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Abstract: Recently, it was demonstrated that generalized entropies of order α offer novel and
important opportunities to quantify the similarity of symbol sequences where α is a free parameter.
Varying this parameter makes it possible to magnify differences between different texts at specific
scales of the corresponding word frequency spectrum. For the analysis of the statistical properties of
natural languages, this is especially interesting, because textual data are characterized by Zipf’s law,
i.e., there are very few word types that occur very often (e.g., function words expressing grammatical
relationships) and many word types with a very low frequency (e.g., content words carrying most
of the meaning of a sentence). Here, this approach is systematically and empirically studied by
analyzing the lexical dynamics of the German weekly news magazine Der Spiegel (consisting of
approximately 365,000 articles and 237,000,000 words that were published between 1947 and 2017).
We show that, analogous to most other measures in quantitative linguistics, similarity measures
based on generalized entropies depend heavily on the sample size (i.e., text length). We argue that
this makes it difficult to quantify lexical dynamics and language change and show that standard
sampling approaches do not solve this problem. We discuss the consequences of the results for the
statistical analysis of languages.

Keywords: generalized entropy; generalized divergence; Jensen–Shannon divergence; sample size;
text length; Zipf’s law

1. Introduction

At a very basic level, the quantitative study of natural languages is about counting words: if
a word occurs very often in one text but not in a second one, then we conclude that this difference
might have some kind of significance for classifying both texts [1]. If a word occurs very often after
another word, then we conclude that this might have some kind of significance in speech and language
processing [2]. In both examples, we can use the gained knowledge to make informed predictions
“with accuracy better than chance” [3], thus leading us to information theory quite naturally. If we
consider each word type i = 1, 2, . . . , K as one distinct symbol, then we can count how often each
word type appears in a document or text t and call the resulting word token frequency fi. We can
then represent t as a distribution of word frequencies. In order to quantify the amount of information
contained in t, we can calculate the Gibbs–Shannon entropy of this distribution as [4]:

H(p) = −
K∑

i = 1

pi ∗ log2(pi) (1)

where pi =
fi
N is the maximum likelihood estimator of the probability of i in t for a database of

N =
∑K

i = 1 fi tokens. In [5], word entropies are estimated for more than 1000 languages. The results are
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then interpreted in light of information-theoretic models of communication, in which it is argued that
word entropy constitutes a basic property of natural languages. H(p) can be interpreted as the average
number of guesses required to correctly predict the type of word token that is randomly sampled from
the entire text base (more precisely, [4], Section 5.7) show that the expected number of guesses EG
satisfies H(p) ≤ EG < H(p) + 1). In the present paper, we analyze the lexical dynamics of the German
weekly news magazine Der Spiegel (consisting of N = 236,743,042 word tokens, K = 4,009,318 different
word types, and 365,514 articles that were published between 1947 and 2017; details on the database
and preprocessing are presented Section 2). If the only knowledge we possess about the database were
K, the number of different word types, then we would need on average Hmax = log2(K) = log2(4,009,318)
≈ 21.93 guesses to correctly predict the word type, calculating H for our database based on Equation (1)
using the corresponding probabilities for each i yields 12.28. The difference between Hmax and H(p) is
defined as information in [3]. Thus, knowledge of the non-uniform word frequency distribution gives
us approximately 9.65 bits of information, or put differently, we save on average almost 10 guesses to
correctly predict the word type.

To quantify the (dis)similarity between two different texts or databases, word entropies can be
used to calculate the so-called Jensen–Shannon divergence [6]:

D(p, q) = H
(p + q

2

)
−

1
2

H(p) −
1
2

H(q) (2)

where p and q are the (relative) word frequencies of the two texts and p + q is calculated by concatenating
both texts. From a Bayesian point of view, D(p,q) can be interpreted as the expected amount of gained
information that comes from sampling one word token from the concatenation of both texts regarding
the question which of the two texts the word token belongs to [7]. If the two texts are identical,
D(p,q) = 0, because sampling a word token does not provide any information regarding to which text
the token belongs. If, on the other side, the two texts do not have a single word type in common, then
sampling one word token is enough to determine from which text the token comes, and correspondingly,
D(p,q) = 1. The Jensen–Shannon divergence has already been applied in the context of measuring
stylistic influences in the evolution of literature [8], cultural and institutional changes [9,10], the
dynamics of lexical evolution [11,12], or to quantify changing corpus compositions [13].

Perhaps the most intriguing aspect of word frequency distributions is the fact that they can be
described remarkably well by a simple relationship that is known as Zipf’s law [14]: if one assigns
rank r = 1 to the most frequent word (type), rank r = 2 to the second most frequent word, and so on,
then the frequency of a word and its rank r is related as follows:

p(r) ∝ r−γ (3)

where the exponent γ is a parameter that has to be determined empirically. An estimation of γ by
maximum likelihood (as described in [15]) for our database yields 1.10. However, when analyzing
word frequency distributions, the main obstacle is that all quantities basically vary systematically
with the sample size, i.e., the number of word tokens in the database [16,17]. To visualize this, we
randomly arranged the order of all articles of our database. This step was repeated 10 times in order to
create 10 different versions of our database. For each version, we estimate H and γ after every n = 2k

consecutive tokens, where k = 6, 7, . . . , log2(N) = 28. Figure 1 shows a Simpson’s Paradox [18] for
the resulting data: an apparent strong positive relationship between H and γ is observed across all
datapoints (Spearman ρ = 0.99). However, when the sample size is kept constant, this relationship
completely changes: if the correlation between H and γ is calculated for each k, the results indicate a
strong negative relationship (ρ ranges between −0.98 and −0.64 with a median of −0.92). The reason
for this apparent contradiction is the fact that both H and γ monotonically increase with the sample
size. When studying word frequency distributions quantitatively, it is essential to take this dependence
on the sample size into account [16].



