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Abstract: Information production in both space and time has been highlighted as one of the
elements that shapes the footprint of complexity in natural and socio-technical systems. However,
information production in urban crime has barely been studied. This work copes with this problem
by using multifractal analysis to characterize the spatial information scaling in urban crime reports
and nonlinear processing tools to study the temporal behavior of this scaling. Our results suggest
that information scaling in urban crime exhibits dynamics that evolve in low-dimensional chaotic
attractors, and this can be observed in several spatio-temporal scales, although some of them are more
favorable than others. This evidence has practical implications in terms of defining the characteristic
scales to approach urban crime from available data and supporting theoretical perspectives about the
complexity of urban crime.
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1. Introduction

Crime is not what it looks like. Despite its apparent random configuration over time, space,
and society, crime forms patterns [1]. According to crime pattern theory, a pattern is a plausible
interconnection between objects, rules, or processes that can be observed from practical experience or
inferred from a theoretical basis [2]. Although this formulation is conceptually sound, crime patterns
might not be evident, such that going deeper into the evidence is necessary to detect them. One
important feature of crime patterns is their inherently dynamic nature [3] which makes their detection
a challenge. The macro-level dynamics of socio-technical systems is counter-intuitive because of the
nonlinear entanglement of diverse elements in the system [4]. Hence, detecting crime patterns should
consider what complexity science can offer [5].

The emergence of patterns in urban crime is related to the complexity of cities [6,7]. Moreover,
from environmental criminology, these patterns arise because crime is a decisional process motivated
by the presence of opportunities in an urban backcloth [8] and supported by the bounded rationality
of offenders [9]. Thus, the relation between these two perspectives motivates the exploration of ways
to find some common ground [4].

With the development of geographical information systems, crime patterning has become in an
intense research area [10]. Patterns are searched mainly in the spatio-temporal domain of crime by
using statistical tools on reported crime data. Two problems have been observed while following
this approach: the modifiable areal unit problem (MAUP) [11] and the crime aggregation problem
(CAP) [12]. The former arises when geographical data such as crime counting are aggregated in spatial
units. The size, shape, and orientation of these units produce a bias in statistical results. The latter
appears when data of similar crimes are aggregated, which blurs the spatial distribution of crime
occurrences that would hinder the detection of patterns.
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Spatio-temporal patterns of crime have been studied from several perspectives to deal with
the inherent uncertainty of this phenomenon. From probability and stochastic processes theories,
crime patterning deals with fixing a probability distribution model over criminal data. Methods
such as kernel density estimation (KDE) and self-exciting point processes (SPPs) among others
have been considered in this context [13]. However, these tools usually base their assumptions
on linearity, independence, stationarity, and ergodicity, which are not necessarily properties of criminal
phenomena [14]. Additionally, statistical biases appear when using these approaches because of MAUP
and CAP problems.

Stochastic approaches are sometimes used on the basis of a supposed similarity between crime
and other phenomena. For example, SPP proposed to study crime more like a metaphor of seismic
processes rather than a consequence of the nature of crime [15]. In another example, the movements
of criminal offenders are modeled as random walks, which is far from the purposeful way people
move through urban environments [16]. Other analyses of criminal dynamics take for granted the
Poisson distribution (or other simple models) [17] of criminal attacks just because of the simplicity
or popularity of this distribution, without first establishing its necessity. Models that rely on this
assumption fail to account explicitly for the intricacies of urban crime dynamics, representing instead
only some smooth attributes.

The analysis and detection of criminal patterns by means of clustering techniques have also been
considered [18]. These studies focus on detecting groups of criminal events by looking for a particular
kind of prototype (i.e., geometric shapes such as circles or ellipses). However, the problem of detecting
criminal patterns in this way is the possible unmatching between the structure of crime data and
clustering prototypes. In addition, fixing the number of clusters is still an open question in the pattern
recognition field. Most of the studies on clustering criminal events deal only with the spatial domain
of the phenomenon while ignoring the dynamic dimension of crime [19].

Recently, some artificial intelligence (AI) models for predicting crime patterns have been
developed, with interesting results [20]. These approaches take advantage of methodological
frameworks such as big data analysis and deep learning to establish nonlinear correlations between
a large number of variables (i.e., economic, social, technological, climatological, etc.) and criminal
patterns. However, these models lack explanatory power because of their complex correlative structure.
Thus, minimal insight about the geometric structure of criminal patterns can be obtained from them.

Supported on crime pattern theory, risk terrain modeling (RTM) has been proposed as a
promissory method to deal with the problem of detecting crime patterns [3,7,21]. In contrast to
KDE and SPP, which rely on a frequentist interpretation of crime (i.e., counting), RTM uses Bayesian
inference for crime patterning using prior information about the urban backcloth. This approach is
more effective than KDE-based methods when sparse data about crime are available or crime rates
are low [22]. As a method supported on parametric modeling, RTM relies on working suppositions
and past experience to calibrate key parameters (e.g., cell size, bandwidth, etc.) [23]. However, the
necessity of this calibration is not established from the information content of available data.

The crime patterning problem relies on the supposition that patterns are represented as probability
distributions or geometric prototypes that can be easily parametrized. Thus, classical geometry is
privileged when searching spatio-temporal patterns in crime data. If crime is the result of complex
phenomena that emerge from the entanglement of multiple relations in urban systems, then searching
for simple geometric patterns would be in contradiction with this hypothesis. Therefore, the crime
patterning problem should be directed in a different way, in which the study of the geometric properties
of urban crime becomes necessary.

Two new approaches that refocus the crime patterning problem were proposed in [14,24].
The former considers an entropy analysis of crime regions across several cities, revealing that crime
concentrates dynamically. This result is interesting and provocative, but only one spatio-temporal
scale for studying this dynamic is considered, which may limit the scope of the findings. The latter
takes a look at the multifractal nature of crime dynamics by patterning long trends of criminal data
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for a particular city. The results of these studies are limited to one particular case showing that
temporal crime dynamics resemble 1/ f noise, and only some insights about the spatial properties of
this phenomenon are given.

The geometry of urban crime is conditioned by its support, which is the city itself—not only
in the physical domain (i.e., places, streets, architecture, etc.), but also in the social domain (i.e.,
people, economy, etc.) [25,26]. The properties of this geometry arise from the dynamical nature
of cities. Therefore, in this work, the geometry and dynamics of urban crime are connected across
space and time, defining a single category to study, which would require the identification of its
characteristic scales.

