
entropy

Article

Efficient Algorithms for Coded Multicasting in
Heterogeneous Caching Networks

Giuseppe Vettigli 1 , Mingyue Ji 2,*, Karthikeyan Shanmugam 3, Jaime Llorca 4, Antonia M. Tulino 1,4

and Giuseppe Caire 5

1 Department of Electrical Engineering and Information Technology (DIETI), Universitá di Napoli Federico II,
80138 Napoli, Italy; g.vettigli86@gmail.com (G.V.); antoniamaria.tulino@unina.it (A.M.T.)

2 Department of Electrical and Computer Engineering (ECE), University of Utah, Salt Lake City, UT 84112, USA
3 IBM Research, New York, NY 10598, USA; karthikeyanshanmugam88@gmail.com
4 Department of Math and Algorithms, Nokia Bell Labs, Murray Hill, NJ 07738, USA;

jaime.llorca@nokia-bell-labs.com (J.L.); a.tulino@nokia-bell-labs.com (A.M.T.)
5 Faculty of Electrical Engineering and Computer Science (EECS), Technical University of Berlin, 10587 Berlin,

Germany; caire@tu-berlin.de
* Correspondence: mingyue.ji@utah.edu

Received: 14 January 2019; Accepted: 13 March 2019; Published: 25 March 2019
����������
�������

Abstract: Coded multicasting has been shown to be a promising approach to significantly improve the
performance of content delivery networks with multiple caches downstream of a common multicast
link. However, the schemes that have been shown to achieve order-optimal performance require content
items to be partitioned into several packets that grows exponentially with the number of caches, leading
to codes of exponential complexity that jeopardize their promising performance benefits. In this paper,
we address this crucial performance-complexity tradeoff in a heterogeneous caching network setting,
where edge caches with possibly different storage capacity collect multiple content requests that may
follow distinct demand distributions. We extend the asymptotic (in the number of packets per file)
analysis of shared link caching networks to heterogeneous network settings, and present novel coded
multicast schemes, based on local graph coloring, that exhibit polynomial-time complexity in all the system
parameters, while preserving the asymptotically proven multiplicative caching gain even for finite file
packetization. We further demonstrate that the packetization order (the number of packets each file is
split into) can be traded-off with the number of requests collected by each cache, while preserving the
same multiplicative caching gain. Simulation results confirm the superiority of the proposed schemes
and illustrate the interesting request aggregation vs. packetization order tradeoff within several practical
settings. Our results provide a compelling step towards the practical achievability of the promising
multiplicative caching gain in next generation access networks.

Keywords: caching networks; random fractional caching; coded caching; coded multicasting;
index coding; finite-length analysis; graph coloring; approximation algorithms

1. Introduction

Recent information-theoretic studies [1–49] have characterized the fundamental limiting performance
of several caching networks of practical relevance, in which throughput scales linearly with cache
size, showing great promise to accommodate the exponential traffic growth experienced in today’s
communication networks [50]. In this context, a caching scheme is defined in terms of two phases: the cache

Entropy 2019, 21, 324; doi:10.3390/e21030324 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e21030324
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/3/324?type=check_update&version=2

Entropy 2019, 21, 324 2 of 32

placement phase, which operates at a large time-scale and determines the content to be placed at the network
caches, and the delivery phase, during which user requests are served from the content caches and sources
in the network. Some of the network topologies studied include shared link caching networks [1,2,8–14],
device-to-device (D2D) caching networks [17–19,33,34], hierarchical caching networks [24], multi-server
caching networks [29], and combination caching networks [36–42].

Consider a network with one source (e.g., base station) having access to m files, and n users
(e.g., small-cell base stations or end user devices), each with a cache memory of M files. In [17], the authors
showed that if the users can communicate between each other via D2D communications, a simple
distributed random caching policy and TDMA-based unicast D2D delivery achieves the order-optimal
throughput Θ

(
max{M

m , 1
m , 1

n}
)

whose linear scaling with M when Mn ≥ m exhibits a remarkable
multiplicative caching gain, in the sense that the per-user throughput grows proportionally to the
cache size M for fixed library size m, and it is independent of the number of users n in the system.
Moreover, in this scheme each user caches entire files without the need for partitioning files into packets,
and missing files are delivered via unicast transmissions between neighbor nodes, making it efficiently
implementable in practice. We recall that order-optimality refers to the fact that the multiplicative gap
between information-theoretic converse and achievable performance can be bounded by a constant number
when m, n→ ∞.

In the case that users cannot communicate between each other, but share a multicast link from
the content source, the authors in [8,9] showed that the use of coded multicasting (also referred to as
index coding [51]) allows achieving the same order-optimal worst-case throughput as in the D2D caching
network. In this case, however, in order to create enough coding opportunities during the delivery phase,
requested files are required to be partitioned into a number of packets that grows exponentially with the
number of users, leading to coding schemes of exponential complexity [8,9,21].

In [10,12], the authors considered the same shared link caching network, but under random demands
characterized by a probability distribution, and proposed a scheme consisting of random aggregate
popularity (RAP) placement and chromatic number index coding (CIC) delivery, referred to as RAP-CIC,
proved to be order-optimal in terms of average throughput. The authors further provided optimal
average rate scaling laws under Zipf [52] demand distributions, whose analytical characterization
required resorting to a polynomial-time approximation of CIC, referred to as greedy constrained coloring
(GCC). Using RAP-GCC, the authors further established the regions of the system parameters, in which
multiplicative caching gains are potentially achievable. While GCC exhibits polynomial complexity in
the number of users and packets, the order-optimal performance guarantee still requires, in general,
the packetization order (number of packets per file) to grow exponentially with the number of users,
as showed in [21].

It is then key to understand if the promised multiplicative caching gain, shown to be asymptotically
achievable by the above-referenced schemes, can be preserved in practical settings of finite packetization
order. In this context, we shall differentiate between coded multicast schemes that assume a deterministic
vs. a random cache placement phase. Deterministic placement policies determine where to store file
packets according to a deterministic procedure that takes into account the ID of each packet. In contrast,
random placement policies, after determining the number of packets to be cached of each file at each
cache, choose the exact packet IDs uniformly at random. While the increased structure of deterministic
placement policies can be exploited to design more efficient coded multicast algorithms, random placement
policies are desirable in practice, as they provide increased robustness by requiring less cache configuration
changes under system dynamics.

The seminal work of [21] showed that all previously proposed schemes (based on both deterministic
and random cache placement) required exponential packetization, and that under random placement,

Entropy 2019, 21, 324 3 of 32

no graph-coloring-based coded multicast algorithm can achieve multiplicative caching gains with
sub-exponential packetization. Since the fundamental results of [21], several works have studied the now
central problem in caching of finite file packetization. The authors in [53] connect the caching problem to
resolvable combinatorial designs and derive a scheme that while improving exponentially over previous
schemes [8,9,21], still requires exponential packetization. In [54], the authors introduce the combinatorial
concept of Placement Delivery Array (PDA) and derive a caching scheme where the packetization
scales super-polynomially with the number of users. The work in [22] establishes a connection with
the construction of hypergraphs with extremal properties, and provides the first sub-exponential (but still
intractable) scheme. Somewhat surprisingly, some of the authors of [21] introduced a new combinatorial
design based on Ruzsa-Szeméredi graphs in [30] and showed that a linear scaling of the number of packets
per file with n can be achieved for a throughput of Θ(n−δ), where δ can be arbitrarily small. However,
all the above studies focus on coded multicast algorithms that assume a deterministic cache placement
phase. Under random cache placement, several coded multicast algorithms have been proposed in the
context of homogenous shared link caching networks [55–60], including our previous work that serves as
the basis for this paper.

In this work, we address the important problem of finite-length coded multicasting under random
cache placement, focusing on a more general heterogeneous shared link caching network, in which caches
with possibly different sizes collect possibly multiple requests according to possibly different demand
distributions (see Figure 1). As shown in Figure 1, this scenario can be motivated by the presence of both
end user caches and cache-enabled small-cell base stations or WLAN access points sharing a common
multicast link. In this case, each small-cell base station can be modeled as a user cache placing multiple
requests. In addition, multiple requests per user also arise in the presence of delay-tolerant content
requests (e.g., file downloading). While there have been several information-theoretic studies of shared
link caching networks with distinct cache sizes [61–63], and with multiple per-user requests [13,14,34,64,65],
none of these works considered the finite-length regime nor addressed the joint effect of random demands,
heterogenous cache sizes, and multiple per-user requests.

Mul$cast	 medium

wireless backhaul

Multiple Requests
Single Request

Cache

Served by the Macro Base
Station

Served by Small Cell Base Stations

Figure 1. An example of the network model, which consists of a source node (base station in this figure)
with access to the content library and connected to the users via a shared (multicast) link. Each user (end
users and small-cell base stations) may have different cache size and request a different number of files
according to their own demand distribution.

Entropy 2019, 21, 324 4 of 32

The contributions of this paper are as follows:

1. We provide a generalized model for heterogeneous shared link caching networks, in which users
can have different cache sizes and make different number of requests according to different demand
distributions.

2. We design two novel coded multicast algorithms based on local graph coloring, referred to as Greedy
Local Coloring (GLC) and Hierarchical Greedy Local Coloring (HgLC) that exhibit polynomial-time
complexity in both the number of caches and the packetization order. In combination with the
Random Aggregate Popularity (RAP) placement policy of [10,12], we show that the overall schemes
RAP-GLC and RAP-HgLC are order-optimal in the asymptotic file-length regime.

3. Focusing on the finite-length regime, in which content items can be partitioned into a finite number of
packets, we show how the general advantage of local graph coloring is especially relevant when the
number of per-user requests grow. We validate via simulations the superiority of RAP-GLC, especially
with high number of per-user requests. We then show how RAP-HgLC, with a slight increase in
the polynomial complexity order, further improves the caching gain of RAP-GLC, remarkably
approaching the multiplicative gain that existing schemes can only guarantee in the asymptotic
file-length regime.

4. We demonstrate that there is a tradeoff between the required packetization order and the number
of requested files per user. In particular, for a given target gain, if the number of requests increases,
then the number of packets per file can be reduced, while preserving the target gain. We further
quantify the regime of per-user requests for which a caching scheme with unit packetization
order (i.e., a scheme that treats only whole files) is order-optimal. Our analysis illustrates the
key impact of content request aggregation in time and space on caching performance. That is, if edge
caches can wait for collecting multiple requests over time and/or aggregate requests from multiple
users, the same performance can be achieved with lower packetization order, and hence lower
computational complexity.

The paper is organized as follows. Section 2 introduces the network model and problem
formulation. Section 3 describes the construction of coded multicast algorithms using graph coloring,
with special focus on the advantages of local graph coloring. Section 4 presents novel polynomial-time
local-graph-coloring-based coded multicast schemes. Section 5 analyzes the effect of request aggregation
on the performance–complexity tradeoff. Section 6 presents simulation results and related discussions.
Finally, concluding remarks are given in Section 7.

2. Network Model and Problem Formulation

We consider a caching network formed by a source node with access to a content library,
connected to several caching nodes/users via a single shared (multicast) link. Similar to previous
works [8–10,12–14,21,22,30], we define a caching scheme in terms of two phases:

• Placement phase, which operates at a large time-scale and determines the content to be placed at the
caching nodes,

• Delivery phase, during which users requests are served from the content caches and sources in
the network.

However, differently from previous works, we generalize the model to a heterogeneous system in
which each caching node has a possibly different cache size and requests a possibly different number of
files. A practical example of our setting can be represented by a macro base station connected to several
cache-enabled small-cell base stations, and a number of user devices served either by the macro base

Entropy 2019, 21, 324 5 of 32

station or by the small-cell base stations. In this setting, each small cell acts as a super user requesting
multiple files resulting from the requests of the users it serves.

Specifically, the heterogeneous caching network consists of a single source node storing a library
of files F = {1, . . . , m}, each with entropy F bits, and n user nodes U = {1, . . . , n}, each with a cache of
storage capacity MuF bits (i.e., each user caches up to Mu files). Each user u can requests Lu (1 ≤ Lu ≤ m)

different files according to its individual request probability distribution. We assume that the library files
have finite length and consequently a finite packetization order. Our main objective is to design a caching
scheme that minimizes the number of transmissions required to satisfy the demands of all users.

In a homogeneous network setting with infinite packetization order, recent works [8–10,12–14]
have shown that it is possible to satisfy a scaling number of users with only a constant number of
multicast transmissions. The achievable schemes configure user caches with complementary (side)
information during the caching phase, such that the resulting coded multicasting opportunities that
arise during the delivery phase can be used to minimize the transmission rate (or load) over the shared
multicast link. Specifically, reference [12] showed that under Zipf file popularity, a properly optimized
random fractional placement policy, referred to as Random Aggregate Popularity (RAP) caching, achieves
order-optimality when combined with a graph-coloring-based coded multicast scheme. Unfortunately,
even in the homogenous setting, it was shown in [21] that a central limitation of all previous works is that
they require infinite packetization order: all existing caching schemes achieve at most a factor of two gain
when the packetization order is finite.