Entropy 2019, 21, 464 3 of 18
Entropy 2019, 21, 464 3 of 18 

 

 

 
Figure 1. A Simpson’s Paradox for word frequency distributions. Here, the word entropy H and the 
exponent of the Zipf distribution 𝛾 are estimated after every n = 2k consecutive tokens, where k = 6, 7, 
. . . , ⌊𝑙𝑜𝑔ଶ(𝑁)⌋ for 10 different random re-arrangements of the database; each dot corresponds to one 
observed value. The blue line represents a locally weighted regression of H on 𝛾 (with a bandwidth 
of 0.8). It indicates a strong positive relationship between H and 𝛾 (Spearman ρ = 0.99). However, 
when the sample size is held constant, this relationship completely changes, as indicated by the 
orange lines that correspond to separate locally weighted regressions of H on � for each k. Here, the 
results indicate a strong negative relationship between H and 𝛾 (ρ ranges between −0.98 and −0.64 
with a median of −0.92). The reason for this apparent contradiction is the fact that both H and 𝛾 
monotonically increase with the sample size. 

Another important aspect of word distributions is the fact that word frequencies vary by a 
magnitude of many orders, as visualized in Figure 2. On the one hand, Figure 2a shows that there 
are very few word types that occur very often. For example, the 100 most frequent word types 
account for more than 40% of all word occurrences. Typically, many of those word types are 
function words [16] expressing grammatical relationships, such as adpositions or conjunctions. On 
the other hand, Figure 2b shows that there are a great deal of word types with a very low frequency 
of occurrence. For example, more than 60% of all word types only occur once, and less than 3% of all 
word types have a frequency of occurrence of more than 100 in our database. Many of those low 
frequency words are content words that carry the meaning of a sentence, e.g., nouns, (lexical) verbs, 
and adjectives. In addition to the sample size dependence outlined above, it is important to take this 
broad range of frequencies into account when quantitatively studying word frequency distributions 
[19]. 

 

Figure 1. A Simpson’s Paradox for word frequency distributions. Here, the word entropy H and the
exponent of the Zipf distribution γ are estimated after every n = 2k consecutive tokens, where k = 6,
7, . . . , log2(N) for 10 different random re-arrangements of the database; each dot corresponds to one
observed value. The blue line represents a locally weighted regression of H on γ (with a bandwidth of
0.8). It indicates a strong positive relationship between H and γ (Spearman ρ = 0.99). However, when
the sample size is held constant, this relationship completely changes, as indicated by the orange lines
that correspond to separate locally weighted regressions of H on γ for each k. Here, the results indicate
a strong negative relationship between H and γ (ρ ranges between −0.98 and −0.64 with a median of
−0.92). The reason for this apparent contradiction is the fact that both H and γ monotonically increase
with the sample size.

Another important aspect of word distributions is the fact that word frequencies vary by a
magnitude of many orders, as visualized in Figure 2. On the one hand, Figure 2a shows that there
are very few word types that occur very often. For example, the 100 most frequent word types
account for more than 40% of all word occurrences. Typically, many of those word types are function
words [16] expressing grammatical relationships, such as adpositions or conjunctions. On the other
hand, Figure 2b shows that there are a great deal of word types with a very low frequency of occurrence.
For example, more than 60% of all word types only occur once, and less than 3% of all word types
have a frequency of occurrence of more than 100 in our database. Many of those low frequency words
are content words that carry the meaning of a sentence, e.g., nouns, (lexical) verbs, and adjectives.
In addition to the sample size dependence outlined above, it is important to take this broad range of
frequencies into account when quantitatively studying word frequency distributions [19].



Entropy 2019, 21, 464 4 of 18Entropy 2019, 21, 464 4 of 18 

 

 
Figure 2. Visualization of the word frequency distribution of our database. Cumulative distribution 
(in %) as a function of (a) the rank and (b) the word frequency. 

In this context, it was recently demonstrated that generalized entropies of order α, also called 
Havrda–Charvat–Lindhard–Nielsen–Aczél–Daróczy–Tsallis entropies [20], offer novel and 
interesting opportunities to quantify the similarity of symbol sequences [21,22]. It can be written as: 
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where α is a free parameter. For α = 1, the standard Gibbs–Shannon entropy is recovered. 
Correspondingly, a generalization of the standard Jensen–Shannon divergence (Equation (2)) can be 
obtained by replacing H (Equation (1)) with Hα (Equation (4)) and thus leading to a spectrum of 
divergence measures Dα, parametrized by α [22]. For the analysis of the statistical properties of 
natural languages, this parameter is highly interesting, because, as demonstrated by [21,22], varying 
the α-parameter allows us to magnify differences between different texts at specific scales of the 
corresponding word frequency spectrum. If α is increased (decreased), then the weight of the most 
frequent words is increased (decreased). As pointed out by an anonymous reviewer, a similar idea 
was already reported in the work of Tanaka-Ishii and Aihara [23], who studied a different 
formulation of generalized entropy, the so-called Rényi entropy of order α [24]. Because we are 
especially interested in using generalized entropies to quantify the (dis)similarity between two 
different texts or databases, following [21,22], we chose to focus on the generalization of Havrda–
Charvat–Lindhard–Nielsen–Aczél–Daróczy–Tsallis instead of the formulation of Rényi, because a 
divergence measure based on the latter can become negative for α > 1 [25], while it can be shown that 
the corresponding divergence measure based on the former formulation is strictly non-negative 
[20,22]. In addition, Dα(p,q) is the square of a metric for 𝛼 ∈ (0,2], i.e., (i) Dα(p,q) ≥ 0, (ii) Dα(p,q) = 0 ⟺ 
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In addition, [21] also estimated the size of the database that is needed to obtain reliable 
estimates of generalized divergences. For instance, [21] showed that only the 100 most frequent 
words contribute to Hα and Dα for α = 2.00, and all other words are practically irrelevant. This 
number quickly grows with α. For example, database sizes of N ≈ 108 are needed for a robust 
estimation of the standard Jensen–Shannon divergence (Equation 2), i.e., for α = 1.00. This 
connection makes the approach of [21,22] particularly interesting in relation to the systematic 
influence of the sample size demonstrated above (cf. Figure 1). 

In this study, the approach is systematically and empirically studied by analyzing the lexical 
dynamics of the Der Spiegel periodical. The remainder of the paper is structured as follows: In the 

Figure 2. Visualization of the word frequency distribution of our database. Cumulative distribution
(in %) as a function of (a) the rank and (b) the word frequency.

