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Abstract: Nonlinear relaxation phenomena in three different systems of condensed matter are
investigated. (i) First, the phase dynamics in Josephson junctions is analyzed. Specifically, a
superconductor-graphene-superconductor (SGS) system exhibits quantum metastable states, and
the average escape time from these metastable states in the presence of Gaussian and correlated
fluctuations is calculated, accounting for variations in the the noise source intensity and the bias
frequency. Moreover, the transient dynamics of a long-overlap Josephson junction (JJ) subject to
thermal fluctuations and non-Gaussian noise sources is investigated. Noise induced phenomena are
observed, such as the noise enhanced stability and the stochastic resonant activation. (ii) Second,
the electron spin relaxation process in a n-type GaAs bulk driven by a fluctuating electric field is
investigated. In particular, by using a Monte Carlo approach, we study the influence of a random
telegraph noise on the spin polarized transport. Our findings show the possibility to raise the spin
relaxation length by increasing the amplitude of the external fluctuations. Moreover, we find that,
crucially, depending on the value of the external field strength, the electron spin depolarization
length versus the noise correlation time increases up to a plateau. (iii) Finally, the stabilization of
quantum metastable states by dissipation is presented. Normally, quantum fluctuations enhance
the escape from metastable states in the presence of dissipation. We show that dissipation can
enhance the stability of a quantum metastable system, consisting of a particle moving in a strongly
asymmetric double well potential, interacting with a thermal bath. We find that the escape time
from the metastable region has a nonmonotonic behavior versus the system- bath coupling and the
temperature, producing a stabilizing effect.

Keywords: metastability; nonequilibrium statistical mechanics and nonlinear relaxation time; noise
enhanced stability; Josephson junction; spin polarized transport in semiconductors; open quantum
systems; quantum noise enhanced stability

1. Introduction

Nonlinear relaxation phenomena in the presence of metastable states are ubiquitous phenomena
in condensed matter systems. Specifically, metastability is a universal phenomenon in many
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natural systems, ranging from physics to cosmology, chemistry, biology and ecology [1–4]. Indeed,
metastability is an active research field in statistical physics [5–11]. Understanding metastability is a
fundamental issue to understand and describe the dynamical behavior of many natural systems. In
fact, metastability is relevant in the dynamical behavior of complex systems, such as spin glasses
and glasses, and its relevance depends on the number of metastable states, their local stability
and related basin of attraction in the presence of thermal or external fluctuations [12]. It is the
time scale of the basin of attraction around the investigated stable point of the system that defines
the stability and metastability of state under consideration. Metastability is a signature of a first
order phase transition, often characterized by a long-living metastable state, whose dynamics is
typical of out-of-equilibrium systems [5,12,13]. Specifically, metastable states in complex systems
are characterized by different time scales, the fast ones describing the dynamics inside the metastable
region and the slow ones describing the dynamics between different metastable states, and often it
is interesting to find long-living metastable states [5,6,13]. In particular, the stability of a metastable
state can be enhanced by Gaussian and non-Gaussian noise sources [14–17].

Moreover, in recent years, several theoretical investigations have focused on the positive effects
of the noise on nonlinear systems, showing that, under suitable conditions, the addition of external
fluctuations to intrinsically noisy systems may induce an enahncement of the dynamical stability of
the system, resulting in a less noisy response [18–28]. This counterintuitive effect has been found
in different physical areas, ranging from the generation of spin currents [29], aggregation kinetics of
Brownian particles [30,31], chemical reaction system [32], translocation dynamics of polymers [33–35],
ultra-fast magnetization dynamics of magnetic spin systems [36,37], dynamic electron response in
zinc-blende semiconductor crystals [38–43], noise redistribution in quasi 2D Silicon Mos inversion
layers [44], to interdisciplinary physical models [45–52].

Several theoretical studies have shown that the average escape time from metastable states in the
presence of fluctuating and static potentials is characterized by nonmonotonical behavior with respect
to the noise intensity [14,23,53–67]. This resonance-like behavior, called noise enhanced stability
(NES), is in contrast with the monotonic behavior predicted by Kramers theory [68,69]: the stability
of metastable or unstable states is in fact enhanced by the noise with the average lifetime resulting
larger than the deterministic one. For a classical Brownian particle in a cubic potential, the mean first
passage time (MFPT) as a function of the noise intensity, D, is characterized by a maximum when the
particle is placed initially outside the metastable well, in a certain region on the right of the potential
maximum, that is in a nonequilibrium position. For very low noise intensities, in the limit D → 0, the
MFPT diverges as a consequence of the trapping of the Brownian particle in the potential well [54,55].
Increasing the value of D, the particle can escape out more easily and the MFPT decreases. As the
noise intensity reaches a value D ≈ ∆U , with ∆U the potential barrier height, the escape process
of the Brownian particle is slowed down, due to the fact that the probability to reenter the well is
increased. At higher noise intensities, one recovers a monotonic decreasing behavior of the MFPT. In
summary, the behavior of the MFPT vs D goes with continuity from a monotonic divergent behavior
to a nonmonotonic finite behavior (typical NES effect), passing through a nonmonotonic divergent
behavior with a minimum and a maximum [55]. Very recently, the noise stabilizing effects were also
observed in quantum systems with asymmetric bistable potentials [7].

In this paper we shortly review three noise induced phenomena characterizing the nonlinear
relaxation of short and long Josephson junctions (JJ), spin transport in n-type GaAs bulk, and
populations of spatially localized states in a strongly asymmetric quantum bistable system.
Specifically, the three induced effects investigated are the noise enhanced stability, the stochastic
resonant activation and the noise-induced coherence of electron spin.

JJs are typical out-of-equilibrium systems characterized by tilted or switching periodic
potentials [70,71]. Recently, JJs as superconducting quantum bits [72–74], nanoscale superconducting
quantum interference devices [75] for detecting weak flux changes, and threshold noise detectors
has attracted the interest of researchers [76–78]. The dynamics of these devices is affected by
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environmental perturbations and, in particular, by random fluctuations responsible for decoherence
phenomena. The effects of both thermal and non-thermal random fluctuations on the behavior of
normal and graphene-based JJs were recently investigated [17,79–81].

Semiconductors spintronics offers a fruitful direction for scientific research towards the
development of electron spin-devices performing logic operations, communication and storage. The
main focus is to obtain long spin relaxation times or long spin diffusion lengths. In fact, electron
spin states depolarize by scattering from imperfections or phonons. Indeed, during the transport
of the spin system, the spin of conduction electrons decays over time due to the combined effect of
spin-orbit coupling and momentum scattering. Moreover, the electron-electron dynamic collisions
and the static fluctuations in the density of dopant ions give rise to a randomness of the spin-orbit
coupling. A question naturally rises: external fluctuations could play a positive role in the process
of spin relaxation in semiconductors? Despite some previous investigations [82–84], the possibility
of using the external fluctuations, added to the driving electric field, to positively affect the spin
decoherence process is still an open question.

A classical metastable state decays to a more stable configuration by thermally surmounting a
potential barrier in the presence of an external influence on the system, such as the one exerted by
a noise source. On the other hand, the decay of a quantum metastable state occurs also by means
of the tunneling mechanism, and in isolated systems, where the tunneling rate is determined by the
geometry of the potential barrier. In the presence of a dissipative environment, the time scale of the
decay is dictated by the temperature of the environment and by the details of its coupling with the
quantum system, other than by the potential profile.

Real-time path integral calculations on the tunneling dynamics started with the seminal
work by Caldeira and Leggett [85] on the tunneling rate in superconducting devices. Within a
N-level approximation of the open quantum system, the real-time approach allows for capturing
the dynamics of the particle in terms of populations of spatially localized states in bistable
potentials [86,87].