In this work, inspired by the fundamental throughput-delay-memory tradeoff derived in [21], our goal
is to design computationally efficient schemes that provide good performance in the finite packetization
regime. For the caching phase, (1) we restrict our placement policies to the class of random fractional
schemes described in [9,10,12–14], proved to be order-optimal in the homogeneous setting. For the delivery
phase, (2) we focus on the class of graph-coloring-based index coding schemes, and design two novel
polynomial-time algorithms that employ local graph coloring on the (index coding) conflict graph [51].

2.1. Random Fractional Cache Placement

The class of random fractional placement schemes is described as follows:

1. Packetization: Each file is partitioned into B packets of equal-size F/B bits, where the integer B is
referred to as the packetization order. Each packet is represented by a symbol in finite field F2F/B ,
where we assume that F/B is large enough.

2. Random Placement: Each user u caches p f ,u MuB packets independently at random from each file f ,
where p f ,u is the probability that file f is cached at user u, and satisfies 0 ≤ p f ,u ≤ 1/Mu, ∀ f ∈ F
such that ∑m

f=1 p f ,u = 1, ∀u ∈ U .

We introduce a caching distribution matrix P = [p f ,u] ∈ Rm×n
+ , where f ∈ F and u ∈ U . Please

note that the number of packets of file f cached at user u, p f ,u MuB, can be directly determined from
the caching distribution matrix P. As described in [10,12–14], the caching distribution must be properly
optimized to balance the gains from local cache hits (where requested packets are served by the local
cache) and coded multicast opportunities (where requested packets are served by coded transmissions
that simultaneously satisfy distinct user requests). When this is the case, we refer to the cache placement
scheme as Random Aggregate Popularity (RAP) caching (see e.g., [10,12–14]). Given the number of packets
to be cached of a given file, the actual indices of the packets to be cached are chosen uniformly at random,
and independently across users. We use Cu, f to denote the set of packets of file f cached at user u and
C = {Cu, f } with u ∈ U and f ∈ F to denote the packet-level cache placement realization.

The goal of the placement phase is to configure the user caches to create coding opportunities
during the delivery phase that allow serving distinct user requests via common multicast transmissions.

Entropy 2019, 21, 324 6 of 32

Compared to deterministic placement [8], random placement schemes allow configuring user caches with
lower complexity and increased robustness, i.e., changes in system parameters (e.g., number of users,
number files, file popularity) require less changes in users’ cache configurations [12].

Recall that the placement phase operates at a much larger time-scale than the delivery phase,
and hence is unaware of the requests in the subsequent delivery rounds. Therefore, the placement phase
can be designed according to the demand distribution, but must be independent of the requests realizations.

2.2. Random Multiple Requests

Each user u ∈ U requests Lu (1 ≤ Lu ≤ m) files independently from other users, following
a probability distribution q f ,u with q f ,u ∈ [0, 1] and ∑m

f=1 q f ,u = 1 (i.e., for each request of user u, file f is
chosen with probability q f ,u). We introduce a demand distribution matrix Q = [q f ,u] ∈ Rm×n

+ , where f ∈ F
and u ∈ U . In the following, we use W = {Wu, f }, with u ∈ U and f ∈ F , to denote the packet-level
demand realization where Wu, f denotes the packets of file f requested by user u.

The multiple-request parameters {Lu} have a key operational meaning, in that it captures the
possibility of edge caches to collect requests across time and space. That is, Lu may represent the amount
of requests collected over time (given the delay tolerance of some content requests) as well as the amount
of requests collected across space from users served by the given edge cache (e.g., when edge caches are
located at helper nodes or small-cell base stations serving multiple individual users).

2.3. Performance Metric

For given realizations of the random fractional cache placement and the random multiple requests,
the goal is to design a delivery scheme that minimizes the rate over the shared multicast link required to
satisfy all user requests. Since one placement phase is followed by an arbitrarily large number of delivery
rounds (each characterized by a new independent request realization), the rate (or load) of the system
refers only to the delivery phase (i.e., asymptotically the cache placement costs no rate). Furthermore,
it makes sense to consider the average rate, where averaging with respect to the users request distribution
takes on the meaning of a time-averaged rate, invoking an ergodicity argument.

At each request round, let F = {f1, f2, · · · , fn} be the demand realization, where fu =

{ f1,u, f2,u, · · · , fLu ,u}, u ∈ U . The source node computes a multicast codeword as a function of the library
and the demand realization F. We assume that the source node communicates to the user nodes through
an error-free deterministic shared multicast link.

Given the demand realization F, let the total number of bits transmitted by the source node be J(F).
We are interested in the average performance of the coded multicast scheme, and hence define the average
rate (or load) as the number of transmitted bits normalized by the file size:

R =
E [J(F)]

F
, (1)

where the expectation is over the random demand distribution.

3. Graph-Coloring-Based Coded Multicast Delivery

It is important to note that for given cache placement and demand realizations, the delivery phase
of a caching scheme reduces to an index coding problem with a twist. The only difference with the
conventional index coding problem introduced in [51] is that the cache information may contain part of
(as opposed to entire) requested files, and that users may request multiple (as opposed to single) files.
Nevertheless, as in index coding, the problem can still be represented by a conflict graph [10,12–14],
where vertices represent requested packets, and an edge between two vertices indicates a conflict, in the

Entropy 2019, 21, 324 7 of 32

sense that the packet represented by one vertex is not present in the cache of the user requesting the
packet represented by the other vertex. By construction, packets with no conflict in the graph can be
simultaneously transmitted via an XOR operation. Performing graph coloring on the conflict graph
and transmitting the packets via proper XOR operations, according to the graph coloring, results in an
achievable linear index coding scheme, which we refer to as a coded multicast scheme.

In the following, we first illustrate how to construct the conflict graph, we then review classical linear
index coding schemes, and then describe our proposed graph-coloring-based coded multicast schemes.

3.1. Conflict Graph Construction

Given cache placement realization C and demand realization W, the directed conflict graph
Hd

C,W = (V , E) can be constructed as follows:

• Vertices: For each packet request in W, there is a vertex in Hd
C,W. Each vertex v ∈ V is uniquely

identified or labeled by a packet-user pair {ρ(v), µ(v)}, where ρ(v) denotes the identity of the packet,
and µ(v) the user requesting it. Hence, if a packet is requested by multiple users, such a packet is
represented in as many vertices as the number of users requesting it. Such vertices have the same
packet label ρ(v), but different user label µ(v).

• Arcs: For any v1, v2 ∈ V , there is an edge (v2, v1) ∈ E with direction from v2 to v1 if and only if
ρ(v1) 6= ρ(v2) and packet ρ(v1) is not in the cache of user µ(v2).

To better understand the rationale behind the conflict graph and its construction, note that for any
two vertices v1 and v2 that are labeled as {ρ(v1), µ(v1)} and {ρ(v2), µ(v2)}, respectively, we have the
following three possible cases:

• ρ(v1) 6= ρ(v2) and µ(v1) = µ(v2): This indicates that two different packets are requested by the same
user. Then, v1 and v2 are mutually conflicting, in the sense that if sent within the same time-frequency
resource they interfere with each other. Hence, in the conflict graph, they are connected with two
directed edges, (v1, v2) ∈ E and (v2, v1) ∈ E ;

• ρ(v1) = ρ(v2) and µ(v1) 6= µ(v2): This indicates that the same packet is requested by two different
users. Then, v1 and v2 are not conflicting, and hence not connected in the conflict graph; i.e., (v1, v2) /∈
E and (v2, v1) /∈ E ;

• ρ(v1) 6= ρ(v2) and µ(v1) 6= µ(v2): This indicates that two different packets are requested by two
different users. In this case, if packet ρ(v1) is in the cache of user µ(v2), then, even if ρ(v1) and
ρ(v2) are sent within the same time-frequency resource, user µ(v2) will not suffer from interference,
since, using its cache information, it can cancel out the undesired packet ρ(v1) from the received
signal. On the other hand, if packet ρ(v1) is not in the cache of user µ(v2), then v1 conflicts with v2,
and a directed edge is drawn from v2 to v1. Similarly, (v1, v2) ∈ E if and only if ρ(v2) /∈ Cµ(v1)

.

Based on the above construction, it follows that the number of interference dimensions faced by
a given node is at most the number of its outgoing neighbors.

To illustrate the construction of the directed conflict graphHd
C,W, we present the following example.

Example 1. We consider a network with n = 3 users denoted as U = {1, 2, 3} and m = 3 files denoted
as F = {A, B, C}. We assume Mu = 1, ∀u ∈ U and partition each file into three packets. For example,
A = {A1, A2, A3}. Let pA,u = pB,u = pC,u = 1

3 for u ∈ U , which means that one packet from each of A, B, C
is stored in each user’s cache. For the sake of notational convenience, we assume a symmetric caching realization,
where the caching configuration C is given by Cu,A = {Au}, Cu,B = {Bu}, Cu,C = {Cu}). That is, the cache
configuration of each user u ∈ U is Cu = {Au, Bu, Cu}. We let each user make two requests, i.e., Lu = 2 (∀u ∈ U).
Specifically, we let user 1 request A, B, user 2 request B, C, and user 3 request C, A, i.e., f1 = {A, B}, f2 =

Entropy 2019, 21, 324 8 of 32

{B, C}, f3 = {C, A}), such that W1 = {A2, A3, B2, B3}, W2 = {B1, B3, C1, C3}, W3 = {A1, A2, C1, C2}.
The associated directed conflict graph is shown in Figure 2.

A2 A3 B3B2

B3

A2

B1

C1

C3

C1

C2

A1

A1 B1 C1

C2

B2

A2 A3

B3

C3

User 1

User 2 User 3

Figure 2. An example of the construction of the directed conflict graph (this figure needs to be viewed in
color). The color of each circle in this figure represents the coloring of each vertex.

3.2. Code Construction

Let ωv denote the content (or realization) of packet ρ(v), v ∈ V , represented by a symbol in Fq.
In general, in a linear index coding scheme of length `, every vertex v is associated with a “coding"
vector gv ∈ F`×1

q where v ∈ [1 : |V|]. Let G = [g1, . . . g|V|] and ω = [ω1, . . . , ω|V|]T. Then, the transmitted

codeword, x ∈ F`×1
q , is built as follows:

x = ∑
v∈V

ωvgv = Gω, (2)

Let N (v) = {w : (v, w) ∈ E} be the out-neighborhood of v. For any feasible scalar linear index
coding scheme of the form (2), the following interference alignment condition is necessary: For every
vertex v, the coding vector gv should be linearly independent of all the coding vectors assigned to the
out-neighborhood of v.

In the following, we describe how to construct coding vectors satisfying the interference alignment
condition for every vertex. For ease of notation, we useHd to denote the directed conflict graph, andH
to represent its underlying undirected skeleton, where the direction of edges is ignored. Recall that an
undirected skeleton of a directed graph Hd is an undirected graph where there is an undirected edge
between v1 and v2 if, between v1 and v2, there is a directed edge in either or both directions inHd.

3.2.1. Graph Coloring and Chromatic Number

A well-known procedure to construct the coding vectors {gv, v ∈ N (v)} is the coloring of Hd.
In the following, when used without any qualification, a coloring of a directed graph is considered to be
a proper (vertex) coloring of its underlying undirected skeletonH, where a proper coloring is a labeling
of the graph’s vertices with colors, such that no two vertices sharing the same edge have the same color.
Please note that by definition, any subset of nodes with the same color in a proper coloring form an
independent set (i.e., a subset of nodes in a graph, no two of which share the same edge). A coloring
using at most k colors is called a (proper) k-coloring. The smallest number of colors needed in a proper
coloring of Hd is called its chromatic number, and is denoted by χ(Hd). In the following, we explain
why a coloring of Hd provides a way to design the coding vectors {gv, v ∈ N (v)}. Let ξ be the total

Entropy 2019, 21, 324 9 of 32

number of colors in a given coloring of Hd. Let ei be the i-th unit vector in the space F`×1
q , with ` = ξ,

i.e., ei = [0, 0, · · · , 1, · · · , 0, 0]T, where the 1 is in the i-th position. Now, if vertex v is colored with color
i, then, its coding vector is gv = ei. Making this choice for the coding vectors, the associated achievable
rate is given by ξ

B . Since neighbors are assigned different colors, the interference alignment condition is
satisfied for every vertex. Recalling the definition of χ(Hd), it is immediate to see that the best achievable

rate due to conflict graph coloring is given by χ(Hd)
B , and, according to the construction of the conflict

graph, it is loosely bounded by:

∑
f∈fu

(1− p f ,u Mu) ≤
χ(Hd)

B
≤

n

∑
u=1

∑
f∈fu

(1− p f ,u Mu), (3)

indicating that the achievable rate is a constant with regards to B. A much tighter bound will be given
in Section 4.1.

