as X and also
the same observations. The two quantities ω00, ω11 include two terms. The first is the term due to the
prior dF ∼ Dp(s, α∗) and the second term is due to the observations.

Similarly, we compute

E
(

I{0,1}(X)I{1,0}(X′)|Xn, X′n
)
= ω01ω10,
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where

ω01 = ω0

∫
I{0,1}(X)dF(X) +

n

∑
i=1

ωi I{0,1}(Yi, Zi), (11)

and

ω11 = ω0

∫
I{1,0}(X)dF(X) +

n

∑
i=1

ωi I{1,0}(Yi, Zi). (12)

Summing up, ω00, ω1,0, ω0,1, ω11 represent the posterior probabilities of the events (0, 0) (that
is, Y = 0 and Z = 0), (1, 0), (0, 1) and (1, 1), respectively, according to the posterior joint
distribution F(X|Xn).

Theorem 1. The variables Y and Z are said to be concordant (dependent) with posterior probability (1− γ)

provided that
P(2(ω00ω11 −ω01ω10) > 0|Xn) > (1− γ), (13)

and they are said to be discordant provided that

P(2(ω00ω11 −ω01ω10) < 0|Xn) > (1− γ), (14)

where P is the probability computed with respect to (ω0, ω1, . . . , ωn) ∼ Dir(s, 1, . . . , 1) and dF ∼ Dp(s, α∗).
Finally, they are said to be simply dependent with posterior probability (1− γ) provided that

0 /∈ (1− γ)HDI(2(ω00ω11 −ω01ω10)|Xn), (15)

where HDI denotes the posterior Highest Density Interval of 2(ω00ω11 −ω01ω10).

Proof. We just derive the third statement. The other two statements are analogue. We first consider
the indicator functions

I{0}(Y), I{1}(Y), I{0}(Z), I{1}(Z), (16)

and same for the auxiliary variables Y′, Z′. By computing the expectation of these functions, we can
obtain the marginals of the variables Y, Z with respect to the joint PX :

ω0• := E(I{0}(Y)|Xn) = ω0

∫
I{0}(Y)dF(X) +

n

∑
i=1

ωi I{0}(Yi), (17)

ω1• := E(I{1}(Y)|Xn) = ω0

∫
I{1}(Y)dF(X) +

n

∑
i=1

ωi I{1}(Yi), (18)

ω•0 := E(I{0}(Z)|Xn) = ω0

∫
I{0}(Z)dF(X) +

n

∑
i=1

ωi I{0}(Zi), (19)

ω•1 := E(I{1}(Z)|Xn) = ω0

∫
I{1}(Z)dF(X) +

n

∑
i=1

ωi I{1}(Zi), (20)

where ω0• (resp. ω1•) denotes the marginal with respect to Z when Y = 0 (resp. Y = 1), while ω•0
(resp. ω•1) denotes the marginal with respect to Y when Y = 0 (resp. Y = 1).

Then, by exploiting independence between X and X′, we derive

E(I{0}(Y)I{0}(Z′)|Xn, X′n) = ω0•ω•0, E(I{1}(Y)I{0}(Z′)|Xn, X′n) = ω1•ω•0, (21)

E(I{0}(Y)I{1}(Z′)|Xn, X′n) = ω0•ω•1, E(I{1}(Y)I{1}(Z′)|Xn, X′n) = ω1•ω•1. (22)



Entropy 2016, 18, 326 6 of 24

We are now ready to define the independence test. If the two variables Y, Z are independent,
then the vector

v = (ω00, ω10, ω01, ω11)− (ω0•ω•0, ω1•ω•0, ω0•ω•1, ω1•ω•1),

has zero mean. Note that the first component of the vector v is E(I{0,0}(X)− I{0}(Y)I{0}(Z′)|Xn, X′n)
and thus is a well-defined quantity with respect to our probabilistic model (similarly for the other
terms). Therefore, the independence test reduces to checking whether the (1− γ)% highest density
credible region (HCR) of v includes the zero vector. It can be easily verified that |vl | = |vm| for each
l, m component of v. In fact, we have

ωi• = ωij + ωi j̄, ω•j = ωij + ωī j,

for i, j ∈ {0, 1} and ī = 1− i, j̄ = 1− j, and so

ωij − (ωij + ωi j̄)(ωij + ωī j) = ωij(ωij + ωī j + ωi j̄ + ωī j̄)− (ωij + ωi j̄)(ωij + ωī j)

= ωijωī j̄ −ωi j̄ωī j.

Therefore, it is enough to check whether

0 /∈ (1− γ)% HDI(2(ω00ω11 −ω01ω10)).

If this is the case, then we can declare that the two variables are dependent with
probability (1− γ). Here, the multiplier 2 in 2(ω00ω11 − ω01ω10) is only a scaling factor so that
2(ω00ω11 −ω01ω10) varies in [−0.5, 0.5].

From the proof of Theorem 1 it is evident the similarity of the test with the frequentist χ2-test
for independence. Both tests use the difference between the joint and the product of the marginals
as a measure of dependence. The advantage of the Bayesian approach is that we compute posterior
probabilities for the hypothesis in which we are interested and not the probability of getting the
observed (or a larger) difference under the assumption that the null hypothesis of independence is true.