An increase of the decay time from the metastable state vs. the noise strength, with a maximum
at an optimal value of the noise, takes the name of noise enhanced stability (NES). Such phenomenon,
in a classical context, has been established both experimentally and theoretically [14,53,54].

Motivated by the classical case, we investigate the presence of NES in quantum metastable
systems at strong dissipation. We do this by means of the real-time path integral approach and
by varying the coupling strength and the temperature of the environment. The analysis relies on
a initial condition substantially different from the quasi-equilibrium state inside the metastable well,
which is considered in previous studies on quantum decay rates [88,89]. The preparation is indeed
assumed to be of the kind used for classical system where NES is predicted, namely the particle
initially in a nonequilibrium position between the top of the barrier and the so-called exit point of
the potential [86].

The paper is organized as follows. In the next section the transient dynamics of short and
long JJ is analyzed. In section 3 the nonlinear relaxation process of an electron spin system and its
noise-induced coherence are investigated. Finally in section 4 the transient dynamics of a quantum
metastable system in the presence of strong Ohmic dissipation is presented. In the last section we
draw the conclusions.

2. Short and Long JJ

A Josephson junction (JJ) is a superconducting device composed by two superconductors
separated by a thin layer of non-superconducting material. In this mesoscopic device, which can be
in a resistive or superconducting state, the current and the voltage across the junction are related
to the microscopic order parameter ϕ, that is the phase difference between the wave functions
describing the ground state in the two superconductors [17,79,90,91]. Recently, the effects of both
thermal and non-Gaussian fluctuations on the dynamics of JJs have been the focus of increasing
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investigations [16,17,92–95]. Indeed, the statistical analysis of the switching from the metastable
superconducting state to the resistive one of a JJ has been used as a theoretical tool to detect signals
with unknown statistics [77,78,96].

• Short Graphene JJ

Recently, Josephson devices with a graphene sheet as interlayer has attracted an increasing
scientific interest [97,98]. Experimental evidence of superconducting states in graphene, with
coherent propagation of Cooper pairs, has been recently found [99–101]. Moreover, noise effects
in the dynamical behavior of graphene JJs have been analyzed from experimental and theoretical
point of view [97,100,102–104]. In this section we study the transient dynamics of an underdamped
superconductor−graphene−superconductor (SGS) junction, as the simultaneous action of an external
driving force, oscillating with frequency ω, and a stochastic signal, which represents a random force
of intensity γ, is taken into account. Specifically, we analyze the mean lifetime of the superconductive
state of the device by varying the frequency ω and the noise intensity γ.

• Long JJ

In condensed matter physics the defects inside a solid state lattice can give rise to fluctuations of
electrical resistance and diffusion, which can be described by a random telegraph noise [91,105,106].
In this section we study the effects of a source of dichotomous random telegraph noise (dRTN) on a
long JJ (LJJ), driven by both a constant and an oscillating bias current. Specifically, we investigate
the mean switching time (MST), namely, the average time the junction takes to switch from the
superconducting state to the resistive regime, as a function of several parameters of system and noise
source. The phase dynamics of a LJJ, analyzed within the sine-Gordon (SG) formalism [17,81,90], is
characterized by a peculiar excitation, called soliton or kink [107,108], related to the penetration of a
magnetic flux quantum, i.e., fluxons [109,110], generated by a supercurrent circulating around it.

2.1. Short Graphene JJ—Model

According to the resistively and capacitively shunted junction (RCSJ) model [90] and including
the environmental influence, the equation of motion for the order parameter ϕ in a short JJ reads

∂2 ϕ

∂t2 + β J
∂ϕ

∂t
= ib(t)− iϕ(t) + i f (t), (1)

where ib(t) and iϕ(t) are the bias and supercurrent, respectively, both normalized to the critical
current of the junction Ic. The term i f (t), also normalized to Ic, represents the stochastic noise
contribution. In Equation (1), β J = (ωp0 RC)−1 is the damping parameter and the time variable is
normalized to the inverse of the zero-bias plasma frequency ωp0 =

√
2π Ic/(Φ0C). The dynamics

of a short JJ can be viewed in terms of the motion of a “phase particle” with mass m = C(Φ0/2π)2

rolling down along the washboard potential (WP).
The non-sinusoidal current-phase relation and the critical current for a short ballistic graphene

JJ in the low temperature regime, i.e., T . Tc/4 (Tc being the critical temperature of the junction), can
be written as [80,111,112]

iϕ(t) =
I(ϕ)

Ic
=

2
1.33

cos
( ϕ

2

)
tanh−1

[
sin
( ϕ

2

)]
(2)

Ic = 1.33
e∆0

h̄
W
πL

. (3)

From Equation (2) a washboard-like potential can be also defined [80]. In Equation (3), W
and L are the length of the superconductive plates and their separation, respectively, and ∆0 is the
superconductive excitation gap. According to the short junction regime, L � W, ξ [111], where ξ is
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the superconducting coherence length. The bias current is composed of a constant term, i0, and an
oscillating part, containing a phase term φ0,

ib(t) = i0 + A sin (ωt + φ0) . (4)

Specifically, in every numerical realization a value of φ0 is randomly drawn within [0, 2π].
Accordingly, the initial slopes of the WP are randomly distributed in the range [i0 − A, i0 + A],
whereas the mean slope is still equal to i0. In Equation (4), the frequency ω is normalized to ωp0 .

The junction leaves the superconductive regime when the phase particle, initially placed in the
bottom of a potential minimum, reaches one of the nearest maxima, in correspondence of which
absorbing barriers are placed. Recording for each numerical realization the escape time, namely, the
time required to reach a barrier, the MFPT for a large enough number N of realizations is calculated.

The stochastic normalized current i f (t) is characterized by the well-known statistical properties
of a Gaussian random process〈

i f (t)
〉
= 0

〈
i f (t)i f (t + t′)

〉
= 2γ(T)δ

(
t′
)

, (5)

where normalized units for the current and the time are used, and the dimensionless amplitude
γ(T) reads

γ(T) =
ωp0

ωc

2e
h̄

kT
Ic

. (6)

The stochastic dynamics is analyzed by integration within the Ito scheme of Equation (1)
with a finite difference method. The time step and the integration time are ∆t = 10−3 and
tmax = 100, respectively.