3.2.2. Local Graph Coloring and Local Chromatic Number

More efficient sets of coding vectors can be constructed using the approach proposed in [66], which
exploits the direction information inHd

C,W, resulting in the following advanced coding scheme:

Definition 1 (Local Coloring Number). Given a proper coloring c ofHd, the associated local chromatic number
is defined as:

ξlc(c) = max
v∈V
|c(N+(v))| (4)

where N+(v) is the closed out-neighborhood of vertex v (i.e., vertex v and all its ongoing neighbors N (v)) and
|c(N+(v))| is the total number of colors in N+(v) for a given proper color assignment c.

The minimum local coloring number over all proper colorings is referred to as the local chromatic
number and is formally defined as follows:

Definition 2 (Local Chromatic Number). The directed local chromatic number of a directed graph Hd is
defined as:

χlc(Hd) = min
c∈C

ξlc(c) (5)

where C denotes the set of all proper coloring assignments ofHd, N+(v) is the closed out-neighborhood of vertex v,
and |c(N+(v))| is the total number of colors in N+(v) for a given proper color assignment c.

Encoding Scheme: For a given realization of the cache placement (C) and user requests (W), let us
consider the conflict graphHd

C,W as in Section 3.1. Given a (proper) ξ-coloring (i.e., a proper coloring of
graph Hd

C,W with ξ colors), we compute the associated local coloring number ξlc. Set ` = ξlc and p = ξ.
Then, consider the columns of the generator H of an ` × p Maximum Distance Separable (MDS) [67]
code over the field Fq : q > p . If the color of a vertex v is i, then the coding vector gv assigned to vertex v
is given by i-th column hi of H. Then, the transmitted multicast codeword, x ∈ F`×1

q , is given by (2).
Decoding Scheme: In any closed out-neighborhood, there are at most ` different colors (from the

definition of local coloring). Since every ` columns of H are linearly independent (from the defining
property of MDS codes), the coding vectors in any closed out-neighborhood have full rank, satisfying

Entropy 2019, 21, 324 10 of 32

the interference alignment condition. The message ωv at vertex v is obtained at user v as follows: (1)
Using side information at user v, cancel out message parts corresponding to all vertices outside N+(v),
i.e., x′ = x− ∑

u/∈N+(v)
ωugu. This is possible because, by the definition of the conflict graphHd, the messages

{ωu}u/∈N+(v) are available as side information at user v and the encoding mechanism is known to all the
users. (2) Find a vector z in the dual space of {gu}u∈N+(v)\{v} such that zTx′ 6= 0 (this is possible since gv

is linearly independent of {gu}u∈N+(v)\{v} because of the local chromatic number-based construction).
Now, zTx′ = (zTgv)ωv. Therefore, user v recovers its own message. It follows that all users can recover all
the requested packets employing such linear scheme.

Achievable Rate: The coding scheme constructed as described above achieves a rate given by ξlc/B,
where B is the number of packets per file.

Example 2. We consider an example shown in Figure 3. First, we assign colors to each vertex such that the total
number of colors ξ = 5, and count the local coloring number, which is ξlc = 4. Then, we construct the generator
matrix A of a (ξ = 5, ξlc = 4) MDS code, which is given by

A =

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

. (6)

After that, we assign the columns of A to gv, corresponding from the left to the right to the vertices with the
packets {A2, A3, B2, B1, A1}, as shown in Figure 3. Finally, the transmitted codewords can be generated which are
the rows of the right-hand side of (2)

X(1) = A1 ⊕A2, X(2) = A1 ⊕A3 (7)

X(3) = A1 ⊕ B1, X(4) = A1 ⊕ B2 (8)

where the length of the code is ξlc/B = 4/3 file units. It can be easily verified that every user can decoded its desired
packets with the cached ones.

A1

A2

A3

A3

B1

B2

1
0
0
0

0
1
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
1
1

Figure 3. An illustration of coded multicast codewords construction based on local coloring (this figure
needs to be viewed in color). The total number of colors is ξ = 5, and the local coloring number is ξlc = 4.

It is immediate to see that the best achievable rate due to local coloring is obtained by computing the
local chromatic number ofHd

C,W and using its associated coloring to design the coding vectors, yielding
a rate χlc/B. However, note that to compute χlc, we must optimize over all proper colorings to find the

Entropy 2019, 21, 324 11 of 32

local chromatic number. As with the chromatic number, this can be cast as an Integer Program and it is
hence an NP-hard problem. To overcome this limitation, in Section 4, we propose a greedy approach
that (i) exhibits polynomial-time complexity in all the system parameters, (ii) achieves close to optimal
performance for finite packetization order, and (iii) is asymptotically (i.e., for infinite packetization order)
order-optimal.

3.3. Benefits of Local Coloring

Consider the following relation established for general directed graphs in [66]:

χlc(Hd) ≤ χ(Hd) ≤ χlc(Hd)O(log n). (9)

Focusing on the conflict graph of interestHd
C,W, the number of vertices can be as large as B ∑u∈U Lu.

It then follows from (9) that the gap between the local chromatic number and the chromatic number
can be as large as log(B ∑u∈U Lu). Please note that this multiplicative factor grows with the number of
packets per file B and the number of per-user requests Lu, supporting the extra benefit of local coloring
in the multiple-request scenario. In addition, the higher the number of per-user requests, the higher
the directionality of the conflict graph, which is the main factor exploited by local coloring to reduce
the achievable rate (see Section 3.2.2), further supporting the suitability of local coloring in increasingly
practical settings where there is some form of spatial or temporal request aggregation.

4. Proposed Algorithms and Performance Analysis

As stated earlier, computing the local chromatic number is NP-hard. To circumvent this challenge,
in this section, we propose two greedy coded multicast schemes, which together with the cache
placement described in Section 2.1, yield the following two caching schemes: Randomized Aggregate
Popularity-Greedy Local Coloring (RAP-GLC) and Randomized Aggregate Popularity-Hierarchical
greedy Local Coloring (RAP-HgLC). In both cases, the steps for obtaining the coded multicast scheme are
as follow:

i. Given a realization of the cache placement (C) and of the user requests (W), build the conflict graph
Hd

C,W as in Section 3.1.
ii. Use any of the above algorithms (GLC or HgLC) to compute a proper coloring. Let ξ denote the

number of colors used by either of the above algorithms to colorHd
C,W. Let ξlc be the associated local

coloring number.
iii. Consider a (ξ, ξlc) MDS code and compute the corresponding coded multicast scheme as described in

Section 3.2.2.

4.1. Randomized Aggregate Popularity-Greedy Local Coloring (RAP-GLC)

The RAP-GLC algorithm generalizes the RAP-GCC (Random Aggregate Popularity-Greedy
Constrained Coloring) algorithm introduced in [12]. RAP-GCC is a caching scheme based on random
fractional caching for the placement phase and a coded multicast scheme built on greedy-graph-coloring
-based linear index coding [51,68] for the delivery phase. RAP-GLC is more general than RAP-GCC
in two aspects: (1) conventional coloring is replaced by local coloring to leverage possible gains in the
multiple-request scenario, as described in Sections 3.2.1 and 3.3, and (2) RAP-GLC adaptively (depending
on the demand realization) chooses between naive or coded multicasting according to a threshold
parameter, instead of sticking to one of them (as in RAP-GCC).

Entropy 2019, 21, 324 12 of 32

4.1.1. RAP-GLC Algorithm Description

The algorithm associates to each vertex v a label or tag, composed of two fields
i.e., Kv ≡ (TD(v), TC(v)) with TC(v) denoting the subset of users caching the packet associated with
vertex v, i.e.,

TC(v)
∆
= {u ∈ U : ρ(v) ∈ Cu}, (10)

and TD(v) denoting the subset of users requesting the packet associated with vertex v, i.e.,

TD(v)
∆
= {u ∈ U : ρ(v) ∈ Wu}, (11)

which includes the user itself µ(v) who requests ρ(v) and all the others requesting ρ(v). Please note that
the cardinality of TD(v) indicates the popularity of packet ρ(v). Furthermore, let

Tv = {µ(v)} ∪ TC(v).

Given a vertex v, if the cardinality of TD(v) is higher than a predetermined threshold parameter
t ∈ {0 · · · , n} i.e., |TD(v)| > t, then all vertices v′ such that ρ(v) = ρ(v′) are colored with the same
color, leading to a naive multicast transmission scheme. If |TD(v)| ≤ t, then RAP-GLC greedily looks for
a maximal set of vertices with the same Tv (Algorithm 1, Line 14) and colors them with the same color
if there is no conflict among the vertices (Algorithm 1, Line 15). The threshold parameter t is subject to
optimization, as described in Section 4.1.2.

Doing this, RAP-GLC computes a valid coloring of the conflict graph H. Finally, the algorithm
computes its associated local coloring number (Algorithm 1, Line 24). The coding scheme employed is
based on the MDS code described in Section 3.2.1 associated with the above local coloring.

Algorithm 1 RAP-GLC
1: Let C = ∅;
2: Let c = ∅;
3: while V 6= ∅ do

4: Pick an arbitrary vertex v in V ; Let I = {v};
5: Let V ′ = V \ {v};
6: if { |TD(v)| > t } then

7: for all v′ ∈ V ′ with ρ(v′) = ρ(v) do

8: I = I ∪ v′;
9: end for

10: Color all the vertices in I by c /∈ C;
11: Let c[I ′] = c;
12: V = V \ I ′.
13: else

14: for all v′ ∈ V ′ with Tv′ ≡ Tv do

15: if {There is no edge between v′ and I} then

16: I = I ∪ v′;
17: end if
18: end for
19: Color all the vertices in I by c /∈ C;
20: Let c[I] = c;
21: V = V \ I .
22: end if
23: end while
24: return the local coloring number maxv∈V |c(N+(v))| and the corresponding color assignment c(N+(v)) for

each v;

Entropy 2019, 21, 324 13 of 32

Time Complexity: In Algorithm 1, both the outer while-loop starting at Line 3, and the inner for-loop
starting at Line 6 iterate at most |V| times, and all other operations inside the loops take constant time.
Therefore, the complexity of RAP-GLC is O(|V|2) or, equivalently, O(n2B2), since |V| ≤ nB, which is
polynomial in |V| (or n, B).

4.1.2. RAP-GLC Performance Analysis

In the following, we quantify the performance of RAP-GLC in the asymptotic regime when the
number of users and files is kept constant while the packetization order is sent to infinity. Denoting
by E[RRAP−GLC(P, Q, t)] the asymptotic average achievable rate of RAP-GLC for a fixed threshold t,
the threshold parameter t is optimized to minimize E[RRAP−GLC(P, Q, t)]. Hence, denoting by R̄RAP−GLC

the average rate achieved by RAP-GLC with optimized t, i.e.,

R̄RAP−GLC = min
t

E[RRAP−GLC(P, Q, t)],

we have that
R̄RAP−GLC ≤ min{E[RRAP−GLC(P, Q, n)],E[RRAP−GLC(P, Q, 0)].

Since E[RRAP−GLC(P, Q, 0)] is just the rate achieved via naive multicasting, then, an upper
bound on the average asymptotic performance of RAP-GLC can be obtained by upper bounding
E[RRAP−GLC(P, Q, n)] which can be obtained by generalizing the asymptotic performance analysis
of RAP-GCC derived in [10,12] using conventional graph coloring in the homogeneous shared link
caching network to the case of using local coloring in the heterogeneous caching network. Specifically,
we extend the order-optimality analysis under single per-user requests (L = 1) in the asymptotic regime of
B→ ∞ [10,12], to that under multiple L > 1 per-use requests [13,14]. These theoretical results will serve
as rate lower bounds for the finite-length performance of our proposed algorithms.

Let L = maxu Lu and order Lu, u ∈ U as a decreasing sequence L[1] ≥ L[2] ≥ L[3], . . . , L[n], where L[i]
is the i-th largest Lu and [i] = u for some u ∈ U . It can be seen that L[1] = maxu Lu and L[n] = minu Lu.
Let nj = ∑[i] 1{L[i] − j ≥ 0} > 0, where 1 ≤ j ≤ L[1] and 1{·} is the indicator function. Let Unj = {[i] ∈ U :
1{L[i] − j ≥ 0}}. In the next theorem, we provide a performance guarantee of the RAP-GLC algorithm.

