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Abstract: How to extract relevant information from large data sets has become a main challenge
in data visualization. Clustering techniques that classify data into groups according to similarity
metrics are a suitable strategy to tackle this problem. Generally, these techniques are applied in the
data space as an independent step previous to visualization. In this paper, we propose clustering
on the perceptual space by maximizing the mutual information between the original data and the
final visualization. With this purpose, we present a new information-theoretic framework based on
the rate-distortion theory that allows us to achieve a maximally compressed data with a minimal
signal distortion. Using this framework, we propose a methodology to design a visualization process
that minimizes the information loss during the clustering process. Three application examples of the
proposed methodology in different visualization techniques such as scatterplot, parallel coordinates,
and summary trees are presented.
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1. Introduction

Technology advances allow for obtaining large amounts of data related to any process in any
application field. Examples include visual analysis of business data [1], scientific data [2], and images
and videos [3], amongst others. Information visualization techniques have become a powerful tool to
extract the valuable and useful information hidden in the data. The human ability to detect patterns
and trends from data visualizations has led visualization techniques to be suitable strategies to provide
qualitative overviews of large data sets or to summarize data sets, amongst others [4]. Although a
great variety of visualization techniques has been proposed [5], most of them lose their effectiveness
when dealing with large data sets. Screen space limitations transform visualizations into cluttered
images that are incomprehensible. Moreover, visual exploration becomes more difficult. To overcome
these limitations data, clustering techniques can be applied.

Clustering is used in many different fields such as engineering, computer sciences, life and medical
sciences, earth sciences, and social sciences [6,7]. Clustering classifies data into groups (or clusters)
such that data is similar within a cluster and dissimilar to data belonging to other clusters. The core
issue in clustering is similarity estimation; once a similarity measure is chosen, clustering is formulated
as an optimization problem [8]. Taking into account the three spaces of the visualization process [9]
(the data space, the visual space, and the perception space), most clustering methods define the similarity
measure in the data space. In this space, the different forms of data can be distinguished at an abstract
level by the mathematical types of the individual data points, their organization, and their operational
context. However, the abstract nature of the data makes the definition of the similarity measure and the
interpretation of measure features more difficult. To tackle this problem, we could consider the other
two spaces involved in the visualization process. The visual space provides a concrete representation
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of data in a computer, and the perceptual space aims to model how the user, who is the final receiver of
the visual message, perceives the visual space. Therefore, we propose considering the perceptual space
since it is user-centered. In addition, the non abstract nature of this space makes the interpretation
of the similarity measure easier than in the data space. Moreover, there is a coherency between the
measure used in the clustering process and the visualization since both are represented in the same
space. On the contrary, when the similarity measure is defined in the data space, this coherency cannot
be ensured. For instance, it would be possible to assign a data point to a cluster whose centroid was
farther from the data point than another one from the perceptual point of view. This fact can be
observed in the example of Figure 1. In this case, a data sample D1 has to be assigned to one of the
three centroids C1, C2, and C3. In the left plot, intuition indicates that it should be assigned to C3 since it
has minimum Euclidean distance, while, in the right plot, intuition indicates that it should be assigned
to C1, since, although in the variable Y the distance is slightly greater than to the other clusters, in the
X variable, it comes to zero. This intuitive measure is formally defined as Manhattan distance.

Figure 1. Example of how different visualization techniques can be associated with different distance
metrics. In the left plot, the Cartesian representation is associated with Euclidean distance, and, in the
right plot, the parallel coordinate representation is associated with the Manhattan distance.

In this paper, we propose a new theoretical framework that is based on information theory. This
theory has been extensively used in the visualization field [10]. In particular, Chen and Jänicke [11]
described a framework based on information theory to evaluate the relationship between visualization
and information theory that is able to characterize the visualization process. Our proposal is to
extend this theoretical framework in order to tackle the clustering problem. We propose modeling the
visualization process as an information process and applying the rate distortion theory in order
to achieve maximally compressed data with minimal signal distortion, i.e., the original data in
the perceptual space. The standard analysis of lossy source compression is rate distortion theory,
which provides a tradeoff between the rate, or signal representation size, and the average distortion of
the reconstructed signal. Rate distortion theory determines the level of inevitable expected distortion,
D, given the desired information rate, R, in terms of the rate distortion function R(D) [12]. The aim of
the paper is to present this new theoretical framework and a methodology to design a visualization
process that minimizes the information loss during the clustering process. We will also show three
application examples considering different channel variables in different visualization techniques such
as scatterplot, parallel coordinates, and summary trees.