2.1.1. Short Graphene JJ—Results

The behavior of the lifetime of the superconductive state, τ, that is the MFPT, as a function of
the noise intensity γ and the driving frequency ω, for i0 = 0.1, is shown in the panels of Figure 1.
In particular, the escape times show maxima for suitable values of γ, namely, the NES effect, while
minima are observed for certain values of the driving frequency, i.e., the resonant activation (RA)
effect. More in detail, Figure 1 shows the results for i0 = 0.1 in the absence of the phase φ0 in the
oscillating bias (i.e., φ0 = 0), while the case of randomly distributed phase φ0 in [0, 2π] is shown in
Figure 1. It is noteworthy that for frequencies higher than the plasma frequency, namely, ω > 1, at
low noise intensities a trapping phenomenon occurs [17]. A threshold frequency ωthr exists such that
for ω > ωthr the phase particle is trapped between two successive minima of the potential profile,
and cannot move to the next WP valley. Accordingly, the MFPT diverges in the limit γ→ 0.
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Figure 1. (a) and (b), mean first passage times (MFPTs) τ as a function of ω and γ, for both φ0 = 0
and a randomly distributed φ0 in [0− 2π], respectively; (c) MFPTs τ as a function of γ for ω = 0.9, for
both φ0 = 0 and a randomly distributed φ0 in [0− 2π]. For (a)–(c), the other parameters are i0 = 0.1,
A = 0.7, β J = 0.1, and N = 104.
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In Figure 1a two different kinds of RA can be clearly distinguished. The dynamic resonant
activation (DRA), which occurs for low noise intensities as the external driving frequency is close to
the natural characteristic frequency of the system, that is the plasma frequency of the JJ [80,113–115],
and the stochastic resonant activation (SRA), which occurs for driving frequencies close to the inverse
of the average escape time at the minimum, i.e., the mean escape time over the potential barrier in
the lowest configuration [78,80,116,117]. For i0 = 0.1, the DRA effect is characterized by two minima,
which appearance is related to as many escape resonance phenomena, one through the right potential
barrier and the other through the left one. This double-minima effect is highly sensitive to the initial
potential slope [80], so that it is expected to vanish as the random phase φ0 is included into the
model, see Figure 1b. In this case, independently of the noise amplitude, τ values show a smoothed
large “dip” (see Figure 1b), in the bottom of which also the NES effect seems weakened. Conversely,
NES persists for frequency still within the dip, but far away from its bottom (see Figure 1c). For a
better insight of the NES phenomenon, we observe the probability density functions (PDFs) of the
normalized switching times, P(t/Tp), calculated setting ω = 0.44 and i0 = 0.1, for φ0 = 0 and
φ0 ∈ [0− 2π], see Figure 2. For φ0 = 0, close to the NES maximum the PDFs are composed by long
regular sequences of equidistant sharp peaks with exponentially decreasing amplitude [80,118], see
results for γ = 0.01 in Figure 2a. More generally, for γ < 1, the PDFs are distributions of a series of
two distinct asymmetric peaks per driving period Tp, where the peaks placed within the odd (even)
multiples of the half driving period represent escape events through the right (left) potential barrier.
Increasing the noise intensity, γ > 1, the peaks tend to become lower and broader, and they eventually
merge into a larger distribution.

Figure 2. (Color online) Probability density functions (PDFs) P as a function of the normalized time
t/Tp (Tp is the driving period), varying γ, for (a) both φ0 = 0 and (b) a randomly distributed φ0 in
[0− 2π]. Every picture is obtained for A = 0.7, i0 = 0.1, β J = 0.1, and ω = 0.44. The amounts of
numerical realizations performed to build these PDFs are (a) N = 107 and (b) N = 108.

When a non-zero random phase is included into the oscillating bias, the PDFs behavior,
interestingly, change, see Figure 2b. The PDF peaks tend to enlarge, up to coalesce. In spite of the
random distributed driving phase φ0, for γ = 0.01 and 0.001 (at least for t > 2Tp) we note that the
peaks are exactly located for t = [(k + 1)/2]Tp, with k = 1, 2, 3, ... . Accordingly, the resonant escapes
mainly occur as the WP slope assumes the mean value i0. For γ = 0.1 the shape of individual peaks
is no longer distinguishable, so that a large distribution, extending approximatively up to t ∼ 4Tp,
is obtained. Similarly, for γ = 1.0 and 10, single-peak PDFs result, extending up to t ∼ 2Tp and
t ∼ Tp, respectively.
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2.2. Long JJ—The model

The electrodynamics of a long JJ (LJJ) can be analyzed looking at the time evolution of the order
parameter ϕ, which is ruled by the sine-Gordon equation, that, in normalized units, is expressed
by [90]

βc
∂2 ϕ

∂t2 +
∂ϕ

∂t
− ∂2 ϕ

∂x2 = ib(t)− sin(ϕ) + iDN(t), (7)

with boundary conditions ∂ϕ(0,t)
∂x = ∂ϕ(L,t)

∂x = 0, L being the junction length (in units of the Josephson
penetration depth λJ [90]). The space x and the time t are normalized to λJ and to the inverse of
the characteristic frequency ωc = 2π IcR/Φ0 [90], respectively. The coefficient βc = ωcRC is the
Stewart-McCumber parameter [90] (R and C are the normal resistance and the capacitance of the
junction, respectively) and is set to βc = 0.01 (overdamped condition) in the numerical calculations.

The bias current ib(t) is normalized to the critical current of the junction. The effects of a
dichotomous noise source is taken into account by the term iDN(t). For the sake of understanding
the exclusive effect of the dRTN source iDN(t) on the LJJ response, a thermal noise source, which
effects were formerly extensively explored in the LJJ context [17,81,119–123], is ignored in this model.
A LJJ can be depicted as a string lying along a potential, the washboard potential (WP) U(ϕ, x, t),
given by

U(ϕ, x, t) = 1− cos[ϕ(x, t)]− ib(t) ϕ(x, t). (8)

The WP is formed by a sequence of minima, namely, the metastable states of the
junction. The string is initially at rest at the bottom of a washboard valley, that is
ϕ (x, 0) = arcsin (i0) ∀x : 0 ≤ x ≤ L. The bias current ib(t) gives the slope of this potential and is the
sum of a constant term i0 and an oscillating component

ib(t) = i0 + A sin(ωt), (9)

where the frequency ω is normalized to ωc and A = 0.7. When ib ≥ 1 the potential barriers ∆U
between consecutive minima of the potential vanish and the metastable states are removed.

The stochastic current iDN(x, t), representing the dRTN signal, reads

iDN(x, t) = γ β(t), (10)

where γ is the normalized noise amplitude. The parameter β(t) is a dichotomous stochastic process
jumping between two values, βup and βdown, with a rate:

γDN(t) =


0, ∆tr ≤ τd

γ0 (1 + ADN |cos (ωDNt)|) , ∆tr > τd.
(11)

Here, ∆tr is the random time interval between two consecutive switches, and τd is the delay
between two jumps, that is the time interval after a switch, before another jump can occur. A similar
approach to model the dichotomous noise source was previously implemented and used in other
contexts, from generalized Lotka-Volterra systems [124–127] to electron transport dynamics in GaAs
samples [41]. Equation (7) is numerically solved within the Ito scheme by setting ∆t = ∆x = 0.05.
The MST τ is a nonlinear relaxation time (NLRT) [14,17,81,91] and represents the mean value of the
permanence times of the phase ϕ within the first valley, that is ϕ ∈ [ϕL

Max , ϕR
Max]. The thresholds ϕL

Max

and ϕR
Max are, respectively, the positions of the left and right maxima which surround the minimum

chosen as initial condition. No absorbing barriers are set, so that during the entire observation time,
tmax, all the temporary trapping events are taken into account to calculate τ. In the i-th realization for
the j-th cell, the probability Pij = 1 if ϕ ∈ [ϕL

Max , ϕR
Max] and zero otherwise. Summing Pij(t) over the
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total number Nc = L/∆x of cells and over the number N of realizations, the average probability that
the entire string is in the superconducting state at time t is computed as

P(t) =
1

N Nc

N

∑
i=1

Nc

∑
j=1

Pij(t). (12)

The MST τ is therefore calculated as

τ =
∫ tmax

0
P(t)dt. (13)

2.2.1. Long JJ—Results

Here, we analyze the LJJ behavior and the emergence of noise-induced phenomena in the
presence of a dRTN source, when the driving frequency is ranged in ω ∈]10−3 − 10].