This geometric perspective can take advantage of several tools that have barely been explored in
the understanding of crime dynamics. Among them, one can find fractal/multifractal geometry and
chaos theory. As will be discussed later, multifractal analysis gives insight into the apparent random
geometry of urban crime in different spatio-temporal scales, while information production in these
scales is studied on the basis of dynamical systems theory. Information is relevant in this work because
it has been highlighted as one of the elements that shapes the footprint of complexity in natural and
socio-technical systems [27]. In addition, information production as a dynamical process is a concept
that would go beyond the traditional concepts of information theory [28].

Multifractal analysis (MFA) [29] and analysis of observed chaotic data (AOCD) [30] are combined
in this work to characterize the information dynamics inside the geometry of urban crime. Urban
crime is treated as a dynamic phenomenon, which is perceived through data obtained from police
records and produces information over space and time. In addition, the proposed method can be used
in practical terms to suggest characteristic scales for crime dynamics modeling purposes. Five cases
(four cities in North America and one city in South America) are processed through this approach,
which reveals that information production in the spatio-temporal dynamics of urban crime of these
cities exhibit common patterns, such as low-dimensional chaotic attractors.

The application of MFA for studying complex phenomena has been discussed in the literature
(e.g., [29,31,32]). Some works have investigated the fractal/multifractal nature of urban processes, such
as in [6,33–36]. The concern for the fractality of crime appeared two decades ago in criminology [37],
and recent efforts have tried to connect the complexity of urban systems to certain social phenomena,
such as crime and violence, by looking at fractal/multifractal patterns [6,38].

This work follows this line of research to analyze the dynamic informational dimension of urban
crime, which is connected at the root of the decisional and complex aspects of this phenomenon.
The decisional process behind crime can be described by means of scripts that depict how agents rely
on experience, environmental clues, and opportunities to refine their behavior [2,9]. Offenders use
internal and surrounding information to produce crime information over time, space, and society.
Thus, analyzing the dynamics of this production of information would be an unexplored perspective
to detect spatio-temporal patterns in urban crime.

The rest of this paper is organized as follows: Section 2 summarizes some concepts about crime
pattern theory, MFA, and AOCD. Section 3 presents the proposed approach to study the information
dynamics in urban crime. This section also discuses some implications of the informational analysis
of urban crime. Results obtained from the application of this approach over considered cities are
presented in Section 4. Next, Section 5 discusses these results. Finally, we draw some conclusions
in Section 6.

2. Preliminaries

2.1. Crime Pattern Theory and Related Perspectives

Crime pattern theory understands crime as a variety of complex phenomena that do not occur
randomly in space, time, or society [39]. This theory focuses its attention on rules that can explain the
non-randomness of crime dynamics observed from experience. Although patterns can be obvious
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in some situations, delving deeper into the context is necessary to detect them in other cases. Crime
patterns are dynamic and appear at micro and macro levels with similar characteristics and rules [40].
Hence, crime exhibits scale-free behavior and it should be understood as a whole that covers not only
the decisional processes of actors but also the urban backcloth that surrounds them.

Routines are the mechanisms behind the formation of crime patterns. Actors perform daily
routines that interact over the urban support, generating crime opportunities [41]. Sometimes,
triggering events appear associated to those opportunities that lead to the production of offenses.
Although an offense is motivated by a triggering event, it demands a decision to carry it out. This
decision can be depicted as a template that illustrates how the performer follows a learning process
using cumulative experience and the interaction with a social network.

Two perspectives that complement crime pattern theory have been proposed in order to explain
some details about the decisional process behind the execution of a crime event. The rational
choice perspective suggests that crime is a decision-making process under uncertainty [9]. Criminal
behavior is purposive and supported by a bounded rationality that evaluates the risk and benefits
of offending [42,43]. Offenders try to predict the possible outcomes of their choices, which is prone
to errors due to several constraints. As the process evolves by learning, the chances of success
improves. Disruptions may sometimes appear, providing new experiences that help to refine this
process. The whole picture can be depicted as a script, giving the idea of a heuristic that maximizes the
benefits of the offender.

The routine activity approach explains how crime rates emerge [8]. This approach considers two
levels of analysis: on a micro level, it states that an ordinary crime emerges as the convergence of
a likely offender and a suitable target given the absence of inhibitors. On a macro level, it suggests
that certain features of the socio-technical system that surrounds offenders and targets increase the
likelihood of such convergences [44]. In addition, the routine activity approach states that a crime is a
rare event that comes from routine events. Thus, offenders and targets exhibit dynamic behaviors that
interact in fine temporal scales. Offenders often operate in association, which makes this dynamics
complex. These considerations have linked crime to some life processes, which has motivated an
appeal to life sciences to study it [45].

2.2. Multifractal Analysis

2.2.1. Multifractal Spectrum

Consider an object that is covered with counting boxes of longitude L. The local density Pi(L) of
the object is a mass function of the i-th counting box:

Pi(L) =
Mi(L)

MT
, (1)

where Mi(L) is the number of pixels that contribute to the mass in the box and MT is the total mass of
the object.

In heterogeneous objects, Pi(L) can vary as [46]:

Pi(L) ∼ Lαi , (2)

where αi is the Lipschitz–Holder exponent that characterizes the scaling of the i-th region or spatial
location. These exponents show the local behavior of Pi(L) around the center of a counting box with
longitude L. Most of the time, similar values for αi are found in different regions of the object.

The number of boxes N(α) where the mass function has exponents between α y α + dα scales as:

M(α) ∼ L− f (α), (3)

where f (α) can be defined as the fractal dimension of the set of boxes whose exponent is α.
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Multifractal measures appear as scalings of the q-th moments of the density function Pi(L) [29]:

M(L)

∑
i=1

Pq
i (L) = L(q−1)Dq, (4)

where Dq are the generalized fractal dimensions. According to [31]:

Dq =
1

q− 1
lim
L→0

log ∑
M(L)
i=1 Pq

i (L)
log L

. (5)

The exponent in Equation (4) is called the mass exponent of the q-th moment of order τ(q):

τ(q) = (q− 1)Dq, (6)

with

α(q) =
dτ(q)

dq
. (7)

The curve f (α) vs. α is called the multifractal spectrum, which is a convex function with a maximum
D0 in q = 0 (fractal dimension), as shown in Figure 1. For q = 1, f (α) = α = D1, which is called
the information dimension. D0 and D1 characterize the occupation of the support and the scaling of
information production, respectively. The difference between αmin and αmax reveals the width of the
set of local scales or how strong the mutlifractality of the object is. In addition, D−∞ − D+∞ > 0 is an
index of the spectral symmetry, which is related to the abundance of regions with small masses [47].