The probabilities computed in Theorem 1 depend on the prior information F ∼ Dp(s, α∗). In this
paper we adopt IDP as prior model. We can then perform a Bayesian nonparametric test that is
based on extremely weak prior assumptions, and easy to elicit, since it requires only the choice of
the strength s of the DP instead of its infinite-dimensional parameter α∗. The infinite-dimensional
parameter α∗ is free to vary in the set of all distributions.

Let us consider for instance (13). Each one of these priors gives a posterior probability
P(2(ω00ω11 − ω01ω10) > 0|Xn). We can characterize this set of posteriors by computing the lower
and upper bounds P(2(ω00ω11 − ω01ω10) > 0|Xn) and P(2(ω00ω11 − ω01ω10) > 0|Xn). Inferences
with IDP can be computed by verifying if

P(2(ω00ω11 −ω01ω10) > 0|Xn) > (1− γ), P(2(ω00ω11 −ω01ω10) > 0|Xn) > (1− γ) , (23)

and then by taking the following decisions:

1. if both the inequalities are satisfied, then we declare that the two variables are dependent with
probability larger than 1− γ;

2. if only one of the inequalities is satisfied (which has necessarily to be the one for the upper), we are
in an indeterminate situation, that is, we cannot decide;

3. if both are not satisfied, then we declare that the probability that the two variables are dependent
is lower than the desired probability of 1− γ.

When IDP returns an indeterminate decision, it means that the evidence from the observations
is not enough to declare that the probability of the hypothesis being true is either larger or smaller
than the desired value 1− γ; more observations are necessary to reach a reliable decision.
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Theorem 2. The upper probability P(2(ω00ω11 − ω01ω10) > 0|Xn) is obtained by a prior measure
α∗ = mδ(0,0) + (1−m)δ(1,1) with

m =


0 if e1 + ω0 < e0 ,
1 if e0 < e1 −ω0 ,

ω0 + e1 − e0

2ω0
other,

(24)

where e0 = ∑n
i=1 ωi I{0,0}(Yi, Zi) and e1 = ∑n

i=1 ωi I{1,1}(Yi, Zi). The lower probability P(2(ω00ω11 −
ω01ω10) > 0|Xn) is obtained by a prior measure α∗ = mδ(1,0) + (1−m)δ(0,1) with the same m as before but
e0 = ∑n

i=1 ωi I{1,0}(Yi, Zi) and e1 = ∑n
i=1 ωi I{0,1}(Yi, Zi).

Proof. We are interested in the quantity 2(ω00ω11 − ω01ω10). It is clear that in order to maximize
the probability that ω00ω11 − ω01ω10 > 0 we must put all the prior mass on ω00ω11. Let us call
m = I{0,0}(X)dF(X). Then

∫
I{1,1}(X)dF(X) = 1− I{0,0}(X)dF(X) = 1−m. From (9)–(12), we have

that ω00 = ω0m + e0 and ω11 = ω0(1− m) + e1 with m ∈ [0, 1]. By computing the derivative with
respect to m we have

d
dm

ω00ω11 = ω0 (ω0(1−m) + e1) + (ω0m + e0) (−ω0) ,

whose zero is m =
ω0 + e1 − e0

2ω0
, which is also a maximum. Hence, the maximum can be either on

m =
ω0 + e1 − e0

2ω0
or on the extremes m = 0 or m = 1. This can be easily verified by checking when

ω0 + e1 − e0 < 0 (so m = 0) or ω0 + e1 − e0 > 2ω0 (so m = 1). The lower probability P(2(ω00ω11 −
ω01ω10) > 0|Xn) can be determined using a similar reasoning.

Since (ω0, ω1, . . . , ωn) ∼ Dir(s, 1, . . . , 1), the computation of P(2(ω00ω11 −ω01ω10) > 0|Xn),
P(2(ω00ω11 − ω01ω10) > 0|Xn) can be obtained by Monte Carlo sampling. The following
pseudo-code describes how to compute the upper (the lower can be computed in a similar way).

1. Initialize the counter Pc to 0 and the array V to empty;
2. For i = 1, . . . , Nmc

(a) sample (ω0, ω1, . . . , ωn) ∼ Dir(s, 1, . . . , 1);
(b) compute ω00, ω01, ω10, ω11 as in (9)–(12) by choosing dF(X) = mδ(0,0)(X) + (1−m)δ(1,1)(X)

with m defined in Theorem 2;
(c) compute 2(ω00ω11 −ω01ω10) and store the result in V;
(d) if 2(ω00ω11 −ω01ω10) > 0 then Pc = Pc + 1 else Pc = Pc + 0.

3. compute the histogram of the elements in V (this gives us the plot of the posterior of
2(ω00ω11 −ω01ω10))

4. compute the posterior upper probability that 2(ω00ω11 − ω01ω10) is greater than zero as
P(2(ω00ω11 −ω01ω10) > 0|Xn) ≈ Pc/Nmc.

The number of Monte Carlo samples Nmc is equal to 100 thousand in the next examples
and figures.

