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Abstract: Terms related to gradients of scalar fields are introduced as scalar products into the 
formulation of entropy. A Lagrange density is then formulated by adding constraints based on 
known conservation laws. Applying the Lagrange formalism to the resulting Lagrange density 
leads to the Poisson equation of gravitation and also includes terms which are related to the 
curvature of space. The formalism further leads to terms possibly explaining nonlinear extensions 
known from modified Newtonian dynamics approaches. The article concludes with a short 
discussion of the presented methodology and provides an outlook on other phenomena which 
might be dealt with using this new approach. 
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1. Introduction 

Recent work on entropic gravity by Erik Verlinde [1,2] has initiated a recovery of earlier work 
by this author on the thermodynamics of diffuse interfaces [3] and stimulated a generalization of this 
approach. The approach depicted in the present article draws on a combination of the very forceful 
and fundamental concepts of entropy, of the phase-field method and of the Lagrange formalism. The 
capability of this approach to describe various aspects of gravity will ultimately be demonstrated. 

The description of entropy has up to now been based on the use of scalars for the probabilities 
  of the individual states 	 :  = ( ) (1) 

The scope of the present article is to generalize the entropy formulation and to include terms 
related to vectors (with options for future extension to tensors) within a formulation: =  , , . (2) 

Known conservation laws for energy E, mass M, charge Q, momentum 	 , and spin 	 , where 
each law is formulated as a function of  , , ,	  are then added as constraints to the 
variational problem. Each constraint is associated with its own Lagrange multiplier (λ, g, ε,…) 
yielding, in total, a free energy density f:  =  , ,   −	  , , −  , , −  , , (3) −  , , − ℎ  , , −⋯ ℎ 	  

The Lagrange multipliers  and ℎ	 for momentum  and spin , respectively, obviously have 
to be vectors in order to recover a scalar contribution to the overall scalar equation. Units and scales 
are implicitly introduced through the Lagrange multipliers. The Lagrange multiplier λ, for example, 
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corresponds to λ = 	  making the energy dimensionless (or, giving the dimension of kT to 
entropy/probability). The names of the Lagrange multipliers have been arbitrarily selected to be 
similar to the names of known fundamental constants, and have been assigned to the conservation 
law to which they are most probably related. Relations between these constants are expected to 
emerge from the Lagrange formalism being applied to above free energy density. 

The Lagrange formalism is based on a free energy functional F being the volume integral of a 

free energy density f. Its variational derivative 


 ( , ) = 0 corresponds to:  

0 = 	
 ( , ) − 

 ( , ) −  ( , ) 	 (4) 

Executing these derivatives provides the equations of motion of the system. The present paper 
will demonstrate the initial results obtained when applying the above scheme to mass conservation. 
However, the paper will not address any time-dependent phenomena, that is, no dependencies on 
 ( , ) will be considered in the Lagrange density. 

2. Entropy 

The proposed concept requires a formulation of entropy which comprises terms related to 
vectors (and in future also time derivatives). In order to specify vectors, a reference frame and/or a 
coordinate system has to be defined. In spite of introducing vectors (or tensors) into the terms of the 
equations, the overall entropy formulation and all the probabilities entering into the typical 
logarithmic terms have to remain scalars. 

2.1. Scalar Entropy 

Entropy has revealed its importance in numerous fields. Some of the most important 
discoveries are based on entropy such as, for instance, (i) the Boltzmann factor in energy levels of 
systems; (ii) the Gibbs energies of thermodynamic phases; (iii) the Shannon entropy in information 
systems; (iv) the Hawking entropy of black holes; (v) the Flory-Huggins polymerization entropy in 
polymers [4,5]; and (vi) the crystallization entropy in metals [4,6], to name only some of the major 
contributions. 