In this context, it was recently demonstrated that generalized entropies of order α, also called
Havrda–Charvat–Lindhard–Nielsen–Aczél–Daróczy–Tsallis entropies [20], offer novel and interesting
opportunities to quantify the similarity of symbol sequences [21,22]. It can be written as:

Hα(p) =
1

α− 1

1−
K∑

i = 1

pαi

 (4)

where αis a free parameter. For α= 1, the standard Gibbs–Shannon entropy is recovered. Correspondingly,
a generalization of the standard Jensen–Shannon divergence (Equation (2)) can be obtained by replacing
H (Equation (1)) with Hα (Equation (4)) and thus leading to a spectrum of divergence measures Dα,
parametrized by α [22]. For the analysis of the statistical properties of natural languages, this parameter
is highly interesting, because, as demonstrated by [21,22], varying the α-parameter allows us to
magnify differences between different texts at specific scales of the corresponding word frequency
spectrum. If α is increased (decreased), then the weight of the most frequent words is increased
(decreased). As pointed out by an anonymous reviewer, a similar idea was already reported in the
work of Tanaka-Ishii and Aihara [23], who studied a different formulation of generalized entropy, the
so-called Rényi entropy of order α [24]. Because we are especially interested in using generalized
entropies to quantify the (dis)similarity between two different texts or databases, following [21,22], we
chose to focus on the generalization of Havrda–Charvat–Lindhard–Nielsen–Aczél–Daróczy–Tsallis
instead of the formulation of Rényi, because a divergence measure based on the latter can become
negative for α > 1 [25], while it can be shown that the corresponding divergence measure based on the
former formulation is strictly non-negative [20,22]. In addition, Dα(p,q) is the square of a metric for
α ∈ (0, 2], i.e., (i) Dα(p,q) ≥ 0, (ii) Dα(p,q) = 0⇐⇒ p = q, (iii) Dα(p,q) = Dα(q,p), and (iv)

√
Dα obeys the

triangular inequality [7,20,22].
In addition, [21] also estimated the size of the database that is needed to obtain reliable estimates

of generalized divergences. For instance, [21] showed that only the 100 most frequent words contribute
to Hα and Dα for α = 2.00, and all other words are practically irrelevant. This number quickly grows
with α. For example, database sizes of N ≈ 108 are needed for a robust estimation of the standard
Jensen–Shannon divergence (Equation (2)), i.e., for α = 1.00. This connection makes the approach
of [21,22] particularly interesting in relation to the systematic influence of the sample size demonstrated
above (cf. Figure 1).
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In this study, the approach is systematically and empirically studied by analyzing the lexical
dynamics of the Der Spiegel periodical. The remainder of the paper is structured as follows: In the next
section, details on the database and preprocessing are given (Section 2). In Sections 3.1 and 3.2, the
dependence of both Hα and Dα on the sample size is tested for different α-parameters. This section is
followed by a case study, in which we demonstrate that the influence of sample size makes it difficult
to quantify lexical dynamics and language change and also show that standard sampling approaches
do not solve this problem (Section 3.3). This paper ends with some concluding remarks regarding the
consequences of the results for the statistical analysis of languages (Section 4).

2. Materials and Methods

In the present study, we used all 365,514 articles that were published in the German weekly news
magazine Der Spiegel between January 1947, when the magazine was first published, and December
2017. To read-in and tokenize the texts, we used the Treetagger with a German parameter file [26].
All characters were converted to lowercase. Punctuation and cardinal numbers (both treated as separate
words by the Treetagger) were removed. However, from a linguistic point of view, changes in the usage
frequencies of punctuation marks and cardinal numbers are also interesting. For instance, a frequency
increase of the full stop could be indicative of decreases in syntactic complexity [15]. In Appendix A,
we therefore present and discuss additional results in which punctuation and cardinal numbers were
not removed from the data.

In total, our database consists of N = 236,743,042 word tokens and K = 4,009,318 different
word types.

Motivated by the studies of [21,22], we chose the following six α values to study the empirical
behavior of generalized entropies and generalized divergences: 0.25, 0.75, 1.00, 1.50, and 2.00.
To highlight that varying α makes it possible to magnify differences between different texts at specific
scales of the corresponding word frequency spectrum, we take advantage of the fact that Hα can be
written as a sum over different words, where each individual word type i contributes

pαi −
1
K

α−1 , f or α , 1.00
−pi ∗ log2(pi), f or α = 1.00

. (5)

In Table 1, we divided the word types into different groups according to their token frequency
(column 1). Each group consists of g = 1, 2, . . . , G word types (cf. column 2). For each group, column 3
presents three randomly chosen examples.
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Table 1. Contribution (in %) of word types with different token frequencies as a function of α *.

Token
Frequency

Number
of Cases Examples α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

1 2,486,393
koalitionsbündnisse

nr.6/1962
bruckner-breitklang

48.65 9.32 2.38 0.00 0.00

2–10 1,135,102
geschlechterschulung

unal
wiedervereinigungs-prozedur

29.86 10.89 3.65 0.01 0.00

11–100 296,573
hotpants
lánský

planwirtschaftlichen
13.16 14.03 7.13 0.04 0.00

101–1000 74,791
wanda

verbannte
mitschnitt

5.83 19.21 14.69 0.28 0.00

1001–10,000 14,388
schüren
ablesen

vollmachten
1.96 19.81 22.07 1.53 0.06

10,001–100,000 1871
london
sitzen

beginnen
0.44 13.38 20.68 5.31 0.64

100,001–1,000,000 173
mark
frau

kaum
0.07 7.38 15.21 17.83 7.12

1,000,001 + 27
es
die
er

0.02 5.98 14.19 75.02 92.18

4,009,318 100.00 100.00 100.00 100.00 100.00

* Values are rounded for illustration purposes only throughout this paper.

This implies that the relative contribution C(g) per group can be calculated as (see also ([21],
Equation (5))):

C(g) =


∑G

g = 1 pαg∑K
i = 1 pαi

, f or α , 1.00∑G
g = 1(−1)∗pg∗log2(pg)∑K
i = 1(−1)∗pi∗log2(pi)

, f or α = 1.00
. (6)

Columns 4–8 of Table 1 show the relative contribution (in %) for each group to Hα as a function of
α. For lower values of α, Hα is dominated by word types with lower token frequencies. For instance,
hapax legomena, i.e., word types that only occur once, contribute almost half of Hα=0.25. For larger
values of α, only the most frequent word contributes to Hα. For example, the 27 word types with
a token frequency of more than 1,000,000 contribute more than 92% to Hα=2.00. Because words in
different frequency ranges have different grammatical and pragmatic properties, varying α makes it
possible to study different aspects of the word frequency spectrum [21].