Theorem 1. For any given m, n, Mu, the random caching distribution P and the random request distribution Q,
the average achievable rate of the RAP-GLC algorithm, R̄RAP−GLC satisfies

R̄RAP−GLC ≤ min{ψ(P, Q), m̄− M̄}, (12)

when B→ ∞, where,

m̄ =
m

∑
f=1

(
1−

n

∏
u=1

(
1− q f ,u

)Lu

)
, (13)

M̄ =
m

∑
f=1

(
1−

n

∏
u=1

(
1− q f ,u

)Lu

)
min

u
p f ,u Mu, (14)

ψ(P, Q) =
L

∑
j=1

n

∑
`=1

∑
U `⊂Unj

m

∑
f=1

∑
u∈U `

ρ f ,u,U `λ(u, f ,U `),

Entropy 2019, 21, 324 14 of 32

with U ` denoting a set of users with cardinality `,

λ(u, fu,U `) = (1− p fu ,u Mu)× ∏
k∈U `\{u}

(p fu ,k Mk) ∏
k∈U\U `

(1− p fu ,k Mk) (15)

and

ρ f ,u,U `
∆
= P(f = arg max

fu∈f(U `)
λ(u, fu,U `)),

denoting the probability that f is the file whose p f ,u maximizes the term λ(u, fu,U `) among f(U `) (the set of files
requested by U `).

Proof. See Appendix A.

Using the explicit expression for R̄RAP−GLC in Theorem 1, we can optimize the caching distribution
for a wide class of heterogeneous network models to minimize the number of transmissions. We use P∗ to
denote the caching distribution that minimizes RRAP−GLC.

Remark 1. For the sake of the numerical evaluation of ψ(q, p), it is worthwhile to note that the probabilities ρ f ,u,U `

can be easily computed as follows. Given the subset of users, U ` of cardinality `, let Ju1 , . . . , Ju`
denote ` i.i.d. random

variables each of them distributed over F with pmf qui , with i = 1, . . . , `. Since λ(u1, Ju1U `), · · · , λ(u`, Ju`
,U `)

are i.i.d., the CDF of Y`
∆
= max{λ(u1, Ju1 ,U `), · · · , λ(u`, Ju`

,U `)} is given by

P (Y` ≤ y) =
`

∏
i=1

P
(

λ(ui, Jui ,U `) ≤ y
)

=
`

∏
i=1

 ∑

j∈F :λ(ui ,j,U `)≤y

qui ,j

 .

(16)

Hence, it follows that

ρ f ,u,U ` = P(Y` = λ(u, f ,U `))

=
`

∏
i=1

 ∑

j∈F :g`(j)≤λ(u, f ,U `)

qui ,j

−

`

∏
i=1

 ∑

j∈F :g`(j)<λ(u, f ,U `)

qui ,j

 ,

(17)

which can be easily computed by sorting the values {λ(ui, j,U `) : j ∈ F , ui ∈ U `}.

Nevertheless, as shown in [21], when B is finite or is not exponential in n, the performance of
RAP-GLC can degrade significantly, compromising the promising multiplicative caching gain, although it
is already an improved version of RAP-GCC in [12]. This brings us to the other main contribution where
we propose a new algorithm that preserves the gain due to coded multicasting even when B is finite.

4.2. Randomized Aggregate Popularity-Hierarchical Greedy Local Coloring (RAP-HgLC) for
Finite-Length Packetization

Similarly to RAP-GLC, RAP-HgLC has a predetermined parameter t ∈ {0, · · · , n} that is optimized
to minimize its associated average achievable rate. However, in the RAP-HgLC algorithm, we arrange
the vertices in a hierarchy and use this to design a more careful coloring algorithm. The key idea of

Entropy 2019, 21, 324 15 of 32

RAP-HgLC is to exploit the labeling of each vertex more efficiently. More specifically, as in RAP-GLC,
RAP-HgLC associates to each vertex v a label or tag, composed by the two fields Kv ≡ (TD(v), TC(v)),
defined in (10) and (11).

4.2.1. RAP-HgLC Algorithm Description

Before jumping into the algorithm, we introduce the following useful notations and their definitions.

• Gi: The i-th layer, Gi is initialized with the set of vertices {v : |Tv| = i} and at any point in the
algorithm contains only vertices with |Kv| ≥ i. Gi is updated continuously in the algorithm. Therefore,
higher numbered layers contain vertices with greater popularity.

• W1 ⊂ Gi: a subset of Gi consists of all the vertices with |Kv| = i as well as a certain number of vertices
with higher popularity (if available at any iteration), defined as

W1 =

{
v ∈ Gi : min

v∈Gi
|Kv| ≤ |Kv| ≤ min

v∈Gi
|Kv| +

⌊
a
(

max
v∈Gi
|Kv| −min

v∈Gi
|Kv|

)⌋}
, (18)

where a ∈ [0, 1] is a design parameter andW1 is updated with every iteration.
• Qi (see Algorithm 2): another subset of Gi that is updated every iteration.
• W2 ⊂ Qi: a subset of vertices in Qi defined as:

W2 =

{
v′ ∈ Qi : min

v′∈Qi
|Kv′ | ≤ |Kv′ | ≤ min

v′∈Qi
|Kv′ | +

⌊
b
(

max
v′∈Qi

|Kv′ | − min
v′∈Qi

|Kv′ |
)⌋}

, (19)

where b ∈ [0, 1] is another design parameter.

Based on the above definitions, it follows that the total set vertices V forms an n-layer hierarchy with
the i-th layer composed of the set of vertices Gi.

Key Idea: Starting from layer n, at any layer i ≤ n, the RAP-HgLC algorithm attempts to form an
independent set of size at least i; when there are no more such independent sets, all remaining packets are
dropped to layer i− 1, and transmission actions on those packets are deferred to later layers. This is the key
difference between RAP-HgLC and RAP-GLC. That is, RAP-HgLC makes an extra effort to place nodes
with large labels into large independent sets.

We will now describe how the above key idea is implemented in RAP-HgLC. The RAP-HgLC
algorithm forms large independent sets in a “top-down” fashion, starting with the highest layer,
and iteratively moving to lower layers until layer 1. The following two steps are performed at each layer:

1. Step I: The first step is similar to that in RAP-GLC algorithm. Given a vertex v, the algorithm first
checks if the cardinality of TD(v) is higher than t, i.e., |TD(v)| > t then all the vertices v′ such
that ρ(v) = ρ(v′) are colored with the same color. If |TD(v)| ≤ t then the algorithm greedily finds
independent sets of size i, where every vertex v in the independent set (Algorithm 2, Line 20) has the
same Kv (Algorithm 2, Line 19). After removing these vertices, the rest of the vertices in Gi are left for
the second step.

2. Step II: A candidate pool of verticesW1 ⊆ Gi is created. This set contains vertices v such that |Kv|
being close to the smallest available |Kv|’s. We randomly pick a vertex v from W1 (Algorithm 2,
Line 31). The design parameter a determines how close is the picked |Kv| to the smallest available
ones. We gradually form an independent set of size i with v included as follows: Form another set
W2 (Algorithm 2, Line 34), excluding v, whose vertices have |Kv′ | that is bigger but closer to that of
v determined by b, sample repeatedly with replacement from it to grow the independent set. If an
independent set of size at least i cannot be formed, we drop the vertex v to the lower layer Gi−1,
and take it into account in the next layer iteration. Otherwise, we assign a color to the independent set.

Entropy 2019, 21, 324 16 of 32

W1 is repeatedly formed and random sampling fromW1 repeated till every vertex in Gi is dropped
or colored.

Algorithm 2 HgLC

1: C = ∅;
2: c = ∅;
3: choose a ∈ [0, 1]
4: choose b ∈ [0, 1]
5: for all i = n, n− 1, . . . , 2, 1 do

6: for all v ∈ Gi and |Kv| = i do

7: I = {v};
8: Let V ′ = V \ {v};
9: if { |TD(v)| > t } then

10: for all v′ ∈ V ′ with ρ(v′) = ρ(v) do

11: I = I ∪ v′;
12: end for
13: Color all the vertices in I by c /∈ C;
14: Let c[I] = c;
15: for all i = n, n− 1, . . . , 2, 1 do

16: Gi = Gi \ I ;
17: end for
18: else

19: for all v′ ∈ Gi \ I with Kv′ ≡ Kv do

20: if {There is no edge between v′ and I} then

21: I = I ∪ v′;
22: end if
23: end for
24: if |I| = i then

25: Color all the vertices in I by c /∈ C;
26: c[I] = c, C = C ∪ c;
27: Gi = Gi \ I ;
28: end if
29: end if
30: end for
31: for all v ∈ Gi with v randomly picked fromW1 ⊂ Gi do

32: I = {v};
33: Qi = Gi \ I ;
34: for all v′ ∈ Qi with v′ randomly picked fromW2 ⊂ Qi. do

35: if {Kv′ ⊃ Kv } ∩ {No edge between v′ and I} then

36: I = I ∪ v′;
37: Qi = Qi \ {v′};
38: else

39: Qi = Qi \ {v′};
40: end if
41: end for
42: if |I| ≥ i then

43: Color all the vertices in I by c /∈ C;
44: c[I] = c, C = C ∪ c;
45: Gi = Gi \ I ;
46: else

47: Gi = Gi \ {v}, Gi−1 = Gi−1 ∪ {v};
48: end if
49: end for
50: end for
51: c =LocalSearch(HC,W, c, C);
52: return the local coloring number maxv∈V |c(N+(v))| and the corresponding color assignment c(N+(v)) for each v;

Entropy 2019, 21, 324 17 of 32

Remark 2. Please note that RAP-GLC goes through the same Step I as RAP-HgLC, and then simply assigns
a different color to each remaining uncolored vertex. On the other hand, Step II in RAP-HgLC tries to find further
independent sets among the remaining uncolored vertices. It is this extra step that guarantees the performance of
RAP-HgLC to be no worse than that of RAP-GLC.

The RAP-HgLC algorithm, when operating on the i-th layer, always colors at least i vertices with the
same color. Please note that if there are remaining vertices when reaching layer 1, all such vertices will be
colored, each with a different color.

To further reduce the required number of colors, we use a function called LocalSearch (Algorithm 2,
Line 51), which is described in Algorithm 3. It works in an iterative fashion by replacing the current
solution with a better one if there exists. It terminates when no better solutions can be found. In particular,
the local search algorithm has the purpose of checking the redundancy of each color c ∈ C, to eventually
decrease the current objective function value |C|. In more detail, the local search computes, iteratively for
each color c ∈ C, the set Jc of all vertices colored with color c, and performs the following steps:

1. For each vertex i ∈ Jc, if there is a color c′ ∈ C, c′ 6= c that is not assigned to any adjacent vertex
j ∈ Adj(i), then assign vertex i with color c′;

2. Color c is removed from the set C if and only if in the previous step it has been possible to replace c
with some color c′ 6= c for all vertices in Jc.

Finally, in Algorithm 2, Line 52, we compute the local coloring number.

Algorithm 3 LocalSearch(HC,W, c, C)

1: for all c ∈ C do

2: Let Jc be the set of vertices whose color is c;
3: Let B = ∅;
4: Let ĉ = c;
5: for all i ∈ Jc do

6: A = ∅;
7: for all j ∈ N (i) do

8: A = A∪ c[j];
9: if C \ A 6= ∅ then

10: c′ is chosen uniformly at random from C \ A;
11: ĉ[i] = c′;
12: B = B ∪ {i};
13: end if
14: end for
15: if |B| = |Jc| then

16: c = ĉ;
17: C = C \ c;
18: end if
19: end for
20: end for
21: return c;

To illustrate the RAP-HgLC algorithm, we present the following example.

Example 3. Consider a shared link network with n = 3 users: U = {1, 2, 3}, and m = 3 files: F = {A, B, C}.
Each file is partitioned into 4 packets. For example, A = {A1, A2, A3, A4}. For the caching part, let user 1
cache {A1, B1, B2, B3, B4, C2}, user 2 cache {A1, A2, A3, A4, B1, C2, C3}, user 3 cache {A1, A2, A3, C1, B2, B3}.
Then, let users {1, 2, 3} request files {A, B, C} respectively. Equivalently, user 1 requests A2, A3, A4; user 2

Entropy 2019, 21, 324 18 of 32

requests B2, B3, B4; user 3 requests C2, C3, C4. Then, we have KA2 = {1, 2 3}; KA3 = {1, 2 3}; KA4 = {1, 2};
KB2 = {2, 1 3}; KB2 = {2, 1 3}; KB4 = {2, 1}; KC2 = {3, 1 2}; KC3 = {3, 2}; KC4 = {3} (here C4 is requested
by user 3 and not cached anywhere).