All of these approaches for entropy are typically based on logarithmic terms such as (see e.g., [7]): 

= −    (5) 

It seems important to note that entropy can be interpreted as tending to smear out any contrast 
between different states and/or different objects. The contrast between states/objects is reflected in 
gradients of an observable property allowing one to distinguish between these states/objects. Any 
object can be defined as a coherent region of space, which can be distinguished from other regions 
due to a contrast in at least one attribute/property. This attribute may even be the “name” of the 
object indicating that one—based on some criterion—has identified the region as belonging to the 
same object [8].  

Gradients and interfaces, i.e., measures of contrast, are thus most important for describing 
physical objects and should be reflected in the formulation of the entropy. For example, a sphere is 
an object having the maximum entropy for a given volume. The next section thus describes an 
approach for introducing gradients into the entropy formulation, i.e., making the step from the 
“scalar” entropy 	 ( ), based on scalar values  , to the “gradient” entropy also comprising 
gradients ∇ . 

2.2. Entropy Formulations Comprising Gradient Terms 

The name “gradient entropy” is misleading because the value of the entropy, and also the 
probabilities entering into its formulation, remain scalars even if gradients are present in its 
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formulation. The choice of another name might thus be meaningful in future. The “gradient 
entropy” described in a previous work [3] aimed at describing the growth of crystals using a 
phase-field approach (see Section 3). Its relevant content is briefly summarized in the following. 

Classical thermodynamics is based on Gibbs formulation of the following variational problem [7]: 

−   	 −   − − μ ( − 1) = 0 (6) 

where λ	and	μ are the Lagrange multipliers accounting for the constraints of energy and probability 
conservation. The solution of this variational problem yields the well-known relation for the 
probability of a specific state  : 

 	 = 1  	 , =  	 (7) 

where Z is the partition function which is necessary to normalize the probabilities, and λ = . It is 

interesting to note that, instead of the simple variation δ =

, the full variational derivative 


− 


 also leads to the same result since there are no explicit dependencies on gradients in 

the—equivalent—formulation: 


− 


−   −   − − μ ( − 1) = 0 (8) 

Replacing the logarithmic terms  ln  by scalar products of type a ln a  drastically 
changes that situation. Under some simplifying assumptions—especially a Taylor expansion of the 
logarithmic terms—scalar products comprising gradients occur [3]:  


− 


− |a|  −   − − μ ( 	 − 1) = 0 (9) 

The presence of such gradient terms has major consequences for the variational procedure as 
the 


	 operator now finds a target. To physically motivate this replacement of the logarithmic 

terms by scalar products, it is helpful to consider models of crystal growth as depicted below. 
Interfaces in physical systems often have a finite extension of several monolayers and it, 

therefore, seems meaningful that the extension of thermodynamics, which includes sharp interfaces, 
to a more general thermodynamic description involves diffuse interfaces and/or gradients. Two 
discrete models describing the growth of a so called Kossel crystal, Figure 1a, will be described in 
more detail: (i) the Jackson model of faceted growth [6], Figure 1b; and (ii) the Temkin model for the 
growth of a diffuse interface [9], Figure 1c. 

The Schmitz model [3], Figure 1d, extrapolates the discrete approach of Temkin into a 
continuum description, where the gradient may be identified by: ∗) =  −  =  ∗   (10) 

where, “ ” denotes the lattice spacing in the z-dimension. In contrast to the rest of the document the 
∆ *) in this equation and also in Figure 1c denotes a difference and not the Laplacian operator. 
Generalization to three dimensions then yields  	 ∗ , where  represents a vector characterizing 
the metric imposed by the underlying crystal structure of the solid phase. The inclusion of such 
gradient type contributions due to diffuse interfaces—revealing a characteristic length scale defined 
by the vector —in the classical free energy/entropy formulation of thermodynamics is extremely 
interesting for the description of evolving structures, and introduces a length scale into 
thermodynamics.  
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Figure 1. (a) Kossel’s model of a growing crystal (figure adapted from [4]). Atoms attach to the 
interface in layers. The model assumes that the atoms may only adhere to the top of already solid 
atoms (‘solid on solid’). A smooth transition with a finite interface thickness can be identified when 
averaging the fraction of solid atoms parallel to the interface (see Figure 1d). (b) The Jackson model 
[6] assumes an interface which is restricted to a single layer separating the two bulk regions. The 
entropic term in the Jackson model reads: ΦlnΦ	 +	 (1−Φ)ln(1−Φ). (c) The Temkin model [9] 
assumes multiple steps separating the two bulk regions. The entropy of an intermediate layer n in 
this case is also defined by its adjacent layer n − 1. The entropic term in the Temkin model reduces to 
the Jackson model in the case of a single interface layer and reads: 