This paper is organized as follows. In Section 2, we present related work on information visualization
and information theory, and clustering techniques. In Section 3, the theoretical background required for
the method definition is described. In Section 4, the proposed framework and the motivation of the
method are presented, as well as the methodology to design a visualization process that minimizes
the information loss during the clustering process. In Section 5, three application examples of the
proposed methodology are presented. Finally, conclusions and future work are given in Section 6.
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2. Related Work

In this section, we review main works related to information visualization and information theory,
which is the basis of our proposal, and information visualization and clustering.

2.1. Information Visualization and Information Theory

Chen and Jänicke [11] presented an information-theoretic framework for visualization that shows
a strong relationship between information theory and visualization. They model the visualization
process as a general communication system where input data is encoded in visual objects that are
transmitted via a display device in a visualization. The viewer decodes this visualization making
sense of the data being conveyed. As shown in Figure 2, they described the general visualization
system as three subsystems: (i) the vis-encoder, which includes a filtering process that transforms
raw data into information, a visual mapping that translates information into geometry and labels,
and a rendering process that generates the image; (ii) the vis-channel which includes a displaying
process that transforms the received image to an optical signal, an optical transmission process that
translates the received optical signal to a new optical signal that will be viewed as the new image
and (iii) the vis-decoder, which includes the perception, cognition, and destination processes that
receive the generated image from which information and knowledge will be extracted. From this
approach, the visualization process can be studied from the perspective of information transfer or as
an “information discovery process”.

Figure 2. Decomposition of a general visualization system into three subsystems: vis-encoder,
vis-channel, and vis-decoder. Adapted from [11].

A similar perspective was presented in [13], where the authors define an information channel
between the original data and the colors depicted by the volume rendering visualization. By optimizing
the information transfer of this channel, some automatic solutions arise to design problems related
to volume rendering, such as view-point selection and transfer function definition. It can be seen
that the information channel proposed in [13] roughly corresponds to the vis-encoder subsystem
proposed in [11] for the volume rendering technique. In our case, we will also consider only the
vis-encoder subsystem, due to the availability to quantify both the input and output variables involved
in this information channel. For a survey of main contributions based on information theory in the
visualization field, see [10].

Information theory provides a powerful framework to evaluate the quality of graphical
representations. However, other theoretical frameworks have been proposed to generate and evaluate
visualizations on the basis of both the underlying data and desired perceptual tasks. These frameworks
focus more on the perceptual features of the human visual system than on the statistical properties
of the data, as information theory does. Demiralp et al. [14] proposed visual embedding as a model
for visualization construction and evaluation. Kindlmann and Scheidegger [9], based on algebraic
considerations of the visualization process, presented a model of visualization design that helps
characterize visual encodings, guide their design, evaluate their effectiveness, and highlight their
shortcomings. They also proposed general principles for good visualization design. These models,
as the proposed methodology will do, use both the visual and perceptual spaces in order to guide the
visualization design.
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2.2. Information Visualization and Clustering

Clustering is a well studied problem and a very active research area with diverse applications
like data mining [15], gene and protein analysis [16], or image processing [17], among others.
Different clustering methods have been proposed and these can be grouped into four main categories:
(i) partitioning methods that classify data into k groups such that each group contains at least one
object, and each object belongs to a unique group. K-means is the most popular approach of the
group; (ii) hierarchical methods that create a hierarchical decomposition of a given data set following
a bottom-up (agglomerative) or a top-down (divisive) strategy. In the first case, each object forms a
separate group and objects that are close to each other are successively merged until a termination
condition is satisfied or a single group is obtained. In the second case, all the objects are in the same
cluster which is iteratively split into two sub-clusters until each object is in one cluster or a termination
condition is satisfied; (iii) density-based methods that instead of distance between objects focus on the
local density of data points. Clusters are dense regions in the data space, separated by regions of lower
object density. A cluster is defined as a maximal set of density-connected points [18]; (iv) grid-based
methods perform clustering operations on a grid structure created by quantization of object space into
a finite number of cells. This approach has a low processing time since it only depends on the number
of cells in each dimension of the quantized space. For a review of clustering methods, see [19], and, for
a comparison of state-of-the-art methods for big data clustering, see [20].