As written above, we are interested in testing the dependence of both Hα and Dα on the sample
size for the different α-values. Let us note that each article in our database can be described by different
attributes, e.g., publication date, subject matter, length, category, or author. Of course, this list of
attributes is not exhaustive but can be freely extended depending on the research objective. In order to
balance the article’s characteristics across the corpus, we prepared 10 versions of our database, each
with a different random arrangement of the order of all articles. To study the convergence of Hα, we
computed Hα after every n = 2k consecutive tokens for each version, where k = 6, 7, . . . , log2(N) = 27.
For Dα, we compared the first n = 2k word tokens with the last n = 2k of each version of our database.
Here, k = 6, 7, . . . , 26. For instance for k = 26, the first 67,108,864 word tokens are compared with
the last 67,108,864 word tokens by calculating the generalized divergence between both “texts” for
different α-values. Through the manipulation of the article order, it can be inferred that, random
fluctuations aside, any systematic differences are caused by differences in the sample size.

As outlined above, our initial research interest concerned the use of generalized entropies and
divergence in order to measure lexical change rates at specific ranges of the word frequency spectrum.
To this end, we used the publication date of each article on a monthly basis to create a diachronic version
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of our database. Figure 3 visualizes the corpus size Nt for each t, where each monthly observation is
identified by a variable containing the year y = 1947, 1948, . . . , 2017 and the month m = 1, 2, . . . ,12.
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Figure 3. Sample size of the database as a function of time. The gray line depicts the raw data, while
the orange line adds a symmetric 25-month window moving-average smoother highlighting the central
tendency of the series at each point in time.

Instead of calculating the generalized Jensen–Shannon divergences for two different texts p and q,
Dα was calculated for successive moments in time, i.e., Dα(t,t − 1), in order to estimate the rate of lexical
change at a given time point t [11,12]. For instance, Dα at y = 2000 and m = 1 represents the generalized
divergence for a corresponding α-value between all articles that were published in January 2000 and
those published in December 1999. The resulting series of month-to-month changes could then be
analyzed in a standard time-series analysis framework. For example, we can test whether the series
exhibits any large-scale tendency to change over time. A series with a positive trend increases over
time, which would be indicative of an increasing rate of lexical change. It would also be interesting to
look at first differences in the series, as an upward trend here in addition to an upward trend in the
actual series would mean that the rate of lexical change is increasing at an increasing rate.

However, because the sample size clearly varies as a function of time (cf. Figure 3), it was essential
to rule out the possibility that this variation systematically influences the results. Therefore, we
generated a second version of this diachronic database in which we first randomly arranged the order
of each article again. We then used the first Nt=1 words of this version of the database to generate
a new corpus that has the same length (in words) as the original corpus at t = 1 but in which the
diachronic signal is destroyed. We then proceeded and used the next Nt=2 words to generate a corpus
that has the same length as the original corpus at t = 2. For example, the length of a concatenation of
all articles that where published in Der Spiegel in January 1947 is 94,716 word tokens. Correspondingly,
our comparison corpus at this point in time also consisted of 94,716 word tokens, but the articles of
which it consisted could belong to any point in time between 1947 and 2017. In what follows, we
computed all Dα (t,t − 1) values for both the original version of our database and for the version with a
destroyed diachronic signal. We tentatively called this a “Litmus test”, because it determined whether
our results can be attributed to real diachronic changes or if there is a systematic bias due to the varying
sample sizes.

Statistical analysis: To test if Hα and Dα vary as a function of the sample size without making any
assumptions regarding the functional form of the relationship, we used the non-parametric Spearman
correlation coefficient denoted as ρ. It assesses whether there is a monotonic relationship between two
variables and is computed as Pearson’s correlation coefficient on the ranks and average ranks of the two
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variables. The significance of the observed coefficient was determined by Monte Carlo permutation
tests in which the observed values of the sample size are randomly permuted 10,000 times. The null
hypothesis is that Hα/Dα does not vary with the sample size. If this is the case, then the sample size
becomes arbitrary and can thus be randomly re-arranged, i.e., permuted. Let c denote the number
of times the absolute ρ-value of the derived dataset is greater than or equal to the absolute ρ-value
computed on the original data. A corresponding coefficient was labeled as “statistically significant” if
c < 10, i.e., p < 0.001. In cases where l, i.e., the number of datapoints, was lower than or equal to 7, an
exact test for all l! permutations was calculated. Here, let c* denote the number of times where the
absolute ρ-value of the derived dataset is greater than the absolute ρ-value computed on the original
data. A coefficient was labeled as “statistically significant” if c*/l! < 0.001.

Data availability and reproducibility: All datasets used in this study are available in Dataverse (https:
//doi.org/10.7910/DVN/OP9PRL). For copyright and license reasons, each actual word type is replaced
by a unique numerical identifier. Regarding further data access options, please contact the corpus
linguistics department at Institute for the German language (IDS) (korpuslinguistik@ids-mannheim.de).
In the spirit of reproducible science, one of the authors (A.K.) first analyzed the data using Stata
and prepared a draft. Another author (S.W.) then used the draft and the available datasets to
reproduce all the results using R. The results of this replication are available and the code (Stata
and R) required to reproduce all the results presented in this paper are available in Dataverse
(https://doi.org/10.7910/DVN/OP9PRL).