* *
n 1 n n 1 n n n

n  n  

( )ln( ) ( )ln( )Φ Φ Φ Φ Φ Φ
∞ ∞

− −
= −∞ = −∞

− − = Δ Δ   (* see footnote of Equation (10)). (d) The Schmitz 

model [3] is an extension of the Temkin model for small step widths and approximates the discrete 
formulation of Temkin by a continuous gradient and by turning the sum of the individual 
contributions of the discrete layers into an integral (see text): ∭a ln	(a ). 
In the case of multiple objects “i”, each of these objects will have its own order parameter  , 

and its own interface which is characterized by   as depicted in Section 3 on phase field models. 
Variational minimization of the resulting free energy functional for N objects comprising entropic 
terms of type: 

− a ln a  (11) 
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recovers the phase-field equations of motion under specific, simplifying assumptions. One of these 
assumptions relates to a Taylor expansion of the a ln	(a )  terms which, for a < 1, 
provides the following approximation: a ln a ~ (a ) − a  (12) 

The scalar character of the entropy has been maintained by using scalar products when 
inserting the gradient terms. The vector a in this early model [3] corresponds to the lattice vector of 
the growing crystal which determines the distance between individual, discrete atomic layers of the 
Temkin model. 

No such vector is a priori specified for a more generic formulation which is the objective of the 
present work. Thus, there is a need to specify a reference vector n which plays the role of the 
crystal lattice vector a in the early crystallization model [3]. This vector has to be introduced as 
part of a scalar entity and the use of a scalar product, thus, seems mandatory. An interesting option 
for the choice of n is the use of the scalar-triple (or parallelepipedal) product, Figure 2, spanning a 
volume having a value v together with an oriented coordinate system consisting of the three base 
vectors , , 	: 

 

Figure 2. Scalar triple product: × = v The volume being spanned by these vectors is v. 
The diagonal vector of this coordinate system reads + + = n with its norm being 	( ++ ) . = |n|	 in the case of an orthonormal system. This vector is also the normal vector to the 
tangential plane to that volume. 

A periodic repetition of this elementary finite volume may ultimately fill the entire space and 
can be approximated by a continuous field 	n = 	n	( ). For the purpose of this paper, the norm of 
the vector |n| and the volume of the parallelepiped v are considered as constants.  

Terms including scalar products between the coordinate system defined by n and gradients of 
the scalar fields  	 then—in analogy with Equation (12)—read: n ln n ~ (n ) − n  (13) 

3. Phase-Field Models 

The overall strategy of the methodology proposed in this article comprises compiling the free 
energy density from a combination of entropic terms (see previous section) and constraints given 
by conservation laws. The specification of multiple  ( , ) becomes mandatory for describing 
different objects and also for formulating the constraints of mass, energy and momentum 
conservation in terms of the variables 	 ( , ),  ( , ),  ( , ): = ( ( , ), ( , ), ( , )) (14) 

The basis for dealing with this task is provided by the phase-field method which will be briefly 
reviewed in terms of its relevance for the scope of the present methodology. 

Phase-field models have their origin in the description of phase transitions. Phase transitions 
play a vital role in many areas of physics at all scales including, for instance, magnetism, 
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superconductivity, solidification, condensation, solid state transformations, very fundamental 
transitions like the Higgs-Kibble mechanism unifying electroweak interaction and, possibly, even 
the nucleation and growth of galaxies. 