In the context of visualization, clustering is used to classify input data into groups that are
then visualized instead of the individual elements. The challenge is to determine what constitutes
a cluster, which samples and features will be taken into account or what number of clusters will be
considered to obtain a proper visualization. To tackle this problem, exploration frameworks that
combine clustering with visualization techniques have been proposed. The Hierarchical Clustering
Explorer [21] supports the exploration of hierarchical clusterings of gene expression datasets through
dendrograms (hierarchical clustering trees) stacked up with heatmap visualizations. Matchmaker [22]
is a visualization technique that makes it possible to split and individually combine a multidimensional
dataset into several groups of dimensions, run clustering algorithms on these groups separately and
then visually compare the results. ClusterSculptor [23] is a tool that enables users to supervise clustering
processes in various clustering methods. Schreck et al. [24] proposed a framework that enables the user
to visually monitor the clustering process and control the unsupervised self-organizing map algorithm
at an arbitrary level of detail. XCluSim [25] supports comparison of several clustering results of
gene expression datasets using an approach similar to that of the Hierarchical Clustering Explorer.
Clustrophile [26] supports iterative, interactive exploration of data with the ability to explore multiple
choices of algorithmic parameters along with hypothesis testing through visualizations and interactions
as well as formal statistical methods. To help visualization designers determine which visualization
methods are appropriate for specific multidimensional data projection tasks, Etemadpour et al. [27]
provided a systematic user-centric taxonomy of visual tasks related to projected multidimensional
data. More recently, Etemadpour and Forbes [28] proposed incorporating density-based motion
into visualization analytics systems to effectively explore and analyze multidimensional datasets.
They improve different visualization tasks such as pattern identification between or within clusters.
The effect of density on the perception of clusters was documented in [29,30].

3. Theoretical Background

In this section, we introduce different theoretical concepts that are required to define our
framework. First, we present the most basic information-theoretic measures. Then, we introduce
the rate-distortion theory and a related fundamental algorithm. Finally, we describe the relationship
between rate-distortion theory and data clustering.
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3.1. Information-Theoretic Measures

Let X be a finite set and X a random variable taking values x in X with distribution
p(x) = Pr[X = x]. Likewise, let Y be a random variable taking values y in Y . An information channel
X → Y between the random variable X (input) and Y (output) is characterized by a probability
transition matrix (composed of conditional probabilities) that determines the output distribution given
the input [31].

The Shannon entropy of a random variable X is defined by

H(X) = − ∑
x∈X

p(x) log p(x). (1)

Entropy measures the average uncertainty of a random variable X. All logarithms are base 2 and
entropy is expressed in bits. The convention 0 log 0 = 0 is used.

The joint entropy is defined by

H(X, Y) = − ∑
x∈X

∑
y∈Y

p(x, y) log p(x, y), (2)

where p(x, y) = Pr[X = x, Y = y] is the joint probability. The joint entropy H(X, Y) measures the
average uncertainty associated with the pair (X, Y). It is symmetric, H(X, Y) = H(Y, X), and it is
greater than the marginal entropies of X and Y, H(X, Y) ≥ H(X) ≥ 0 and H(X, Y) ≥ H(Y) ≥ 0.

The conditional entropy is defined by

H(Y|X) = − ∑
x∈X

p(x) ∑
y∈Y

p(y|x) log p(y|x), (3)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability. The conditional entropy H(Y|X)

measures the average uncertainty associated with Y if we know the outcome of X. In general,
H(Y|X) 6= H(X|Y), and H(X) ≥ H(X|Y) ≥ 0.

The mutual information (MI) between X and Y is defined by

I(X; Y) = H(X) + H(Y)− H(X, Y)

= H(X)− H(X|Y)

= ∑
x∈X

p(x) ∑
y∈Y

p(y|x) log
p(y|x)
p(y)

(4)

and measures the shared information between X and Y. It can be seen that I(X; Y) = I(Y; X) ≥ 0 [31].
A fundamental property of MI is given by the data processing inequality that can be expressed in the
following way: if X → Y → Z is a Markov chain, i.e., p(x, y, z) = p(x)p(y|x)p(z|y), then

I(X; Y) ≥ I(X; Z). (5)

This result demonstrates that no processing of Y, deterministic or random, can increase the
information that Y contains about X.

3.2. Rate-Distortion Theory

A distortion function is a mapping

d : X × X̂ → R+ (6)
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from the set of source alphabet-reproduction alphabet pairs into the set of non-negative real numbers [31].
The distortion d(x, x̂) is a measure of the cost of representing the symbol x by the symbol x̂. Thus, the
expected distortion 〈d(x, x̂)〉 for a given joint probability p(x, x̂) is defined as

〈d(x, x̂)〉 = ∑
x∈X

∑
x̂∈X̂

p(x, x̂)d(x, x̂). (7)

The information rate distortion function R(D) for a source X with a distortion measure d(x, x̂) is
defined as

R(D) = min
p(x̂|x):∑(x̂,x) p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂), (8)

where the minimization is over all conditional distributions p(x̂|x) for which the joint distribution
p(x, x̂) = p(x)p(x̂|x) satisfies the expected distortion constraint. This is a variational problem that
can be solved by introducing a Lagrange multiplier, β, for the constrained expected distortion [12].
Then, the functional that needs to be minimized over all normalized distributions p(x̂|x) is given by

F [p(x̂|x)] = I(X; X̂) + β〈d(x, x̂)〉. (9)

Fortunately, this functional has an analytical solution, which is given by

p(x̂|x) = p(x̂)
Z(x, β)

e−βd(x,x̂), (10)

where Z(x, β) is a normalization term and β is the parameter that controls the trade-off between
compression and fidelity.