Figure 1. The graph f (α) vs. α or multifractal spectrum. The spectrum is a concave function whose
maximum coincides with the fractal dimension of the object D0. Its intersection with the identity line is
the information dimension D1. The asymmetry of the spectrum is related to the abundance of high or
low masses in the object. The wider the spectrum, the more multifractal the object is.

Practically speaking, the multifractal spectrum cannot be computed in the infinity, so its estimation
is limited to the set of local scales that can be expressed as powers of L. This also restricts the range of
moments q that can be used. Therefore, the multifractal spectrum is computed from:

µi(q, L) =
Pq

i (L)

∑
M(L)
i=1 Pq

i (L)
, (8)

where Pi(L) is a fraction of the amount of pixels in each box of longitude L.
Thus, the computation of f (q) and α(q) goes as follows [46]:

f (q) = lim
L→0

H(L)
log L

= lim
L→0

∑
M(L)
i=1 µi(q, L) log µi(q, L)

log L
, (9)
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α(q) = lim
L→0

W(L)
log L

= lim
L→0

∑
M(L)
i=1 µi(q, L) log Pi(L)

log L
. (10)

Because these expressions cannot be evaluated directly, it is necessary to estimate f (q) and α(q)
for each q as the slope of the linear regression of numerators in Equations (9) and (10) versus log L
over the range considered for L. The goodness of the regression should be evaluated to determine
which scales define the multifractal behavior of the object. Moreover, it is appropriate to observe
other properties of the spectrum, such as concavity and tangentiality to the identity line, as a way of
evaluating its consistency. In practical terms, the concavity of the spectrum depends on the range of L,
particularly on its minimum Lmin, which corresponds to the smallest scale in which the object exhibits
multifractal behavior given the available data.

2.2.2. Information Dimension D1

Note the singularity 1/(q− 1) in the evaluation of Dq in Equation (5). Therefore, special attention
is needed in this computation when q = 1. In the limit q→ 1, it can be shown that [29]:

log (∑
i

Pq
i )→ log {1 + (q− 1)∑

i
Pi log Pi} ' (q− 1)∑

i
Pi log Pi. (11)

In this way, Equation (5) can be expressed as follows:

D1 = lim
L→0

∑i Pi log Pi
log L

. (12)

Multiplying by − log L on both sides of Equation (12):

− D1 log L = −∑
i

Pi log Pi. (13)

Considering a probabilistic interpretation of the mass densities Pi(L), the right-hand side of
Equation (13) is the informational entropy E of P(L):

E(L) = −D1 log L. (14)

E is given straight forward by D1 and scales logarithmically with L.

2.3. Analysis of Observed Chaotic Data

2.3.1. Taken’s Theorem

Chaos is a phenomenon that appears in some signals. Its footprint is characterized by several
attributes, such as complex dynamical traces in time, broadband power density spectra, nonperiodic
motion, and exponential sensitivity to reduced perturbations in the orbit of the phase plane, among
others [48]. Although chaos is irregular in time and is slightly predictable, it exhibits structure in the
phase space [30]. Most studies of chaos center their analysis on nonlinear dynamic systems whose
governing equations are well established [49]. However, some studies have attempted to infer the
presence of chaos in a signal only by means of available data. Chaos detection is useful when there is
no knowledge about the structure of the system that produced the signal [50].

Taken’s embedding theorem [30,51] gives us a way to represent an equivalent phase space for the
dynamics that produced the observed signal s(n). This theorem guarantees the reconstruction of the
geometric structure of the dynamics that shapes the signal. In this sense, a dynamical system can be
represented as follows:

x(n)→ F(x(n)) = x(n + 1), (15)
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where x(t) is a multidimensional phase space. If a scalar quantity h(◦) of some vector function g(x(n)
is known, then the geometry of the dynamics can be unfolded from the mapping h(g(x(n)) as a
new vector space. Each vector consists of elements in which h(◦) is applied to powers of g(x(n)),
as denoted:

y(n) = [h(x(n)), h(gT1(x(n))), h(gT2(x(n))), . . . , h(gTd−1(x(n)))]. (16)

y(n) defines a motion in a d-dimensional Euclidean space. Some properties of chaos are
reproduced in the new space as y(n)→ y(n + 1) evolves in time following the unknown dynamics
given by Equation (15). Since x(n) → x(n + 1) is deterministic, the substituting dynamics y(n) →
y(n + 1) will also be.

Considering a general scalar function h(◦) and a general function g(x) consisting of some initial
vector and its time-delayed versions, y(n) just contains time lags of the observed signal:

y(n) = [s(n), s(n + T), s(n + 2T), . . . , s(n + (d− 1)T)], (17)

where s(n) = h(x(n)) and Tk = kT.
Regarding Equation (17), it is necessary to identify two parameters: the time delay T between

delayed versions of s(n) and the number of these versions, which is called the global dimension dE of
the phase space that contains the underlying dynamics of the system.

2.3.2. Average Mutual Information

In the case of T, its identification should guarantee that this delay is large enough so that s(n)
and s(n + T) are slightly independent but not too large that these signals are entirely statistically
independent [30]. Thus, T can be established in terms of the information among measurements, which
is expressed as the average mutual information (AMI) I(T) between delayed versions s(n) and s(n + T),
given by:

I(T) = ∑
s(n),s(n+T)

F(s(n), s(n + T)) log2

[
F(s(n), s(n + T))

F(s(n))F(s(n + T))

]
, (18)

where F(s(n), s(n + T)) is the joint probability density between signals s(n) and s(n + T), whereas
F(s(n)) and F(s(n + T)) are individual probability densities.

Thereby, Equation (18) can be understood as a nonlinear correlation function, which helps to
determine when s(n) and s(n + T) are sufficiently independent to work as coordinates in a time delay
vector y(n). A plausible size of the time lag T is obtained by exploring around the first minimum of
the nonlinear auto-correlation function I(T). The time delay T can be computed by other means, such
as the correlation integral, to validate the results obtained from AMI. However, linear correlation is
not recommended as a confirmation method for the time delay because it can be fooled by nonlinear
dynamics [52].

2.3.3. False Nearest Neighbors

With the candidate delay T that was suggested by the AMI computation, a phase space
reconstruction is carried out given a dimension d in Equation (17). An examination of the nearest
neighbors in phase space of the vector y(n) follows as:

yw(n) = [sw(n), sw(n + T), sw(n + 2T), . . . , sw(n + (d− 1)T)]. (19)

Two possible situations can occur regarding the proximity of y(n) and yw(n) [53]. In the former,
yw(n) comes to the neighborhood of y(n) through dynamical origins, which implies movements
along similar orbits around the attractor. In this case, each point of the phase space is surrounded by
numerous neighbors, and the state space is populated if enough data are collected. In the latter, yw(n)
is a false neighbor of y(n), which means that it has arrived to the neighborhood of y(n) as a result of
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the projection from a higher dimension because the current dimension d does not unfold the attractor.
By moving up to the next dimension d + 1, the false neighbors will be outside the neighborhood
of y(n).