3. Results

3.1. Entropy Hα

To test the sample size dependence of Hα, we computed Hα for the first n = 2k consecutive
tokens, where k = 6, 7, . . . , 27 for the 10 versions of our database (each with a different random article
order) and calculated averages. Figure 4A shows the convergence pattern for the five α-values in
a superimposed scatter plot with connected dots where the colors of each y-axis correspond to one
α-value (cf. the legend in Figure 4, the axes are log-scaled for improved visibility). For values of α <

1.00, there is no indication of convergence, while for Hα=1.50 and Hα=2.00, it seems that Hα converges
rather quickly. To test the observed relationship between the sample size and Hα for different α-values,
we calculated the Spearman correlation between the sample size and Hα for different minimum sample
sizes. For example, a minimum sample size of n = 217 indicates that we restrict the calculation to
sample sizes ranging between n = 217 and n = 227. For those 11 datapoints, we computed the Spearman
correlation between the sample size and Hα and ran the permutation test. Table 2 summarizes the
results. For all α-values, except for α = 2.00, there is a clear indication for a significant (at p < 0.001)
strong, positive, monotonic relationship between Hα and the sample size for all the minimum sample
sizes. Thus, while Figure 4A seems to indicate that Hα=1.50 converges rather quickly, the Spearman
analysis reveals that the sample size dependence of Hα=1.50 persists for higher values of k with a
minimum ρ of 0.80. Except for the last two minimum sample sizes, all the coefficients pass the
permutation test. For α = 2.00, Hα starts to converge after n = 214 word tokens. None of the correlation
coefficients of higher minimum sample sizes passes the permutation test. In line with the results
of [21,22], this suggest α = 2.00 as a pragmatic choice when calculating Hα. However, it is important to
point out that for α = 2.00, the computation of Hα is almost completely determined by the most frequent
words (cf. Table 1). For lower values of α, the basic problem of sample size dependence (cf. Figure 1)
persists. If it is the aim of a study to compare Hα for databases with varying sizes, this has to be taken
into account. Correspondingly, [23] reached similar conclusions for the convergence of Rényi entropy
of order α = 2.00 for different languages and for different kinds of texts, both on the level of words and
on the level of characters. In Appendix B, we have replicated the results of Table 2 based on Rényi’s
formulation of the entropy generalization. Table A5 shows that the results are almost identical, which

https://doi.org/10.7910/DVN/OP9PRL
https://doi.org/10.7910/DVN/OP9PRL
https://doi.org/10.7910/DVN/OP9PRL
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is to be expected because the Havrda–Charvat–Lindhard–Nielsen–Aczél–Daróczy–Tsallis entropy is a
monotone function of the Rényi entropy [20].
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Table 2. Spearman correlation between the sample size and Hα for different α-values *.

Minimum Sample Size Number of Datapoints α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

26 22 1.00 * 1.00 * 1.00 * 1.00 * 0.92 *
27 21 1.00 * 1.00 * 1.00 * 1.00 * 0.91 *
28 20 1.00 * 1.00 * 1.00 * 1.00 * 0.89 *
29 19 1.00 * 1.00 * 1.00 * 1.00 * 0.87 *
210 18 1.00 * 1.00 * 1.00 * 1.00 * 0.85 *
211 17 1.00 * 1.00 * 1.00 * 1.00 * 0.82 *
212 16 1.00 * 1.00 * 1.00 * 1.00 * 0.79 *
213 15 1.00 * 1.00 * 1.00 * 1.00 * 0.74
214 14 1.00 * 1.00 * 1.00 * 1.00 * 0.71
215 13 1.00 * 1.00 * 1.00 * 0.99 * 0.65
216 12 1.00 * 1.00 * 1.00 * 0.99 * 0.55
217 11 1.00 * 1.00 * 1.00 * 0.99 * 0.43
218 10 1.00 * 1.00 * 1.00 * 0.99 * 0.24
219 9 1.00 * 1.00 * 1.00 * 0.98 * −0.05
220 8 1.00 * 1.00 * 1.00 * 0.98 * −0.17
221 7 1.00 * 1.00 * 1.00 * 0.96 * 0.25
222 6 1.00 * 1.00 * 1.00 * 0.94 −0.20
223 5 1.00 * 1.00 * 1.00 * 0.90 0.10
224 4 1.00 * 1.00 * 1.00 * 0.80 −0.80

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.
For minimum sample sizes above 220, an exact permutation test is calculated.

3.2. Divergence Dα

To test the relationship between the sample size and Dα for different α-values, we computed
Dα for a “text” that consists of the first n = 2k word tokens, a “text” that consists of the last n = 2k

word tokens for each version of our database for k = 6, 7, . . . , 26, and took averages. As for Hα

above, we then calculated the Spearman correlation between the sample size and Dα for different
minimum sample sizes. It is worth pointing out that the idea here is that the “texts” come from the
same population, i.e., all Der Spiegel articles, so one should expect that with growing sample sizes, Dα

should fluctuate around 0 with no systematic relationship between Dα and the sample size. Table 3
summarizes the results, while Figure 4B visualizes the convergence pattern. For all settings, there is a
strong monotonic relationship between the sample size and Dα that passes the permutation test in



Entropy 2019, 21, 464 10 of 18

almost every case. For α = 0.25, the Spearman correlation coefficients are positive. This seems to be
due to the fact that Hα=0.25 is dominated by word types from the lower end of the frequency spectrum
(cf. Table 1). Because, for example, word types that only occur once contribute almost half of Hα=0.25.
Those word types then either appear in the first 2k or in the last 2k word tokens.

Table 3. Spearman correlation between the sample size and Dα for different α-values *.

Minimum Sample Size Number of Datapoints α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

26 21 1.00 * −0.42 −1.00 * −1.00 * −1.00 *
27 20 1.00 * −0.54 −1.00 * −1.00 * −1.00 *
28 19 1.00 * −0.64 −1.00 * −1.00 * −1.00 *
29 18 1.00 * −0.74 −1.00 * −1.00 * −1.00 *
210 17 1.00 * −0.83 * −1.00 * −1.00 * −1.00 *
211 16 1.00 * −0.90 * −1.00 * −1.00 * −1.00 *
212 15 1.00 * −0.95 * −1.00 * −1.00 * −1.00 *
213 14 1.00 * −0.99 * −1.00 * −1.00 * −1.00 *
214 13 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
215 12 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
216 11 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
217 10 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
218 9 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
219 8 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
220 7 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
221 6 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
222 5 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
223 4 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
224 3 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.
For minimum sample sizes above 219, an exact permutation test is calculated.