The lower and upper HDI intervals in Theorem 1 can also be obtained as in Theorem 2
and computed via Monte Carlo sampling (HDI can be computed using the values stored in V,
see pseudo-code). Hereafter we will denote the two intervals corresponding to the lower and upper
distributions as HDI(2(ω00ω11 −ω01ω10)) and HDI(2(ω00ω11 −ω01ω10)), respectively.

The only prior parameter that must be selected with IDP is the prior strength s. The value of s
determines how quickly the posteriors corresponding to the lower and upper probabilities converge
as the number of observations increases. We select s = 0.5—this means that we need at least 4
concordant binary observations to take a decision with 1 − γ = 0.95. In other words, for s = 0.5
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we need two observations of type Y = 0, Z = 0 and two of type Y = 1, Z = 1 to guarantee that
both 1− γ = 0.95% HDI intervals, i.e., HDI(2(ω00ω11 − ω01ω10)) and HDI(2(ω00ω11 − ω01ω10)),
do not include the zero. For any number of (and configuration of) observations less than four, the test
is always indeterminate (i.e., no decision can be taken). Thus, four is the minimum number of
observations that is required to take a decision. This choice is arbitrary and subjective, but is our
measure of cautiousness. We make clearer the meaning of determinate and indeterminate in the
following example.

Example 1. Let us consider the following three matrices of 10 paired binary i.i.d. observations

X10
a =

[
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 0

]T

,

X10
b =

[
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 0 0 0

]T

,

X10
c =

[
0 1 1 0 0 1 1 1 0 1
0 0 0 1 0 1 1 1 1 1

]T

.

(25)

They correspond to different degrees of dependence. Figure 1 shows the lower and upper distributions
of 2(ω00ω11 −ω01ω10) and the relative 95% HDI, i.e., HDI(2(ω00ω11 −ω01ω10)) and HDI(2(ω00ω11 −
ω01ω10)), for the three cases a, b, c (the filled in areas). In case (a), the two variables are dependent (concordant)
with probability greater than 0.95, since all the mass of the lower and upper distributions are in the interval
[0, 0.5]. In the second case, we are in an indeterminate situation, that is, the lower and upper are in
disagreement, which means that the inference is prior dependent. In the third case, we can only say that they
are not dependent at 95% since both the HDI intervals include the zero.

IDP dependence test

2(ω00ω11−ω01ω10)

P
ro

ba
bi

lit
y

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4
5 Lower Distribution

Upper Distribution

(a)

IDP dependence test

2(ω00ω11−ω01ω10)

P
ro

ba
bi

lit
y

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4

Lower Distribution
Upper Distribution

(b)

Figure 1. Cont.
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IDP dependence test

2(ω00ω11−ω01ω10)

P
ro

ba
bi

lit
y

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 Lower Distribution

Upper Distribution

(c)

Figure 1. Three possible results of the independence hypothesis testing with two binary variables.
The red and blue filled areas correspond respectively to the lower and upper HDI. (a) Dependent
at 95% ; (b) Indeterminate at 95%; (c) They are not dependent at 95%.

3.2. Bayesian Bivariate Independence Test for Continuous Variables

Let us assume that variables Y, Z ∈ R, that is, they are real continuous variables. Our aim is
to devise a Bayesian independence test for continuous variables based on the DP. We will also show
that our test is a Bayesian generalisation of Kendall-τ test for independence. This test uses results
from [25] that derived a Bayesian Kendall’s τ statistic using DP. As before, we introduce auxiliary
variables Y′, Z′. We start by defining the following quantities:

T1 = {(Y, Z, Y′, Z′) : (Y−Y′)(Z− Z′) > 0},
T2 = {(Y, Z, Y′, Z′) : (Y−Y′)(Z− Z′) < 0}.

T1 and T2 are concordance measures. We can then compute

E[IT1 − IT2 ] =
∫∫

(IT1(X, X′)− IT2(X, X′))dF(X|Xn)dF(X′|X′n), (26)

where we have exploited the independence of X, X′ and here F(X|Xn) denotes the posterior
cumulative distribution of PX|Xn . This quantity is equal to

E[IT1 − IT2 ] = ω2
0

∫∫
(IT1(X, X′)− IT2(X, X′))dF(X)dF(X′)

+ 2
n

∑
i=1

ω0ωi

∫
(IT1(Xi, X′)− IT2(Xi, X′))dF(X′)

+
n

∑
i=1

n

∑
j=1

ωiωj(IT1(Xi, Xj)− IT2(Xi, Xj)),

where we have exploited the fact that X′ has the same distribution as X and the same observations.
Given (ω0, . . . , ωn), it can be seen that the first two terms depend on the prior distribution
F ∼ Dp(s, α∗) and the last term is only due to the observations.
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Theorem 3. The variables Y and Z are said to be concordant (dependent) with posterior probability (1− γ)

provided that
P(E[IT1 − IT2 ]/2 > 0|Xn) > (1− γ) , (27)

and they are said to be discordant provided that

P(E[IT1 − IT2 ]/2 < 0|Xn) > (1− γ), (28)

where P is the probability computed with respect to (ω0, ω1, . . . , ωn) ∼ Dir(s, 1, . . . , 1) and dF ∼ Dp(s, α∗).
Finally, they are said to be simply dependent with posterior probability (1− γ) provided that

0 /∈ (1− γ)HDI(E[IT1 − IT2 ]/2|Xn), (29)

where HDI denotes the posterior Highest Density Interval of E[IT1 − IT2 ]/2.

