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Abstract: The use of a deep neural network scheme is proposed to help clinicians solve a difficult
diagnosis problem in neurology. The proposed multilayer architecture includes a feature engineering
step (from time-frequency transformation), a double compressing stage trained by unsupervised
learning, and a classification stage trained by supervised learning. After fine-tuning, the deep
network is able to discriminate well the class of patients from controls with around 90% sensitivity
and specificity. This deep model gives better classification performance than some other standard
discriminative learning algorithms. As in clinical problems there is a need for explaining decisions,
an effort has been carried out to qualitatively justify the classification results. The main novelty of
this paper is indeed to give an entropic interpretation of how the deep scheme works and reach the
final decision.
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1. Introduction

In recent years, Deep Learning (DL) has generated a resurgence of interest in machine learning
and neural networks. DL is a technology that has provided impressive performance in such diverse
application fields as robotics, visual object recognition, image classification, health, financial analysis
and speech recognition [1–4]. In general, DL allows learning representative features of a problem
hierarchically, from raw data [5,6]. Recently, researchers have exploited DL theory and developed
deep models to aid the diagnosis, based only on electroencephalographic (EEG) data, of some
neurological diseases, such as epilepsy, Alzheimer disease’s (AD), Mild Cognitive Impairment
(MCI). EEG is a non-invasive, low-cost routinely tool, which records the electrical activity of the
brain through a set of electrodes arranged in a cap according to a standard International System.
Wulsin et al. [7] investigated epilepsy in EEG signals by using deep belief nets (DBNs); whereas,
Mirowski et al. [8] combined Convolutional Neural Networks (CNNs) and wavelet coherence analysis
for the prediction of epileptic seizures, achieving 71% sensitivity with zero false positives on 15
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out of 21 patients of Freiburg dataset. Zhao et al. [9] proposed a stacked Restricted Boltzmann
Machines (RBM) to discriminate EEG signals recorded in patients affected by AD from normal
subjects, reporting 92% of accuracy. Morabito et al. [10] used a Stacked Auto-Encoder (SAE), based on
unsupervised learning techniques, to distinguish patients with early-stage Creutzfeldt-Jakob disease
(CJD) from other forms of rapidly progressive dementia (RPD), achieving an average 89% accuracy.
Morabito et al. [11] also designed a CNN to classify EEG recordings of AD, MCI and Healthy
Control (CNT) subjects. The proposed processor provided the following results in term of accuracy:
82% in AD vs. MCI vs. CNT classification, 85% in MCI vs. CNT classification, 85% in AD vs. CNT
classification and 78% in AD vs. MCI classification.

Motivated by the promising results achieved by DL on clinical applications, the present paper
introduces a novel deep architecture, which is able to differentiate patients affected by psychogenic
non-epileptic seizures (PNES) from healthy control (CNT) subjects based on EEG recordings. PNES are
short and sudden behavioral changes that resemble epileptic seizures, but do not exhibit EEG
ictal patterns. In these subjects, there is no evidence of other possible somatic causes of the
seizures, whereas there is strong evidence that such seizures are caused by psychogenic factors [12].
Many patients with PNES are erroneously diagnosed with epilepsy, and thus they may receive
inappropriate treatment leading to inefficacy and relevant side effects [13,14]. This may be due to
difficulties in getting a correct medical history of such patients and to the fact that interictal EEG
is often normal in epilepsy patients. Thus, according to the International League against Epilepsy,
PNES diagnosis is based on a stepwise approach, involving several clinical and neurophysiological
examinations, to formulate a diagnosis with a growing level of certainty [15]. In particular, the diagnosis
of definite PNES is based on the visual examination of seizures captured during video-EEG recording.
PNES may occur spontaneously during long-term EEG recording or may be evoked by means of
suggestion techniques. While the former is costly for the national health system, the latter is not free
from ethical concerns [16]. The challenge for neurologists is to achieve an early and accurate diagnosis
of PNES, based on clinical data and standard EEG. Hence, the availability of an alternative method
to diagnose PNES from interictal EEGs, with no need to capture the ictal events, would be of great
benefit for both physicians and patients.