The results demonstrate that the larger the sample sizes the larger Dα (cf. the pink line in Figure 4B).
For = 0.75, a similar pattern is observed for smaller sample sizes (cf. the orange line in Figure 4 B).
However, at around k = 15, the pattern changes. For k ≥ 15, there is a perfect monotonic negative
relationship between Dα=0.75 and the sample size. Surprisingly, there is a perfect monotonic negative
relationship for all settings for α ≥ 1.00, even if we restrict the calculation to relatively large sample
sizes. However, the corresponding values are very small. For instance, Dα=2.00 = 7.91 × 10−8 for
n = 224, Dα=2.00 = 4.08 × 10−8 for n = 225, and Dα=2.00 = 1.379 × 10−8 for n = 226. One might object that
this systematic sample size dependence is practically irrelevant. In the next section, we show that,
unfortunately, this is not the case.

3.3. Case Study

As previously outlined, our initial idea was to use generalized divergences to measure the rate
of lexical change at specific ranges of the word frequency spectrum. In what follows, we estimate
the rate by calculating Dα for successive months, i.e., Dα(t,t − 1). To rule out a potential systematical
influence of the varying sample size, we also calculated Dα(t,t − 1) for our comparison corpus where
the diachronic signal was destroyed (“Litmus test”).

For α, we chose 2.00 and 1.00. On the one hand, the analyses of [21,22] and our analysis presented
above indicate that α = 2.00 seems to be the most robust choice. On the other hand, we chose α = 1.00,
i.e., the original Jensen–Shannon divergence, because, as explained above, it has already been employed
in the context of analyzing natural language data without explicitly testing the potential influence of
varying sample sizes. Figure 5 shows our results. If we only looked at the plots on the left side (blue
lines), the results would look very interesting, as there is a clear indication that the rate of lexical change
decreases as a function of time for both α = 1.00 and for α = 2.00. However, looking at the plots in the
middle reveals that a very similar pattern emerges for the comparison data. For our “Litmus test”, we
destroyed all diachronic information except for the varying sample sizes. Nevertheless, our conclusions
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would have been more or less identical. Interestingly, the patterns in Figure 5 clearly resemble the
pattern of the sample size in Figure 3 (in reverse order) and thus suggest a negative association between
Dα(t,t − 1) and the sample size. To test this observation, we calculated the Spearman correlation
between the sample size and Dα(t,t − 1) for both α = 1.00 and α = 2.00 and ran a permutation test.
Table 4, row 1, shows that there is a significant strong negative correlation between the sample size and
Dα for both α = 1.00 and α = 2.00. Rows 2–5 present different approaches to solving the sample size
dependence of Dα. In row 2, we extended Equation (2) to allow for unequal sample sizes, i.e., Np , Nq

as suggested by ([22], Appendix A); here:

Dπ
α(p, q) = Hα

(
πpp + πqq

)
−πpHα(p) −πqHα(q)

where πp = Np/
(
Np + Nq

)
and πq = Nq/

(
Np + Nq

)
.

(7)
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Row 2 of Table 4 demonstrates that this “natural weights” approach does not qualitatively affect
the results; there is still a significant and strong negative correlation between the sample size and Dπ

α

for both α = 1.00 and α = 2.00. Another approach is to increase the sample size (if possible). To this end,
we aggregated the articles at the annual level instead of the monthly level. On average, the annual
corpora are N = 3,334,409.04 words long, compared to N = 277,867.42 word tokens for the monthly
data. Row 3 of Table 4 shows that increasing the sample size does not help in removing the influence of
the sample size either. Another standard approach [15,22] is to randomly draw Nmin word tokens from
the monthly databases, where Nmin is equal to the smallest of all monthly corpora, here Nmin = 75,819
(June 1947). To our own surprise, row 4 of Table 4 reveals that this “random draw” approach also does
not break the sample size dependence. While the absolute values of the correlation coefficients for both
α = 1.00 and α = 2.00 are smaller for the original data than for the comparison data, all four coefficients
are significantly different from 0 (at p < 0.001) and thus indicate that the “random draw” approach
fails to pass the “Litmus test”. As a last idea, we decided to truncate each monthly corpus after Nmin
word tokens. The difference between this “cut-off” approach and the “random draw” is that the latter
approach assumes that words occur randomly in texts, while truncating the data after Nmin as in the
“cut-off” approach respects the syntactical and semantical coherence and the discourse structure at the
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text level [16,17]. On the one hand, row 5 of Table 4 demonstrates that this approach mostly solves the
problem: all four coefficients are small, and only one coefficient is significantly different from zero,
but positive. This suggests that the “cut-off” approach passes the “Litmus test”. On the other hand,
it’s worth pointing out that we lose a lot of information with this approach. For example, the largest
corpus is N = 507,542 word tokens long (October 2000). With the “cut-off” approach, more than 85% of
those word tokens are not used to calculate Dα(t,t − 1).

Table 4. Spearman correlation between the sample size and Dα(t,t − 1) for the original data and for the
“Litmus test” for α = 1.00 and α = 2.00.

Row Scenario α Number of Cases Original Data Litmus Test

1 Original 1.00 851 −0.76 * −0.91 *
2.00 851 −0.70 * −0.79 *

2 Natural weights 1.00 851 −0.77 * −0.90 *
2.00 851 −0.70 * −0.79 *

3 Yearly data 1.00 70 −0.74 * −0.97 *
2.00 70 −0.46 * −0.87 *

4 Random draw 1.00 851 −0.16 * −0.69 *
2.00 851 −0.50 * −0.61 *

5 Cut-off 1.00 851 0.12 * 0.08
2.00 851 0.08 −0.10

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.

While the resulting pattern in Figure 6 might be indicative of an interesting lexico-dynamical
process, especially for α = 1.00, what is more important in the present context is the fact that both blue
lines look completely different compared with the corresponding blue lines in Figure 5. Thus, in relation
to the analysis above (cf. Section 3.2), we concluded that the systematic sample size dependence of Dα

is far from practically irrelevant. On the contrary, the analyses presented in this section demonstrate
again why it is essential to account for the sample size dependence of lexical statistics.
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Figure 6. Dα(t,t− 1) as a function of time forα= 1.00 andα= 2.00. Here, each monthly corpus is truncated
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smoother highlighting the central tendency of the series at each point in time. Left: results for the
original data in blue. Middle: results for the “Litmus” data in orange. Right: superimposition of both
the original and the “Litmus” data.
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4. Discussion

In this paper, we explored the possibilities of using generalized entropies to analyze the lexical
dynamics of natural language data. Using theα-parameter in order to automatically magnify differences
between different texts at specific scales of the corresponding word frequency spectrum is interesting,
as it promises a more objective selection method compared to, e.g., [8], who use a pre-compiled list of
content-free words, or [12], who analyzes differences within different part-of-speech classes.