3.2.1. Blahut–Arimoto Algorithm

Blahut [32] and Arimoto [33] simultaneously introduced an iterative algorithm to compute the
optimal encoding, given by the conditional probabilities p(x̂|x), that generates the compressed signal
X̂ that minimizes the expected distortion 〈d(x, x̂)〉. This algorithm consists of two steps given by

pt(x̂) = ∑
x

p(x)pt(x̂|x) (11)

and

pt+1(x̂|x) = pt(x̂)
Z(x, β)

e−βd(x,x̂), (12)

where Z(x, β) = ∑x̂ pt(x̂)e−βd(x,x̂) is a normalization term.
This method is a powerful tool that allows us to obtain the optimal assignment between each

data element x and its corresponding representation value x̂. On the other hand, note that it does not
compute which is the optimal choice of the representation value x̂. In practice, this is also an important
point, which is usually tackled by expectation-maximization procedures [12].

3.2.2. Rate-Distortion Theory and Clustering

In its original interpretation, the rate-distortion theory related the original symbols x and the
encoded symbols x̂. However, this approach can also be used to model the clustering process [34].
In this case, the original data is also represented by x, but its corresponding representation is given
by the values xc of the clusters c. Then, each data element x ∈ X belongs to a cluster c with a given
conditional probability p(c|x). We can differentiate between two different types of clustering: hard
clustering, where each data element only belongs to one cluster and, thus, p(c|x) = 1 for this cluster
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and 0 for the other clusters; and soft clustering where each data element is assigned to each cluster
with a certain probability (in general, different from 0).

Then, clustering can be seen as the process of finding class-representatives xc (or cluster centroids),
such that the average distortion d(x, xc) is small and the correlation between the original data and the
clusters is large. Therefore, there is a trade-off between accuracy and compression which is controlled
by the β parameter (see Equation (9)). As we have presented in the previous section, the conditional
probabilities p(c|x) can be estimated by, for instance, the Blahut–Arimoto algorithm. However, as we
have also mentioned, this algorithm does not provide the optimal position for the centroids. To do
so, we should find the centroid value that minimizes the distortion. Therefore, the centroid value xc

would be the one that fulfills the following equation:〈
d

dxc
d(x, xc)

〉
p(x|c)

= 0. (13)

This equation is usually known as centroid condition [34].

4. Method

Taking into account the three fundamental spaces of creating and viewing visualizations [9],
the data, the visual, and the perceptual spaces, our proposal for clustering, in contrast with the
majority of proposed techniques, is not considering data space but the perceptual space. Based on
rate-distortion theory, we propose defining the distortion function on the perceptual space, denoted
here as perceptual distortion.

In this section, we first analyze how the distortion can be applied in the perceptual space, and then
we propose a methodology to design a visualization process that minimizes the information loss during
the clustering process.

4.1. Perceptual Distortion

One of the main limitations of the rate-distortion theory is the difficulty to define the distortion
function. This problem is mainly due to the abstract nature of the data space. In our approach,
we propose using the distortion in the perceptual space, which is usually a more natural measure,
since several studies have analyzed the human perception on certain visual representations.

Below, we describe which measures are more suitable to describe the perceptual distortion for
different types of visual encodings of single channels, and then we give some advice on how to extend
them in the case of multiple channel encoding.

4.1.1. Single-Channel Distortion

The information visualization design can be seen as a process that encodes data into a visual
space. It considers two main aspects: the graphical elements, called marks, and the visual channel that
controls their appearance [35]. Marks are geometrical primitives that can be points (0D), lines (1D),
areas (2D), or volumes (3D). Visual channels are features of the geometrical primitives that can be used
to encode certain data. Taking into account the main visual channels, we discuss the most suitable
perceptual distance measures associated with them.

• Position Channel. This channel can be restricted to a given direction (for instance, the horizontal
and vertical directions) or in the 2D plane. In both cases, the most natural measure of distortion is
the Euclidean distance between the actual position and the position of the cluster that represents
the data. More formally, for the 1D case (limited to one direction), the distortion is given by

d(x, x̂) = |xi − x̂i|, (14)
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where the subindex i indicates the position along the axis, and, for the 2D case, by

d(x, x̂) =
√
(xi − x̂i)2 + (xj − x̂j)2, (15)

where the subindexes i and j indicate the position coordinates in the 2D plane. Special attention
requires the 3D case, since although humans live in a 3D space, our perceptual system does not
really work in 3D. Most of the visual information that we have is about the projected 2D image
plane while the depth has a minor perceptual weight [35,36]. This fact can be considered in the
definition of the perceptual distortion measure and, hence, a possible measure of distortion is

d(x, x̂) =
√
(xi′ − x̂i′)2 + (xj′ − x̂j′)2 + ωd|xd − x̂d|, (16)

where the subindexes i′ and j′ indicate the projection of the 3D position in the image plane,
the subindex d stands for the depth of the 3D position, and the parameter ωd weights the
contribution of the depth in the distortion measure. Perceptual studies could be performed to
determine how to adjust the value of ωd for a specific application.