The proximity between y(n) and yw(n) can be estimated by means of the Euclidean
distance Ud(n):

U2
d(n) =[s(n)− sw(n)]2 + [s(n + T)− sw(n + T)]2 + [s(n + 2T)− sw(n + 2T)]2 + . . .

+ [s(n + (d− 1)T)− sw(n + (d− 1)T)]2.
(20)

When the dimension is increased to d + 1, the distance changes according to:

U2
d+1(n) = U2

d(n) + +[s(n + (d)T)− sw(n + (d)T)]2. (21)

If Ud+1(n) becomes much larger than Ud(n), then it may be given by the effect of some neighbors
that appear from the projection of a higher-dimensional attractor. The following ratio be can used to
decide if this increment is significant, which reveals the presence of false neighbors:

|s(n + Td)− sw(n + Td)|
Ud(n)

> UN . (22)

According to practical observations, the number of false neighbors remains constant when
10 ≤ UN ≤ 50. The dimension d in which false neighbors become minimum is selected as the
embedding dimension of the dynamics y(n). Empirical evidence shows that false neighbors drop to
zero in deterministic low-dimensional motion. In contrast, residual false neighbors result from truly
stochastic or high-dimensional chaotic data [30,50]. If deterministic dynamics is detected, then it is
interesting to estimate the largest Lyapunov exponent (LLE) of the time series s(n) because positive
LLEs appear generally in chaotic motion. Several algorithms have been proposed to carry out this
estimation [52,54–56], but most of these methods are sensitive to the amount of available samples,
which might restrict their application.

3. Materials and Methods

3.1. Criminal Reports

A criminal complaint is defined as a tuple z = {x y t}, where x ∈ R, y ∈ R are the spatial
attributes and t ∈ N is the temporal attribute of the complaint. These attributes will be noted as
zx, zy, and zt, and they configure a perception about where and when the criminal event happened.
In some cases, all attributes can be established without uncertainty. However, in others only inaccurate
information about the event is available [11].

A criminal report R is the set of all criminal complaints between the time interval ∆t = t f in − tini:

R ={z1, z2, . . . , zN},
t f in =max (zt

j), tini = min (zt
j).

(23)

A criminal subreport in a time window ∆v ≤ ∆t is a subset R̂ of R:

R̂ ={z1, z2, . . . , zQ},
t f in ≥max (zt

j), tini ≤ min (zt
j),

(24)

where Q is the amount of registered complaints in the interval ∆v.
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Two criminal subreports R̂1 y R̂2 are disjunctive if:

R̂1
⋂

R̂2 = ∅. (25)

A criminal report is a collection of disjunctive criminal subreports:

R =
M−1⋃
n=0

R̂(n), (26)

where M is the total number of criminal subreports.
An ordered criminal report (OCR) is a criminal report with:

max [zt
j(n)] < min [zt

i(n + 1)], (27)

which guarantees that consecutive subreports R̂(n) and R̂(n + 1) are disjunctive in an OCR.
An illustrative example of an OCR is depicted in Figure 2, in which a criminal report of one month has
been decomposed in four disjunctive sub-reports, each one covering one week. Criminal complaints
are geotagged over a representation of the city support, which is given primarily as the street network.
Each geotag includes the spatial and temporal attributes of the complaint given a coordinate system
that is well-suited for the city. The temporal attribute of complaints allows the subreports to be ordered
in the OCR. Most of real-world reports are plagued with uncertainty because of not only the deficiency
in precision of times and locations of complaints, but also the level of under-report [11,12].

Figure 2. An illustrative example of an ordered criminal report (OCR) that covers one month of
crime complaints. In this example, events corresponding to one month of criminal activity have been
aggregated and then splitted into four disjunctive weekly subreports.

3.2. MF Time Series

The application of multifractal analysis to each subreport R̂(n) of an OCR R produces a sequence
of multifractal spectra f (α(n)) (this conceptualization is similar to that proposed in [57]). From the
definition of an OCR, the subreports R̂(n) are disjunctive, guaranteeing that the generation of f (α(n))
does not share criminal complaints between the moments n and n + 1. Therefore, f (α(n)) can be
interpreted as a dynamic multifractal spectrum. That is, a multifractal spectrum whose parameters
change over time, each of them giving rise to a time series.

Definition. An MF time series S(n) is the sequence of values produced by some statistic obtained from a
dynamic multifractal spectrum with n = 0, . . . , M− 1.
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To evaluate the quality in the generation of f (α(n)), given a minimum scale (minimum box
longitude) Lmin, in terms of its MF time series, we introduce the concavity index CI(n):

CI(n) =

{
1 if D1(n) ≤ D0(n) and D+∞(n) ≤ D1(n) and D−∞(n) < D0(n),

0 otherwise.
(28)

The cumulative concavity index CCI for f (α(n)) from CI(n) is computed as follows:

CCI =
1
T

M−1

∑
n=0

CI(n). (29)

A concavity test is proposed to accept or reject the generation of f (α(n)). The MF time series
are accepted when CCI > 0.95, but the desirable situation regarding the generation of these series
should be CCI = 1.0. When the ideal condition is not met, then degenerated spectra f (α(n)) should
be identified and, if possible, corrected.

3.3. MF-A2-OCD Method

This method is proposed to study the temporal structure of MF time series by means of the
analysis of observed chaotic data (AOCD). The MF-A2-OCD method is depicted in the flow diagram
of Figure 3, which is described as follows:

• Generate the OCR: Given the record of urban crime complaints in a time window ∆t, a temporary
scale ts is defined for the construction of the OCR. Depending on the scale chosen, the report
will contain T disjunctive subreports R̂(n). The index n reveals the order in occurrence of the
subreports over the OCR and will refer to the day, week, or month of the subreport R̂ within the
OCR, depending on the selected scale.

• Multifractal analysis and concavity test: Given a minimum spatial scale Lmin, multifractal analysis is
executed for each of the subreports R̂(n). The multifractal analysis is standardized considering
for all the cases the same sizing of the support given by the maximum and minimum of the
spatial coordinates of all complaints in the OCR. The concavity index of each spectrum f (α(n)) is
obtained according to Equation (28), until completing the length of the OCR M. Then, the CCI
is obtained and the concavity test is verified, and if negative a new Lmin is chosen and the MF
analysis is executed again. In practical terms it is desirable to start with a small Lmin and increase
it until the test becomes positive, keeping in mind the possible degeneration of some multifractal
spectra that should be corrected.