In line with other studies [17,23,27–29], the results demonstrate that it is essential for the analysis
of natural language to always take into account the systematic influence of the sample size. With the
exception of Hα=2.00 for larger sample sizes, all quantities that are based on general entropies seem to
strongly covary with the sample size (also see [23] for similar results based on Rényi’s formulation of
generalized entropies). In his monograph on word frequency distributions, Baayen [16] introduces the
two fundamental methodological issues in lexical statistics:

The sample size crucially determines a great many measures that have been proposed as
characteristic text constants. However, the values of these measures change systematically as
a function of the sample size. Similarly, the parameters of many models for word frequency
distribution [sic!] are highly dependent on the sample size. This property sets lexical
statistics apart from most other areas in statistics, where an increase in the sample size leads
to enhanced accuracy and not to systematic changes in basic measures and parameters. . . .
The second issue concerns the theoretical assumption [ . . . ] that words occur randomly in
texts. This assumption is an obvious simplification that, however, offers the possibility of
deriving useful formulae for text characteristics. The crucial question, however, is to what
extent this simplifying assumption affects the reliability of the formulae when applied to
actual texts and corpora. (p.1)

The main message of this paper is that those two fundamental issues also pose a strong challenge to
the application of information theory for the quantitative study of natural language signals. In addition,
the results of the case study (cf. Section 3.3) indicate that both fundamental issues in lexical statistics
apparently interact with each other. As mentioned above, there are numerous studies that used the
Jensen–Shannon divergence or related measures without an explicit “Litmus test”. Let us mention two
examples from our own research:

(i) In [12], an exploratory data-driven method was presented that extracts word-types from diachronic
corpora that have undergone the most pronounced change in frequency of occurrence in a given
period of time. To this end, a measure that is approximately equivalent to the Jensen–Shannon
divergence is computed and period-to-period changes are calculated as in Section 3.3.

(ii) In [15], the parameters of the Zipf–Mandelbrot law were used to quantify and visualize
diachronic lexical, syntactical, and stylistic changes, as well as aspects of linguistic change
for different languages.

Both studies are based on data from the Google Books Ngram corpora, made available by [30]. It
contains yearly token frequencies for each word type for over 8 million books, i.e., 6% of all books ever
published [31]. To avoid a potential systematic bias due to strongly changing corpus sizes, random
samples of equal size were drawn from the data in both [12] and [15]. However, as demonstrated
in Section 3.3, apparently this simplifying assumption is problematic, because it seems to make a
difference if we randomly sample N word tokens or if we keep the first N word tokens for the statistical
structure of the corresponding word frequency distribution. It is worth pointing out again that, without
the “Litmus test” the interpretation of the results presented in Section 3.3 would have been completely
different, because randomly drawing word tokens from the data does not seem to break the sample
size dependence. It is an empirical question whether the results presented in [12,15], and comparable
other papers would pass a “Litmus test”. In light of the results presented in this paper, we are rather
skeptical, thus echoing the call of [22] that it is “essential to clarify what is the role of finite-size effects in
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the reported conclusions, in particular in the (typical) case that database sizes change over time.” (p. 8).
One could even go so far as to ask whether relative frequencies that are compared between databases
of different sizes are systematically affected by varying database sizes. However, the test scheme as we
introduced it presupposes access to the full text data. For instance, due to copyright constraints, access
to Google Books Ngram data is restricted to token frequencies for all words (and phrases) that occur at
least 40 times in the corpus. Thus, an analogous “Litmus test” is not possible. At our institute, we are
rather fortunate to have access to the full text data of our database. Notwithstanding, copyright and
license reasons are a major issue here, as well [32]. To solve this problem for our study, we replaced
each actual word type with a unique numerical identifier as explained in Section 3.3. For our focus of
research, using such a pseudonymization strategy is fine. However, there are many scenarios where,
depending on the research objective, the actual word strings matter, making it necessary to develop a
different access and publication strategy. It goes without saying that, in all cases, full-text access is the
best option.

While the peculiarities of word frequency distributions make the analysis of natural language
data more difficult compared to other empirical phenomena, we hope that our analyses (especially
the “Litmus test”) also demonstrate that textual data offer novel possibilities to answer research
questions. Or put differently, natural language data contain a lot of information that can be harnessed.
For example, two reviewers pointed out that it could make sense to develop a method that recovers an
unbiased lexico-dynamical signal by removing the “Litmus test” signal from the original signal. This
is an interesting avenue for future research.
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Appendix A Inclusion of Punctuation and Cardinal Numbers.

Here, punctuation and numbers are included. This version of the database consists of N = 286,729,999
word tokens and K = 4,056,122 different word types. Table A1 corresponds to Table 1. Because (especially)
punctuation symbols have a very high token frequency, the contribution of the highest frequency groups
increases when punctuation is not removed from the database. However, the results are still qualitatively
very similar. Table A2 corresponds to Table 2. For α≤ 1.50, removing punctuation does not qualitatively
affect the results. However, for α= 2.00, except for n = 224 none of the correlation coefficients pass the
permutation test. Again, this indicates that α= 2.00 is a pragmatic choice when calculating Hα. However,
it also demonstrates that the conceptual decision to remove punctuation/cardinal numbers can affect the
results. Table A3 corresponds to Table 3 The results are not qualitatively affected by the exclusion of
punctuation/cardinal numbers. The same conclusion can be drawn for Table A4, which corresponds to
Table 4.

https://doi.org/10.7910/DVN/OP9PRL
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Table A1. Contribution of word types with different token frequency as a function of α.