The RAP-HgLC algorithm works as follows. For i = n = 3, G3 = {A2, A3, B2, B3, C2}, let v = A2, then it
can be found that B2 and C2 would be in I , hence I = {A2, B2, C2}. Now since |I| = n = 3, we color A2, B2, C2

by black (see Figure 4). Then Gi = Gi \ I = {A3, B3}. In the following loop, since we cannot find a set I with
|I| = n = 3, we move to Line 19. Then since we cannot find a I with |I| ≥ n = 3, then we do G2 = G2 ∪ {A3},
and then G2 = G2 ∪ {B3}. Therefore, we obtain G2 = {A3, A4, B3, B4, C3}. Now we go to Line 5 (start next loop).
For i = n− 1 = 2, in this loop, we first pick v = A4, then we can find I = {A4, B4}. We color {A4, B4} by blue
(see Figure 4). Now G2 = G2 \ {A4, B4} = {A3, B3, C3}. Then in Line 19, we find the vertex with smallest length
of Kv (let a = 0), which is C3 with KC3 = {3, 2}, then we have I = {C3} and Q2 = {A3, B3}, then in the next
loop, we can find I = {C3, B3}. We color I = {C3, B3} by red (see Figure 4). Now G2 = G2 \ {C3, B3} = {A3}.
Since there is no I with |I| ≥ 2, then we do G1 = G1 ∪ {A3} = {C4, A3}. Then we go to next loop i = n− 2 = 1.
Then we can see that I = {C4}, and we color {C4} by purple (see Figure 4). Then G1 = G1 \ {C4} = {A3}.
Hence, we can find I = {A3} and we color {A3} by brown.

According to Figure 4, the total number of required colors is 5, while the maximum number of colors required
locally by each user is 4. For the naive multicasting, since it only allows the vertices represented the same packet
to be colored by the same color, the total number of required colors is 9. The corresponding rate is given by 9/4.
Hence, the final rate achieved by RAP-HgLC with local coloring is no more than min{4/4, 9/4} = 1. For the
interested reader, it can be verified that if the GCC algorithm, designed for B→ ∞, as proposed in [10], is used, the
corresponding number of required colors is 6.

A2

B2 C2

A4

B4

B3 C3

A3

C4

{3}

{3, 2}

{2, 1}

{1, 2}{1, 2 3} {1, 2 3}

{2, 1 3}

{2, 1 3}

{3, 2 1}

Figure 4. One example for the RAP-HgLC algorithm (this figure needs to be viewed in color).

The complexity of RAP-HgLC can be computed as follows. For the hierarchical coloring procedure
(Line 5–50 in Algorithm 2), the complexity is O(n|V|2), and the complexity of local search procedure is
O(|E |). Therefore, the running time complexity of RAP-HgLC is given by O(n|V|2 + |E |) = O(n|V|2).
Since |V| ≤ nB, the running time complexity of RAP-HgLC is O

(
n3B2).

4.2.2. RAP-HgLC Performance Analysis

For the general heterogeneous network setting, tight upper bounds on the asymptotic (B → ∞)
average achievable rate of RAP-HgLC are quite complex to derive, even though a simple (but not
necessarily tight) upper bound on the asymptotic performance can be obtained considering the asymptotic
average rate of RAP-GLC (see Remark 2).

Entropy 2019, 21, 324 19 of 32

Regarding the finite-length regime, in [21] we derived a tight upper bound on the performance
of RAP-HgLC for the simpler case of homogenous networks under worst-case demands. Specifically,
the bound in [21], requires B to be Õ

((m
M
)g+2

)
(where Õ hides some poly log terms) to achieve a worst-case

rate of at most n
g . This approximately matches a lower bound of Õ(

(m
M
)g
) derived in the same work for any

coloring algorithm, showing, for the simpler homogenous network setting, the optimality of RAP-HgLC
among all graph-coloring-based algorithms.

For the more complex setting where demands arise from popularity distributions and every user
requests multiple files, the finite-length performance of RAP-HgLC is investigated in Section 6 via
numerical analysis, where we show how the RAP-HgLC is able to recover most of the multiplicative
caching gain even with very moderate packetization order.

5. Tradeoff between Number of Requests and Code Length

As mentioned earlier, in the simpler homogenous scenario, the authors in [21] showed that under
worst-case demands, to achieve a gain g over conventional naive multicasting, it is necessary for B to
grow exponentially with g. Intuitively, this is because a sufficiently large B is needed to create coded
multicast transmissions that are useful for multiple users. However, when each user makes multiple
requests, the number of requests Lu = L can play a similar role to that of B, such that the requirement for
B, and hence the resulting computational complexity can be reduced. For ease of analysis, in this section,
we assume that all users place the same number of requests (Lu = L).

In the following, under either worst-case or uniform demands, we show the sufficient conditions on
B and L that guarantee achieving a gain g = Mn

m . From this result, we can obtain the regime where B and
L are interchangeable (L plays an equivalent role to B). Note that it can be shown that the number of file
transmissions under both worst-case and uniform demands have the same order.

We consider two cases for the range of B: the case of B = 1, and the case of B = ω
(m

M
)
. The regime

where 1 < B = O
(m

M
)

is out of the scope of this paper.
When B = 1, the cache placement algorithm becomes scalar uniform cache placement (SUP), in which

each user caches M entire files chosen uniformly at random. For simplicity, we let M be a positive integer.
Then, as shown in [14], letting L→ ∞ as a function of n, m, M, we obtain the following theorem.

Theorem 2. When B = 1 and M = ω(1), for the shared link caching network with n users, library size m, storage
capacity M, and L distinct per-user requests (nL ≤ m), if (i) M

m ≤ 1
2 and

L = ω

max

nM
m

(m
M

)n 1(
1− M

m

) ,

 (nM)

1
2(1−ε)

(m
M − 1

) (
1−

(
1− M

m

)n)

 , (20)

or (ii) M
m ≥ e

1+e and

L = ω

max

(
m

m−M

)n
,

 (nM)

1
2(1−ε)

(m
M − 1

) (
1−

(
1− M

m

)n)

 , (21)

where ε is an arbitrarily small number,
then, the achievable rate of RAP-GLC is upper bounded by

lim
n,m→∞

P
(

RSUP−GLC ≤ (1 + o(1))min
{

L
(m

M
− 1
)

, Ln, m−M
})

= 1.

Entropy 2019, 21, 324 20 of 32

Proof. See Appendix B.

From Theorem 2, we can see that when L and M are large enough, instead of requiring a large B and
packet-level coding, a simpler file-level coding scheme is sufficient to achieve the same order-optimal rate.
We remark, however, that the range of the parameter regimes in which this result holds is limited due
to the requirement of a large M and L. Next, we focus on another parameter regime, when B = ω

(m
M
)
,

and find the achievable tradeoff between B and L.

Theorem 3. When B = ω
(m

M
)
, for the shared link caching network with n users, library size m, storage capacity

M, and L distinct per-user requests (nL ≤ m), if (i) M
m ≤ 1

2 , and

B = ω

max

nM
Lm

(m
M

)n 1(
1− M

m

) ,
(nM)

1
2(1−ε)

L
(m

M − 1
) (

1−
(

1− M
m

)n)

 , (22)

or (ii) M
m ≥ e

1+e , and

B = ω

max

1
L

(
m

m−M

)n
,

(nM)
1

2(1−ε)

L
(m

M − 1
) (

1−
(

1− M
m

)n)

 , (23)

where ε is an arbitrarily small number,
Then, the achievable rate of RAP-GLC is upper bounded by

lim
n,m→∞

P
(

RSUP−GLC ≤ (1 + o(1))min
{

L
(m

M
− 1
)

, Ln, m−M
})

= 1. (24)

Proof. See Appendix C.

If we particularize Theorem 1 to the homogenous network setting under uniform demands, we see
that the rate achieved by RAP-GLC is upper bounded by the same expression given in (24). Hence,
from Theorem 2, we can see that when L is large enough, instead of requiring a very large B, an intermediate
value of B = ω

(m
M
)

is sufficient to achieve the same order-optimal rate. In practice, it is important to
find the right balance and tradeoff between B and L given the remaining system parameters. In Section 6,
we show via simulation that a similar tradeoff holds also for RAP-HgLC.

6. Simulations and Discussions

In this section, we numerically evaluate the performance of the two polynomial-time algorithms
described in Section 4, RAP-GLC and RAP-HgLC, in the finite-length regime characterized by the number
of packets per file B.

Recall that the caching distribution P∗ is to be optimized to minimize the number of transmissions.
Since the distribution P∗ resulting from minimizing the right-hand side of (12) may not admit
an analytically tractable expression in general, in the following numerical results, we restrict the caching
distribution to take the form of a truncated uniform distribution p̃u, as described in [12]:

p̃ f ,u =
1
m̃ u

, f ≤ m̃u

p̃ f ,u = 0, f ≥ m̃ + 1
(25)

Entropy 2019, 21, 324 21 of 32

where the cut-off index m̃u ≥ M is a function of the system parameters that is optimized to minimize the
right-hand side of (12). The intuition behind the form of p̃u in (25) is that each user caches the same fraction
of (randomly selected) packets from each of the most m̃u popular files, and does not cache any packet from
the remaining m− m̃u least popular files. We point out that when m̃u = M, this cache placement coincides
with the LFU (Least Frequently Used) caching policy. Thus, this cache placement is referred to as Random
LFU (RLFU) [12], and the corresponding caching algorithms as RLFU-GLC and RLFU-HgLC. Recall that
LFU discards the least frequently requested file upon the arrival of a new file to a full cache of size Mu

files. In the long run, this is equivalent to caching the Mu most popular files [69].
In Figures 5 and 6, we plot the average achievable rate, i.e., the average number of transmissions

(normalized by the file size) as a function of the cache size for RLFU-GLC and RLFU-HgLC. For comparison,
we also simulate the following algorithms:

• LFU, which has been shown to be optimal in single cache networks;
• RLFU-GLC with infinite file packetization (B → ∞), whose performance guarantee is given in

Theorem 1, and it is shown to be order optimal.

Regarding the LFU algorithm, the average achievable rate is given by

E[RLFU] =
m

∑
f=minu{Mu}+1

1− ∏

u∈U{Mu< f }

(1− q f ,u)
Lu

 , (26)

where U{Mu< f } denotes the set of users with Mu < f .

0 200 400 600 800 1000M
0

5

10

15

20

25

30

35

40

N
um

be
r o

f t
ra

ns
m

is
si

on
s

 HgLC with B=1000
LFU
GLC with B=1000
GLC with B=

(a)

0 200 400 600 800 1000M
0

5

10

15

20

25

30

35

N
um

be
r o

f t
ra

ns
m

is
si

on
s

pe
r r

eq
ue

st

HgLC with B=100, L=10
LFU
GLC with B=100, L=10
GLC with B=

(b)

Figure 5. Average number of transmissions in a heterogeneous shared link caching network with m = 1000.
(a) n = 40, L = 1, γ = 0.5; (b) n = 40, L = 10, γ = 0.5.

For simplicity, and to better illustrate the effectiveness of the proposed algorithms, especially under
multiple per-user requests, we consider a scenario in which all users request files according to a Zipf
demand distribution with parameter γ ∈ {0.2, 0, 4, 0.5}, and all caches have size M files. Under Zipf

demands, file f is requested with probability f−γ

∑m
i=1 i−γ .

We consider two types of users. In Figures 5a and 6a, users represent end devices requesting only one
file each (L = 1); while in Figures 5b and 6b, they represent helpers/small-cells, each serving 10 end user
devices, and consequently collecting L = 10 requests.

Entropy 2019, 21, 324 22 of 32

In Figure 5a,b, we fix the total number of users n and the product between L and B (L× B = 1000).
Figure 5a plots the average rate for a network with n = 40 users, γ = 0.5, L = 1, and B = 1000.
It is immediate to observe the impact of finite packetization on the multiplicative caching gain. In fact,
as predicted by the theory (see [21]), the significant caching gain (with respect to LFU) quantified by the
asymptotic performance of RAP-GLC (GLC with B = ∞) is completely lost when using RAP-GLC with
finite packetization (GLC with B = 1000). On the other hand, RAP-HgLC remarkably preserves, at the
expense of a slight increase in computational complexity, most of the multiplicative caching gain for the
same value of file packetization. For example, in Figure 5a, if M doubles from M = 200 to M = 400,
then the rate achieved by RAP-HgLC reduces from 15 to 5.7. Furthermore, RAP-HgLC can achieve a factor
of 3.5 rate reduction from LFU for M = 500. For the same regime, it is straightforward to verify that
neither RAP-GLC nor LFU exhibit this property. Note from Figure 5a that to guarantee a rate of 10,
RAP-GLC requires a cache size of M = 500, while RAP-HgLC can reduce the cache size requirement to
M = 250, a 2× cache size reduction. Furthermore, while LFU can only provide an additive caching gain,
additive and multiplicative gains may show indistinguishable when M is comparable to the library size m.
Hence, one needs to pick a reasonably small M (m

n < M� m) to observe the multiplicative caching gain
of RAP-HgLC.

Figure 5b shows the average rate for a network with n = 40 helpers/small-cells, each serving 10 users
making requests according to a Zip distribution with γ = 0.5. Hence, the total number of distinct requests
per helper is up to Lu = 10, ∀u ∈ {1, . . . , 20}. In this case, we assume B = 100 (instead of B = 1000 in
Figure 5a). In order to make easier the comparison with Figure 5a, we normalize the achievable rate
(number of transmissions) by the file size and the number of requests.

