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Abstract: Coherence is associated with transient quantum states; in contrast, equilibrium thermal
quantum systems have no coherence. We investigate the quantum control task of generating
maximum coherence from an initial thermal state employing an external field. A completely
controllable Hamiltonian is assumed allowing the generation of all possible unitary transformations.
Optimizing the unitary control to achieve maximum coherence leads to a micro-canonical energy
distribution on the diagonal energy representation. We demonstrate such a control scenario starting
from a given Hamiltonian applying an external field, reaching the control target. Such an optimization
task is found to be trap-less. By constraining the amount of energy invested by the control, maximum
coherence leads to a canonical energy population distribution. When the optimization procedure
constrains the final energy too tightly, local suboptimal traps are found. The global optimum is
obtained when a small Lagrange multiplier is employed to constrain the final energy. Finally, we
explore the task of generating coherences restricted to be close to the diagonal of the density matrix
in the energy representation.
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1. Introduction

The existence of coherence in a system is a signature of its quantum properties. Coherence is
considered as a resource in many applications [1,2]. Coherence underlies phenomena such as quantum
interference and multipartite entanglement that play a central role in the applications of quantum
thermodynamics and quantum information science [3,4]. In an energy representation a pure eigenstate
φj, Ĥ|φj〉 = εj|φj〉 has no coherence. The maximally coherent pure state is |Ψ〉 = 1√

d ∑d−1
j−0 |φj〉, where

d is the dimension of Hilbert space [2].
The notion of coherence can be generalized to open quantum systems with non pure states.

A stationary state which commutes with the Hamiltonian [Ĥ, ρ̂st] = 0 has no coherence. A primary
example is a thermal state ρT = 1

Z e−βĤ diagonal in the energy representation, where Ĥ is the
Hamiltonian of the system, β = 1

kBT and Z is the system’s partition function: Z = Tr{e−βĤ}.
In addition, a thermal state is passive, characterized by a monotonic decreasing probability distribution
of the occupation of its energy levels [5–7].

States with coherence are dynamically evolving due to the non-diagonal elements of their density
matrix. A signature of the coherence can be observed by variables that do not commute with the
Hamiltonian. Examples of such observables are molecular alignment and orientation [8–10].

The issue addressed in this study is the optimal generation of coherence from an initial thermal
state. In the context of molecular alignment, for example, this is related to the question what is the
upper bound for the utmost alignment that could be created by external coherent field, starting from a
thermal ensemble with a given temperature. The specific question of creating the utmost alignment
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and orientation, or even more generally, the upper and lower bounds for a given control task have
been investigated [11,12].

The generation of coherence is intimately connected to the operation of quantum heat engines [13].
In reciprocating quantum engines, finite power requires fast dynamics on the adiabatic strokes
generating coherence. The accompanying decoherence on the thermal strokes has been termed
quantum friction [14,15]. In the limit of short cycle times or for continuously operating engines
coherence is essential [16].

Generating coherence from a passive state involves a cost in work. This is because in unitary
evolution energy excitations are required to allow for coherence. A limiting case is adiabatic evolution
which will maintain a passive energy state with no coherence. The trade-off between invested work
and coherence generated has been noticed [15,17,18]. In this study we search for a unitary control
scheme leading to a state with the optimal attainable coherence. In addition, we quantify the cost in
work for the optimal solution [19].

Coherence is associated with off-diagonal elements of the density operator in the energy
representation. There have been several suggestions to quantify the amount of generated
coherence [20,21]. In this study we will use a distance metric D and C (see below). With these
definitions we can first define a unitary control task to achieve maximum coherence. Then we can
check if the control achieves the upper limit of coherence. In addition obtain the work cost associated
with this task.

The present study incorporates the theory of quantum control to address a quantum task of
optimizing coherence. The fulfilment of this task depends on the constraints imposed: Unconstrained
optimization, (Section 3) maximum coherence with minimum energy invested (Section 4) or limiting
the coherence to be close to the diagonal (Section 5).