Token
Frequency

Number
of Cases Examples α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

1 2,511,837
paragraphenplantage

penicillinhaltigen
partei-patt

48.51 8.94 2.16 0.00 0.00

2–10 1,148,295
koberten

optimis-datenbank
gazprom-zentrale

29.82 10.46 3.32 0.00 0.00

11–100 303,049
dunkelgraue

stirlings
drollig

13.26 13.57 6.54 0.02 0.00

101–1000 76,049
abgemagert

irakern
aufzugehen

5.86 18.56 13.50 0.15 0.00

1001–10,000 14,710 nord- selbstbestimmung
alexandra 1.99 19.35 20.60 0.83 0.02

10,001-100,000 1966
parteien
banken

entscheidungen
0.46 13.24 19.57 2.86 0.22

100,001-1,000,000 183
wurde
würde
dieses

0.08 7.47 14.89 10.05 2.66

1,000,001 + 33
auf
wie

,
0.03 8.40 19.42 86.09 97.09

4,056,122 100.00 100.00 100.00 100.00 100.00

Table A2. Spearman correlation between the sample size and Hα for different α-values *.

Minimum Sample Size Number of Datapoints α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

26 23 1.00 * 1.00 * 1.00 * 0.99 * 0.49
27 22 1.00 * 1.00 * 1.00 * 0.99 * 0.41
28 21 1.00 * 1.00 * 1.00 * 0.99 * 0.32
29 20 1.00 * 1.00 * 1.00 * 0.99 * 0.22
210 19 1.00 * 1.00 * 1.00 * 0.99 * 0.09
211 18 1.00 * 1.00 * 1.00 * 0.99 * −0.08
212 17 1.00 * 1.00 * 1.00 * 0.98 * −0.28
213 16 1.00 * 1.00 * 1.00 * 0.98 * −0.53
214 15 1.00 * 1.00 * 1.00 * 0.97 * −0.50
215 14 1.00 * 1.00 * 1.00 * 0.97 * −0.45
216 13 1.00 * 1.00 * 1.00 * 0.96 * −0.81
217 12 1.00 * 1.00 * 1.00 * 0.95 * −0.76
218 11 1.00 * 1.00 * 1.00 * 0.94 * −0.71
219 10 1.00 * 1.00 * 1.00 * 0.95 * −0.61
220 9 1.00 * 1.00 * 1.00 * 0.95 * −0.47
221 8 1.00 * 1.00 * 1.00 * 0.93 −0.31
222 7 1.00 * 1.00 * 1.00 * 0.89 0.04
223 6 1.00 * 1.00 * 1.00 * 0.83 0.66
224 5 1.00 * 1.00 * 1.00 * 1.00 * 1.00 *

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.
For minimum sample sizes above 220, an exact permutation test is calculated.
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Table A3. Spearman correlation between the sample size and Dα for different α-values *.

Minimum Sample Size Number of Datapoints α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

26 22 1.00 * −0.51 −1.00 * −1.00 * −1.00 *
27 21 1.00 * −0.59 −1.00 * −1.00 * −1.00 *
28 20 1.00 * −0.68 * −1.00 * −1.00 * −1.00 *
29 19 1.00 * −0.76 * −1.00 * −1.00 * −1.00 *
210 18 1.00 * −0.84 * −1.00 * −1.00 * −1.00 *
211 17 1.00 * −0.89 * −1.00 * −1.00 * −1.00 *
212 16 1.00 * −0.94 * −1.00 * −1.00 * −1.00 *
213 15 1.00 * −0.97 * −1.00 * −1.00 * −1.00 *
214 14 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
215 13 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
216 12 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
217 11 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
218 10 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
219 9 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
220 8 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
221 7 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
222 6 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
223 5 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
224 4 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.
For minimum sample sizes above 220, an exact permutation test is calculated.

Table A4. Spearman correlation between the sample size and Dα(t,t − 1) for the original data and for
the “Litmus test” for α = 1.00 and α = 2.00.

Row Scenario α Number of Cases Original Data Litmus Test

1 Original 1.00 851 −0.77 * −0.91 *
2.00 851 −0.63 * −0.70 *

2 Natural weights 1.00 851 −0.77 * −0.91 *
2.00 851 −0.63 * −0.70 *

3 Yearly data 1.00 70 −0.74 * −0.98 *
2.00 70 −0.39 −0.83 *

4 Random draw 1.00 851 −0.29 * −0.69 *
2.00 851 −0.45 * −0.56 *

5 Cut-off 1.00 851 0.07 0.05
2.00 851 0.11 −0.07

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.

Appendix B Replication of Table 2 for a Different Formulation of Generalized Entropy.

Here, we replicate Table 2 for a different formulation of generalized entropy, the so-called Rényi
entropy of order α [24]; it can be written as:

H′α(p) =
1

α− 1
log2

 K∑
i = 1

pαi

. (A1)
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Table A5. Spearman correlation between the sample size and H′α for different α-values *.

Minimum Sample Size Number of Datapoints α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

26 22 1.00 * 1.00 * 1.00 * 1.00 * 0.92 *
27 21 1.00 * 1.00 * 1.00 * 1.00 * 0.90 *
28 20 1.00 * 1.00 * 1.00 * 1.00 * 0.89 *
29 19 1.00 * 1.00 * 1.00 * 1.00 * 0.87 *
210 18 1.00 * 1.00 * 1.00 * 1.00 * 0.85 *
211 17 1.00 * 1.00 * 1.00 * 1.00 * 0.82 *
212 16 1.00 * 1.00 * 1.00 * 1.00 * 0.78
213 15 1.00 * 1.00 * 1.00 * 1.00 * 0.73
214 14 1.00 * 1.00 * 1.00 * 1.00 * 0.70
215 13 1.00 * 1.00 * 1.00 * 0.99 * 0.65
216 12 1.00 * 1.00 * 1.00 * 0.99 * 0.55
217 11 1.00 * 1.00 * 1.00 * 0.99 * 0.43
218 10 1.00 * 1.00 * 1.00 * 0.99 * 0.24
219 9 1.00 * 1.00 * 1.00 * 0.98 * −0.05
220 8 1.00 * 1.00 * 1.00 * 0.98 * −0.17
221 7 1.00 * 1.00 * 1.00 * 0.96 * 0.25
222 6 1.00 * 1.00 * 1.00 * 0.94 −0.20
223 5 1.00 * 1.00 * 1.00 * 0.90 0.10
224 4 1.00 * 1.00 * 1.00 * 0.80 −0.80

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.
For minimum sample sizes above 220, an exact permutation test is calculated.
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