Note from Figure 5a,b that as predicted by Theorem 3, when Lu increases (from Lu = 1 to Lu = 10),
almost the same multiplicative caching gain can be achieved with a smaller B (from B = 1000 to B = 100).
In fact, from Figure 5a,b, we see that under RAP-HgLC, the average rate per request for B = 100 and
L = 10 is almost the same as the average rate per request for B = 1000 and L = 1. This confirms the
interesting tradeoff between B and L established in Theorem 3.

We can observe a similar behavior in Figure 6a,b. Figure 6a plots the average rate for a network with
n = 80 users, γ = 0.4, L = 1, and B = 200. RAP-HgLC is able to preserve most of the multiplicative
caching gain for the same values of file packetization. For example, in Figure 6a, if M doubles from
M = 200 to M = 400, then the rate achieved by RAP-HgLC essentially halves from 20 to 10. Furthermore,
RAP-HgLC can achieve a factor of 5 rate reduction from LFU for M = 500. Note from Figure 6a that to
guarantee a rate of 20, RAP-GLC requires a cache size of M = 500, while RAP-HgLC can reduce the cache
size requirement to M = 200, a 2.5× cache size reduction.

Figure 6b plots the average rate for a network with n = 20 helpers/small-cells, each serving 10 users
making requests according to a Zip distribution with γ = 0.2. Hence, the total number of distinct requests
per helper is up to Lu = 10, ∀u ∈ {1, . . . , 20}. In this case, we assume B = 100. Differently from Figure 5b,
here we plot the average rate without normalizing it by the number of requests.

Note from Figure 6a,b that, as predicted by Theorem 3, when Lu increases (from Lu = 1 to Lu = 10),
almost the same multiplicative caching gain can be achieved with a smaller B (from B = 200 to B = 100).
In fact, from Figure 6a,b, we see that under RAP-HgLC , the average rate per request for B = 100 and
L = 10 is almost the same as the average rate per request for B = 200 and L = 1. For example, for M = 200,
B = 100, and L = 10, the per request average rate achieved by RAP-HgLC is 0.3, while for M = 200 and
B = 200, is 0.25. This again confirms the tradeoff between B and L stated in Theorem 3.

Entropy 2019, 21, 324 23 of 32

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

M

Nu
m

be
r o

f t
ra

ns
m

iss
io

ns

GCLC with B=∞
HgLC with B=200
GCLC with B=200
LFU

G

G

(a)

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160

180

200

M

Nu
m

be
r o

f t
ra

ns
m

iss
io

ns

GCLCwith B=∞
HgLC with B=100
GCLC with B=100
LFU

G

G

(b)

Figure 6. Average number of transmissions in a heterogeneous shared link caching network with m = 1000.
(a) n = 80, L = 1, γ = 0.4; (b) n = 20, L = 10, γ = 0.2.

Furthermore, from Figures 5 and 6, we notice that increasing the Zip parameter reduces the gains
with respect to LFU. This is explained by the fact that when aggregating multiple requests, there is a higher
number of overlapping requests, which increases the opportunities for naive multicasting (as clearly
characterized in [13]). Note, however, that RAP-HgLC can remarkably keep similar gains with respect to
LFU in this multiple-request setting, and approach the asymptotic performance even with just B = 100
packets per file, confirming the effectiveness of the local graph coloring and extra processing procedures
in RAP-HgLC.

7. Conclusions

Coded multicasting has been shown to be a promising approach to significantly reduce the traffic
load in wireless caching networks. However, most existing schemes require the number of packets per file
to grow exponentially with the number of users. To address this challenge, in this paper we focused on
a heterogeneous shared link caching network model and designed novel coded multicast algorithms based
on local graph coloring that exhibit polynomial-time complexity in all the system parameters, and preserve
the asymptotically proven multiplicative caching gain for finite file packetization. We also demonstrated
that the number of packets per file can be traded-off with the number of requests collected by each cache,
such that the same multiplicative caching gain can be preserved. Simulation results confirm the superiority
of the proposed schemes and illustrate the tradeoff between request aggregation and computational
complexity (driven by the packetization order), shedding light into the practical achievability of the
promising multiplicative caching gain in next generation wireless networks.

Author Contributions: All authors have contributed in equal part to the results of this paper.

Funding: This research was funded in part by NSF grants #1619129, #1817154, #1824558, and by the Alexander von
Humboldt Professorship.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

To analytically characterize the performance of RAP-GLC, we consider two specific cases, where t = n
(i.e., the coded multicast only scheme) and t = 0 (i.e., the naive multicasting only scheme), and refer to these
schemes as RAP-GLC1 and RAP-GLC2, respectively. In the following, we will compute the performance of

Entropy 2019, 21, 324 24 of 32

these two cases respectively and take the minimum rate between these two cases. Obviously, this rate can
serve as an upper bound of RAP-GLC.

Appendix A.1. Average Total Number of Colors for RAP-GLC1

To compute the average total number of colors provided by RAP-GLC1, we first see that for all v ∈ I
obtained in this algorithm, Tv are identical. Based on Algorithm 1, by construction the independent sets
I ⊂ V generated by RAP-GLC1 have the same (unordered) label of users requesting or caching the packets
{ρ(v) : v ∈ I}. We shall refer to such unordered label of users as the user label of the independent set.
Hence, we count the independent sets by enumerating all possible user labels, and upperbounding how
many independent sets I Algorithm 1 generates for each user label. Consider a user label U ` ⊂ U of
size `, and let I(U `, f, i) the i-th independent set generated by Algorithm 1 with label U ` and while let
J (U `, f) = {I(U `, f, i) : ∀i}.

Following Algorithm 1, for each U `, the number of used colors is |J (U `, f)|. Given f, we can see that
|J (U `, f)| is a random variable which is a function of C. Let the indicator 1{Tv fu

= U `} denote the event
that vertex v fu from file fu requested by user u ∈ U ` is available in all the users in U ` but u and the rest of
the vertices U \ U `, then 1{Tv fu

= U `} follows a Bernoulli distribution with parameter

λ(u, fu) = (1− p fu ,u Mu) ∏
k∈U `\{u}

(p fu ,k Mk) ∏
k∈U\U `

(1− p fu ,k Mk) (A1)

such that its expectation is λ(u, fu). Then, we can see that given f , ∑∀v fu
1{Tv fu

= U `} = λ(u, fu)B + o(B)
with high probability [70]. Thus, as B→ ∞, we have that with high probability,

|J (U `, f)| = max
fu∈f(U `)

∑
∀v fu

1{Tv fu
= U `}

= max
fu∈f(U `)

λ(u, fu)B + o(B),
(A2)

where f(U `) represent the set of files requested by U `.
Then, by averaging over the demand’s distribution, we obtain that with high probability:

E[χ(HM,W)] ≤ E

L

∑
j=1

n

∑
`=1

∑
U `⊂Unj

∣∣∣J (U `, f)
∣∣∣

=
L

∑
j=1

n

∑
`=1

∑
U `⊂Unj

E
[∣∣∣J (U `, f)

∣∣∣
]

(a)
=

L

∑
j=1

n

∑
`=1

∑
U `⊂Unj

E
[

max
fu∈f(U `)

λ(u, fu)B + o(B)

]

(b)
=

L

∑
j=1

n

∑
`=1

∑
U `⊂Unj

m

∑
f=1

∑
u∈U `

ρ f ,u,U ` λ(u, f) + δ1(B),

(A3)

where (a) is by using (A2) and (b) is obtained by computing the probability that the requested file fu in f(U `)

maximizes λ(u, f). δ1(B) denotes a smaller order term of ∑L
j=1 ∑n

`=1 ∑U `⊂Unj
∑m

f=1 ∑u∈U ` ρ f ,u,U `λ(u, f).

For any U `, we obtain that ∑ f ∑u∈U ` ρ f ,u,U ` = 1, and ρ f ,u,U ` denotes the probability that file f is the file

Entropy 2019, 21, 324 25 of 32

with memory assignment p f ,u such that ρ f ,u,U `
∆
= P(f = arg max

fu∈f(U `)
λ(u, fu), where f(U `) denotes the set

of files requested by a subset users U `. Thus, we normalize (A3) by B and obtain that

RRAP−GLC1 =
E[χ(HM,W)]

B

≤
L

∑
j=1

n

∑
`=1

∑
U `⊂Unj

m

∑
f=1

∑
u∈U `

ρ f ,u,U `λ(u, f),

= ψ(P, Q),

(A4)

which is the first term inside the minimum in (12).

Appendix A.2. Average Total Number of Colors for RAP-GLC2

As described in Section 4.1, RAP-GLC2 computes the minimum coloring of HC,W subject to the
constraint that only the vertices representing the same packet can have the same color. In this case, the total
number of colors is equal to the number of distinct requested packets, and the coloring can be found
in O(|V|2). Starting from this valid coloring, GCLC2 computes maxv∈V |c(N+(v))|. To show that the
performance of GCLC2 are upper bounded by m̄− M̄ with m̄ and M̄ given as in (13) and (14) respectively,
we note that:

max
v∈V
|c(N+(v))|

(a)
≤ ∑

f∈Fn

(
n

∏
u=1

q f ,u

)
m

∑̂
f=1

1{ f̂ ∈ f}B f

=
m

∑̂
f=1

∑
f∈Fn

(
n

∏
u=1

q f ,u

)
1{ f̂ ∈ f}B f̂ ,f

(b)
≤ ∑

f
P(file f is requested)(B−min

u
pu, f MuB)

=
m

∑
f=1

(
1−

n

∏
u=1

(
1− q f ,u

)Lu

)
(1−min

u
pu, f Mu)B,

(A5)

where B f̂ ,f is number of chucks that are going to be transmitted of file f̂ given that the demand vector is

equal to f, and (a) is due to the observation that given a file f̂ ,

∑
f∈Fn

(
n

∏
u=1

q f ,u

)
1{ f̂ ∈ f} = E[1{ f̂ ∈ f}]

= P(file f̂ is requested).

(A6)

Normalizing (A5) by B, we obtain that:

RRAP−GLC2 ≤
m

∑
f=1

(
1−

n

∏
u=1

(
1− q f ,u

)Lu

)

· (1−min
u

pu, f Mu)

= m̄− M̄,

(A7)

Entropy 2019, 21, 324 26 of 32

which is the second term inside the minimum in (12).

Appendix B. Proof of Theorem 2

In this section, we prove Theorem 2. Recall that for each U `, the number of used colors is given by
|J (U `, f)|, then we have we have |J (U `, f)| = maxu∈U ` ∑∀v fu

1{Tv fu
= U `}, where f(U `) represent the

set of files requested by U `. In this case, it is clear that

E

∑
∀v fu

1{Tv fu
= U `}

 = L

(
M
m

)l−1 (
1− M

m

)n−l+1
. (A8)

Then let

Yl
∆
= |J (U `, f)| −E

∑
∀v fu

1{Tv fu
= U `}

 . (A9)

The goal is to find a condition of L such that

|E[Yl]| = o

(
L
(

M
m

)l−1 (
1− M

m

)n−l+1
)

, (A10)

which implies

E
[
|J (U `, f)|

]
≤ (1 + o(1))L

(
M
m

)l−1 (
1− M

m

)n−l+1
. (A11)

Then following the similar step from Theorem 1 in [12], we can obtain the concentration result shown

in Theorem 2, where we require L = ω

(
(nM)

1
2(1−ε)

(m
M−1)

(
1−(1−M

m)
n)

)
and ε > 0 is an arbitrarily small number.

To compute |E[Yl]|, we have

(E[Yl])
2 ≤ E[(Yl)

2]

= E

|J (U `, f)| −E

∑
∀v fu

1{Tv fu
= U `}

2

= E

max

u∈U `

∑
∀v fu

1{Tv fu
= U `} −E

∑
∀v fu

1{Tv fu
= U `}

2

≤ ∑
u∈U `

E

∑
∀v fu

1{Tv fu
= U `} −E

∑
∀v fu

1{Tv fu
= U `}

2

= lE

∑
∀v fu

1{Tv fu
= U `} −E

∑
∀v fu

1{Tv fu
= U `}

2

(a)
= lL

(
M
m

)l−1 (
1− M

m

)n−l+1
(

1−
(

M
m

)l−1 (
1− M

m

)n−l+1
)
+ δ1,

(A12)

Entropy 2019, 21, 324 27 of 32

where (a) is because M = ω(1) such that δ1 is a smaller order term compared to the first term in (A12) and
use the variance for the Binomial distribution. Then, we let

(
lL
(

M
m

)l−1 (
1− M

m

)n−l+1
(

1−
(

M
m

)l−1 (
1− M

m

)n−l+1
)) 1

2
= o

(
L
(

M
m

)l−1 (
1− M

m

)n−l+1
)

, (A13)

then, we can obtain

L = ω

l
(

1−
(

M
m

)l−1 (
1− M

m

)n−l+1
)

(
M
m

)l−1 (
1− M

m

)n−l+1

= ω

(
1−

(
M
m

)l−1 (
1− M

m

)n−l+1
)

1
l

(
M
m

)l−1 (
1− M

m

)n−l+1

 .