2. General Aspects of Coherence Measurment: Information and Entropy

We study the creation of coherence from a passive state by a unitary evolution generated by the
control Hamiltonian Ĥ:

Ĥ(t) = Ĥ0 + µ̂ · f (t) (1)

where Ĥ0 is the stationary Hamiltonian, µ̂ is the control operator, f (t) is the time dependent control
field. For most purposes the field vanishes at the initial and final time so that: f (0) = f (T) = 0.
The dynamics generated by the control Hamiltonian are given by the unitary evolution operator:

ih̄
d
dt

Ûc = Ĥ(t)Ûc Ûc(0) = Î. (2)

We assume complete controllability meaning that the control field can generate any unitary
transformation Ûc in the Hilbert space of the system. We seek a unitary Ûc which will transform an
initial thermal state ρ̂T to a final state ρ̂ f with maximum coherence

ρ̂ f = Û†
c ρ̂TÛc (3)

We now need to quantify the coherence.
The Shannon entropy [22] associated with a complete measurement of the observable 〈Â〉 is

SA = −∑
j

pj ln pj (4)

where pj = 〈P̂j〉 = Tr{ρ̂P̂j} is the probability of outcome j considering the spectral decomposition
of the operator Â = ∑ αjP̂j. A special case is the energy entropy SE associated with a complete
measurement of Ĥ. In information theory terms, the entropy with respect to a variable quantifies the
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amount of classical information obtained by a complete measurement with respect to the variable. If the
evolution operator Û does not commute with Â the entropy of the observable SA will change.

An invariant to the evolution is the von Neumann entropy SvN [23]:

SvN = −Tr (ρ̂ ln ρ̂) (5)

Due to its invariance with respect to unitary transformations SvN is often used to quantify the total
information content of quantum systems [24]. As shown in Reference [25], SvN is the minimal entropy
that could be obtained by a complete measurement of all possible operators. Therefore, SvN ≤ SA.
For a thermal state ρ̂T the energy entropy and the von Neumann entropies coalesce SE = SvN .

A quantifier of distance between two states ρ̂a and ρ̂b is the divergence [26]:

D(ρ̂a|ρ̂b) = Tr{ρ̂a ln ρ̂a − ρ̂a ln ρ̂b} (6)

D(ρ̂a|ρ̂b) ≥ 0 with equality when ρ̂a = ρ̂b. A measure of coherence is the distance between a state ρ̂

and ρ̂E where ρ̂E is the diagonal part of the density operator ρ̂ in the energy representation. We can
quantify this distance by DE(ρ̂|ρ̂E) so it becomes the difference between the von Neumann entropy
and the energy entropy [27,28]:

D(ρ̂|ρ̂E) = SE − SvN (7)

For a thermal state ρ̂T the divergence vanishes. Under unitary transformation SvN is conserved but
the energy entropy SE can increase and with it the divergence D(ρ̂|ρ̂E), therefore maximizing SE will
lead to maximum coherences.

An alternative direct measure for coherences is:

C = 2N
N − 2 ∑

i,j>i

∣∣ρij
∣∣2 (8)

where the sum of the magnitude of the off diagonal elements of ρ̂ in the energy representation is
measured. C is normalized such that C = 1 is obtained for a fully coherent pure state.

3. Maximum Coherences I: The General Case and Its Relation to the Micro-canonical Ensemble

We start by analyzing the maximum generated coherences in an unconstrained case. The entropy
is a monotonic function of the temperature. It is zero for T = 0 and the thermal state with the maximum
(either von Neuman and Shannon) entropy is the microcanonical ensemble in which pj = 1/N and
SvN = SE = ln N. This corresponds to a state with effective T → ∞. Now, any initial thermal state
with lower T will have lower SE. Therefore the unitary transformation that will maximize D(ρ̂|ρ̂E)

is the one that transforms ρ̂T into a population distribution similar to the microcanonical ensemble on
the energy diagonal but, unlike the micro-canonical thermal state, with non-diagonal coherences.
The absolute maximal generated coherences for any system is therefore starting from an initial pure
state, which for a thermal state with T = 0 is the ground state and vanishing entropy SvN = 0.