The divisor 2 in E[IT1 − IT2 ]/2 is only a scaling factor so that the expectation lies in [−0.5, 0.5].
The theorem simply follows from the fact that E[IT1 − IT2 ] is the same measure of dependence used in
Kendall’s τ test. In this respect, it is worth to highlight the connection with Kendall’s τ. By exploiting
the properties of DP, we have that the posterior mean of E[IT1 − IT2 ] for large n is approximately
equal to.

E(E[IT1 − IT2 ]|X
n) ≈ 1

(n + 1)n

n

∑
i=1

n

∑
j=1

(IT1(Xi, Xj)− IT2(Xi, Xj)) (30)

and this is exactly Kendall’s sample τ coefficient. In fact, Kendall’s sample τ coefficient is defined as:

T = 2 ∑
1≤i<j≤n

Aij

n(n− 1)
= 2

n−1

∑
i=1

n

∑
j=i+1

Aij

n(n− 1)
, (31)

with

Aij =

{
1, if (Yi −Yj)(Zi − Zj) > 0,
−1, if (Yi −Yj)(Zi − Zj) < 0.

Observe that T can also be rewritten as:

T =
n

∑
i=1

n

∑
j=1

Aij

n(n− 1)
, (32)

in terms of all the Aij pairs, which is proportional to (30) for large n. This clarifies the connection
between our Bayesian test of dependence for continuous variables based on E[IT1 − IT2 ]/2 and
Kendall’s τ test.

As for the dependence test for binary variables, we will make inferences using IDP. Inferences
with IDP can computed by verifying if

P(E[IT1 − IT2 ]/2 > 0|Xn) > (1− γ), P(E[IT1 − IT2 ]/2 > 0|Xn) > (1− γ). (33)
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Theorem 4. The upper probability P(E[IT1 − IT2 ]/2 > 0|Xn) is obtained by a prior measure
α∗ = 0.5δXa

0
+ 0.5δXb

0
with Xa

0 > Xb
0 > Xi for i = 1, . . . , n. The lower probability P(E[IT1 − IT2 ]/2 > 0|Xn)

is obtained by a prior measure α∗ = 0.5δXa
0
+ 0.5δXb

0
with X0 = (Y0, Z0) and Ya

0 > Yb
0 > Yi and

Za
0 < Zb

0 < Zi for i = 1, . . . , n.

Proof. We have that

E[IT1 − IT2 ] = ω2
0

∫∫
(IT1(X, X′)− IT2(X, X′))dF(X)dF(X′)

+ 2
n

∑
i=1

ω0ωi

∫
(IT1(Xi, X′)− IT2(Xi, X′))dF(X′)

+
n

∑
i=1

n

∑
j=1

ωiωj(IT1(Xi, Xj)− IT2(Xi, Xj)).

We want to maximize IT1(X, X′). Since
∫∫

IT1(X, X′)δXa
0
(X)δXa

0
(X′)dXdX′ = 0, we need at least

two Dirac’s deltas. Hence, we consider the mixture dF = mδXa
0
+ (1−m)δXb

0
with Xa

0 > Xb
0 > Xi for

i = 1, . . . , n. Then we have that

E[IT1 − IT2 ] = m(1−m)ω2
0 + 2

n

∑
i=1

ω0ωi +
n

∑
i=1

n

∑
j=1

ωiωj(IT1(Xi, Xj)− IT2(Xi, Xj)),

and so we have maximized the second term. For the first term depending on m(1−m), the maximum
is obtained at m = 1/2. For the lower probability, the proof is similar.

The lower and upper HDI intervals can also be obtained as in Theorem 4. Again in this
case, the value of s determines how quickly lower and upper posteriors converge as the number
of observations increases. We choose s = 0.5 as for the binary test.

Example 2. Also in this case we consider three matrices of 10 paired continuous i.i.d. observations

X10
a =

[
−0.1 −0.2 −0.3 −0.4 −0.5 0.5 0.4 0.3 0.2 0.1
−0.1 −0.2 −0.3 −0.4 −0.5 0.5 0.4 −0.3 −0.2 −0.1

]T

,

X10
b =

[
−0.1 −0.2 −0.3 −0.4 −0.5 0.5 0.4 0.3 0.2 0.1
−0.1 −0.2 −0.3 −0.4 −0.5 0.5 −0.4 −0.3 −0.2 −0.1

]T

,

X10
c =

[
−0.1 0.2 0.3 −0.4 −0.5 −0.5 0.4 0.3 0.2 0.1
0.1 −0.2 −0.3 −0.4 0.5 0.5 0.4 −0.3 −0.2 −0.1

]T

.