First of all, we note that the dRTN signal of Equation (10), applied to the junction together
with a bias current, can hinder or support the switching dynamics from the superconducting state.
In particular, a noise contribution in the same direction with respect to the tilting imposed by a
positive bias current assists the escape events. Conversely, a noise contribution of opposite sign to
the bias current contrasts with the escape events and further confines the string within a potential
minimum. Therefore, an initial value of the dichotomous noise of sign equal or opposite to the bias
current can strongly affects the MST value. In fact, although the MST τ is a NLRT, the value of τ is
highly influenced by the time the string requires for the first escape from the initial metastable state.
Accordingly, by imposing β(0) = βdown or β(0) = βup the evolution of the string and the value of τ

can drastically change. Finally, to release the results from the initial condition of the dRTN, the value
of β(0) has to be randomly chosen among βdown and βup in each numerical realizations. Therefore,
to properly understand the mechanisms governing the phase dynamics, all these cases are explored.
Specifically, Figure 3 show the results obtained as the initial value β(0) of the dichotomous noise is
set to βup, βdown, and is randomly drawn, respectively.
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Figure 3. (Color online) (a)–(c), MST τ as a function of the driving frequency ω for several noise
intensities with initial values of β(t) set to up, down and randomly drawn (see (a)–(c), respectively);
(e)–(f), MST τ as a function of the noise intensities γ for several driving frequency ω with initial
values of β(t) set to up, down and randomly drawn (see (e)–(f), respectively). For (a)–(f), the other
parameters are i0 = 0.5, τd = 3, A = 0.7, βc = 0.01, and N = 5000. The legend in (c) refers also to (a)
and (b), whereas legend in (d) refers also to (e) and (f).
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The MST τ as a function of the driving frequency ω for several noise intensities γ, i0 = 0.5, and
τd = 3, are shown in Figure 3. Moreover, the length is set to L = 20, it means a junction long enough
to observe solitons formation along the string [17,81,91,120].

Almost all curves of Figure 3 clearly show the presence of resonant activation [14,17,80,81,91,116,
118,128–135], specifically stochastic resonance activation [17,78,80,117], a noise induced phenomenon
whose signature is the appearance of a minimum in the curve of MST vs ω.

In Figure 3a, as γ increases we note that τ rapidly reduces and the SRA phenomenon tends to
vanish, for the first dichotomous jump is concordant with the bias tilting and the junction rapidly
switches from the metastable state. Moreover, the SRA minimum tends to shift towards higher
frequencies. The curves for γ = 0.1 for both β(0) = βup and β(0) = βdown superimpose, indicating
that, for small noise intensities, the MST is independent from the sign of the first jump of the dRTN
source. When the down initial condition β(0) = βdown is set, the SRA phenomenon is observed
in all curves shown in Figure 3b. In this case, the SRA minimum slightly shifts towards lower
frequencies as the noise intensity enhances. Interestingly, for γ & 5 a small maximum follows the
SRA minima, indicating a confinement of the system within the initial metastable states, according
which τ slightly increases.

The curves in Figure 3c were obtained by randomly choosing the initial condition β(0) of the
dichotomous noise and are clearly an average between the results obtained setting β(0) = βdown and
those obtained for β(0) = βup. Accordingly, the SRA phenomenon is still evident in all the curves
shown in this figure.

Figure 3 show the presence of NES effect as few values of the driving frequency are set. We
note that, in the range of noise amplitudes taken into account, this noise-induced phenomenon
clearly emerges for β(0) = βdown, with maxima located in γ ∼ 1 (for ω = 0.2 and 0.22) and
γ ∼ 5, and accordingly when the β(0) is randomly chosen. For the initial value of the β parameter
β(0) = βup and the range of frequencies investigated, as we see from Figure 3, the MSTs show
monotonic decreasing behavior as a function of the noise intensity. This is due to the initial slope
of the potential profile, the low frequency values of the driving bias current and the low value of the
rate of the dichotomous noise. All these parameters contribute to speed up the escape process from
the superconductive metastable state to the resistive one, giving rise to a monotonic behavior of the
MST, according to previous results obtained for a piecewise linear potential subject to a dichotomous
noise source [14].

3. Spin Polarised Transport

The possibility of developing spin-based electronic devices in which the binary information
is encoded in the two spin-states "up" and "down" gave rise to a huge number of investigations
on electron spin phenomena in semiconductor structures, built on the idea to control the spin
relaxation by electric currents or gate voltages [136–142]. A number of such devices have already
been proposed [137,139,143], and the search for phenomena which can lead to spin based devices
is widespread [136–138,140,141,144,145]. However, a disadvantage of the use of spin degree of
freedom is that the magnetic polarisation relaxes over distance and time during the transport because
of spin-orbit interactions or scattering events, by causing that the coherence is ensured for a too
short time to enable the entire execution of the necessary spin manipulations. For this reason,
the investigation of the spin relaxation processes represents a crucial point in spintronic device
design [137,138]. Previous studies of the electron spin relaxation process in GaAs bulks have shown
that external fluctuations added to the driving static electric field can affect the spin decoherence
process [79,82–84], being this effect critically dependent on the amplitude of both the applied electric
field and the external fluctuations, as well as on the noise characteristic times.

In this section we focus on the influence on the electron spin depolarization length of a random
telegraph (RT) source of fluctuations, externally added to the forcing field in n-doped GaAs crystals
in both low electric field and high electric field (more intense of the Gunn’s field) regimes.
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3.1. The Model

There exists a variety of effects which can lead to relaxation and dephasing of spin polarizations
in GaAs crystals. However, for delocalized electrons and under nondegenerate regime, the
D’yakonov-Perel (DP) mechanism [146,147] is the dominant relaxation process in n-type III-V
semiconductors [148]. The spin-orbit interaction couples the spin of conduction electrons to the
electron momentum, which is randomised by scattering with phonons, impurities and other carriers.
The spin-orbit coupling gives rise to a spin precession, while momentum scattering makes this
precession randomly fluctuating, both in magnitude and orientation [137,138].

In a semiclassical formalism, in absence of an external magnetic field, the term of the
Hamiltonian of an electron in the conduction band which takes into account the spin-orbit interaction,
has the form

HSO =
h̄
2
~σ · ~Ω(~k). (14)

It represents the energy of electron spins precessing around an effective magnetic field

~B = h̄~Ω(~k)/µBg (15)

with angular frequency ~Ω, which depends on the orientation of the electron momentum vector with
respect to the crystal axes; µB is the Bohr magneton and g is the electron spin g-factor. Near the
bottom of the Γ-valley, the precession vector (Dresselhaus term) is given by

~ΩΓ =
βΓ

h̄
[kx(k2

y − k2
z)x̂ + ky(k2

z − k2
x)ŷ + kz(k2

x − k2
y)ẑ]. (16)

In the equivalent L-valleys located along the [111] crystallographic direction, the precession
vector is [149]

~ΩL =
βL√

3
[(ky − kz)x̂ + (kz − kx)ŷ + (kx − ky)ẑ]. (17)

In Equations (16) and (17), ki (i = x, y, z) are the components of the electron wave vector,
βΓ= 23.9 eV ·Å3 [150], and βL=0.26 eV Å·2/h̄ [151], are the spin-orbit coupling coefficients. Since
the quantum-mechanical description of the electron spin dynamics is equivalent to that of a classical
momentum ~S experiencing the magnetic field ~B, we describe the spin evolution by the classical
equation of precession motion

d~S
dt

= ~Ω× ~S. (18)

The DP mechanism acts between two collision events and randomises spin phases since electrons
precess with different frequencies depending on their momenta. In fact, the direction of the precession
axis and the effective magnetic field ~B changes randomly and in a trajectory-dependent way. This
effect leads the spin precession frequencies ~Ω and their directions to vary in an inhomogeneous
way within the electron spin ensemble. This spatial variation, called inhomogeneous broadening, is
quantified by the average squared precession frequency 〈| ~Ω(~k) |2〉 [152]. This quantity, together with
the correlation time of the random angular diffusion of spin precession vector τΩ, are the relevant
variables in the D’yakonov-Perel’s formula [146]

τ =
1

〈| ~Ω(~k) |2〉τΩ
. (19)

By following Matthiessen’s rule, 1/τΩ = 1/τp + 1/τ
′
p, where τp is the momentum relaxation

time and τ
′
p is the momentum redistribution time, related to the electron-electron (e-e) scattering

mechanism. Although e-e interaction contributes to momentum redistribution, it does not directly
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lead to momentum relaxation [153]. The spin relaxation time τ results inversely proportional to both
the correlation time of the fluctuating spin precession vector τΩ and the inhomogeneous broadening
〈| ~Ω(~k) |2〉. That is, scattering events are spin-indipendent and do not lead to phase randomization
during the collision itself, but help to establish the random-walk-like evolution of the phase, leading
to motional narrowing, like in nuclear magnetic resonance [152].