• Synthesis of MF time series: The signals D0(n), D1(n), D−∞(n), D+∞(n),αmin(n) and αmax(n) are
constructed from the accepted dynamic multifractal spectrum f (α(n)). For those spectra whose
concavity index is at zero, the value of MF time series can be recalculated using a larger Lmin.
However, there is no guarantee of achieving the concavity of the spectrum despite this increase,
because it will depend on whether there are enough complaints in the subreports that configure
objects with at least monofractal behavior. Other mechanisms can be used to fix these values, such
as filling methods that preserve local statistics of the signal around problematic values [58].

• Linear processing: Linear statistics are computed over produced MF time series, such as:
autocorrelation function, power spectrum, mean estimation, variance estimation, and coefficient
of variation, among others. It is recommended to complement this analysis with the calculation of
the signal histogram. The autocorrelation and the power spectrum make it possible to determine if
there are any periodic behaviors within the signal detectable in a linear sense. These two statistics
have a special link through the Wiener–Khinchin [59] theorem. The other statistics are calculated
in order to have an appreciation of the overall behavior of the signal [30,60].

• Nonlinear processing: In this stage, a battery of nonlinear statistics is applied to explore the
structure of the time series to reveal details of its behavior that escape the linear analysis [30,50].
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Some of the statistics that can be considered here are: average mutual information, dimension
of the embedded phase space, and estimation of the maximum Lyapunov exponent, among
others, which are based on the theory of dynamic systems, particularly nonlinear and chaotic
systems [49,55,56]. Other approaches related to the detection of chaos in time series may consulted
in [61]. This analysis can be complemented from a statistical perspective with an indicator of
self-similarity and predictability, such as the Hurst exponent [14,29,37].

• Characteristic scales: In addition to the results produced from previous stages, spatio-temporal
scales are suggested to approximate the understanding of the phenomenon. The CCI reveals
the minimum scale over which the temporal consistency in the mutifracatal properties of the
phenomenon in space can be judged, manifesting itself as a sequence of coherent multifractal
spectra, on which an attempt has been made to minimize the effect of degeneration. Results from
linear processing may reveal the conservation of a spatial multifractal characteristic that can be
predictable at a certain time scale. Meanwhile, the results from nonlinear processing indicate to
what extent this characteristic may be chaotic, which would limit the prediction horizons in a
certain time scale.

Figure 3. Proposed approach that combines multifractal analysis (MFA) and analysis of observed
chaotic data (AOCD) (MF-A2-OCD) to study information dynamics in urban crime reports. The method
focuses on detecting spatio-temporal scales where information production exists in crime reports given
that multifractal behavior appears to be consistent.

3.4. Information Scaling in Crime Reports

Informational entropy is a measure of the average information content of a set’s density (i.e.,
probability) distribution. The occurrence of rare events increases this content, whereas common events
produce just a small increase of it. Therefore, according to the routine activity approach, if crime
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offenses are rare events that emerge from the interaction of routine events, densities may produce
a significant average content of information. On the contrary, if crime events populate in certain
locations, corresponding densities may reduce the informational entropy of the distribution.

The maximum informational entropy is achieved when a probability distribution is uninformative.
Typically, this situation appears when there is no prior knowledge about the phenomenon so that the
best distribution that supports any decision is the one with the highest informational entropy. For
example, if no constraints are given, the uniform distribution is the best choice. In the framework of
crime pattern theory, crime does not distribute uniformly, so the crime decisional processes would
modulate crime distributions, reducing their informational entropy. Therefore, an observer would note
that crime distributions over space or time would become more informative as the learning processes
of offenders improve. However, there are other elements that may contribute to shape the distribution,
since crime is connected to the urban backcloth.

The quantification of crime densities Pi requires the definition of a scale L. This makes the same
set of criminal events to configure different spatial patterns depending on L, but some similarity can
be noted between several scales, as shown in Figure 4. As the scale becomes larger, more crime events
are aggregated in the areal units, which induces one to think about the presence of patterns that are
not evident in the smallest scales. This dependence of densities in relation to the areal unit impacts any
statistical characterization, including the informational entropy.

Figure 4. Example of crime densities in four spatial scales when computing the multifractal spectrum of
a crime subreport. Spatial patterns of crime densities change with scale, although some characteristics
are preserved.

The theoretical result provided by multifractal analysis in Equations (11)–(13) shows how the
informational entropy scales with the logarithm of the areal unit size L (i.e., a L(m)× L(m) box). In
practical terms, this scaling can be estimated from the curve H(L) vs. LogL in Equation (9) applied
over crime masses at different scales with moment q = 1.0, as shown in Figure 5. Note that H(L) at
the smallest and largest scales does not exhibit significant changes. Notorious changes in H(L) are
observed at middle scales, following a linear dependence with LogL.
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Figure 5. An example of how the information dimension D1 is obtained from multifractal analysis of
the crime subreport in Figure 4. Linear scaling of the informational entropy is observed for a limited
set of scales which corresponds to where multifractal behavior appears. Multifractality is not observed
in all scales since there is only a finite number of points in the crime subreport.

The slope of the fitted linear regression corresponds to the informational dimension D1. This is
interesting because scales where the informational entropy grows linearly with LogL correspond to
those where multifractal behavior can be appreciated. Although crime densities look different from
one scale to another, there is a set of scales where their average informational content scales linearly
as D1 × LogL. This feature gives strong support to the idea that crime patterns at different spatial
scales share common properties (as suggested by crime pattern theory), at least the rate D1 as the
informational entropy increases.

According to Equation (13), information production will be present for any scale in a multifractal
object. However, this is not the case for a crime report since this property only appears over a limited
set of scales, as can be seen in Figure 5. In practical terms, detecting this set sheds light on the spatial
scales where information exists to perform any complementary statistical analysis. Therefore, the
analysis of information scaling would help to deal with the problem of selecting adequate areal units
for aggregation purposes, for example when sparse spatial data is available [62]. Moreover, the
identification of characteristic scales would suggest the smallest one where information scaling starts
given the available data. This may suggest if patterns will be identified when using a fine segmentation
of crime events.

3.5. Information Patterns in Ordered Crime Reports

Informational entropy is related to information scaling in a multifractal object. The MF-A2-OCD
method looks to obtain a consistent multifractal behavior from an OCR in order to guarantee the
integrity of information scaling over the sequence of disjunctive crime subreports. Thus, the D1(n)
series would capture some insight of the spatio-temporal dynamics of reported crime at least in
informational terms. The dynamic information content of crime can be approached as a signal
processing problem so that temporal patterns might be detected or not by means of linear and
nonlinear analyses.