(34)

They correspond to different degrees of dependence. Figure 2 shows the lower and upper posteriors for the
three cases a, b, c and the relative HDI intervals at 95% probability (the filled in areas). In case (a), the two
variables are dependent (concordant) with probability greater than 0.95, since all the mass of the lower and
upper distributions are in the interval [0, 0.5]. In the second case, we are in an indeterminate situation, that is,
the lower and upper are in disagreement, which means that the inference is prior dependent. In the third case,
we can only say that they are not dependent at 95% since both the HDI intervals include the zero.
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Figure 2. Three possible results of the independence hypothesis testing for continuous variables.
The red and blue filled areas correspond respectively to the lower and upper HDI. (a) Dependent
at 95%; (b) Indeterminate at 95%; (c) They are not dependent at 95%.

3.3. Bayesian Bivariate Independence Test for Mixed Continuous-Binary Variables

Let us assume that the variables Y ∈ R and Z ∈ {0, 1}. Our aim is to devise a Bayesian
independence test based on the DP. We introduce the auxiliary variable X′ as done before. To derive
our test, we start by defining the following indicator:

I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′).

This indicator is one if X = (Y, 0) and X′ = (Y′, 1), with Y > Y′ and zero otherwise.
We can compute

E[I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′)] =
∫∫

(I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′))dF(X|Xn)dF(X′|X′n), (35)
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where we have exploited the independence of X, X′. F(X|Xn) denotes the posterior cumulative
distribution of PX|Xn . This quantity is equal to

E[I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′)] = ω2
0

∫∫
(I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′))dF(X)dF(X′)

+
n

∑
i=1

ω0ωi

∫
(I(Y′ ,∞)(Yi)I{0}(Zi)I{1}(Z′))dF(X′)

+
n

∑
i=1

ω0ωi

∫
(I(Yi ,∞)(Y)I{0}(Z)I{1}(Zi))dF(X)

+
n

∑
i=1

n

∑
j=1

ωiωj(I(Yj ,∞)(Yi)I{0}(Zi)I{1}(Zj)).

For large n, we have that

E(E[I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′)]|Xn) ≈ 1
(n + 1)n

n

∑
i=1

n

∑
j=1

I(Yj ,∞)(Yi)I{0}(Zi)I{1}(Zj), (36)

which is equal to the rank of Y in the observations (Y, 0) with respect to the observations (Y, 1).
Therefore, our dependence test is rank-based. It is clear that, in the case of independence of the
variables Y and Z, the mean rank is equal to 0.125. Hence, we can formulate an independence test for
mixed variables.

Theorem 5. The variables Y and Z are dependent with posterior probability (1− γ) provided that

0 /∈ (1− γ)HDI(4E[I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′)]− 0.5|Xn), (37)

where HDI denotes the posterior Highest Density Interval of 4E[I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′)]− 0.5.

The theorem follows from the fact that in case of independence between variables Y and Z the
mean rank (36) scaled by 4 and shifted of −0.5 is equal to 0. Also in this case, we make inferences
using IDP.

Theorem 6. The upper probability P(4E[I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′)]− 0.5 > 0|Xn) is obtained by a prior
measure α∗ = mδXa

0
+ (1−m)δXb

0
with Xa

0 equal to (−∞, 1) and Xb
0 equal to (∞, 0) and

m =


0 if ω0 + e0 < e1 ,
1 if e1 < e0 −ω0 ,

ω0 + e0 − e1

2ω0
other,

with e0 = ∑n
i=1 ωi I{0}(Zi) and e1 = ∑n

i=1 ωi I{1}(Zi). The lower probability
P(4E[I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′)] − 0.5 > 0|Xn) is obtained by a prior measure α∗ = δX0 with X0

equal to (−∞, 0).
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Proof. Consider the quantity

E[I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′)] = ω2
0

∫∫
(I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′))dF(X)dF(X′)

+
n

∑
i=1

ω0ωi

∫
(I(Y′ ,∞)(Yi)I{0}(Zi)I{1}(Z′))dF(X′)

+
n

∑
i=1

ω0ωi

∫
(I(Yi ,∞)(Y)I{0}(Z)I{1}(Zi))dF(X)

+
n

∑
i=1

n

∑
j=1

ωiωj(I(Yj ,∞)(Yi)I{0}(Zi)I{1}(Zj)) ,

and α∗ = mδXa
0
+ (1−m)δXb

0
with Xa

0 equal to (−∞, 1) and Xb
0 equal to (∞, 0). Thus

E[I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′)] = m(1−m)ω2
0 + m

n

∑
i=1

ω0ωi I{0}(Zi) + (1−m)
n

∑
i=1

ω0ωi I{1}(Zi))

+
n

∑
i=1

n

∑
j=1

ωiωj(I(Yj ,∞)(Yi)I{0}(Zi)I{1}(Zj).

By computing the derivative

d
dm

E[I(Y′ ,∞)(Y)I{0}(Z)I{1}(Z′)] = ω0 − 2ω0m + e0 − e1 = 0,

we have that m = ω0+e0−e1
2ω0

. The result is obtained by exploiting the fact that m ∈ [0, 1]. For the lower
probability, the computation is straightforward.

The lower and upper HDI intervals can also be obtained as in Theorem 4. We choose s = 0.5 as
for the previous tests.