In this paper, a SAE-DL architecture is proposed to learn latent features of the EEGs recorded from
PNES and CNT, specifically from their time-frequency (TF) representation. To our best knowledge
this is the first study on PNES based on DL. The use of machine learning scheme has been shown
to be beneficial for helping clinicians in diagnosing neurological diseases. However, in this setting,
there is a strong need to explain the machine decisions. For this reason, in this paper, the DL approach
is complemented by an attempt to interpret the learned representation in terms of an information
theoretic methodology. This approach represents the main novelty of the present work.

The paper is organized as follows: in Section 2, the available database is described, and the
proposed processing methodologies are presented. In Section 3, the performance of the designed DL
model are reported and a suitable measure of entropy is carried out giving hints on the way how DL
works. In Section 4, some conclusions are drawn.

2. Materials and Methods

2.1. Subjects and Electrophysiological Recordings

The data analyzed in this work were collected from the Regional Epilepsy Centre, Great Metropolitan
Hospital of Reggio Calabria, University of Catanzaro, Reggio Calabria, Italy. We evaluated six EEGs of
six PNES patients (six F; age range 17–40 years, median 34.5) and of 10 EEG from 10 healthy control
volunteers (CNT) (eight Females, 2 Males; age range 25–65 years, median 44). The diagnosis of PNES
was based on the following criteria: (a) typical clinical events recorded by video-EEG examination,
provoked by suggestion maneuvers; (b) EEG showing neither concomitant ictal activity, nor postictal
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slowing [12,13]. It is worth noting that all of the included EEG traces were recorded before inducing
the seizures. None of enrolled subjects had been receiving any medication.

Every EEG was recorded by scalp electrodes placed at 19 standard locations according to the
International 10–20 System (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz and Pz)
with referential montage using G2 (located between electrodes Fz and Cz) as reference. The EEGs have
been acquired in the morning, in a comfortable resting state, with eyes closed. Subjects were asked to open
and close their eyes 2–5 times during the exam to test the reactivity of background activity. The technician
kept the subject alert to prevent drowsiness. The average recording length is 30 min. The EEG was
high-pass filtered at 0.5 Hz, low-pass filtered at 70 Hz, plus 50 Hz notch filtered with slope of 12 dB/Oct,
and then down-sampled to 256 Hz. The EEG frames showing evident artifacts were identified by visual
inspection and cancelled. All patients and caregivers signed an informed consent form.

2.2. Time-Frequency Feature Extraction

Although visual inspection of EEG signals is often the gold standard for diagnosis, often it
does not allow for the extraction all of the clinically relevant information embedded in the EEG:
the EEG representation in the frequency or time-frequency domain can indeed yield some additional
or alternative insights on the recording. In this work, the time-frequency representation is obtained by
using the Continuous Wavelet Transform (CWT). It is generated by passing time-windows of the EEG
signal (epochs) through a wavelet filter of finite predetermined length (the “mother” wavelet is the
prototype function which is scaled and shifted to match the original time signal at different scales).
The CWT is computed by multiplying the scaled and shifted versions of the mother wavelet by the
EEG epoch under consideration and then integrating the product in time, as in Equation (1):

CWT(α, τ) =
1√
α

∫ T

−T
eeg(t)Ψ∗

(
t− τ

α

)
dt (1)

In (1), α is the scale factor, τ the time delay, and Ψ (•) is the selected mother wavelet. The length
of the epoch is 2T. A high value of the CWT coefficient reflects a relevant spectral component of the
signal at α and τ. The “Mexican hat” mother wavelet is here used:

Ψ(t) =
1

σ3
√

2π

(
1− t2

σ2

)
e
−t2

2σ2 (2)

2.3. Deep Learning (DL) Approach

DL is a learning paradigm used to train multilayered neural networks acting as multiple
processing layers. The successive layers gradually infer and extract, through learning from big
data, a compressed representation of the input in terms of a set of features [17,18]. In conventional
approaches, the same scheme is shallow; just one hidden layer is placed between the input coming
from sensors and the output layer. In both cases the data are processed to solve a specific classification
task. The network model here proposed includes a first representational stage which consists in
transforming the EEG time vectors in a two-dimensional time-frequency map. Then some “engineered”
features are extracted from the maps. Such features form the input to various stages of stacked
auto-encoder. Each compressed version is the encoded representation of the input vector generated
by means of a bottleneck encoder-decoder scheme. Each successive representation is a set of features
extracted from the previous representation [19]. The learning of the autoencoders is unsupervised,
i.e., it does not make use of the known label associated with the class. The output vector of the
deepest hidden layer is used as input vector to a final classification stage, based on a standard neural
network trained with supervised learning. Sometimes, an improvement of the performance of the
whole deep network can be achieved by a supervised fine-tuning step. In this case, the procedure
is affected from the gradient dilution problem that invariably limits in naïve implementations the
quality of error back-propagation [18]. As DL schemes typically involve a huge number of degrees



Entropy 2018, 20, 43 4 of 12

of freedom, specific cost functions are commonly defined to reach an optimal trade-off between the
accuracy and the sparsity of the representation. The relative importance of the two parts is managed
through a regularization coefficient [12,17,18].