• Color Channel. Two main uses are given to the color channel. First, a scalar value can be encoded,
typically, through the luminance or the saturation color channels. In this case, the difference
between the values in the original data and the cluster center would be the most natural distortion
measure. Second, a categorical value can be encoded, typically, through the hue color channel.
In this case, the most natural measure is the Hamming distortion, which is defined as

d(x, x̂) =

{
0, if x = x̂,
1, if x 6= x̂.

(17)

In general, if a more complex color encoding scheme is used, the distortion measure could be
defined in the CIELab color space [37], since distances in this color space are perceptually uniform.

• Shape Channel. This channel refers to the different shapes that visual marks can take.
Usually, it is used to encode categorical values, assigning a different shape (for instance, a circle,
a square, a cross, or a triangle) to each category. In this case, the most appropriate measure would
be the Hamming distortion (see Equation (17)). Other perceptual measures can also be defined.
For instance, Demiralp et al. [38] analyzed the perceptual similarity of different shapes (as well as
other channels such as color and size). From similar experiments, a similarity value between any
pair of shapes can be computed and used for the clustering process.
Other examples involving shape are to represent numerical data, such as the use of ellipsoids to
represent the eigenvectors and eigenvalues of a tensor. In this case, the distortion measure can be
related to the differences between the ellipsoid surfaces of the original data and the clustered one.

• Tilt Channel. This channel, also called angle, encodes a numerical value as an angular representation.
A typical example is its use in a pie chart. In this case, the most natural measure of distortion
would be the angular distance (equivalently to Equation (14)).

• Size Channel. This channel encodes a number as length when the mark is 1D, as area when it is
2D, and as volume when it is 3D. Here again, the most natural measure is the absolute difference
between both values (see Equation (14)), although other measures arise due to the perceptual
differences between the different number of dimensions of the mark. For instance, according to
the Stevens’ psychophysical law [39], visual areas have a coefficient α = 0.7. Thus, in this case,
an alternative distortion measure would be

d(x, x̂) = |xα
i − x̂α

i |, (18)

with α equals to 0.7.
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Although other channels can be taken into account, in our proposal, we have only considered
the most basic ones. A specific study will be required to propose a proper distance measure for
other channels.

4.1.2. Multi-Channel Distortion

A more complex scenario arises when multiple channels are combined to encode multidimensional
information. In this case, the distortion measure should represent somehow the total distortion from
each of the channels. Therefore, the simplest definition of the total distortion would be given by

dT(x, x̂) =
N

∑
i=1

di(x, x̂), (19)

where di(x, x̂) is the distortion at the i-th visual channel and N is the total number of channels.
In addition, as several perceptual studies have shown, humans are more sensitive to some channels than
others. For that reason, a weighted sum of the individual distortions could be a reasonable measure:

dT(x, x̂) =
N

∑
i=1

widi(x, x̂), (20)

where wi is the weight given to the i-th visual channel. Therefore, the user has the means to assign
more importance to certain channels.

Another aspect that can be taken into account is the channel separability. In some cases, channels
are easy to distinguish in a pre-attentive way, while, in other cases, the channels can not easily
be decoupled. For this reason, it could be interesting to take this fact into account in the total
distortion definition:

dT(x, x̂) =

(
N

∑
i=1

widi(x, x̂)n

) 1
n

, (21)

where wi is the weight given to the i-th visual channel and n is a parameter that depends on the level
of integrality between dimensions [38]. A value of n = 1 would indicate total separability and the
Equation coincides with Equation (20), whereas a value of n = 2 would indicate complete integrality.

4.2. Perceptual Clustering

In this section, we propose a methodology to design a visualization process that minimizes the
information loss during the clustering process. The four steps of this methodology are illustrated in
Figure 3 and described below:

1. Specify the perceptual distortion measure. Following the guidelines presented in the previous
section and according to the selected visual channel, we have to define the distortion measure
between original data representation and the cluster centroid one.

2. Select the type of clustering. We can select between hard or soft clustering. For applications
where each data element has to be identified in a single cluster, a hard clustering technique is
more appropriate, while, in the other applications, the recommended strategy is soft clustering.