Theories of phase transitions have their origin in the early models of van der Waals (1893), 
Korteweg (1901), Ginzburg-Landau (1950), Cahn-Hilliard (1958), Allen-Cahn (1960), Halperin, 
Hohenberg and Ma (1977). While the early models did not include any spatial resolution, especially 
the Cahn-Hilliard equation which, for the first time, addressed demixing phenomena using a 
spatially-resolved approach. The order parameter entering into the equations was 
the—conserved—concentration of alloy elements. The Allen-Cahn equation then included the 
option of non-conserved order parameters for the first time. It seems essential to highlight that 
phase transitions are best described by non-conserved order parameters such as, for example, the 
fraction liquid of a system will change from 1 to 0 in a solidification process and is thus not a 
conserved quantity.  

The first phase-field concept was proposed in an unpublished work by Langer [10] and was 
first publicly documented by Fix [11] and Caginalp [12]. The simulation of the evolution of complex 
3D dendritic structures using phase-field models by Kobayashi [13] initiated extensive use of this 
methodology in materials sciences. The binary transitions/equilibria between two states were later 
extended to multi-phase equilibria in a multi-phase-field-model [14]. Higher order derivatives of 
the order parameter eventually lead to atomic resolution of rigid lattices in so called phase-field 
crystal models [15]. Currently, phase-field models have reached a high degree of maturity and 
found applications in describing complex microstructures in technical alloy systems [16]. Reviews 
on phase-field modelling are found, for instance, in [17,18]. 

The core of most phase-field models is the description of the evolution of the shape of an object 
in time. To describe the evolution of this shape it is necessary, as a first step, to mathematically 
describe the initial shape of the object, Figure 3: 

 
Figure 3. Basic setting for the description of a complex shaped object by an order parameter. The 
order parameter field Φ	(r, t)	takes the value 1 wherever and whenever the object is present. A 
diffuse continuous interface marks the transition from the object to the “non-object”, as shown here 
for a solid object in a liquid. 

This initial shape is, thus, expressed as a scalar field of an “order parameter”, which is 
alternatively named “feature indicator” or, most commonly, a “phase–field variable”. For the 
present objective, it is sufficient to restrict further discussion to rigid objects. Neither the evolution 
of their shape nor their motion in vacuum space will be addressed here. The most basic use of a 
phase-field model is to just draw on the definition of the “phase-field”-variable. The phase field 
description of a static object—here a sphere—placed in a vacuum is schematically depicted in 
Figure 4. 
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	 	= curvature 
of the interface 

 

Figure 4. Some important mathematical relations related to the phase-field description of a massive 
sphere. 

The mass of a sphere i then is given as: 

=   ( , ) (15) 

It should be noted that the integral extends over the entire space and not only covers the 
domain of the sphere. Here, the phase-field variable  —which is 0 outside the sphere i–acts as a 
type of stencil selecting the domain of the sphere from infinite space. The conservation for a total 
mass of a system of N objects/spheres is then given by: 

= =   ( , ) (16) 

where the index I = 0 refers to the vacuum. Specifying the total mass as the integral of an average 
mass density:  

=   (17) 

allows one to formulate the constraint for mass conservation as follows: 

−	g   ( , ) −  = 0 (18) 

If only a maximum of two objects coexist at the same point, e.g., at the interface between 
vacuum and a massive object with index i, it is possible to rewrite the function  ( , )	 as 	(1 − ( , ))	 yielding: 

−	g   ( , ) +  1 − ( , ) −  = 0 (19) 

This assumption holds everywhere and at all times, as long as the massive objects are 
immersed in a vacuum and do not have any mutual contact. The mass density of the vacuum   
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will become important in view of the cosmological constant entering into the scheme in this way 
(see Section 5). 