Example 3. We consider three matrices of 10 paired binary-continuous i.i.d. observations

X10
a =

[
−0.1 −0.2 −0.3 −0.4 −0.5 0.5 0.4 0.3 0.2 0.1

1 1 1 1 1 0 0 0 0 0

]T

,

X10
b =

[
−0.1 −0.2 −0.3 −0.4 −0.5 0.5 0.4 0.3 0.2 0.1

1 1 1 1 1 0 0 0 0 1

]T

,

X10
c =

[
−0.1 −0.2 −0.3 −0.4 −0.5 0.5 0.4 0.3 0.2 0.1

1 0 0 1 1 0 0 1 0 1

]T

.

(38)

Again, they correspond to different degrees of dependence. Figure 3 shows the lower and upper posteriors
for the three cases a, b, c and the relative HDI intervals at 95% probability (the filled in areas). In case (a),
the two variables are dependent (concordant) with probability greater than 0.95, since all the mass of the lower
and upper distributions are in the interval [0, 0.5]. In the second case, we are in an indeterminate situation,
that is, the lower and upper are in disagreement. In the third case, we can only say that they are not dependent
at 95% since both the HDI intervals include the zero.
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Figure 3. Three possible results of the independence hypothesis testing for pairs binary-continuous.
The red and blue filled areas correspond respectively to the lower and upper HDI. (a) Dependent
at 95%; (b) Indeterminate at 95%; (c) They are not dependent at 95%.

4. Experiments

We compare our Bayesian testing approach in the three discussed main scenarios where both
variables are binary, both are continuous and one is binary and the other is continuous. The goal
is to decide whether the two variables are dependent or independent. We generate n samples
(n = 20 and 50) using the distributions defined in Table 1. Ten thousand repetitions are used by
forcing the variables to be independent (so β = 0) and thousand repetitions where the variables are
dependent, for each value of β > 0. The value of β is varied as explained in the table. For each
n, β and each of these twenty thousand samples (for which we know the correct result of the test),
we run the new approach versus χ2 test, Kendall τ test and Kolmogorov–Smirnov test, respectively
for the binary-binary, continuous-continuous and binary-continuous cases. For each run of each
method, we record their p-values, while for the new approach we compute γ corresponding to the
limiting credible region 1− γ wide where the decision changes between dependent and independent.
Such value is related to the p-values of the other tests and can be used for decision making by
comparing it against a threshold (just as it is done with the p-values). However, it should be
observed that thresholds different from 0.05 or 0.01 are hardly used in practice in null hypothesis
significance tests. Conversely, for a Bayesian tests 1 − γ is a probability and, therefore, we can
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take decisions with probability 0.99, 0.95 but also 0.7 or even 0.51 depending on the application
(and the loss function). However, instead of fixing a threshold (which is a subjective choice) to
decide between the options dependent and non-dependent with probability 1− γ, we use Receiver
Operating Characteristic (ROC) curves. ROC curves give the quality of the approaches for all possible
thresholds. The curves are calculated as usual by varying the threshold from 0 to 1 and computing
the sensitivity (or true positive rate) and specificity (or one minus false positive rate) (this is slightly
different from the common approach of drawing ROC curves as a function of the true positive rate
and false positive rate [26–28]). ROC curves are always computed considering different degrees of
dependence (different values for β 6= 0) against independence (β = 0). We apply the same criterion
to p-values for comparing the methods across a wider range of decision criteria. We have used the R
package “pROC” to compute the ROC curves [29].

Table 1. Data generation setup. In order to generate independent data, β is set to zero. Larger values
of β increase their dependency.

Variable 1 Variable 2 Distribution

Binary Binary Multinomial distr. with [P(00), P(01), P(10), P(11)] ∝ [3, 3 + β, 3 + β, 3].

Continuous Continuous Bivariate Gaussian with means 0 and covariance matrix
[

10 β
β 3

]
.

Binary Continuous Half of the samples have the binary variable set to zero and half to one. When
that variable is zero, then for the continuous use Γ(10, 2), otherwise Γ(10 + β, 2 + β).

Figures 4–6 present the comparison of the new approach (which we name as IBinary, ICont
or IMixed to explicitly account for the types of variables been analyzed) using s ≈ 0 against the
appropriate competitor. With such choice of s, the new approach runs without indeterminacy and
can be directly compared against usual methods. As we see in the figures, the new method performs
very similar to each competitor, with the advantage of being compatible among different types of data
(the p-values of the other methods, among different data types, cannot be compared to each other).
This is useful when one works with multivariate models involving multiple data types. As expected,
the quality of the methods increases with the increase of β and of the sample size.

Figures 7–9 present the ROC curves for the methods χ2, Kendall τ and Kolmogorov–Smirnov,
respectively. These curves are separated according to whether the instance is considered determinate
or indeterminate by the new approach. In other words, for each one of the twenty thousand
repetitions, we run the corresponding usual test and then we check whether the output of the new
approach is determinate or indeterminate (applying s = 0.5), and we split the instances accordingly
(blue curves show the accuracy over instances that are considered easy (determinate cases) while
green curves over instances that are hard (indeterminate cases)—we also present the overall accuracy
of the method using red curves). As we see, such division is able to identify easy-to-classify and
hard-to-classify cases, since the ROC curves for the cases deemed as indeterminate by the new
approach suggest a performance not better than a random guess (green curves). using the new
approach, This means that if we would devise another test (called “50/50 when indeterminate”)
which returns the same response as IBinary, ICont or IMixed when they are determinate, and issues
a random answer (with 50/50 chance) otherwise, then this “50/50 when indeterminate” test would
have the same ROC curve as χ2, Kendall τ and Kolmogorov–Smirnov, respectively.