The understanding of crime dynamics through informational patterns in time may help to detect
correlations or seasonalities between disjunctive crime subreports. This approach would provide
a general look at the memory structure of crime dynamics captured through an OCR considering
a set of temporal scales. The absence of informational patterns may suggest that crime dynamics
corresponds to a truly stochastic process. On the contrary, detecting these patterns would be a
confirmation that crime dynamics exhibits a temporal structure that can be studied. Hence, the
temporal non-randomness of the crime hypothesis at the core of crime pattern theory can be tested.
In addition, this perspective can be used to contrast the information patterns in different temporal
instances such as weekdays/weekends, night/day, or seasons, among other possibilities [63–65] in
order to characterize the global memory of crime.
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3.6. Research Data

Five cases of urban crime report in cities of America were considered, as follows: Los Angeles
(USA), Chicago (USA), Philadelphia (USA), San Francisco (USA), and Bogota (Colombia). The choice of
these cases was mainly due to the availability of open criminal databases. In these five cities, criminal
reports cover 1237 days (i.e., 176 weeks or 44 months), extending from January 2012 to May 2015.
The length of the reports was standardized with respect to the Bogota case, which is the shortest.
The minimum time scale of analysis was daily, given that not all reports recorded information on an
hourly scale.

Records focus solely on property crimes, which could involve violence but not weapons [10,66].
In particular, the records considered in the city of Los Angeles, Chicago, and Philadelphia covered
robberies (i.e., theft), assaults (i.e., robbery), and raids (i.e., burglary). In San Francisco, the complaints
focused on raids, while in Bogota the reports focused on thefts. The aggregation given in the first three
cities was carried out only from a practical point of view to avoid daily or weekly empty subreports,
which is a typical practice in view of the deficiency of recorded complaints. The convenience of
aggregating between types of crimes is an open topic within space criminology because similar types
of crimes do not necessarily generate similar spatial patterns [12,67]. In this sense, the cases considered
in this investigation cover two situations in relation to the crime aggregation problem.

Table 1 presents a collection of relevant data of cities and their respective criminal reports. It has
been suggested that criminal activity is positively correlated to the area and the population size of
a city [6,68], and also to socio-economic aspects that can be expressed as indicators of well-being
and inequality [69]. Note that these cities cover an interesting range of areas and population sizes,
whereas the criminal reports span about one order of magnitude in size and average daily complaints.
These cities are characterized by the convergence of a large amount of economic, social, and technical
activities. In addition, observe that in terms of the welfare indicator (GDP), which involves aspects
such as health, education, economic benefits, and civic environment, the cities in the United States
exhibit similar levels, while the Bogota case is notably lower.

Table 1. Some relevant features of cities and criminal reports. Four cities in North America (NA) and
one city in South America (SA) are considered in this study.

Case
Area
(km2)

Population
(Millions)

GDP
(Billions USD)

Report Size
(Complaints)

Mean Daily Complaints
(Complaints per Day)

Los Angeles (NA) 50.7× 70.8 12.15 860.45 121,974 99
Chicago (NA) 34.1× 42 8.6 563.18 57,745 47

Philadelphia (NA) 26.7× 31.9 5.44 346.45 91,806 75
San Francisco (NA) 13.5× 13.9 3.36 331.02 19,683 16

Bogota (SA) 24.5× 42.9 8.08 159.85 23,577 19

4. Results

4.1. Multifractal Analysis of Crime Subreports

Computation of Equation (9) (q = 1.0 and L = 16× 2l m, l = 0 . . . 10) for the daily and weekly
subreports with the largest number of criminal complaints is presented in Figure 6, whereas the
corresponding multifractal spectra are presented in Figure 7. This analysis is interesting because it
helps to understand how information scales in space by the estimation of D1, which corresponds to
the slope of the linear regression H(L) vs. log L. The largest subreports were considered because their
multifractal characteristic are the strongest.
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Figure 6. D1 estimation for subreports with the largest number of criminal complaints. Note that
information production measured through the informational entropy scaled linearly with LogL only in
a finite set of scales. The determination coefficient R2 validates the goodness of the linear regression
that was used to estimate the information dimension D1 (i.e., slope of the linear regression).

Figure 7. Multifractal spectra of subreports with the largest number of criminal complaints. The spectra
show that these crime reports exhibited multifractal behavior over the scales in which the informational
entropy scaled linearly with LogL. Both the fractal dimension D0 and the information dimension D1

increased, in general, with the temporal scale.

Note that the quality of the adjustment of the linear regression on log L, expressed through
the coefficient of determination R2, increased as the time scale became coarser. This implies that
information decrease remained constant over a greater number of spatial scales when the time scale
increased. Thus, the informational self-similarity in space was limited to a smaller range of scales when
the time scale became finer. In the daily case, this corresponded to the set of scales with L ≥ 1000 m and
in the weekly case it corresponded to L ≥ 500 m. This observation, which focuses specifically on the
informational behavior of the phenomenon, is in accordance with a recent analysis of the distribution
of urban population, which exhibited multifractal behavior for scales over 800 m [36].

The analysis supported in Equations (9) and (10) was completed for q = [10, 10] with ∆q = 1
to obtain the estimation of the multifractal spectra. It was observed that by making the time scale
coarser, D0 and D1 grew in most cases. The growth of D0 reveals that more criminal complaints
were aggregated and, therefore, the occupation of the support from the observed phenomena became
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more noticeable. Besides having bigger fractal dimensions, D0 in the weekly scale is an indicator of a
geometry with a less-porous spatial structure.

The multifractal spectra spanned over an interesting set of local scales, indicating the strong
mutlifractality characteristic of the objects in both temporal scales. The temporary aggregation allowed
the levels of informational entropy to increase for the lowest spatial scales. However, information loss
between spatial scales became more noticeable given the increase in D1. Note also that the wide of
spectra remained practically the same with the change of the temporal scale, corresponding to similar
multifractal behaviors. Therefore, the perception of disorder remained similar despite the temporal
aggregation of criminal complaints.

4.2. Cumulative Concavity Index

Results from the concavity test expressed in the CCI are presented in Table 2, according to the
daily and weekly temporal scales and several Lmin for the computation of the dynamic multifractal
spectrum f (α(n)). In the case of the daily scale, the test was exceeded on average for Lmin = 1000 m,
whereas for smaller Lmin the dynamic multifractal spectra exhibited a significant degeneration. Only
San Francisco and Philadelphia passed the test when Lmin = 500 m in the daily scale.