(A14)

For sufficient condition, let

L = ω

 1

1
l

(
M
m

)l−1 (
1− M

m

)n−l+1

 . (A15)

Do the derivative of s(l) = 1
l

(
M
m

)l−1 (
1− M

m

)n−l+1
with respect to l, we obtain

ds(l)
dl

=
1
l

((
M
m

)l−1 (
1− M

m

)n−l+1
log

M
m

− log
(

1− M
m

)(
M
m

)l−1 (
1− M

m

)n−l+1
)

− 1
l2

(
M
m

)l−1 (
1− M

m

)n−l+1

=
1
l

log

(
M
m

1− M
m

)(
M
m

)l−1 (
1− M

m

)n−l+1

− 1
l2

(
M
m

)l−1 (
1− M

m

)n−l+1
.

(A16)

• When M
m < 1

2 , then we have ds(l)
l < 0. Hence, s(l) is a decreasing function such that the minimum

value of s(l) take place when l = n. Thus, by using (A15), we obtain the sufficient condition is
given by

L = ω

(
n
(m

M
)n−1

1− M
m

)
= ω

nM

m

(m
M

)n 1(
1− M

m

)

 . (A17)

Entropy 2019, 21, 324 28 of 32

• When M
m ≥ e

1+e , then we have ds(l)
l > 0. Hence, s(l) is an increasing function such that the minimum

value of s(l) take place when l = 1. Thus, by using (A15) we obtain the sufficient condition is given by

L = ω

 1(

1− M
m

)n

 = ω

((
m

m−M

)n)
. (A18)

Thus, we finished the proof of Theorem 2.

Appendix C. Proof of Theorem 3

In this proof, we follow the similar procedure in the proof of Theorem 2 in Appendix B, and obtain

E

∑
∀v fu

1{Tv fu
= U `}

 = LB

(
M
m

)l−1 (
1− M

m

)n−l+1
. (A19)

Then let

Yl
∆
= |J (U `, f)| −E

∑
∀v fu

1{Tv fu
= U `}

 . (A20)

The goal again is to find a condition of B and L such that

|E[Yl]| = o

(
LB
(

M
m

)l−1 (
1− M

m

)n−l+1
)

, (A21)

which implies

E
[
|J (U `, f)|

]
≤ (1 + o(1))LB

(
M
m

)l−1 (
1− M

m

)n−l+1
. (A22)

Then following the similar step from Theorem 1 in [12], we can obtain the concentration result shown

in Theorem 2, where we require LB = ω

(
(nM)

1
2(1−ε)

(m
M−1)

(
1−(1−M

m)
n)

)
and ε > 0 is an arbitrarily small number.

Similar to (A12), to compute |E[Yl]|, we have

(E[Yl])
2 ≤ E[(Yl)

2]

(a)
= lLB

(
M
m

)l−1 (
1− M

m

)n−l+1
·
(

1−
(

M
m

)l−1 (
1− M

m

)n−l+1
)
+ δ2,

(A23)

where (a) is because B = ω
(m

M
)

such that δ2 is a smaller order term compared to the first term in (A23)
and use the variance for the Binomial distribution. Then, we let

(
lLB

(
M
m

)l−1 (
1− M

m

)n−l+1
(

1−
(

M
m

)l−1 (
1− M

m

)n−l+1
)) 1

2

= o

(
LB
(

M
m

)l−1 (
1− M

m

)n−l+1
)

,

(A24)

Entropy 2019, 21, 324 29 of 32

then, we can obtain

LB =

(
1−

(
M
m

)l−1 (
1− M

m

)n−l+1
)

(
M
m

)l−1 (
1− M

m

)n−l+1

=

(
1−

(
M
m

)l−1 (
1− M

m

)n−l+1
)

1
l

(
M
m

)l−1 (
1− M

m

)n−l+1 .

(A25)

For sufficient condition, let

LB = ω

 1

1
l

(
M
m

)l−1 (
1− M

m

)n−l+1

 . (A26)

Then following the similar steps as the proof of Theorem 2 in Appendix B, we fished the proof
of Theorem 3.

References

1. Shanmugam, K.; Golrezaei, N.; Dimakis, A.; Molisch, A.; Caire, G. FemtoCaching: Wireless Video Content
Delivery through Distributed Caching Helpers. IEEE Trans. Inf. Theory 2013, 59, 8402–8413. [CrossRef]

2. Llorca, J.; Tulino, A.; Guan, K.; Kilper, D. Network-Coded Caching-Aided Multicast for Efficient Content
Delivery. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest,
Hungary, 9–13 June 2013.

3. Fadlallah, Y.; Tulino, A.M.; Barone, D.; Vettigli, G.; Llorca, J.; Gorce, J. Coding for Caching in 5G Networks.
IEEE Commun. Mag. 2017, 55, 106–113. [CrossRef]

4. Liu, D.; Chen, B.; Yang, C.; Molisch, A.F. Caching at the wireless edge: Design aspects, challenges, and future
directions. IEEE Commun. Mag. 2016, 54, 22–28. [CrossRef]

5. Tandon, R.; Simeone, O. Harnessing cloud and edge synergies: Toward an information theory of fog radio access
networks. IEEE Commun. Mag. 2016, 54, 44–50. [CrossRef]

6. Maddah-Ali, M.A.; Niesen, U. Coding for caching: Fundamental limits and practical challenges. IEEE Commun. Mag.
2016, 54, 23–29. [CrossRef]

7. Paschos, G.; Bastug, E.; Land, I.; Caire, G.; Debbah, M. Wireless caching: Technical misconceptions and business
barriers. IEEE Commun. Mag. 2016, 54, 16–22. [CrossRef]

8. Maddah-Ali, M.; Niesen, U. Fundamental Limits of Caching. IEEE Trans. Inf. Theory 2014, 60, 2856–2867.
[CrossRef]

9. Maddah-Ali, M.; Niesen, U. Decentralized Coded Caching Attains Order-Optimal Memory-Rate Tradeoff.
IEEE/ACM Trans. Netw. 2014. [CrossRef]

10. Ji, M.; Tulino, A.; Llorca, J.; Caire, G. On the average performance of caching and coded multicasting with
random demands. In Proceedings of the 2014 11th International Symposium on Wireless Communications
Systems (ISWCS), Barcelona, Spain, 26–29 August 2014; pp. 922–926.

11. Niesen, U.; Maddah-Ali, M.A. Coded Caching With Nonuniform Demands. IEEE Trans. Inf. Theory 2017,
63, 1146–1158. [CrossRef]

12. Ji, M.; Tulino, A.M.; Llorca, J.; Caire, G. Order-Optimal Rate of Caching and Coded Multicasting with Random
Demands. IEEE Trans. Inf. Theory 2017, 63, 3923–3949. [CrossRef]

http://dx.doi.org/10.1109/TIT.2013.2281606
http://dx.doi.org/10.1109/MCOM.2017.1600449CM
http://dx.doi.org/10.1109/MCOM.2016.7565183
http://dx.doi.org/10.1109/MCOM.2016.7537176
http://dx.doi.org/10.1109/MCOM.2016.7537173
http://dx.doi.org/10.1109/MCOM.2016.7537172
http://dx.doi.org/10.1109/TIT.2014.2306938
http://dx.doi.org/10.1109/TNET.2014.2317316
http://dx.doi.org/10.1109/TIT.2016.2639522
http://dx.doi.org/10.1109/TIT.2017.2695611

Entropy 2019, 21, 324 30 of 32

13. Ji, M.; Tulino, A.; Llorca, J.; Caire, G. Caching and Coded Multicasting: Multiple Groupcast Index Coding.
In Proceedings of the 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta,
GA, USA, 3–5 December 2014; pp. 881–885.

14. Ji, M.; Tulino, A.M.; Llorca, J.; Caire, G. Caching-Aided Coded Multicasting with Multiple Random Requests.
In Proceedings of the 2015 IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015; pp. 1–5.

15. Wan, K.; Tuninetti, D.; Piantanida, P. On caching with more users than files. In Proceedings of the 2016
IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 135–139.
[CrossRef]

16. Wan, K.; Tuninetti, D.; Piantanida, P. On the optimality of uncoded cache placement. In Proceedings of the 2016
IEEE Information Theory Workshop (ITW), Cambridge, UK, 11–14 September 2016; pp. 161–165. [CrossRef]

17. Ji, M.; Caire, G.; Molisch, A.F. The Throughput-Outage Tradeoff of Wireless One-Hop Caching Networks.
IEEE Trans. Inf. Theory 2015, 61, 6833–6859. [CrossRef]

18. Ji, M.; Caire, G.; Molisch, A.F. Fundamental Limits of Caching in Wireless D2D Networks. IEEE Trans. Inf. Theory
2016, 62, 849–869. [CrossRef]

19. Ji, M.; Caire, G.; Molisch, A.F. Wireless Device-to-Device Caching Networks: Basic Principles and System
Performance. IEEE J. Sel. Areas Commun. 2016, 34, 176–189. [CrossRef]

20. Cacciapuoti, A.S.; Caleffi, M.; Ji, M.; Llorca, J.; Tulino, A.M. Speeding Up Future Video Distribution via
Channel-Aware Caching-Aided Coded Multicast. IEEE J. Sel. Areas Commun. 2016, 34, 2207–2218. [CrossRef]

21. Shanmugam, K.; Ji, M.; Tulino, A.M.; Llorca, J.; Dimakis, A.G. Finite-Length Analysis of Caching-Aided Coded
Multicasting. IEEE Trans. Inf. Theory 2016, 62, 5524–5537. [CrossRef]

22. Shangguan, C.; Zhang, Y.; Ge, G. Centralized Coded Caching Schemes: A Hypergraph Theoretical Approach.
IEEE Trans. Inf. Theory 2018, 64, 5755–5766. [CrossRef]

23. Chen, Z. Fundamental limits of caching: Improved bounds for users with small buffers. IET Commun. 2016,
10, 2315–2318. [CrossRef]

24. Karamchandani, N.; Niesen, U.; Maddah-Ali, M.A.; Diggavi, S.N. Hierarchical Coded Caching. IEEE Trans.
Inf. Theory 2016, 62, 3212–3229. [CrossRef]

25. Pedarsani, R.; Maddah-Ali, M.A.; Niesen, U. Online Coded Caching. IEEE/ACM Trans. Netw. 2016, 24, 836–845.
[CrossRef]

26. Sahraei, S.; Gastpar, M. K users caching two files: An improved achievable rate. In Proceedings of the 2016 Annual
Conference on Information Science and Systems (CISS), Princeton, NJ, USA, 16–18 March 2016; pp. 620–624.
[CrossRef]

27. Wang, C.; Lim, S.H.; Gastpar, M. Information-Theoretic Caching: Sequential Coding for Computing. IEEE Trans.
Inf. Theory 2016, 62, 6393–6406. [CrossRef]

28. G., J. Fundamental limits of caching: Improved bounds with coded prefetching. arXiv 2016, arXiv:1612.09071.
29. Shariatpanahi, S.P.; Motahari, S.A.; Khalaj, B.H. Multi-Server Coded Caching. IEEE Trans. Inf. Theory 2016,

62, 7253–7271. [CrossRef]
30. Shanmugam, K.; Tulino, A.M.; Dimakis, A.G. Coded caching with linear subpacketization is possible using

Ruzsa-Szeméredi graphs. In Proceedings of the 2017 IEEE International Symposium on Information Theory
(ISIT), Aachen, Germany, 25–30 June 2017; pp. 1237–1241. [CrossRef]

31. Ghasemi, H.; Ramamoorthy, A. Improved Lower Bounds for Coded Caching. IEEE Trans. Inf. Theory 2017,
63, 4388–4413. [CrossRef]

32. Lim, S.H.; Wang, C.; Gastpar, M. Information-Theoretic Caching: The Multi-User Case. IEEE Trans. Inf. Theory
2017, 63, 7018–7037. [CrossRef]

33. Jeon, S.; Hong, S.; Ji, M.; Caire, G.; Molisch, A.F. Wireless Multihop Device-to-Device Caching Networks.
IEEE Trans. Inf. Theory 2017, 63, 1662–1676. [CrossRef]

34. Sengupta, A.; Tandon, R. Improved Approximation of Storage-Rate Tradeoff for Caching With Multiple Demands.
IEEE Trans. Commun. 2017, 65, 1940–1955. [CrossRef]