3. Design the optimization scheme. The optimization strategy depends on the selected clustering.
As we have shown in Section 3.2.1, for a soft clustering strategy, the Blahut–Arimoto algorithm is
the most common algorithm. In this case, the β parameter has to be chosen to tune the trade-off
between compression and accuracy. With the given distortion measure, the function that fulfills
the centroid condition must also be found. For a hard clustering, a great variety of optimization
techniques can be applied [40].
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4. Design the cluster centroid representation. Finally, the centroid values have to be shown in an
appropriate way to the final user. In addition to the value itself, other information such as cluster
probability could also be introduced in the final visualization.

Figure 3. The four-step methodology to analyze and design a clustering-based visualization applied
to parallel coordinates visualization. The obtained visualization process minimizes the information
loss during clustering.

5. Application Examples

In this section, we present three application examples of the proposed methodology. The first
two examples show how the visualization space leads to well-known clustering algorithms, giving a
theoretical justification on why they may be used instead of similar clustering algorithms. The third
one illustrates how different distortion measures that emphasize different aspects of the visualization
produce different results, and we compare the results using these distortion measures with a standard
method based on entropy maximization.

5.1. Example 1: Scatterplot

The first application example is focused on scatterplot visualization. A scatterplot primarily
consists of two axes and marks that represent the data points. The attributes of the data encoded
on the x and y axes are typically quantitative in nature, and other data attributes are often encoded
using visual properties of the marks, such as color, shape, and size. In this example, we have used
the Corel Image Features dataset [41], comparing the values between the vertical and horizontal pixel
correlation. In Figure 4a, the scatterplot of the studied dataset is illustrated; since each data point is
presented as a single mark, a cluttered visualization is obtained. Thus, a clustering strategy seems
a reasonable technique to improve this data visualization. Following our proposed methodological
process, we apply the following steps:

1. In the first step, we have to define the distortion measure. As we have proposed in Equation (15),
the most standard measure in this scenario where data is encoded in a position in the 2D space is
the Euclidean distance. A visual representation of the distortion measure is shown in Figure 5.

2. The second step refers to the definition of the type of clustering. In this case, we are not specially
constrained to the fact that each data element corresponds to a single cluster and, thus, the most
appropriate selection would be soft clustering.

3. In the third step, we have to decide the optimization scheme. In this case, we can use the
Blahut–Arimoto algorithm, and it can be proved that the function that fulfills the centroid
condition is the expected mean value of the centroid. Note that we have not discovered a new
clustering strategy. This method is known in the literature as the soft k-means [42]. In this study,
we will let the user modify the value of the β parameter in order to illustrate its performance.

4. Finally, the fourth step determines the cluster centroids representation. In our case, we assign the
two values of the centroid to the 2D position (in the same way than the original data) and we
encode the probability p(c) of the cluster (i.e., how many data are represented by the cluster) to
the area.
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The obtained results are presented in Figure 4. In the first row of Figure 4b–d, the visualizations
obtained with 100 clusters and considering different β values are shown (β = 100, 200 and 1000,
respectively). As it can be seen, the β parameter does not have a critical impact on the obtained cluster
centroids, and the three visualization results in the first row are very similar. In the second row of
Figure 4, the data elements that belong to the cluster pointed with an arrow are visualized. To do
so, the probability of belonging to that cluster p(c|x) has been encoded with the opacity of the data
mark. Note that, in these cases, the effect of the β parameter has a great impact. For high values,
the data probability of belonging to the cluster is close to 1 or to 0, i.e., there is a hard relationship,
while, for low values, there are data elements with a low probability of belonging to the cluster, i.e.,
there is a soft relationship.

(a) (i.b) (i.c) (i.d)

(ii.b) (ii.c) (ii.d)

Figure 4. Scatterplots of Corel Image Features data set comparing the values between the vertical
and horizontal pixel correlation. In the first row, in (a), the plot using the original data shows a highly
cluttered effect, and the visualizations of the clustered data considering 100 clusters and different
values of β ((i.b) β = 100; (i.c) β = 200; (i.d) β = 1000). In the second row, plots (ii.b), (ii.c), and (ii.d)
show the belonging of the original input data to the selected cluster marked with an arrow in plots
(i.b), (i.c), and (i.d), respectively.

Figure 5. Illustration of the distortion measure for scatter plot (left), which mathematically corresponds
to the Euclidean distance, and parallel coordinates (right), which mathematically corresponds to the
l1-distance or Manhattan distance.

5.2. Example 2: Parallel Coordinates

For the next example, we have considered parallel coordinates visualization. Parallel coordinates
were introduced by Inselberg [43] and developed for visualizing multidimensional geometry [44].
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They are based on a system of parallel coordinates, which includes a non-projective mapping between
multidimensional and two-dimensional sets. In this example, we have used the well-known Iris
dataset [41] represented using parallel coordinates in Figure 6a. As in the previous example, to apply
the proposed methodology, we have to define the four steps that define it.