This suggests that the indeterminacy of IDP based tests is an additional useful information that
our approach gives to the analyst. In these cases she/he knows that (i) her/his posterior decisions
would depend on the choice of the prior DP measure; (ii) deciding between the two hypotheses
under test is a difficult problem as shown by the comparison with the DP with s = 0, χ2, Kendall τ

and Kolmogorov–Smirnov. Based on this additional information, the analyst can for example decide
to collect additional measurements to eliminate the indeterminacy (in fact when the number of
observations goes to infinity the indeterminacy goes to zero).
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This represents a second advantage of our IDP approach, once we have fixed the value of s
(e.g., s = 0.5) it can automatically identify the risky cases where a decision must be taken with additional
caution. For this reason, we suggest to use the IDP based test for dependence and not s = 0.

Finally, Tables 2–4 present the values for the Area under the curve (AUC) in Chaper 5 in [30]
of the ROC curves discussed previously, as well as similar experimental setup but with different
values of s: 0.25, 0.5 and 1. Table 2 has results for binary variable versus binary variable, Table 3 for
continuous variable versus continuous variable, and Table 4 for continuous variable versus binary
variable. Overall, results show that IBinary has similar performance as χ2 test, ICont has similar
performance as Kendall’s τ test and IMixed is similar to Kolmogorov–Smirnov (KS) test. The most
interesting outcome is the comparison, in each scenario, of the frequentist test over whole data, over
only data samples that were considered determinate by the new test, and over only data samples
that were considered indeterminate. We clearly see that the AUC values over the cases considered
indeterminate are much inferior to the values over cases considered determinate, which indicates that
the new test has a good ability to discriminate easy and hard cases. ROC curves for values of s other
than 0.5 were omitted for clarity of exposition, but they are very similar to those obtained for s = 0.5.

Table 2. Area under the ROC curve (AUC) values for all the performed experiments using different
values of s, β and n. IBinary shows the AUC for the new test applied to two binary variables and
s ≈ 0. The columns χ2 test, Det.cases, and Indet.cases show the AUC obtained by the χ2 test over all
samples, only over samples considered determinate by IBinary (with the corresponding s) and finally
only over samples considered indeterminate by IBinary.

s n β IBinary Chisq Det.cases Indet.cases

0.25 20 1 0.5562 0.5629 0.5653 0.4890
0.5 20 1 0.5544 0.5596 0.5645 0.5233
1 20 1 0.5491 0.5551 0.5642 0.5153

0.25 20 3 0.7341 0.7502 0.7567 0.4266
0.5 20 3 0.7388 0.7551 0.7686 0.4526
1 20 3 0.7330 0.7502 0.7717 0.4888

0.25 50 1 0.6372 0.6425 0.6449 0.5125
0.5 50 1 0.6319 0.6353 0.6393 0.4747
1 50 1 0.6366 0.6407 0.6492 0.4954

0.25 50 3 0.9145 0.9110 0.9127 0.5205
0.5 50 3 0.9130 0.9090 0.9115 0.4473
1 50 3 0.9134 0.9081 0.9123 0.5642

Table 3. Area under the ROC curve (AUC) values for all the performed experiments using different
values of s, β and n. ICont shows the AUC for the new test applied to two continuous variables and
s ≈ 0. Kendall, Det.cases, and Indet.cases show the AUC obtained by Kendall’s test over all samples,
only over samples considered determinate by ICont (with the corresponding s) and finally only over
samples considered indeterminate by ICont.

s n β ICont Kendall Det.cases Indet.cases
0.25 20 1 0.5826 0.5858 0.5898 0.5101
0.5 20 1 0.5708 0.5729 0.5804 0.4987
1 20 1 0.5744 0.5742 0.5914 0.5004

0.25 20 2 0.7524 0.7506 0.7558 0.5037
0.5 20 2 0.7535 0.7502 0.7574 0.5203
1 20 2 0.7488 0.7407 0.7596 0.5447

0.25 50 1 0.6825 0.6888 0.6917 0.5051
0.5 50 1 0.6782 0.6869 0.6935 0.5633
1 50 1 0.6871 0.6960 0.7087 0.5204

0.25 50 2 0.9343 0.9191 0.9197 0.4933
0.5 50 2 0.9339 0.9208 0.9207 0.5487
1 50 2 0.9361 0.9205 0.9192 0.5499
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Table 4. Area under the ROC curve (AUC) values for all the performed experiments using different
values of s, β and n. IMixed shows the AUC for the new test applied to one binary and one
continuous variables and s ≈ 0. Kolmogorov–Smirnov (KS), Det.cases, and Indet.cases show the AUC
obtained by KS test over all samples, only over samples considered determinate by IMixed (with the
corresponding s) and finally only over samples considered indeterminate by IMixed.