35. Hachem, J.; Karamchandani, N.; Diggavi, S.N. Coded Caching for Multi-level Popularity and Access. IEEE Trans.
Inf. Theory 2017, 63, 3108–3141. [CrossRef]

http://dx.doi.org/10.1109/ISIT.2016.7541276
http://dx.doi.org/10.1109/ITW.2016.7606816
http://dx.doi.org/10.1109/TIT.2015.2490226
http://dx.doi.org/10.1109/TIT.2015.2504556
http://dx.doi.org/10.1109/JSAC.2015.2452672
http://dx.doi.org/10.1109/JSAC.2016.2577198
http://dx.doi.org/10.1109/TIT.2016.2599110
http://dx.doi.org/10.1109/TIT.2018.2847679
http://dx.doi.org/10.1049/iet-com.2015.1205
http://dx.doi.org/10.1109/TIT.2016.2557804
http://dx.doi.org/10.1109/TNET.2015.2394482
http://dx.doi.org/10.1109/CISS.2016.7460574
http://dx.doi.org/10.1109/TIT.2016.2604851
http://dx.doi.org/10.1109/TIT.2016.2614722
http://dx.doi.org/10.1109/ISIT.2017.8006726
http://dx.doi.org/10.1109/TIT.2017.2705166
http://dx.doi.org/10.1109/TIT.2017.2733527
http://dx.doi.org/10.1109/TIT.2017.2654341
http://dx.doi.org/10.1109/TCOMM.2017.2664815
http://dx.doi.org/10.1109/TIT.2017.2664817

Entropy 2019, 21, 324 31 of 32

36. Ji, M.; Wong, M.F.; Tulino, A.M.; Llorca, J.; Caire, G.; Effros, M.; Langberg, M. On the fundamental limits
of caching in combination networks. In Proceedings of the 2015 IEEE 16th International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, 28 June–1 July 2015;
pp. 695–699. [CrossRef]

37. Ji, M.; Tulino, A.M.; Llorca, J.; Caire, G. Caching in combination networks. In Proceedings of the 2015
49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 8 November 2015;
pp. 1269–1273. [CrossRef]

38. Wan, K.; Ji, M.; Piantanida, P.; Tuninetti, D. Novel outer bounds for combination networks with end-user-caches.
In Proceedings of the 2017 IEEE Information Theory Workshop (ITW), Kaohsiung, Taiwan, 6–10 November 2017;
pp. 444–448. [CrossRef]

39. Wan, K.; Tuninetti, D.; Ji, M.; Piantanida, P. State-of-the-art in cache-aided combination networks. In Proceedings
of the 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–
1 November 2017; pp. 641–645. [CrossRef]

40. Wan, K.; Ji, M.; Piantanida, P.; Tuninetti, D. Caching in Combination Networks: Novel Multicast Message
Generation and Delivery by Leveraging the Network Topology. In Proceedings of the 2018 IEEE International
Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [CrossRef]

41. Wan, K.; Jit, M.; Piantanida, P.; Tuninetti, D. On the Benefits of Asymmetric Coded Cache Placement in
Combination Networks with End-User Caches. In Proceedings of the 2018 IEEE International Symposium on
Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 1550–1554. [CrossRef]

42. Wan, K.; Tuninetti, D.; Ji, M.; Piantanida, P. A Novel Asymmetric Coded Placement in Combination Networks
with End-User Caches. In Proceedings of the 2018 Information Theory and Applications Workshop (ITA),
San Diego, CA, USA, 11–16 February 2018; pp. 1–5. [CrossRef]

43. Tian, C.; Chen, J. Caching and Delivery via Interference Elimination. IEEE Trans. Inf. Theory 2018, 64, 1548–1560.
[CrossRef]

44. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. The Exact Rate-Memory Tradeoff for Caching With Uncoded
Prefetching. IEEE Trans. Inf. Theory 2018, 64, 1281–1296. [CrossRef]

45. Zhang, K.; Tian, C. Fundamental Limits of Coded Caching: From Uncoded Prefetching to Coded Prefetching.
IEEE J. Sel. Areas Commun. 2018, 36, 1153–1164. [CrossRef]

46. Wang, C.; Bidokhti, S.S.; Wigger, M. Improved Converses and Gap Results for Coded Caching. IEEE Trans.
Inf. Theory 2018, 64, 7051–7062. [CrossRef]

47. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. Characterizing the Rate-Memory Tradeoff in Cache Networks Within
a Factor of 2. IEEE Trans. Inf. Theory 2019, 65, 647–663. [CrossRef]

48. Karat, N.S.; Thomas, A.; Rajan, B.S. Optimal Error Correcting Delivery Scheme for an Optimal Coded Caching
Scheme with Small Buffers. In Proceedings of the 2018 IEEE International Symposium on Information Theory
(ISIT), Vail, CO, USA, 17–22 June 2018; pp. 1710–1714. [CrossRef]

49. Tian, C. Symmetry, Outer Bounds, and Code Constructions: A Computer-Aided Investigation on the
Fundamental Limits of Caching. Entropy 2018, 20, 603. [CrossRef]

50. Cisco. The Zettabyte Era-Trends and Analysis; Cisco White Paper; Cisco: San Jose, CA, USA, 2013.
51. Birk, Y.; Kol, T. Informed-source coding-on-demand (ISCOD) over broadcast channels. In Proceedings of the

Conference on Computer Communications, Seventeenth Annual Joint Conference of the IEEE Computer and
Communications Societies, Gateway to the 21st Century, San Francisco, CA, USA, 29 March–2 April 1998.

52. Breslau, L.; Cao, P.; Fan, L.; Phillips, G.; Shenker, S. Web caching and Zipf-like distributions: Evidence and
implications. In Proceedings of the INFOCOM’99: Conference on Computer Communications, New York,
NY, USA, 21–25 March 1999; Volume 1, pp. 126–134.

53. Tang, L.; Ramamoorthy, A. Coded Caching Schemes With Reduced Subpacketization From Linear Block Codes.
IEEE Trans. Inf. Theory 2018, 64, 3099–3120. [CrossRef]

54. Yan, Q.; Cheng, M.; Tang, X.; Chen, Q. On the Placement Delivery Array Design for Centralized Coded Caching
Scheme. IEEE Trans. Inf. Theory 2017, 63, 5821–5833. [CrossRef]

http://dx.doi.org/10.1109/SPAWC.2015.7227127
http://dx.doi.org/10.1109/ACSSC.2015.7421346
http://dx.doi.org/10.1109/ITW.2017.8277986
http://dx.doi.org/10.1109/ACSSC.2017.8335420
http://dx.doi.org/10.1109/ICC.2018.8422197
http://dx.doi.org/10.1109/ISIT.2018.8437462
http://dx.doi.org/10.1109/ITA.2018.8503093
http://dx.doi.org/10.1109/TIT.2018.2794543
http://dx.doi.org/10.1109/TIT.2017.2785237
http://dx.doi.org/10.1109/JSAC.2018.2844958
http://dx.doi.org/10.1109/TIT.2018.2856885
http://dx.doi.org/10.1109/TIT.2018.2870566
http://dx.doi.org/10.1109/ISIT.2018.8437649
http://dx.doi.org/10.3390/e20080603
http://dx.doi.org/10.1109/TIT.2018.2800059
http://dx.doi.org/10.1109/TIT.2017.2725272

Entropy 2019, 21, 324 32 of 32

55. Vettigli, G.; Ji, M.; Tulino, A.M.; Llorca, J.; Festa, P. An efficient coded multicasting scheme preserving the
multiplicative caching gain. In Proceedings of the 2015 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Hong Kong, China, 26 April–1 May 2015; pp. 251–256. [CrossRef]

56. Ji, M.; Shanmugam, K.; Vettigli, G.; Llorca, J.; Tulino, A.M.; Caire, G. An efficient multiple-groupcast coded
multicasting scheme for finite fractional caching. In Proceedings of the 2015 IEEE International Conference on
Communications (ICC), London, UK, 8–12 June 2015; pp. 3801–3806. [CrossRef]

57. Ramakrishnan, A.; Westphal, C.; Markopoulou, A. An Efficient Delivery Scheme for Coded Caching.
In Proceedings of the 2015 27th International Teletraffic Congress, Ghent, Belgium, 8–10 September 2015;
pp. 46–54. [CrossRef]

58. Jin, S.; Cui, Y.; Liu, H.; Caire, G. Order-Optimal Decentralized Coded Caching Schemes with Good Performance
in Finite File Size Regime. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM),
Washington, DC, USA, 4–8 December 2016; pp. 1–7. [CrossRef]

59. Wan, K.; Tuninetti, D.; Piantanida, P. Novel delivery schemes for decentralized coded caching in the finite
file size regime. In Proceedings of the 2017 IEEE International Conference on Communications Workshops
(ICC Workshops), Paris, France, 21–25 May 2017; pp. 1183–1188. [CrossRef]

60. Asghari, S.M.; Ouyang, Y.; Nayyar, A.; Avestimehr, A.S. Optimal Coded Multicast in Cache Networks with
Arbitrary Content Placement. In Proceedings of the 2018 IEEE International Conference on Communications
(ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [CrossRef]

61. Amiri, M.M.; Yang, Q.; Gündüz, D. Decentralized coded caching with distinct cache capacities. In Proceedings
of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,
6–9 November 2016; pp. 734–738. [CrossRef]

62. Amiri, M.M.; Yang, Q.; Gündüz, D. Decentralized Caching and Coded Delivery With Distinct Cache Capacities.
IEEE Trans. Commun. 2017, 65, 4657–4669. [CrossRef]

63. Ibrahim, A.M.; Zewail, A.A.; Yener, A. Centralized Coded Caching with Heterogeneous Cache Sizes.
In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco,
CA, USA, 19–22 March 2017; pp. 1–6. [CrossRef]

64. Wei, Y.; Ulukus, S. Coded caching with multiple file requests. In Proceedings of the 2017 55th Annual Allerton
Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 3–6 October 2017;
pp. 437–442. [CrossRef]

65. Parrinello, E.; Unsal, A.; Elia, P. Fundamental Limits of Caching in Heterogeneous Networks with Uncoded
Prefetching. arXiv 2018, arXiv:1811.06247.

66. Shanmugam, K.; Dimakis, A.G.; Langberg, M. Local graph coloring and index coding. In Proceedings of the
2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013; pp. 1152–1156.
[CrossRef]

67. Lin, S.; Costello, D.J. Error Control Coding; Prentice-hall Englewood Cliffs: Upper Saddle River, NJ, USA, 2004;
Volume 123.

68. Bar-Yossef, Z.; Birk, Y.; Jayram, T.; Kol, T. Index coding with side information. IEEE Trans. Inf. Theory 2011,
57, 1479–1494. [CrossRef]

69. Lee, D.; Noh, S.; Min, S.; Choi, J.; Kim, J.; Cho, Y.; Kim, C. LRFU: A spectrum of policies that subsumes the least
recently used and least frequently used policies. IEEE Trans. Comput. 2001, 50, 1352–1361.

70. Boucheron, S.; Lugosi, G.; Massart, P. Concentration Inequalities: A Nonasymptotic Theory of Independence;
Oxford University Press: Oxford, UK, 2013.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/INFCOMW.2015.7179393
http://dx.doi.org/10.1109/ICC.2015.7248916
http://dx.doi.org/10.1109/ITC.2015.13
http://dx.doi.org/10.1109/GLOCOM.2016.7842115
http://dx.doi.org/10.1109/ICCW.2017.7962819
http://dx.doi.org/10.1109/ICC.2018.8422194
http://dx.doi.org/10.1109/ACSSC.2016.7869142
http://dx.doi.org/10.1109/TCOMM.2017.2734767
http://dx.doi.org/10.1109/WCNC.2017.7925535
http://dx.doi.org/10.1109/ALLERTON.2017.8262770
http://dx.doi.org/10.1109/ISIT.2013.6620407
http://dx.doi.org/10.1109/TIT.2010.2103753
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Network Model and Problem Formulation
	Random Fractional Cache Placement
	Random Multiple Requests
	Performance Metric

	Graph-Coloring-Based Coded Multicast Delivery
	 Conflict Graph Construction
	Code Construction
	Graph Coloring and Chromatic Number
	Local Graph Coloring and Local Chromatic Number

	Benefits of Local Coloring

	Proposed Algorithms and Performance Analysis
	Randomized Aggregate Popularity-Greedy Local Coloring (RAP-GLC)
	RAP-GLC Algorithm Description
	RAP-GLC Performance Analysis

	Randomized Aggregate Popularity-Hierarchical Greedy Local Coloring (RAP-HgLC) for Finite-Length Packetization
	RAP-HgLC Algorithm Description
	RAP-HgLC Performance Analysis

	Tradeoff between Number of Requests and Code Length
	Simulations and Discussions
	Conclusions
	Proof of Theorem 1
	Average Total Number of Colors for RAP-GLC1
	Average Total Number of Colors for RAP-GLC2

	Proof of Theorem 2
	Proof of Theorem 3
	References