4. Lagrange Formalism 

Similar to entropy, the Lagrange formalism also plays a significant role in many areas of 
physics. In addition to the derivation of the Boltzmann factor depicted above, the Lagrange 
formalism is a major foundation for quantum mechanics and, in particular, has been used to derive 
relations between symmetries and conservation laws. The Noether theorems, which were derived 
using the Lagrange formalism, showed that invariance of physical laws subject to a translation 
implies the conservation of momentum and invariance subject to translation in time implies the 
conservation of energy. A further striking observation is that major physical laws all contain a 
Laplacian operator (that is, are a Poisson-type equation) somehow suggesting a common ground of 
all these models, which comprise all different length scales like gravitation, electrostatics, thermal 
conductivity, diffusion, flow, phase-field, Schrödinger equations, density functional equations and 
many others. Some operators present in the Lagrange scheme have the property of generating 
Laplacian operators. 

The basic concept of the Lagrange formalism is based on a functional being a scalar function F 
of a variable   which, itself, is a function of space and time  =  ( , ), and being an integral of 
a density function f. 

 ( , ) = ( )  (20) 

The density function f is a function of a number of variables especially comprising 	 ( , ), 	 ( , ), 	 ( , ):  = ( ( , ), ( , ), ( , ), … . ) (21) 

The fundamental Lagrange formalism allows for extensions to further variables, to higher 
order derivatives and also to tensor fields. The present article will only consider first order 
derivatives. Setting the variation of F to zero with respect to one of the variables  ( , ) provides 
the corresponding Euler equation by setting the variational derivative of the function f to zero: 


 ( , ) 	= 	  ( , ) − 

 ( , ) −  ( , ) = 0 (22) 

The results are the desired equations of motion for the different	 ( , ).  

5. Derivation of the Gravitational Law 

The entropy for the static field as formulated in Chapter 2 in Taylor approximation reads: 

= − ((n ) − n ) = − n  cos n, − n  (23) 

The scalar product for the square term here has been formally executed introducing a cos2 
function of the angle between the vectors n	and	 . When applying the Lagrange formalism, this 
cos2 function will eventually lead to a non-linear generalization of the Newton–Poisson equation as, 
for instance, that used in the modified Newtonian dynamic (MOND) approaches [19–22]. Further 
aspects of this generalization are detailed and discussed in Section 6. In the following, the function is 
first considered as a constant making the product		n cos n, = 1. The overall entropy term only 
comprises terms related to  ( , ) and no terms related to  ( , )	 	 ( , ). Thus, only the 
gradient related terms of the functional derivative become active in the Lagrange formalism: 

−


− ( − n ) = 0 (24) 
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Executing this derivative yields: 

 2 − n = 2∆ − n = 0 (25) 

The Poisson equation can be immediately identified. The divergence of the normal vector of a 
surface is the measure of the curvature of that surface. The vector n is the diagonal of the volume 
and perpendicular to the tangential plane to that volume. The divergence of this vector n	is, thus, a 
measure for the curvature κ of space. 

The constraint for mass conservation—its specification being fully detailed in Equations (18) 
and (19)—is associated with the Lagrange multiplier g and only depends on  ( , ). This constraint 
does not contain any terms related to  ( , )	 	 ( , ): 


−	   −  = −g  (26) 

Overall, the following equation for the field   arises when adding this constraint term (26) to 
the term for the entropy Equation (25): 2∆ − n − g = 0 (27) 

Using the special formulation for the constraint of mass conservation comprising also the 
density of the vacuum (Equation (19)), generates an additional term:  2∆ − n + g − g = 0 (28) 

Calibrating the Lagrange multiplier g to 8πG with G being the gravitational constant yields: 2∆ − n + 8G = 8πG  (29) 

By comparing with the cosmological constant  [23]: 

 = 8πG
 (30) 

allows one to rewrite Equation (29) as: ∆ − 12n + 2 = 4πG  (31) 