The CCI clearly improved for the weekly scale. On average, the concavity test became positive for
Lmin ≥ 500 m. Most of the cases reported satisfactory concave indexes for Lmin = 250 m, as opposed to
the daily case. These results are in accordance with the informational scaling shown in Figure 6, where
the convenience of these spatio-temporal scales was noted for subreports with the largest number of
criminal complaints.

Table 2. Cumulative concavity index (CCI) results. CCI Was computed for dynamic multifractal spectra
generated with three minimal spatial scales Lmin and two temporal scales: daily and weekly.

CCI (Daily Scale) CCI (Weekly Scale)Lmin (m) 250 500 1000 250 500 1000

Los Angeles (NA) 0.7500 0.6564 0.9742 0.8039 0.9755 0.9804
Chicago (NA) 0.6404 0.6507 0.9692 0.8798 0.9663 0.9760

Philadelphia (NA) 0.2889 0.9602 0.9767 0.9808 0.9760 0.9760
San Francisco (NA) 0.6188 0.9605 0.9757 0.9709 0.9757 0.9806

Bogota (SA) 0.8382 0.8732 0.9244 0.9657 0.9771 0.9771
Average 0.6273 0.8202 0.9640 0.9202 0.9741 0.9780

4.3. MF D1 Time Series

MF time series D1(n) were generated according to the MFA2OC method for two temporal scales,
daily and weekly with Lmin = 1000 m and Lmin = 500 m, respectively. Results of this generation are
presented in Figure 8. Note that these signals were characterized by interesting textures with fast and
abundant fluctuations around several typical values. D1(n) signals in the weekly scale fluctuated
more slowly with respect to the daily scale, which was a consequence of the spatial aggregation in
wider time windows. The perception of disorder is evident and obvious patterns were not observed,
evoking a preliminary hypothesis of randomness in the nature of these series and in the dynamics of
spatial information.
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Figure 8. MF D1 time series: (a) Daily scale, generated with Lmin = 1000 m; (b) Weekly scale, generated
with Lmin = 500 m. MF D1 series were generated from the dynamic multifractal spectra that achieved
the best scores according to CCI. These series indirectly represent how spatial information production
of urban crime fluctuates in time.

4.4. Linear and Nonlinear Processing Results

Several statistics were computed over D1 time series for the daily and weekly scales, as shown in
Figures 9 and 10, respectively. The first column corresponds to the histogram of the series. Columns
two and three present two statistics from linear processing: autocorrelation function and power
spectrum. The following three columns depict nonlinear statistics: average mutual information (AMI),
false nearest neighbors (FNN), and largest Lyapunov exponent (LLE)estimation. The last column
depicts the estimation of the Hurst exponent. Some quantitative attributes regarding these results are
presented in Tables 3 and 4.

The basic statistical analysis of D1 time series (i.e., histogram, mean, standard deviation std,
and coefficient of variation CV) showed that information dynamics in urban crime for selected US
cities fluctuated around similar levels with relatively small variations in both temporal scales. In
contrast, information dynamics in the urban crime of Bogota evolved around a smaller level with
significant fluctuations. Comparatively, the mean value of D1 series increased from daily to weekly
scale, generally preserving similar deviations, corresponding to the smallest CV in the latter scale.

The autocorrelation function revealed a fast decay of linear memory in daily D1 series for US
cases, whereas a slower decreasing was noted in the Bogota case. Linear memory in the weekly scale
seemed to decrease similarly for all cases. The first minimum of the autocorrelation (CorrLag) function
was located between two and five units in the daily scale. However, the span of the minimum was
narrower in the weekly scale between only two and three units. In general terms, the temporal memory
of D1, understood in a linear fashion, did not extend over a long range for both scales.
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Figure 9. Processing results for D1(n), daily scale. The figure columns are organized from left to right as
follows: histogram of the series, autocorrelation function, power spectrum, average mutual information,
false nearest neighbors, largest Lyapunov exponent estimation, and Hurst exponent estimation.

Figure 10. Processing results for D1(n), weekly scale. The figure is organized from left to right as
follows: histogram of the series, autocorrelation function, power spectrum, average mutual information,
false nearest neighbors, largest Lyapunov exponent estimation, and Hurst exponent estimation.

Table 3. Quantitative attributes obtained from linear signal processing. Results show that information
production in urban crime exhibited considerable fluctuation, short linear memory and wide frequency
content in both temporal scales.

Statistic Mean Std CV CorrLag Specent
Scale (Time) Daily Weekly Daily Weekly Daily Weekly Daily Weekly Daily Weekly

Los Angeles (NA) 1.0578 1.2499 0.1367 0.1339 0.1292 0.1071 2 2 0.3342 0.2121
Chicago (NA) 0.9481 1.1616 0.1079 0.0838 0.1138 0.0722 4 2 0.2995 0.1606

Philadelphia (NA) 1.0936 1.2301 0.1536 0.1935 0.1405 0.1573 2 2 0.3328 0.2583
San Francisco (NA) 0.9252 1.2490 0.1839 0.1977 0.1988 0.1583 5 2 0.3774 0.2373

Bogota (SA) 0.5940 0.8870 0.1985 0.1556 0.3342 0.1755 2 3 0.3820 0.2356
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Table 4. Quantitative attributes obtained from nonlinear signal processing. Results show that
information production in urban crime evolved as low-dimensional chaotic attractors that exhibited
strong nonlinear memory in both temporal scales.

Statistic AMILag EmbD LLE Hurst
Scale (Time) Daily Weekly Daily Weekly Daily Weekly Daily Weekly

Los Angeles (NA) 1 2 3 3 76.1373 280.0472 0.5913 0.8043
Chicago (NA) 2 1 3 3 294.2945 698.2849 0.7356 0.8264

Philadelphia (NA) 2 1 4 3 156.3149 705.9980 0.5263 0.8143
San Francisco (NA) 3 2 3 3 53.3821 410.1712 0.6488 0.7790

Bogota (SA) 4 2 4 3 0.7062 61.7643 0.9718 0.8870

The spectral centroids (Specent) of D1(n) were located in the low portion of the frequency
spectrum for both temporal scales. This suggests that although high-frequency content was noticeable
in these time series, their low-pass components were also significant in the dynamics of D1. It can also
be noted that power content decayed rapidly with frequency, which was more pronounced in US cases
for the daily scale. In contrast, power decay would be similar for all cases in the weekly scale.