3.2. Monte Carlo Approach and Noise Modelling

The electron transport dynamics is simulated by a semiclassical Monte Carlo algorithm, which
takes into account all the possible scattering events of the hot electrons in the medium [154,155] and
includes the precession equation of the spin polarisation vector for each free carrier [149,156,157].
The Monte Carlo algorithm has been implemented by using a Multiparticle Multivalley FORTRAN
Code, following the procedure extensively described in [158]. The electron-electron (e-e) interaction
is accounted for by using the screened Coulomb potential and the Born’s approximation. The
e-e scattering is treated as an interaction between only two particles, by using the Peschke’s
approach [159], as refined by Moško and Mošková [160,161]. The conduction bands of GaAs
are represented by the Γ-valley and four equivalent L-valleys. The complete set of n-type GaAs
parameters used in our calculations is listed in Table I of [158]. All simulations are carried out in
a GaAs single crystal with a doping concentration n equal to 1021 m−3. We assume that all donors are
ionised and that the free electron concentration is equal to the doping concentration. An ensemble of
5× 104 electrons is used to collect spin statistics. All physical quantities of interest are calculated after
a transient time long enough to achieve the steady-state transport regime.

The spin relaxation simulation starts with all electrons of the ensemble in the Γ valley, initially
polarised (S(0) = 1) along the x̂-axis of the crystal, at the injection plane (x0 = 0). In order to extract
the characteristic time τ of the spin relaxation, the obtained trend of the spin dephasing is fitted by
the following exponentially time decaying law

〈Sx〉(t) = A · exp(−t/τ), (20)

with A a normalization factor. The spin depolarization length L is calculated by the relation L = vd · τ,
where vd is the average drift velocity.

In our simulations the GaAs sample is driven by a fluctuating electric field E(t) = E0 + η(t),
where E0 is the amplitude of the deterministic part and η(t) is the random contribution due to the
external source of RT noise. The RT noise is generated by a random process taking only discrete
values and stochastically switching between these values. We consider a symmetric dichotomous
Markov stochastic process with only two values [162,163]

η(t) ∈ {−∆, ∆}. (21)

Thus, we have zero mean
〈η(t)〉 = 0, (22)

and correlation function

〈η(t)η(t′)〉 = ∆2 exp
(
−| t− t′ |

τD

)
, (23)

where τD is the correlation time of the noise and it is related to the inverse of the mean frequency of
transition from±∆ to∓∆, respectively [162,163]. In our runs, we choose η(0) = X as initial condition,
where X is a random variable which takes the values −∆ and ∆ with equal probability (p = 1/2).
We consider only fluctuations of equal height, in such a way that this external noise can be easily
generated in practical systems and tuning effects can be more controllable.
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3.3. Numerical Results and Discussion

In panels of Figure 4, we show the spin lifetime τ0 (Figure 4a) and the spin depolarisation length
L0 (Figure 4b), respectively, as a function of the deterministic electric field amplitude E0, at T = 77 K
and 300 K. The spin lifetime is a monotonic decreasing function of E0. Moreover, for field amplitudes
E0 greater than 3 kV/cm, spin lifetimes at the lattice temperature T = 300 K become longer than
those calculated at T = 77 K . This unexpected finding is due to the fact that a strong value of
E0 allows that a high percentage of electrons visit the L-valleys, experiencing a spin-orbit coupling
stronger than that present in the Γ-valley. This action is dominant with the respect to the disorder
due to the lattice temperature. The spin relaxation length shows a nonmonotonic dependence on the
electric field amplitude. The presence of a maximum at low applied electric field can be explained
by the interplay between two competing factors: in the linear regime, as the field becomes larger,
the electron momentum and the drift velocity increase in the direction of the field. On the other
hand, the increased electron momentum also brings about a stronger effective magnetic field. For
field amplitudes E0 greater than 3 kV/cm, also the depolarization lengths L0 calculated at the lattice
temperature T = 300 K become greater than those obtained at nitrogenum temperature.

(a) (b)

Figure 4. (a) Spin lifetime τ0 and (b) spin relaxation length L0 as a function of the deterministic electric
field amplitude E0, at T = 77 K and 300 K.

We here report the effects of RT external fluctuations on the spin relaxation process at room
temperature (T = 300 K). For statistical purposes, we decided to carry out 500 different noise
realisations for each strength of the deterministic applied field and evaluated both average values
and error bars of the extracted spin relaxation lengths.

In panels of Figure 5, we show a single Monte Carlo realisation of the electron spin average
polarisation < Sx > (averaged over the electron ensemble) as a function of the distance d from
the injection plane (x0 = 0) . In Figure 5a the deterministic component of the fluctuating field is
E0 = 1 kV/cm and the RT component ha amplitude ∆ = 0.2 kV/cm; in Figure 5b E0 = 6 kV/cm and
∆ = 1.2 kV/cm. τ0 is the spin relaxation time obtained when only the deterministic field E0 is applied.
We found different results, depending on whether the deterministic field E0 is lower or higher than
the Gunn field (FG ≈ 3.25 kV/cm), that is the minimum value of electric field that the electrons need
to move in L-valleys. In fact, in the first case the spin relaxation process is not significantly influenced
by the external fluctuations for all the values of the noise characteristic time analyzed and we found a
spin depolarization length almost equal to the value obtained when only the deterministic component
of the driving field is applied (L0 = 3.1 µm). On the other hand, if E0 = 6 kV/cm, when τD � τ0,
the spin decoherence is practically not affected by the fluctuations of the electric field, which have a
negligible memory (τD) with respect to the characteristic time τ0 of the system, making the relaxation
process quasi-deterministic.
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(a) (b)

Figure 5. Spin polarisation < Sx > as a function of the distance d from the injection plane
(x0 = 0) obtained by applying fluctuating field at three different values of the correlation τD,
namely (solid line) 10−3τ0, (dashed line) τ0 and (dashed-dotted line) 103τ0. The other parameters are:
(a) E0 = 1 kV/cm, τ0 =38 ps, ∆ = 0.2 kV/cm; (b) E0 = 6 kV/cm, τ0 =1.20 ps, ∆ = 1.2 kV/cm.

The spin dephasing process becomes to be influenced by the fluctuating field only for
values of noise correlation time at least comparable with τ0 (τD ≥ τ0). In these cases we
found spin depolarization lengths greater than those calculated when the external fluctuations are
absent (L0=0.22 µm). In Figure 6, we show the normalised electron spin depolarization length
L/L0 as a function of the RT noise correlation time τD, with E0 = 1 kV/cm (Figure 6a) and
E0 = 6 kV/cm (Figure 6b), respectively , for three different values of the RT noise amplitude ∆. When
E0 = 1 kV/cm, because of the amplitude of the driving field is not enough to allow the electrons
to move in higher energy valleys (E0 < EG), independently on the noise mean switching time, the
external fluctuations has no effect on the spin relaxation process.

(a) (b)

Figure 6. Normalised electron spin depolarization length L/L0 as a function of the noise correlation
time τD, for three different values of noise amplitude, namely ∆= 10, 20, 30 % E0. (a) E0 = 1 kV/cm
and (b) E0 = 6 kV/cm , respectively.