1. The visual encoding for parallel coordinates converts each data value P = (p1, ..., pm) into a
polygonal line whose m vertices are at (i − 1, pi) on the Xi axes for i = 1, . . . , m (Xi are the
axes of the parallel coordinates system for the Euclidean m-dimensional space Rm). In this
scenario, the well-known root mean square distance is not the most appropriate, since it lacks of
geometrical meaning in the visual space of the parallel coordinates visualization. Instead of this,
a more suitable choice would be the following distortion measure:

dT(x, x̂) =
N

∑
i=1

∣∣∣∣ xi −mini
maxi −mini

− x̂i −mini
maxi −mini

∣∣∣∣ , (22)

where maxi and mini represent the maximum and the minimum values of the ith variable. Note
that this distortion measure can be seen as the generalization of Equation (14) to several variables.
This measure is also known as l1-distance or Manhattan distance. The lack of geometrical
significance of the Euclidean distance and the suitability of the Manhattan distance for the
parallel coordinates visualization is presented in Figure 5.

2. Once the distortion measure has been defined, the second step requires selecting the type of
clustering. In this example, in order to have a different scenario than the previous one, we have
considered hard clustering. Thus, every data element will belong to a single cluster.

3. In the third step, we have to decide the optimization scheme. In order to minimize the distortion
measure of Equation (22), the centroid of the cluster has to be placed in the median point of the
data. This clustering process has been previously introduced with the name of k-medians [45].
This method is an expectation-maximization algorithm that iteratively converges to the final
clustering. Note that the fact of representing the data with parallel coordinates has lead us to
considering the k-medians method as the most suitable clustering algorithm to perform this task.

4. The last step defines the visualization strategy. As shown in Figure 6b, each polyline centroid has
been placed in the median value of the cluster and a different color has been assigned to the area
contained between maximum and minimum values of the cluster.

(a) (b)

Figure 6. Parallel coordinates visualization of Iris data set: (a) the original data, which shows a large
cluttering effect and (b) a clustered visualization, which only shows the main behaviour of the groups
in the data. The clustering processes have been done using the k-medians, which is the most appropriate
clustering method for the parallel coordinate visualization according to the proposed method.
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5.3. Example 3: Summary Trees

Tree visualization is one of the best-studied areas of information visualization [46]. In 1981,
Reingold and Tilford proposed one of the most famous algorithms that produces layered drawings
of trees where all nodes at the same depth are aligned [47]. Since then, many different techniques
have been proposed to arrange the tree nodes in 2D and 3D, encode them in different shapes or forms,
fold and unfold, or to interactively manipulate them [48]. Despite these advances, there are still many
issues that need further research. Amongst them, the visualization of trees with a large number of
nodes that are difficult to represent in the limited screen space. To tackle this problem Karloff and
Shirley [49] proposed summary trees, simplified trees that result from aggregating nodes of the original
weighted tree, subject to certain constraints. To define a summary tree, two contraction strategies are
allowed. The first one contracts subtrees to single nodes that represent them, while the second one
contracts multiple sibling subtrees (subtrees whose roots are siblings) to single nodes representing
them. The node resulting from the latter is called the other group node. One constraint in the definition
of summary trees is that each node has at most one child that is an other group node. Karloff and
Shirley [49] focused on the problem of how to simplify a very large node-weighted rooted tree by
using a summary tree in the most informative way. They suggested that the best choice among all
the possible summary trees with a fixed number of nodes is the one that maximizes the entropy of
the probability distribution associated with the summary tree. Formally, the definition of the entropy,
H(T), of a k-node summary tree T with node weights W1, W2, . . . , Wk is defined as:

H(T) = −
k

∑
i=1

pi log pi, (23)

where pi = Wi/W and W is the sum of all node weights. This definition corresponds to the Shannon
entropy (see Equation (1)), where the probability density function is given by the normalized weight
of each tree node.

Note that summary trees can be interpreted as a clustering problem where each node in the
summary tree is a cluster that represents a single node (if the node has not been contracted) or a set
of nodes (if some nodes have been contracted). Since each node is only assigned to a single cluster,
it can be considered as a hard clustering. Taking into account all these considerations, we can use the
proposed methodology to visualize the summary tree as follows:

1. In the presented theoretical framework, we propose minimizing the functional
I(X; X̂) + β〈d(x, x̂)〉 (see Equation (9)). In this example context, the first term of the
functional, the mutual information I(X, X̂) between the original data and the clustered one, is

I(X; X̂) = H(X̂)− H(X̂|X)

= H(X̂), (24)

since there is not uncertainty on the cluster when the original node is known and, thus,
H(X̂|X) = 0.