By neglecting the curvature κ of space (i.e., setting n = 0) and setting  = 0, this equation 
becomes identical with the Poisson equation of gravitation, i.e., with classical Newton’s law: ∆ = 4π G  (32) 

To summarize this, the application of the Lagrange scheme to the gradient-entropy terms as 
depicted in the present paper obeying the constraint of mass conservation has led to a strikingly 
direct derivation of:  

• the Poisson equation of gravity (Newton’s law); 
• a term related to curvature of space (which can probably be related to Einstein’s general theory 

of relativity); 
• a term introducing the mass density of vacuum (which seems related to the cosmological 

constant); and 
• terms related to a nonlinear generalization of the Newton–Poisson equation as used in modified 

Newtonian dynamic (MOND) approaches [19–22]. 

These MOND terms will be discussed in more detail in the following section. 

6. Modified Newtonian Dynamics 

Formulations and equations in Modified Newtonian Dynamics (MOND) approaches [19–22] 
are constructed based on experimental findings and are fitted to the experimental observations: 
especially to velocity distributions in galaxies. These approaches do not draw on dark matter as the 
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basis for describing the observed behavior. In spite of successfully describing the experimental 
observations, the MOND formulations are involved in controversial discussions since they still lack 
a deeper theoretical framework for their derivation from fundamental principles. The present work 
indicates a possible approach towards a deeper understanding of the background of the empirical 
MOND equations. 

This chapter aims to elucidate relations of the proposed approach to the modified Newtonian 
dynamics (MOND) already briefly indicated in Section 2. Recovering the equation for the gradient 
entropy from Chapter 2, also including the curvature related term, reads: (n	) − n = n  cos () − n (33) 

where the angle between the space diagonal n and the gradient of the scalar field  is denoted as 
. The variational derivative then looks as follows: 


∂∂ n  cos () − n = 0 (34) 

	 2n cos () + 2n  cos()sin() ∂∂− n = 0 (35) 

which, with: n = constant = 1 , cos () = 1 – sin (),  2cos()sin() = sin(2), and sin () = tan ()1 + tan ()  

leads to: 2∆ − 2 tan ()1 + tan () +   sin(2) ∂∂ −  = 0 (36) "Newton"												"MOND_I"															 + " _ " − " "  

For small angles of , sin(2) ~ 0 and tan2() ~ 0, the classical Newton-Poisson equation is 
recovered, while for angles of   approaching  2,  the MOND terms generate additional 
contributions. In both cases, the curvature related term persists. For comparison, the MOND 
Eulerian [20] reads:  

 μ 
  (37) 

where μ(x) is “….an as-yet unspecified function (known as the “interpolating function”), and a0 is a 
new fundamental constant (  ~ 10−8 cm s−2) which marks the transition between the Newtonian and 
deep-MOND regimes. Agreement with Newtonian mechanics requires μ(x) → 1 for x >> 1, and 
consistency with astronomical observations requires μ(x) → x for x << 1. Beyond these limits, the 
interpolating function is not specified by the theory, although it is possible to weakly constrain it 
empirically……” [20]. Examples for the MOND interpolation function are the “standard” [22] and 
the “simple” [24] interpolation functions: μ( ) = √1 + 	 μ( ) = 1 +  (38) 

On setting = tan(),  the term ()()  corresponds to the square of the “standard” 

interpolation function. Setting = tan () directly yields the “simple” interpolation function.  
In spite of these similarities with the MOND type formulations, there are also obvious 

differences, such as (i) the persistence of the original Newton term; (ii) the negative sign of the 
MOND_I term; (iii) the new, additional term denoted as MOND_II; (iv) the	n	term likely to be 
related to “Einstein” curvature, and (v) the “ term”, see Equation (31). 
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It seems most interesting to ultimately elaborate a relation and a physical interpretation for the 
angle  between the gradient of the potential  and the direction of the diagonal vector n of the 
underlying coordinate system. A possible geometric interpretation in two dimensions is depicted in 
Figure 5: 

 
Figure 5. The poposed explanation for a change in the direction of the normal vector of space leading 
to an angle  which increases with increasing radius R (see text). 