If E0 = 6 kV/cm, for the lowest noise amplitude ∆ = 0.6 kV/cm, the electron spin depolarization
length is almost constant (L/L0 ∼ 1), for all the values of the of the noise correlation time τD. When
the noise amplitude increases and τD > τ0, the value of the spin relaxation length Ł increase up to
1.4 L0. For τD > 10 τ0, the electron spin relaxation length becomes constant in good approximation.
This positive effect monotonically increases with the amplitude of the RT noise.

A threshold effect is observed, in which an enhancement of the electron spin relaxation length
can be maintained for several orders of magnitude of the RT mean switching time, starting from
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a value equal to 10 times the relaxation characteristic time of the spin system in absence of noise
τ0. The findings are very similar to those observed for the electron spin lifetimes [79] and a simple
argument to explain the numerical results has been extensively discussed in [84].

4. Quantum Metastable State

The role of dissipation on the dynamics of metastable quantum system is the focus of the third
system investigated. Usually, the quantum noise and/or the dissipative environment influence
in a significative way the dynamics of a quantum system characterized by a metastable state.
Indeed, the decay and escape rates from a metastable state have recently received increasing
interest [7,86,164–168]. This problem is of general interest in many areas of physics, where the
quantum systems show metastability. Here, as a model of quantum metastable system we consider
a quantum particle in an asymmetric bistable potential coupled to a heat bath with Ohmic spectral
density. Upon varying the strength γ of the coupling between the particle and an Ohmic environment,
the escape time from a quantum metastable state exhibits a nonmonotonic behavior with a maximum.
This constitutes a quantum version of the NES effect, which is a theoretically and experimentally
established phenomenon [14,45,53–55], and we called it quantum noise enhanced stability (QNES) of
a quantum metastable system.

In this last section the role of dissipation and temperature on the escape process of a quantum
particle from a metastable state, by considering nonequilibrium initial conditions, is investigated.

4.1. The Model

The system is modeled as a particle of mass M, coordinate q̂, and momentum p̂, in a double–well
potential V0. The particle is linearly coupled to an environment of N independent quantum harmonic
oscillators of frequencies ωj, the so-called bosonic heat bath. The full Hamiltonian is the sum of
system and bath-plus-interaction terms, according to the Caldeira-Leggett model [85,86]

Ĥ =
p̂2

2M
+ V0(q̂) +

N

∑
j=1

1
2

 p̂2
j

mj
+ mjω

2
j

(
x̂j −

cj

mjω
2
j

q̂

)2
 . (24)

The constant cj measures the coupling of the particle with the j-th oscillator. The renormalization
term ∝ q̂2 gives a spatially homogeneous dissipation, independent of q̂. The bath spectral density
function completely describes the heat bath. In the continuum limit, for Ohmic dissipation, we
assume that J has the following standard form

J(ω) = Mγωeω/ωc , (25)

where ωc is a high-frequency cutoff and where the coefficient γ, which has dimension of a frequency,
provides a measure of the overall coupling between the particle and the heat bath.

The static potential is parametrized by the quartic function of the particle’s coordinate x̂ [87]

V(x̂) =
M2ω4

0
64∆U

x̂4 −
Mω2

0
4

x̂2 − εx̂. (26)

Here ω0 is the oscillation frequency around the potential minima, ε is a static bias and ∆U the
barrier height at zero bias. In calculations we scale all the physical quantities with ω0, which is of
the same order of magnitude of the frequency spacing between ground state and the first excited
energy level. We choose the parameter ε sufficiently large so as to attain a configuration that, in
the transient dynamics, is suitable for modeling the decay in a metastable potential, starting from
a nonequilibrium condition. In the upper part of Figure 7 V(x) is shown for ∆U = 1.4 h̄ω0 and

ε = 0.27
√

Mh̄ω3
0 .
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Figure 7. (Color online) Potential V (Equation (7), with ∆U = 1.4h̄ω0 and ε = 0.27
√

Mh̄ω3
0)

and first 6 energy levels (horizontal lines). In the lower part are shown the probability densities
|qi(x)|2 = |〈x|qi〉|2 associated to the DVR eigenfunctions, the initial state |q3〉 being highlighted by
a solid line. Vertical lines indicate the position eigenvalues in the DVR. The metastable region of the
potential is to the left of the so-called exit point c.

4.2. Discrete Variable Representation

At low temperatures, on the energy scale set by ω0, the time evolution of the particle is practically
confined to a reduced Hilbert space spanned by the first M energy eigenstates |Ei〉, provided that the
particle is not initially excited to energy levels higher than EM. In Figure 7 the M = 6 case is explicitly
shown for the strongly asymmetric potential used throughout the present work. In this truncated
Hilbert space we perform the unitary transformation T which diagonalizes the position operator x̂
according to

qDVR = TxT†

= diag{q1, . . . , qM}, (27)

where x is the matrix representing x̂ in the energy basis. The resulting states

|qj〉 =
M

∑
k=1

T∗jk|Ek〉, (28)

where Tij = (T)ij, satisfy the eigenvalue equation x̂|qj〉 = qj|qj〉.
The set {(qj, |qj〉), j = 1, . . . , M} constitutes the so-called discrete variable representation

(DVR) [169,170]. The functions qj(x) = 〈x|qj〉 are localized around the eigenvalues qj, as can be seen
in the lower part of Figure 7: the particle in the j-th DVR state has a non-vanishing probability of being
detected only in a spatial region centered around qj. This spatially discretized picture generalizes the
localized representation for a two-state system, given in terms of left/right states localized around
the potential minima [86]. The DVR allows for calculating the probability of finding the particle in
the region in between the minima. We exploit this possibility to study the transient dynamics in terms
of escape time towards the lower well, starting from a nonequilibrium initial state (see the lower part
of Figure 7). Note that spatial continuity is recovered for M → ∞, i.e., removing the upper bound on
the energies taken into account. The existence of intermediate localized states in the generalization
of the two-state system treatment accomplished by the DVR is reflected by the multiple time scales
resulting from the inclusion of energy levels above the first doublet and accounts for tunneling and
intra-well relaxation [87,171].
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4.3. Strong Dissipation: Analytical Approach

The populations of the DVR states |qj〉 undergo a relaxation towards a stationary configuration
which depends on the bath parameters and damping strength γ. At strong coupling this process is
well approximated [171] by the incoherent relaxation captured by the master equation [172]

ρ̇jj(t) = ∑
k

Γjkρkk(t). (29)

This master equation is the Markov-approximated version of the generalized master equation
ρ̇jj(t) = ∑k

∫ t
t0

dt′Kjk(t − t′)ρkk(t′) under the hypothesis that the memory time of the kernels Kjk is
smaller than the characteristic time scale of the evolution of the populations. The time-independent
rates are thus given by Γjk =

∫ ∞
0 dτKjk(τ). The kernels Kjk are derived within the path integral

approach to dissipation [86,173] using a multi-state generalization of the famous non-interacting blip
approximation [174]. For j 6= k, the kernels read

Kjk(t, t′) = 2∆2
jke−q2

jkQ′(t−t′) cos
[
εjk(t− t′) + q2

jkQ′′(t− t′)
]

, (30)

while the diagonal elements of the kernel matrix are given by Kkk(t, t′) = −∑n 6=k Knk(t, t′), according
to the conservation of probability. In Equation (30) ∆jk ≡ (1/h̄)〈qj|Ĥ0|qk〉, qjk = qj − qk (qi being the
DVR eigenvalues), and εjk = ∆jj − ∆kk. Finally, Q′ and Q′′ are, respectively, the real and imaginary
part of the function Q(t), related to the bath correlation function L by L(t) = h̄2d2Q(t)/dt2. In the
scaling limit set by kBT/h̄ωc � 1, we have

Q(t) = Q′(t) + iQ′′(t)

=
Mγ

πh̄
ln
(√

1 + ω2
c t2 sinh(κt)

κt

)
+ i

Mγ

πh̄
arctan(ωct), (31)

where κ = πkBT/h̄.
The master equation (29) gives the time evolution of the populations ρjj of the DVR states. Its

analytical solution reads

ρjj(t) =
M

∑
n,k=1

Sjn(S−1)nkeΛn(t−t0)ρkk(t), (32)

where S is the transformation matrix diagonalizing the rate matrix Γ, with eigenvalues Λn. The
smallest, in absolute value, of the nonzero eigenvalues determines the largest time-scale of the
dynamics, the quantum relaxation time τrelax [87].