Computational Control Demonstration and Model

For the sake of generic and scalable demonstration we employ here the model of a many body
single mode Bose-Hubbard double well system [29]. This many-body Hamiltonian for n atoms is
equivalent to a system of N = 2j+ 1 sub-levels with angular momentum j = n/2 [30]. The Hamiltonian
model becomes:

Ĥ0 = UĴ2
z + ∆Ĵx (9)

where Ĵi are the projections of the total angular momentum on the i axis. U is the in-site inter-particle
interactions parameter and ∆ is the hoping strength between the two wells. Both are set hereby
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to one. Adding the control operator Ĵz makes this Hamiltonian completely controllable—for more
details, see Reference [30]. To enable systematic comparison between systems with different sizes,
the energy of the system is normalized so the effective free Hamiltonian of the system is taken as
Ĥn = Ĥ0/Tr(Ĥ2

0).
Complete controllability [31] means that one can found a field that generates the desired

unitary transformation. To illustrate this ability on the current context, we use the Hamiltonian of
Equation (9), with the initial thermal state with inverse temperature β0 = 1/kbT0 = 0.2 1/Hartree.
The control hamiltonian Ĥ = Ĥn + ε(t)Ĵz was then used to generate the target unitary transformation.
This unitary operator transforms the thermal state into the micro-canonical distribution on the diagonal.
By construction it leads to maximum coherence. Figure 1 presents an image matrix-plot for the initial
and the final absolute values of the density matrices, the computed unitary transformation and the
field ε(t) that produced it.
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Figure 1. Unitary transformation generating maximum coherence: Complete controllability. Results of
the Optimal-Control-Theory field that was generated to take the thermal state with j = 4 (N = 9) and
β0 = 0.2 with the Hamiltonian of Equation (9) into the micro-canonical population distribution. (Left)
panel: initial thermal density matrix. (Upper) and (lower) panels: absolute values of the elements
of the obtained unitary transformation and its generating field, respectively. (Right) panel: absolute
values for the transformed density matrix.

The optimality of the micro-canonical probability distribution with respect to coherences, is
demonstrated by the following numerical optimization: Starting with given ρ̂T with corresponding
β0 = 1/kbT0, find the unitary transformation: Ûop = exp(iV̂op) such that the functional D(ρ̂|ρ̂E) is
maximum. For an N level system, this defines a control problem with dimensionality N × N free
control parameters, defined by the hermitian matrix V̂op. Note that the object for this control problem
is the unitary transformation itself. Since the system is controllable we implicitly assume the existence
of a field that generates it. An explicit example is demonstrated in Figure 1.

Figure 2 presents the value of the direct optimal total coherences measure C defined in
Equation (8), as a function of the logarithm of the inverse temperature β0 for different sizes of
the system. For all cases, the optimal population distribution was found to be the microcanonical
ensemble. As expected, for increasing temperature, the level of coherence generated decrease smoothly
so that at T → ∞ no coherence is generated, vanishing exponentially with the initial β0 (see left inset).
For larger systems, coherence is generated for higher initial temperatures. Note that the optimum is
highly degenerate, represented by a N(N − 1)/2-fold dimensional sphere with a vanishing radius
for T → 0 and T → ∞ and a maximum in an intermediate β. Being loosely constrained and highly
degenerate, the optimization is found to be globally trap-less. That is, for all the sizes of the system
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and for any initial guesses for the unitary transformation, no suboptimal solutions were found. All the
solutions converged to the global optimum of the micro-canonical distribution pi = 1/N. Difficulties
to converge to the optimum were found for j > 12 (N = 25). The extremely large dimensionality
of the optimization problem (above 625 optimization parameters) cause difficulty in computing the
numerical gradient. We have to remark here, that despite of being related to the general context of
traps in the control space of parameters, this finding is entirely different from the notion of the no trap
theorem [32,33]. The theorem deals with the landscape for the problem of finding a giving field for
some desired transformation. This is the case for most of the Optimal Control Theory related works in
quantum coherent control. In this work, however, the optimization target is the transformation itself.
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Figure 2. Micro-canonical ensemble: Maximal coherences defined by Equation (8), as a function of the
initial verse temperature β, for different sizes of the system. Inset: A log-log plot of the main panel.

4. Maximum Coherence II: Energy Constraint and The Canonical Probability Distribution

The micro-canonical probability distribution on the diagonal is the state with utmost coherences
for a N level system. This state, however, corresponds to a uniform population distribution, which
effectively matches infinite temperatures for the probability distribution. The natural constraint in
addition is a target with finite energy.