2.4. DL-Based Processing System for EEG Classification

In what follows, the proposed DL-based processing scheme of the EEG signals is synthetically
described. Figure 1 pictorially represents the architecture of the processing system here designed.
The available EEG database, which includes all of the subjects from both categories, i.e., PNES and
CNT, was processed in multiple steps, as reported below:

(1) Artifact rejection: rejection of the artifacts through the visual inspection of each EEG recording;
the EEG segments clearly affected by artefactual components are discarded, Figure 1A (a);

(2) EEG signal decomposition: the cleaned EEG recording is subdivided in non-overlapping T = 5 s
epochs, Figure 1A (a);

(3) TF transformation: each EEG epoch is time-frequency transformed by using CWT, as in (1),
by using a Mexican hat function as mother wavelet (2), Figure 1A (b); the use of CWT showed
significant advantages on simple spectrograms probably because of the choice of the mother
wavelet function, which is particularly suitable for EEG signals;

(4) Engineered feature extraction: partitioning of the CWT map into three parts (sub-bands maps)
and estimation of the mean value (µ), the standard deviation (σ) and the skewness (υ) either of
the three sub-bands maps and of the whole CWT map, Figure 1A (b); the widths of the three
non-overlapping sub-bands have been selected by an optimization algorithm and do not exactly
correspond to the brain rhythms [12]; the two higher bands in Figure 1A (b) roughly include
delta and theta rhythms;

(5) Preparation of the feature vector: the resulting feature vector includes three features per electrode
(µ, σ, and υ for each of the three sub-bands maps and the µ, σ, and υ of the whole CWT map);
thus, the input vector of the autoencoders chain has a length of 12 (features) × 19 (electrodes) =
228 elements, Figure 1A (c);

(6) Data-driven feature compression: two stages of autoencoding are used as compressors giving 50
and 20 successively extracted data-driven features; at this level the features extracted from each
channel are combined outputting an unsupervised learned vector that mixes the characteristics of
the channels, Figure 1A (c); the size of the second hidden layers has been related to the number of
the electrodes; the first hidden layer is only approximatively sized, as the sparsification induced
by the cost function automatically find a sub-optimal size;

(7) Classification step: a softmax layer is trained by supervised learning (backprop) giving the
relative probabilities of the two classes, Figure 1A (d).
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Figure 1. (A) The flowchart of the method: (a) The 19-channels electroencephalography (EEG) recording
is partitioned into M = 20 non-overlapping epochs (of 5 s width), (b) given an epoch, the time frequency
map (TFM) is estimated over each channel. The i-th TFM (i = 1, . . . , 19) is partitioned into three
sub-bands (SBj j = 1, 2, 3); then, the mean (µ), standard deviation (σ), and skewness (ν) of the wavelet
coefficients are evaluated for each SB and for the whole TFM. Once the TFMs are computed on the
M = 20 epochs, a database of 20 × 12 × 19 data (#epochs × #features × #channels) is generated,
(c) The vectors of 228 features are the input of a 2-stacked autoencoders (SAE) architecture. The last
softmax layer performs the 2-way classification task (CNT-PNES); (B) The two Autoencodes (AE)
implemented: the first AE compresses the 228 input features to 50 parameters (encoder stage) and then
attempts to reconstruct the input (decoder stage); whereas, the second AE compresses the 50 features
output of the first AE to 20 latent parameters. The compressed representations H1 (50 × 1) and H2

(20 × 1) (indicated in red and green, respectively) are used in the stacked autoencoders architecture.