4.4. Escape Time

We consider the dynamics given by Equation (32) with the nonequilibrium initial condition

ρ(0) = |q3〉〈q3| (33)

i.e., with the particle initially prepared in the central region of the potential on the right of the potential
barrier (see Figure 7). We choose this initial condition motivated by the investigations on the NES
for classical systems, where a driven classical Brownian particle in a metastable potential is initially
placed between the potential maximum and the exit point, denoted by c in Figure 7. The particle
experiences an enhancement of its escape time from the metastable well for certain values of the
noise intensity [14,53–55].
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The escape time tescape from the metastable region of the potential, the region to the left of the
exit point c (see Figure 7), is defined as the time the right well population, obtained as

Pright(t) =
6

∑
j=4

ρjj(t), (34)

takes to cross a threshold value d [7] .
In the following we set the d = 0.95, meaning that we consider the particle escaped from the

metastable region when the probability to detect it in the lower (right) well is equal or greater than
95%. Note that, due to the incoherent relaxation described by Equation (32), once the threshold is
crossed no oscillatory behavior of the populations occurs. Therefore, if the population of the right
well crosses the threshold at time tescape, the overall population of the metastable region is not going
to be larger than 0.05 at later times.

By evaluating the escape time tescape from the solution (32) of the master equation for the
populations the following picture emerges: As γ increases, both the escape time and the relaxation
time τrelax increase. This holds until a critical value of γ, dependent on the temperature, is reached.
By increasing further γ the escape time steeply diminishes whereas the relaxation time continues to
increase monotonically. The maxima in the escape time imply that, at a given temperature, there is
an optimal value of the coupling γ for which the depletion of the metastable region is delayed. It is
suggestive to address this feature as quantum noise enhanced stability (qNES) [7].

Such behavior of tescape as a function of the coupling strength γ is exemplified in Figure 8 for
three different temperatures T. The potential used is the one depicted in Figure 7 and the initial
condition is given by Equation (33). By changing T the escape time displays the same qualitative
features but the the critical coupling at which tescape falls off increases with the temperature. As for
the relative value of tescape, it is to be noticed that, at the intermediate value of T, the escape time is
lower in the whole range of γ.
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Figure 8. (Color online) Escape time (units of ω−1
0 ) vs coupling strength γ (units of ω) for three values

of the temperature (units of h̄ω/kB). Cutoff frequency ωc = 10 ω0.

To highlight this nonmonotonic behavior as a function of the temperature, in Figure 9 we plot
tescape as a function of the temperature for three values of the coupling strength γ: The escape time
shows a minimum for all γ and, in the whole range of temperatures considered, is larger for larger
γ. It should be noted that the values of the γ parameter are chosen smaller than the critical values
shown in Figure 8 for a similar range of temperatures.
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Figure 9. (Color online) Escape time (units of ω−1
0 ) vs temperature (units of h̄ω/kB) for three values

of the coupling γ (units of ω0 ). Cutoff frequency ωc = 10 ω0.

5. Conclusions

Three nonlinear relaxation phenomena induced by the noise in condensed matter systems have
been investigated. In particular, the noise enhanced stability (NES), the stochastic resonant activation
(SRA) and the noise-induced coherence of electron spin (NCS) have been analyzed in Josephson
junctions, n-doped GaAs semiconductor crystal, and quantum metastable system.

(i) The transient dynamics of short and long JJs, in the presence of Gaussian and non-Gaussian
noise sources, has been analyzed.

Specifically, the short JJ has a graphene sheet as an interlayer and this gives rise to a
nonsinusoidal behavior of the Josephson current. The underdamped SGS JJ has been subject to
an external periodical driving current and a stochastic Gaussian noise current. Two noise induced
phenomena, namely the NES and SRA, have been observed, and the role of a randomly distributed
phase of the driving periodical signal in the dynamics of a SGS JJ has been investigated. We find that
one of the two minima of the dynamical resonant activation phenomenon disappears with a random
initial phase, while the NES effect persists. To analyze in more detail the NES phenomenon in both
cases of zero phase or randomly distributed phase, the probability density functions of the switching
times have been calculated.

The dynamics of a long JJ has been investigated in the presence of a non-Gaussian dichotomous
noise with different initial conditions for the noise source (up, down and random). The effects of
these different initial conditions on the noise induced effects (NES and SRA) have been investigated.
In particular, the SRA is always observed by varying the initial condition of the non-Gaussian
noise. However, for certain initial conditions of the dichotomous noise, that is βup, the NES effect
disappears. For this choice of values of system and noise parameters, the escape process is speeded
up and the peculiar trapping phenomenon of the NES effect is not observed. For the other two initial
values of β(t), namely down and random, the NES phenomenon is observed (see Figure 3e,f).

(ii) We have analyzed the influence of RT external fluctuations on the electron spin relaxation
process in n-doped GaAs semiconductor bulks. Our numerical results show that if the deterministic
component of the driving electric field has amplitude greater than the Gunn threshold, it is possible
to enhance the depolarization length up to 40% of its value in the absence of external noise. This effect
increases with the amplitude of the external fluctuations, but it is observed only for noise correlation
times comparable to or greater than the spin lifetime obtained with the only deterministic applied
field (threshold effect). This positive effect, obtainable in a wide range of noise correlation times, is
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ascribed to the different effective electric field experienced by the electron ensemble, within the time
window of the spin relaxation time, is associated to a decrease of the occupation of the L-valleys,
where the strength of spin-orbit coupling felt by electrons is at least one order of magnitude greater
than that present in Γ-valley.

Our findings show that, by superimposing this fluctuations source to the intrinsic one, it is
possible to adjust the speed of the spin relaxation dynamics of the system. In particular, for electric
field strengths greater than the Gunn’s field, the depolarization length is enhanced by increasing both
the amplitude and the characteristic time of the external noise, while in low-field conditions, the spin
relaxation process is not influenced by the external fluctuations.

External random fluctuations suitably superimposed to the electric driving field, could play a
very important role on controlling and tuning the spin relaxation processes. In fact, on the wake of
our findings, by using appropriate noise characteristic times and amplitudes, could be possible to
select the most favorable condition for using the electron spin to carry the information.

(iii) We have investigated the transient dynamics of a quantum metastable system in the presence
of strong Ohmic dissipation. This was done by considering the escape time from the metastable
region, the region to the left of the exit point of the potential (point c in Figure 7), starting from a
nonequilibrium initial condition. The initial condition considered is substantially different from the
quasi-equilibrium state inside the metastable well used in quantum rates calculations [88,89]. The
preparation is indeed assumed to be of the kind used for classical system where NES is predicted,
namely the particle initially in a nonequilibrium position between the top of the barrier and the
so-called exit point of the potential see Figure 7.

Nonmonotonic behavior of the escape time as a function both of coupling strength and
temperature has been observed in the quantum metastable system. A maximization of the escape
time was found at specific, temperature-dependent, values of the coupling strength, in close analogy
with the noise enhanced stability in metastable classical systems. We call this the quantum noise
enhanced stability phenomenon: strong dissipation due to the system-bath coupling enhances the
stability of the metastable system in the quantum regime.
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2007, 57, 565–907.

139. Behin-Aein, B.; Datta, D.; Salahuddin, S.; Datta, S. Proposal for an all-spin logic device with built-in
memory. Nat. Nanotechnol. 2010, 5, 266–270.