The state with maximum entropy constrained by an average energy 〈Ĥ〉 = E is the thermal
state ρ̂T and its entropy SvN = SE = ln Z + βE [34]. For T → ∞ the thermal state converges
to the micro-canonical state ρ̂T → ρ̂mc. For a state with finite T the maximum entropy is
obtained for population which corresponds to the Boltzmann distribution. Therefore, a unitary
transformation with a target state where the populations are canonically distributed will maximize
coherences for a predetermined final energy. Consequentially, any initial thermal incoherent
state, is minimal with respect to its entropy. Generating coherences requires an investment of
energy. The process is reversible, nevertheless returning to the original energy will necessarily
erase the coherences. Moreover, for any passive states, this also means that the energy of a
thermal state cannot be reduced by a unitary transformations due to the fact that coherences cannot
be produced.

Numerical Example

The constraint on the final energy is introduced by a Lagrange multiplier in addition to the
previous optimization of the divergence. The optimization problem is now in the following form:
Starting with with the inverse temperature β0 and ρ̂T , find the optimal unitary transformation:
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Ûop = exp(iV̂op) such that J = SE − λ
∣∣∣E− E f

∣∣∣ is maximal. λ is the Lagrange multiplier that imposes
the energy constraint.

The optimization with the additional constraint leads to traps: many local suboptimal solutions.
We use this feature to corroborate the result of this section. Figure 3 presents in the upper panel the
measure of the coherence C for 1000 optimization runs with different initial random guesses for the
unitary transformation. At the bottom panel the overlap between the diagonal part of the final density

matrix p f
i and the thermal population at the target energy pT

i , defined by: O = ∑
i

√
pT

i p f
i , is shown.

This measurement is, in a way, a reduction of the conventional overlap between two wavefunctions to
the incoherent case.
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Figure 3. Canonical ensemble. (Upper) panel: The values for C for unsorted 1000 optimization runs.
The parameters for the runs were taken as j = 1, the initial temperature is β = 3 and the energy of
the final state corresponds to E f = 1/kβ f were β f = 0.3. (Lower) panel: Overlap between the final
populations of the density matrix and the target thermal state. λ = 0.3 = λ0 (see text) is taken.

The suboptimal traps that were obtained for runs with values of coherences below the maximum
ones are clearly visible. Moreover, the correspondence between the traps in the plots is strict and,
as expected, a complete overlap with the target thermal distribution also leads to a maximum in
the coherences.

Remarking on the number of traps in the system: The inset in Figure 4 shows the averaged relative
error in the final energy of the state σ as a function of the Lagrange multiplier λ:

σ =
E− ET

ET
(10)

where E is the actual energy of the final state and ET is the target thermal energy. For very small λ→ 0,
the energy constraint is too weak to impact the optimization and the solution does not converge to the
correct target energy. However, violation of the energy constraint decreases linearly with λ, probably
due to the linearity of the energy in the constraint. Adequate numerical tolerance was reached for
some λ0. The main panel of the figure show the sorted values for the overlap between the final density
matrix and the thermal target, for 1000 optimization runs and different values of λ. For the case
presented here λ0 = 0.3, it is interesting to see that the number of traps is minimal very close to λ0 and
increases monotonically with the increase of the Lagrange multiplier. This is a result of the relative
weight of the optimized quantity D which is relatively decreased, resulting in suboptimal overlap
and coherences.
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Figure 4. λ and number of traps. Main panel: Sorted overlap (see main panel of Figure 3) for 1000 runs,
for different values of the Lagrange multiplier values λ. Inset: the mean error in the resulted energy as
a function of the Lagrange multiplier λ.

5. Additional Constraints Imposing Coherence Predominately Close to the Diagonal

Typically in controllable problems the control operator is biased to couple adjacent energy levels.
For example, the electric dipole or the polarizability tensor operators [35]. In the context of molecular
spatial directions for example, both operators are related to cosθ and cos2θ, where θ is the angle
between the molecular and spatial axis. The two kinds of interactions lead to molecular orientation
and alignment, respectively. These light-matter coupling operators connect directly only adjacent
(or next-to-adjacent) j levels. Hence, coherences will be first generated at near j proximity. Higher
order of coupling, between distant energy levels, are not forbidden but they are harder to achieve and
are not measured under conventional alignment or orientation experiments. In control terminology,
the problem of creating highly non local coherences by local operators is still controllable but is not
invertible, that is, the solution for the control problem will be very hard or even unfeasible.