The use of average operator on the time-frequency map prevents the possibility of taking
advantage of the local frequencies’ distribution; nevertheless, the extracted statistical quantities
yield features representing the underlying probabilistic density functions. The visual inspection of the
CWT plots, computed on each channel per epoch and per subject, highlights the different periodic
components in the two classes of subjects (see Figure 2). One relevant aspect of the designed deep
Neural Network (NN) scheme is its ability to exploit the multichannel nature of the EEG signal,
by incorporating information from all of the electrodes recordings.
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Figure 2. Time frequency representation of the psychogenic non-epileptic seizures (PNES) and healthy
control (CNT). Each epoch of the 19-channels electroencephalography (EEG) is transformed in a time
frequency map (TFM); then, the mean over the 19 channels, over the subjects and over the epochs is
evaluated coming up with a single TFM per class. (a) TFM averaged over the 19 channels, the 20 epochs,
and the six PNES subjects; (b) TFM averaged over 19 channels, the 20 epochs, and the 10 CNT subjects.
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2.5. Entropy-Based Interpretation of Hidden Layers

DL architectures aim to build and extract complex concepts from simpler ones by exploiting
multilevel hierarchical structures. DL is now the leading technology to solve difficult problems
formulated as artificial intelligence tasks. However, there is no general consensus on how and why DL
succeeds in it. Giving a response to such delicate questions is of particular significance when such
augmented intelligence is used in health problems and clinical diagnosis. The practical implementation
of a DL architecture implies a feedforward neural network with its counterpart of unsolved design
problems. In fact, the training of such a model on a relatively small dataset, like the ones normally
available in analyzing some neurological disease, is affected by overfitting, i.e., poor performance on
held-out test data. This aspect is faced here by proposing a decomposition of the available recordings
in small non-overlapping parts that virtually enlarge the database size.

Another significant problem of DL approaches is related to its inability to motivate classification
decisions. In this work, an attempt is made to look into the DL architecture by suggesting an information-
theoretic interpretation of the latent representations at the output of the hidden layers trained by
unsupervised learning, i.e., without having access to labels. The overfitting problem is structurally
dealt with the concept of sparse autoencoding. The sparse autoencoder exploits, during training,
the regularized cost function and a sparsity regularizer that enforces a constraint on the sparsity of the
output vector generated by the hidden layers. This is obtained by constraining the hidden neurons to
activate just for a limited number of training samples [20]. This effect is controlled by a coefficient of
sparsity, similar to the regularization coefficient. As a result, the different training patterns, belonging
to different classes, have a specialized sparse representation. In this way, the hidden output vector
exhibits different probabilistic characteristics for different classes. The different classes’ representations
ultimately present a different information content. In our case, the information content of such vectors
is measured by means of the entropy of the distribution. The entropies of the original time signals and
of the related epochs normally do not differ significantly.

3. Results

3.1. Electroencephalography (EEG) Data Preprocessing

The available EEG database described in Section 2.1 includes 10 control subjects (CNT) and six
PNES patients: as previously noted this is quite a limitation being the number of subjects too small for
training a DL model. Indeed, there will be many different potential settings of the weights that can
model the training database almost perfectly, and each of the resulting trained networks will perform
differently on the held-out test dataset, generally with lower performance than that one obtained on
the training dataset. This is because the features defined within the training phase are tuned to perform
well on the training dataset. The sparsity approach described in Section 2.5 can somehow reduce the
impact of overfitting on the performance achieved over testing data, by preventing co-adaptation
of the hidden nodes [21]; however, the number of free parameters of the network is still too high.
To cope with this apparently unsolvable problem, a novel strategy has been designed. Specifically,
from the EEG of each subject, 20 non-overlapping time-windows (epochs) of 5 s were extracted
(by excluding parts with residual significant artefactual activity). The training dataset includes each
epoch as a different record; as the database consists of 6 PNES and 10 CNT, this will yield a total
cardinality of [(20 × 10) + (20 × 6)] = 320 records. The training of the two autoencoders is carried
out separately and the technique of leave-one-out is used for testing (for each subject, every epoch
is excluded in turn from the training phase and it is then used for testing). The same strategy was
used for the classification neural network. Although the results reported in the next paragraph were
achieved in this way (i.e., per epoch), the final decision on the estimated class of a subject should be
taken by considering, cumulatively, the responses of the network to all of the 20 epochs of that subject.
The whole DL model also includes, as a first stage, the TFM extraction: this is carried out per epoch
and per channel. Figure 2 shows the average TFMs of the two classes, PNES and CNT, obtained by
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averaging the TFMs over the subjects, over the epochs, and over the channels. Some differences
on the timing and the relative strength of the periodic components are rather evident even in the
averaged maps.