140. Pulizzi, F. Spintronics. Nat. Mater. 2012, 11, doi:10.1038/nmat3327.
141. Salahuddin, S. Solid-state physics: A new spin on spintronics. Nature 2013, 494, 43–44.



Entropy 2017, 19, 20 25 of 26

142. Cadiz, F.; Barate, P.; Paget, D.; Grebenkov, D.; Korb, J. P.; Rowe, A.C.H.; Amand, T.; Arscott, S.; Peytavit, E.
All optical method for investigation of spin and charge transport in semiconductors: Combination of
spatially and time-resolved luminescence. J. Appl. Phys. 2014, 116, 023711.

143. Datta, S.; Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 1990, 56, 665–667.
144. Awschalom, D.D.; Bassett, L.C.; Dzurak, A.S.; Hu, E.L.; Petta, J.R. Quantum Spintronics: Engineering and

Manipulating Atom-Like Spins in Semiconductors. Science 2013, 339, 1174–1179.
145. Siegel, G.; Prestgard, M.C.; Teng, S.; Tiwari, A. Robust longitudinal spin-Seebeck effect in Bi-YIG thin films.

Sci. Rep. 2014, 4, 4429.
146. D’yakonov, M.I. Introduction to spin physics in semiconductors. Physica E 2006, 35, 246–250.
147. D’yakonov, M.I.; Perel, V.I. Possibility of Orienting Electron Spins with Current. JETP Lett. 1971, 13,

467–469.
148. Litvinenko, K.L.; Leontiadou, M.A.; Li, J.; Clowes, S.K.; Emeny, M.T.; Ashley, T.; Pidgeon, C.R.; Cohen, L.F.;

Murdin, B.N. Strong dependence of spin dynamics on the orientation of an external magnetic field for InSb
and InAs. Appl. Phys. Lett. 2010, 96, 111107.

149. Saikin, S.; Shen, M.; Cheng, M.C. Spin dynamics in a compound semiconductor spintronic structure with
a Schottky barrier. J. Phys. Condens. Matter 2006, 18, 1535–1544.

150. Tong, H.; Wu, M.W. Multivalley spin relaxation in n-type bulk GaAs in the presence of high electric fields.
Phys. Rev. B 2012, 85, 075203.

151. Fu, J.Y.; Weng, M.Q.; Wu, M.W. Spin-orbit coupling in bulk GaAs. Physica E 2008, 40, 2890–2893.
152. Slichter, C.P. Principles of Magnetic Resonance; Lotsch, H.K.V., Ed.; Springer: Berlin, Germany, 1996; p. 399
153. Glazov, M.M.; Ivchenko, E.L. Precession spin relaxation mechanism caused by frequent electron-electron

collisions. JETP Lett. 2002, 75, 403–405.
154. Adorno, D.P. Polarization of the radiation emitted in GaAs semiconductors driven by far-infrared fields.

Laser Phys. 2010, 20, 1061–1067 .
155. Adorno, D.P.; Pizzolato, N.; Fazio, C. Elucidating the electron transport in semiconductors via Monte Carlo

simulations: An inquiry-driven learning path for engineering undergraduates. Eur. J. Phys. 2015, 36,
055017.

156. Spezia, S.; Adorno, D.P.; Pizzolato, N.; Spagnolo, B. Relaxation of electron spin during high-field transport
in GaAs bulk. J. Stat. Mech. Theory Exp. 2010, doi:10.1088/1742-5468/2010/11/P11033.

157. Spezia, S.; Adorno, D.P.; Pizzolato, N.; Spagnolo, B. Temperature dependence of spin depolarization of
drifting electrons in n-type GaAs bulk. Acta Phys. Pol. B 2010, 41, 1171–1180.

158. Adorno, D.P.; Zarcone, M.; Ferrante, G. Far-infrared harmonic generation in semiconductors: A Monte
Carlo simulation. Laser Phys. 2000, 10, 310–315.

159. Peschke, C. The impact of electron-electron interaction on electron transport in GaAs at high electric fields.
J. Phys. Condens. Matter 1994, 6, 7027–7044.

160. Moško, M.; Mošková, A. Ensemble Monte Carlo simulation of electron-electron scattering: Improvements
of conventional methods. Phys. Rev. B 1991, 44, 10794–10803.

161. Mošková, A.; Moško, M. Exchange carrier-carrier scattering of photoexcited spin-polarized carriers in GaAs
quantum wells: Monte Carlo study. Phys. Rev. B 1994, 49, 7443–7452.

162. Bena, I. Dichotomous Markov Noise: Exact Results for Out-of-Equilibrium Systems. Int. J. Mod. Phys. B
2006, 20, 2825–2888.

163. Barik, D.; Ghosh, P.K.; Ray, D.S. Langevin dynamics with dichotomous noise; direct simulation and
applications. J. Stat. Mech. Theory Exp. 2006, doi:10.1088/1742-5468/2006/03/P03010.

164. Shit, A.; Chattopadhyay, S.; Chaudhuri, J.R. Taming the escape dynamics of nonadiabatic time-periodically
driven quantum dissipative system within the frame of Wigner formalism. Chem. Phys. 2014, 431–432,
26–38.

165. Shit, A.; Chattopadhyay, S.; Chaudhuri, J.R. Quantum stochastic dynamics in the presence of a
time-periodic rapidly oscillating potential: Nonadiabatic escape rate. J. Phys. Chem. A 2013, 117, 8576–8590.

166. Devoret, M.H.; Schoelkopf, R.J. Superconducting Circuits for Quantum Information: An Outlook. Science
2013, 339, 1169–1174.

167. You, J.Q.; Nori, F. Atomic physics and quantum optics using superconducting circuits. Nature 2011,
474, 589–597.

168. Leuenberger, M.N.; Loss, D. Quantum computing in molecular magnets. Nature 2001, 410, 789–793.



Entropy 2017, 19, 20 26 of 26

169. Harris, D.O.; Engerholm, G.G.; Gwinn, W.D. Calculation of Matrix Elements for One-Dimensional
Quantum-Mechanical Problems and the Application to Anharmonic Oscillators. J. Chem. Phys. 1965, 43,
1515–1517.

170. Light, J.C.; Carrington, T. Discrete-Variable Representations and their Utilization. In Advances in Chemical
Physics; John Wiley & Sons, Inc.: New York, NY, USA, 2007; Vol. 114; pp. 263–310.

171. Magazzù, L.; Valenti, D.; Spagnolo, B.; Grifoni, M. Dissipative dynamics in a quantum bistable system:
Crossover from weak to strong damping. Phys. Rev. E 2015, 92, 032123.

172. Thorwart, M.; Grifoni, M.; Hänggi, P. Strong Coupling Theory for Driven Tunneling and Vibrational
Relaxation. Phys. Rev. Lett. 2000, 85, 860–863.

173. Grabert, H.; Schramm, P.; Ingold, G.L. Quantum Brownian motion: The functional integral approach.
Phys. Rep. 1988, 168, 115–207.

174. Leggett, A.J.; Chakravarty, S.; Dorsey, A.T.; Fisher, M.P.A.; Garg, A.; Zwerger, W. Dynamics of the
dissipative two-state system. Rev. Mod. Phys. 1987, 59, 1–85, doi:10.1103/RevModPhys.59.1.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Short and Long JJ
	Short Graphene JJ—Model
	Short Graphene JJ—Results

	Long JJ—The model
	Long JJ—Results


	Spin Polarised Transport
	The Model
	Monte Carlo Approach and Noise Modelling
	Numerical Results and Discussion

	Quantum Metastable State
	The Model
	Discrete Variable Representation
	Strong Dissipation: Analytical Approach
	Escape Time

	Conclusions