In this section the relation between differently remote coherences and their structure will be
studied. The optimization is modified, with the target being now:

Ô = exp (αµ̂)− diag (exp (αµ̂)) (11)

where

µ̂ =


0 1
1 0 1

1 ... ...
... 1

1 0

 (12)

is a simplified dipole operator. Under these definitions,
〈
Ô
〉

is a measure of the amplitude of the
off-diagonal coherences. For small values of α, Ô→ µ̂ only adjacent coherences are taken into account
and for increasing α the whole matrix is covered, merging into the micro canonical ensemble result
of the previous section. The control problem now is to find the unitary transformation that find
the maximal expectation value for the operator Ô, for some initial temperature and a given final
energy constraint. Figure 5 displays a contour plot of the optimal expectation value of Ô under the
unitary transformation that gives optimal

〈
Ô
〉

for the system with j = 3 (N = 7) and α = 0.04.
The values are plotted as a function of the initial temperature β0 and the final energy defined by
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the effective temperature βF. The x-axis values are an indication of the initial purity of the system,
so that the system is pure for β0 → ∞ and highly mixed for vanishing β0. The y-axis is an indication
for the resulted energy of the system. The optimization problem in this case contains, of course,
many traps, and each of the points in the contour plot is globally optimal, verified by initiating
the optimization with 10,000 random guesses for the transformation and choosing the (converged)
maximum value that was obtained for Ô. The maximum of the coherence generated is obtained for
an initial pure state that is transformed to final infinite temperature and distribution on the diagonal,
that is, the micro-canonical ensemble.
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Figure 5. Coherences and phase space proximity I. Maximal values for the generalized coherences
operator Ô, defined in Equation (11), as a function of the initial temperature β0 and final effective
temperature βF. The other parameters taken here are α = 0.04 and j = 3.

Figure 6 expands the result of Figure 5 to other regimes and operators. As a reference, the results
of Figure 5 are displayed on the upper left panel of the figure. The middle upper panel displays
the expectation values of µ̂ of the target state which optimizes Ô. For this case α = 0.04 � 1 the
optimization of the two operators converges to the same outcome. The right upper panel of figure
shows the same dependency, under the same conditions, for the non-diagonal part of the operator
µ̂2, which quantifies the second row off-diagonal elements. It is interesting to note that the maximum
conditions for coherences for µ̂ is associated with minimal coherences for µ̂2. This feature of inverted
extremum seems to hold also for higher orders of µ̂. The lower panels of Figure 6 present the same
veriables of the upper panel but here α = 40� 1. For this case, the maximum of Ô is still found for
an initial pure state and maximum final energy, but the entire structure does not overlap with the
conditions for the linear dipole coherences. The structure that flips the signs of the minimum and
maximum with the order of µ̂ is nevertheless maintained. As a final remark, it is worth mentioning
that the same procedure was tested also for a generator of the form Ô2 ∝ exp(αµ2). For this generator
the optimal transformations for Ô2 were found to contain only coherences of even order in µ̂ and the
inversion of the minimum and maximum takes place now with µ̂2.
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Figure 6. Coherences and phase space proximity II. Upper panels: Similar to Figure 5, plotted in the
upper left panel reference. The middle and right upper panels are the expectation values of µ̂ and µ̂2 at
the optimal conditions that were obtained for the left upper panel of the operator Ô. The rest of the
parameters are similar to Figure 5. Lower panels: Same as the upper panels, with α = 40.

6. Summary

In this work the ability to induce coherence into systems by means of an external control field
was investigated. We found that for any thermal state the coherence generated will become maximal
when the system is transformed into a population distribution that matches the microcanonical energy
distribution. Adding an energy constraint to the final target state leads to an optimal population
distribution that matches the canonical distribution. Note that the maximum coherence could be also
obtained indirectly by imposing a complete population transformation target [36] on the optimization
procedure instead of the full unitary transformation.

Finally, it is worth while to mention that the insight obtained from the control problem is simple
and robust, nevertheless their physical realization is non trivial. Even where the system is controllable,
the actual typical operators that generate the transformation have low connectivity within the whole
Hilbert space. In that case it is difficult to generate coherence between distant energy states. The last
section was devoted to this restriction, and the interesting properties and symmetries that emerge
between differently remote states were discussed. The present study is a link between quantum control
and quantum thermodynamics [3,37] pointing to the work cost required to generate coherence.
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