3.2. Performance of the Deep Learning (DL) Classification System

The performance of the proposed DL architecture was quantified through standard metrics:
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and
accuracy [22], which are defined as follows:

Sensitivity =
TP

TP + FN
× 100 (3)

Specifcity =
TN

TN + FP
× 100 (4)

PPV =
TP

TP + FP
× 100 (5)

NPN =
TN

TN + FN
× 100 (6)

Accuracy =
TP + TN

TP + FN + TN + FP
× 100 (7)

where true positives (TP) and true negatives (TN) indicate the number of test samples correctly
classified as PNES subjects or CNT; whereas, false positives (FP) and false negatives (FN) indicate
the number of test examples which are wrongly detected as subjects with disease and no disease,
respectively. The validity of the model was evaluated by using the standard leave-one-out procedure.
It consists in excluding one record at time and training the network on the remaining records. Therefore,
at each iteration, the left-out records represent the test set. The results of each testing are then averaged
in order to assess the overall performance of the network.

In this study, as explained in Section 3.1, 20 EEG epochs were selected for every subject, each epoch
is excluded in turn from the training phase and it is then used for testing. In this way, we ended up
with 20 leave-one-out testing sessions per subject. The proposed architecture was compared with
a standard shallow architecture (Support Vector Machine, SVM) (with linear and quadratic kernel) [23]
and with Discriminant Analysis (with linear and quadratic discriminant function) [24]. Table 1
shows the performance of each classifier: with regard to discriminant analysis, Linear Discriminant
Analysis (LDA) outperformed Quadratic Discriminant Analysis (QDA) in terms of specificity (72.1%),
PPV (83.6%), NPV (73.5%) and accuracy (79.7%); whereas, SVM with linear kernel (L-SVM) provided
better performance than SVM with quadratic kernel (Q-SVM), reaching a specificity of 82.5%, a PPV of
88.7%, NPV 86.5% and an accuracy of 84.4%. The DL Stacked Auto Encoders (SAE) classifier performs
quite better than the other models apart from sensitivity, where Q-SVM is superior at the expenses of
specificity, and PPV, where L-SVM is superior.

In Figure 3, the details of the classification performance of the proposed architecture are reported.
Each bin of the representation refers to the output of the softmax layer obtained on each one of the 20
leave-one-out testing epochs; each sub-plot illustrates the results of the 20 leave-one-out testing sessions
of the single subject. The height of each bin is the estimated output of the classification network obtained
in the corresponding leave-one-out testing session (one correct classification; 0 misclassification).
The two categories (PNES and CNT) are shown separately. The red dotted line is the mean output level
of the network, averaged over the 20 testing sessions. The accuracy of the classification achieved by
considering cumulatively the epochs referring to a single subject is 100%. To further validate the model,
a fresh EEG from an additional PNES subject has been processed through the DL chain. 20 epochs of
5 s time signal have been extracted from the EEG recording and they have been correctly classified in
17 over 20 blocks, corresponding to a 85% accuracy.
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output level of the network, evaluated over the 20 sessions.

A sensitivity analysis has been carried out in order to note features from what electrodes
(brain areas) are mainly relevant for classification. This analysis uses the weights’ matrices of the
trained DL network. According to some clinical results in the PNES literature, some electrodes of the
frontal and occipital areas appear to be most informative [25].

Table 1. Performance of the proposed system compared to other classification systems.

Classifier Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

SAE 88.8 90.7 86.2 88.6 86.5
LDA 84.1 72.1 83.6 73.5 79.7
QDA 88.0 54.2 76.2 73.3 75.3

L-SVM 88.0 82.5 88.7 86.5 84.4
Q-SVM 92.3 57.5 78.6 85.2 80.3

3.3. Entropic Interpretation of DL Classification

To interpret the behavior of DL and thus trying to “opening the black box”, an analysis of the
output of the two hidden layers (the first with 50 nodes, the second with 20 nodes), in the two stages
of compression through encoding, was carried out. Specifically, a set of 50 (or 20) vectors was obtained
by considering the output of each hidden node of the first (or the second) compressed representation
corresponding to all of the available epochs. Then, the Shannon entropy (SE) of such node vectors
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was estimated. Figure 4 reports the SE values of the hidden layers’ nodes of the two successive
autoencoders. The results suggest three interesting comments:

(1) As recently noted in the literature [21], most of the information encoded in the input epochs is
exploited in compression to generate an efficient representation regardless of the training labels,
as the compression phase ignores the labels (considered just in the final classification stage);

(2) The mean entropy indeed decreased as the layers deepened, which is intuitively rather expected
as the successive representations gradually build the final vectors’ representation [26];

(3) In contrast to the first stage of compression, the hidden layer of the second encoder seems clearly
extracting the class information, i.e., the latent differences between the classes, even though
in absence of any label information. This is an original result not previously reported in the
literature, at our best knowledge. This is the first study where the behavior of the compressing
stages has been discussed from an information-theoretical perspective in classification networks.
In our opinion, the noted behavior can justify the use of a deep structure to extract high-level
features that can widely facilitate the classification procedure [27].

A question may arise, if the entropies of the original time signals can already highlight the
difference between the two classes. An analysis has been carried out by computing both Shannon
Entropy and normalized Permutation Entropy on the EEG signals (see Supplementary Materials,
Figure S1), by taking the global average on subjects, epochs and electrodes: the result is that there are
no significant statistical differences on the entropies computed on the two classes.Entropy 2018, 20, x FOR PEER REVIEW  10 of 12 
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Figure 4. Entropy representation of PNES (red dots) and CNT (blue dots) evaluated at the outputs
of the hidden nodes of the two compressed representations. (a) Entropy values related to PNES and
CNT features extracted from the first AE (50 × 1). At this stage, the entropies of the two classes are
comparable; (b) Entropy values related to PNES and CNT features extracted from the second AE
(20 × 1). At this stage, the entropies decrease and they are different for the two classes and generally
greater for PNES than CNT.

4. Discussion and Conclusions

The recent emergence of DL methods in many diverse application domains has motivated such
a data-driven approach in difficult clinical diagnosis problems. In this work, a deep architecture
was proposed to help the discrimination of PNES subjects from healthy controls through routinely
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EEG. The proposed approach can be useful for the early identification of such patients. The proposed
deep architectural scheme includes a first level, where time-frequency features are extracted by CWT,
two compressing stages implemented by autoencoders (SAE), and a final classification network
with softmax nonlinearity. The first stage does not require learning; SAE are trained off-line by
unsupervised learning, and the classification network is trained by backpropagation. A final supervised
fine-tuning step can be applied to the whole structure. DL-based systems are claimed to be able to
extract higher level features directly from the available data, in such a way also reducing noise
and rejecting non relevant information. One of the problems of DL is the difficulty of explaining
its behavior and achievements, which is a strong limitation in clinical settings. A second limitation,
particularly pertinent to EEG-based clinical applications, is the availability of limited data. In this work,
the two problems are faced as follows. As regards the difficult interpretation of DL results, a guided
transformation of the data, through the estimation of the time-frequency maps (TFM), was carried out
(at this stage, EEG channels are treated separately). Then, the information extracted from the TFMs of
the channels are combined through a double-level SAE. The limited EEG data were virtually augmented
by segmenting each EEG recording into 20 non-overlapping epochs; which is a good strategy also
to cope with the different length of the recordings and the presence of residual artifacts. The use of
both a regularizer and a sparsity constraint allowed to reduce the impact of overfitting due to the
limited size of the dataset. As an alternative to sparsity, the random dropout of the hidden nodes was
previously proposed in the literature [28]. Finally, the present paper proposed an information-theoretic
approach to investigate the behavior and the performance of the deep model; specifically, estimating
the SE of the output of the second AE level unveiled that DL is able to autonomously extract the
class information without the need of labels. This evidently facilitates the subsequent classification
stage and may explain the power of DL schemes. The performance of the DL model resulted good
(86% accuracy) and better than some standard shallow approaches.

The main limitations of this work is clearly the number of available subjects. From an architectural
design perspective, a more detailed sensitivity study should be carried out by considering different
sizes and levels of the AEs. A more detailed analysis of the TFMs could be of great help to generate
more appropriate features than the ones here proposed. Finally, a visual representation of the features
extracted by the DL chain at various levels could be advantageous in order to associate the features to
the brain areas of the original signals. Here, we just analyzed the trained weights’ matrices in order to
qualitatively assess the relative importance of the electrodes.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/20/2/43/s1,
Figure S1: Permutation Entropy Boxplots of the healthy control (CNT) and the psychogenic non-epileptic seizures
(PNES).
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