The area A(R) of a small segment between R and R + dr being bounded by the angle α0 reads: ( ) =  (39) 

Postulating that this area A of the parallelepiped having the diagonal n to be constant when 
increasing the radius R by dr requires: d = ′ 1 (40) 

where	 ′ is a proportionality constant having dimensions (L2). The tangent of the angle , between 
the radial direction and the diagonal of the parallelepiped, can then be approximated as a function of 
R by: tan ( ) = = ′ =  (41) 

where =  is a yet undefined constant probably related to the  parameter in the MOND 

approaches, which indicates the transition between Newtonian and MOND regimes. In spite of 
being most interesting, it is beyond the scope of the present article to further elucidate the origin and 
interpretation of this angle and/or the value of .  

In summary, it was possible to obtain the following equation for gravity when formally 
performing, to its full extent, the proposed scheme: 2∆	 − 2 tan ()1 + tan () +   sin(2) ∂∂ − n = 8πG −  (42) 

This equation comprises a combination of terms similar—at least in a qualitative way—to those 
appearing in a number of other theories of gravitation. In its simplest approximation, i.e., for: 

 = 0 ,n = 0 , = 0 (43) 

this equation—derived from a mere entropic approach—clearly recovers the classical Newtonian 
law. All other terms remain subject to future discussions. 

7. Summary and Future Perspectives 

The approach for the description of gravity modeled in the present article is based on: (i) an 
entropy formulation comprising scalar products of gradients of a scalar field with (ii) the diagonal 
vector of a volume element; (iii) a field description of objects being based on this scalar field; and (iv) 
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a formulation of the constraint for mass conservation in terms of this scalar field. Performing (v) the 
Lagrange formalism onto the resulting formulations in a strikingly direct derivation has led to: 

• the Poisson equation of gravity (Newton’s law); 
• a term related to the curvature of space (which probably can be related to Einstein’s general 

theory of relativity); 
• a term introducing the mass density of vacuum (which seems related to the cosmological 

constant); 
• terms related to a nonlinear generalization of the Newton–Poisson equation as used in modified 

Newtonian dynamic (MOND) approaches. 

The resulting formulation suggests a co-existence with respect to a superposition of different 
types of models being currently intensely discussed. A deeper investigation and interpretation of the 
presented approach by the respective communities thus seems worth some effort. It should be noted 
that the present paper has only touched on a subset of an overall scheme, which may be extended in 
several directions as depicted in Table 1. 

Table 1. Basic scheme to derive equations of motion using a Lagrange formalism acting on different 
entropy formulations being constrained by different conservation laws. 

 Lagrange Derivative Entropy Term Conserved Quantity Lagrange Multipliers
established 
procedures 

 ( ) energy scalar (λ) 

this  
work 


  ,  

mass scalar (g) 



  ,  

Future  
topics 


  , ,  

mass, energy, charge, 
momentum, spin 

scalars: (λ,g,ε,…)  
vectors:  and ℎ 

tensor type 
formulations 

….  
 

energy-momentum 
tensor, charge, spin 

..to be continued.… 

The mass constraint, in particular, investigated in the present article can, and should, be 
replaced by the energy-momentum tensor in a relativistic formulation. A number of further, open 
questions remain to be addressed, such as (i) the origin and interpretation of the angle ϕ in the 
formulations, (ii) the origin and interpretation of the length scale (L2) introduced by the scalar 
products, (iii) a careful comparison with other theories, and (iv) a comparison with experimental 
observations.  

The appealing simplicity of the approach provides an interesting, new and alternative view on 
things and perhaps provides an even a better understanding of phenomena in the future. This 
appears to make the approach deserving of further research. 
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