s n β IMixed KS Det.cases Indet.cases
0.25 20 1 0.6159 0.6118 0.6139 0.5386
0.5 20 1 0.6150 0.5943 0.5989 0.5594
1 20 1 0.6132 0.6004 0.6104 0.5532

0.25 20 2 0.7176 0.7358 0.7392 0.5254
0.5 20 2 0.7202 0.7091 0.7159 0.4937
1 20 2 0.7163 0.7091 0.7233 0.4928

0.25 50 1 0.6997 0.7091 0.7109 0.4447
0.5 50 1 0.6966 0.7106 0.7149 0.4213
1 50 1 0.7076 0.7135 0.7224 0.4455

0.25 50 2 0.8526 0.8816 0.8832 0.3278
0.5 50 2 0.8497 0.8790 0.8818 0.3044
1 50 2 0.8562 0.8923 0.8986 0.2934

(a) (b)

(c) (d)

Figure 4. Comparison of approaches with binary data. New approach with s ≈ 0 (so always
determinate) is compared against χ2 test using ROC curves. Curves are built using two thousand
repetitions (one thousand where variables are independent (β = 0) and one thousand where they
are dependent with β as shown in the figures). Data are generated as explained in Table 1. (a) ROC
(n = 20, β = 1); (b) ROC (n = 20, β = 3); (c) ROC (n = 50, β = 1); (d) ROC (n = 50, β = 3).
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(a) (b)

(c) (d)

Figure 5. Comparison of approaches with continuous data. New approach with s ≈ 0 (so always
determinate) is compared against Kendall tau test using ROC curves. Curves are built using two
thousand repetitions (one thousand where variables are independent (β = 0) and one thousand where
they are dependent with β as shown in the figures). Data are generated as explained in Table 1.
(a) ROC (n = 20, β = 1); (b) ROC (n = 20, β = 2); (c) ROC (n = 50, β = 1); (d) ROC (n = 50, β = 2).

Figure 6. Cont.
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Figure 6. Comparison of approaches with mixed data. New method with s ≈ 0 (so always
determinate) is compared against Kolmogorov–Smirnov (KS) test using ROC curves. Curves are built
using two thousand repetitions (one thousand where variables are independent (β = 0) and one
thousand where they are dependent with β as shown in the figures). Data are generated as explained
in Table 1. (a) ROC (n = 20, β = 1); (b) ROC (n = 20, β = 2); (c) ROC (n = 50, β = 1); (d) ROC
(n = 50, β = 2).

(a) (b)

(c) (d)

Figure 7. Comparison of approaches with binary data. New approach is used to differentiate instance
by instance into hard-to-classify and easy-to-classify, and curves represent the outcome of χ2 test
under each such different scenarios. Data are generated as explained in Table 1. (a) ROC (n = 20,
β = 1); (b) ROC (n = 20, β = 3); (c) ROC (n = 50, β = 1); (d) ROC (n = 50, β = 3).
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(a) (b)

(c) (d)

Figure 8. Comparison of approaches with continuous data. New approach is used to differentiate
instance by instance into hard-to-classify and easy-to-classify, and curves represent the outcome of
Kendall τ test under each such different scenarios. Data are generated as explained in Table 1. (a) ROC
(n = 20, β = 1); (b) ROC (n = 20, β = 2); (c) ROC (n = 50, β = 1); (d) ROC (n = 50, β = 2).

Figure 9. Cont.
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Figure 9. Comparison of approaches with mixed data. New approach is used to differentiate
instance by instance into hard-to-classify and easy-to-classify, and curves represent the outcome of
Kolmogorov–Smirnov (KS) test under each such different scenarios. Data are generated as explained
in Table 1. (a) ROC (n = 20, β = 1); (b) ROC (n = 20, β = 2); (c) ROC (n = 50, β = 1); (d) ROC
(n = 50, β = 2).

5. Conclusions

We have proposed three novel Bayesian methods for performing independence tests for binary,
continuous and mixed binary-continuous variables. All of these tests are nonparametric and based
on the Dirichlet Process. This has allowed us to use the same prior model for all the tests we have
developed. Therefore, all the tests are “consistent”, in the sense that the probabilities of dependence
we compute with these tests are commensurable across the tests.

We have presented two versions of these tests: one based on a noninformative prior and one
based on a conservative model of prior ignorance (IDP). Experimental results show that the prior
ignorance method is more reliable than both the frequentist test and the noninformative Bayesian
one, being able to isolate instances in which these tests are almost guessing at random. For future
work, we plan to extend this approach in two directions: (1) feature selection in classification;
(2) learning the structure (graph) of Bayesian networks and Markov Random Fields. The idea is
to use our dependence tests to replace the frequentist tests that are commonly used for that purpose
and evaluate the gain in terms of performance. For instance in case (1), we then could compare the
accuracy of a classifier whose features are selected using our tests with that of a classifier whose
features are selected by using frequentist tests. Our new approach is suitable since it addresses two
limitations of currently used tests: they are based on null-hypothesis significance tests, and they
cannot be applied to categorical and continuous variables at the same time in a commensurable way.
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