Regarding nonlinear statistics, it can be noted that significant AMI (Equation (18)) levels of D1

series remained practically constant for wide temporal ranges. The first minimum of this function
(AMILag) was between one and four time units in the daily scale, while in the weekly scale, the span
of AMILag was narrower (i.e., between one and two time units). In both cases, the temporal decay of
AMI seemed to be rapid. However, its small fluctuation indicates that these D1 series exhibited strong
nonlinear temporal memory. AMILag was used as T in Equation (17) to study D1(n) in the light of
Taken’s theorem. The embedding dimension d was obtained from the FNN method as the value in
which false neighbors dropped to zero EmbD. Results from FNN point out that these D1 time series
may be produced by deterministic dynamics that exist in low-dimensional spaces independent from
the temporal scale.

The LLE estimation was carried out by means of Rosenstein’s method [55] with AMILag and
EmbD as T and d in Equation (17), respectively. Divergence was noted in all cases for both temporal
scales, which corresponds to the estimation of positive LLEs. This result suggests that the deterministic
dynamics behind these D1 time series are associated with low-dimensional chaotic attractors. The
temporal scale in which these D1 attractors were studied would not influence the perception of their
chaotic motion. However, much faster divergences were estimated in US cases with respect to the
Bogota case, which suggests the presence of attractors with stranger behavior.

Finally, the Hurst exponent estimation result was greater than 0.5 for all cases in both scales,
indicating that these D1 time series were irregular but persistent. Note that Hurst exponents increased
significantly from daily to weekly scales, corresponding to series with more marked tendencies in the
latter scale. However, note that a smaller set of scales was considered because of the reduced lengths.

5. Discussion

From the urban crime reports that were studied in this work, similar CCIs were computed for
the weekly and daily generations of dynamic multifractal spectra. However, this sole criterion is
not enough to make a decision about the convenience of an initial Lmin to study the multifractal
characteristic of crime subreports given a temporal scale. It is necessary to go deeper into the
complementary processing to study the dynamic behavior of D1, which sheds light on the set of
characteristic scales that should be considered when studying urban crime from its reports.

The evidence supported in the previous results suggests that the spatial information of selected
urban crime cases, studied through MF D1 time series, is generated by low-dimensional chaotic
dynamics with strong nonlinear memory and persistent behavior in both daily and weekly scales.
However, spatial scales of the studied phenomena started around Lmin = 1000 m (daily) and Lmin =

500 m (weekly), where the multifractal behavior can be detected and information scales with log L.
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In general terms, the dynamics of spatial information observed in these urban crime cases evolved
around low levels of D1 regarding the bidimensional support of crime reports.

The spatial information dynamics of urban crime exhibits a chaotic behavior in time. Although
a deterministic production of information lies behind the core of urban crime, the low predictability
of this phenomenon in space, time, and society is related to its chaotic informational dynamics. This
consideration invites us to think that the complexity of crime emerges as a result of the interaction
between the rational choice of agents and their interactions [4] with the information production of
urban backcloths, in which those individuals are just a part of the whole [3].

Even though dynamic properties of D1(n) were studied in this work and helped us to understand
scaling properties of urban crime from reported data, an ontological problem arises regarding these
time series because they are not signals in a formal sense (i.e., a detectable physical quantity by which
information is transmitted). A D1 time series represents fluctuating information itself that emerges
from a phenomenon. Accordingly, the notion of a physical quantity (i.e., state variable) associated to
a nonlinear dynamical system is an open problem. If the case for the nature of D1(n) is solved as a
dynamical variable related to others in Euclidean space, then the meaning of those variables would
require a theoretical treatment beyond traditional information concepts.

One of the variables to which information production of crime may be related in dynamical terms
is risk. There is evidence from the RTM practice that risk related to certain features of the urban
backcloth is also a dynamic variable [70]. At the core, informational processes behind crime and
risk may share common features or causal relations. This is an opportunity to consider measures
of mutual information between risk and crime patterns as a quantitative tool to complement RTM
methods. In this sense, multifractal analysis provides a conceptual framework to test the informational
similarity between these patterns in multiple scales where information scaling of both phenomena
is guaranteed. The spatial influence of risk was analyzed over a single scale that was selected from
theory and empirical research [71], which may hinder the detection of patterns if distributions are
not uninformative at that scale. Introducing the multifractal/informational approach in RTM may
complement the way of experience and theory in finding suitable scales by looking at the data of
the phenomenon.

The presence of temporal structure in the informational signals of crime dynamics also invites one
to think about making inferences supported on cross-correlation measures with informational signals
of risk computed from the MF-A2-OCD method. From the literature, it can be seen that RTM methods
are supported on the ground of linear statistics when trying to find independent variables. It is known
that nonlinear correlations can fool traditional statistics [30]. Hence, information-based measures like
the AMI can be considered as detectors of nonlinear correlations between criminogenic variables.

D1(n) can be understood as a signal that represents the dynamics of urban crime in a surrogate
fashion. Although these signals exhibited complex textures at daily and weekly scales, they evolved
in deterministic chaotic motion with strong nonlinear memory. This quantitative result supports the
idea at the heart of crime pattern theory about the non-randomness of crime. The evidence presented
in this work indicates that the spatial information production of crime is not a stochastic temporal
process. However, this does not mean that its dynamics is trivial. On the contrary, it is a challenge to
model the dynamic equations that govern it. In addition, as information production in crime evolves
chaotically, it is an indicator of non-stationary spatial patterns.

6. Conclusions

In this paper, we carried out a data-driven investigation of the information dynamics in reported
urban crime. This dynamic was explored by means of a novel conjugation of multifractal analysis
and some processing tools related to chaotic time series analysis. Our results suggest that information
dynamics in crime evolve in a low-dimensional chaotic attractor. This can be observed in available
crime reports in different spatio-temporal scales. However, certain scales are more favorable than
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others regarding the temporal properties of spatial information scaling, which is captured through the
dynamic multifractal spectrum in its information dimension D1(n).

This work suggested the use of an information-based method to identify the set of spatio-temporal
scales in which urban crime dynamics should be studied given a report of crime data. The key point
of this method is to identify the scales in which the multifractal characteristic of urban crime report
becomes evident. The identification is possible by looking at the integrity of the dynamic multifractal
spectrum and the properties of D1(n) in terms of its temporal structure. Although the method was
proposed specifically for studying crime, it could be used to study other kind of complex phenomena.

The findings presented in this paper support some theoretical perspectives that intend to explain
urban crime as a phenomenon that emerges from complex urban systems. Information production
can be considered as one of the elements that characterize the footprint of complexity in natural and
socio-technical systems. However, the theoretical background that connects information production
and nonlinear dynamics should be developed in an attempt to approach the complexity of this kind of
system. Moreover, multifractal and nonlinear approaches combined through the MF-A2-OCD method
can be considered as complementary tools to the practice of the risk terrain modeling of crime.
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