Note that H(X̂) corresponds to the same measure H(T) proposed in [49], but, while in our
approach the measure has to be minimized, in [49], it has to be maximized. This is due to the
fact that the maximum entropy approach tends to maximize the information, leading to as much
as possible equal-sized nodes, while, in our approach, this term is used together with a second
term, β〈d(x, x̂)〉, that measures the expected distortion and, therefore, is a trade-off between
two components.
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The second term of the functional is the expected distortion. In our context, a basic measure to
quantify the distortion is the Hamming distortion:

d1(x, x̂) =

{
0, if x = x̂ (i.e., node is not contracted,)
1, if x 6= x̂ (i.e., node is contracted.)

(25)

Observe that this measure does not take into account how different the original node is from
the clustered one, but only if it is contracted or not. Note that more complex measures that
quantify in some aspect the distance between the original node and the cluster one can also be
used. For instance,

d2(x, x̂) =

{
0, if x = x̂,
1,+ (depth(x̂)− depth(x)) if x 6= x̂,

(26)

where the function depth is the depth level on the tree of the node, being 0 for the root node. With this
second measure, depending on the level of distance from the original node to the contracted one, the
distortion will vary. Note that this measure allows introducing new considerations that were not
taken into account in the first approach or in the maximum entropy one. Therefore, the proposed
method gives more flexibility to the visualization designers, allowing, for instance, to give
importance on the subtree depth on the clustering criterion.

2. Once the distortion rate function has been defined, we select the type of clustering. As it was
previously described, from the summary tree definition, we consider a hard clustering, since each
original node is only represented by a single cluster.

3. The optimization scheme is a force-brute algorithm, since in the used example there are only
a small number of possible solutions. To summarize a real-world tree with a large number of
nodes, other strategies such as simulated annealing or genetic algorithms could be used in this
application. Note that the Blahut–Arimoto algorithm could not be used due to the discrete nature
of the problem.

4. Finally, we determine the visualization strategy. As shown in Figure 7c,d, contracted nodes are
represented in bold and green backgrounds in contrast to original nodes that are represented
with regular font and blue background.

Figure 7 illustrates an example of the differences of the approaches. In Figure 7a, the original tree
is shown. The original tree has to be represented using an 8-node summary tree. Figure 7b shows the
maximum entropy summary tree. The same result, shown in Figure 7c, is obtained by the proposed
approach with the d1(x, x̂) distortion measure. The β parameter has been set to 10 since, in this case,
it gives a good balance between both parts of the optimization function, I(X; X̂) + β〈d(x, x̂)〉. We have
empirically observed that the method is not very sensitive to this parameter. Note that, although the
first method maximizes the entropy value and the proposed one tends to minimize it, the effect of the
distortion term leads to the same results. In Figure 7d, the results obtained with d2(x, x̂) distortion
measure and β = 10 are shown. Remember that the d2(x, x̂) penalizes contracted nodes far away
(in terms of depth) from the original ones. In this case, the method prefers to contract the leafs of
the left branch while giving an extra node to the longest branch of the right part of the tree. In this
way, the overall structure is better preserved than in the cases that do not take into account the depth
distance between nodes.
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(a) (b) (c) (d)

Figure 7. (a) the original tree and 8-node summary trees obtained (b) with the maximum entropy
method; (c) with the proposed method using d1 (Equation (25)) and β = 10 and (d) with the proposed
method using d2 (Equation (26)) and β = 10. Note that (b,c) obtain the same results. (a) original tree;
(b) maximum entropy; (c) proposed with d1, β = 10; (d) proposed with d2, β = 10.

6. Conclusions

In this paper, we have presented a new methodology to deal with the visualization of clustered
data that ensures an optimal information transfer between the original data and the final visualization.
We have presented a new mathematical framework, based on information theory and rate-distortion
theory, that models the visualization as an information channel between the source data and the final
user. Since a key point of this mathematical framework is the definition of a distortion measure, we
have analyzed possible definitions of this measure for different visualization encodings. From this
framework, we have also proposed a four-step methodology to analyze and design a clustering-based
visualization. In addition, we have shown three application examples that cover different visualization
techniques, such as scatterplot, parallel coordinates and summary trees.

Note that we have analyzed the fundamentals of the information visualization, modeling it as
an information transfer process, and we have proposed a new mathematical and methodological
approach to deal with the visualization of clusters of data. Although we have focused on clustered
data, we think that similar approaches can be developed to deal with other problems where there is an
information loss. For instance, sampling techniques show only a subset of the original data when its
size is too large. We could define an approach to quantify the representativeness of the sample with
respect to the whole dataset. In this way, we could select the most representative from a number of
different data samples. Another problem with an associated loss of information is the node placement
for graph drawing, where the distance between nodes depends on the edge weight but, in general,
the distances cannot be strictly kept. From the definition of a distortion measure, an optimization
process would be defined in order to keep the maximum information. Our future work will be centered
on the extension of our approach to these new scenarios.
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