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Abstract: Traditionally, cryptographic protocols rely on mathematical assumptions and results to
establish security guarantees. Quantum cryptography has demonstrated how physical properties of a
communication channel can be leveraged in the design of cryptographic protocols, too. Our starting
point is the AlphaEta protocol, which was designed to exploit properties of coherent states of light to
transmit data securely over an optical channel. AlphaEta aims to draw security from the uncertainty
of any measurement of the transmitted coherent states due to intrinsic quantum noise. We present a
technique to combine AlphaEta with classical preprocessing, taking into account error-correction for
the optical channel. This enables us to establish strong provable security guarantees. In addition,
the type of hybrid encryption we suggest, enables trade-offs between invoking a(n inexpensive)
classical communication channel and a (more complex to implement) optical channel, without
jeopardizing security. Our design can easily incorporate fast state-of-the-art authenticated encryption,
but in this case the security analysis requires heuristic reasoning.

Keywords: symmetric encryption; all-or-nothing transform; optical channel; provable security

1. Introduction

The fast development of telecommunications and the increase of (potentially sensitive) data
stored and exchanged by companies or individuals through public networks has made cryptography
particularly important to guarantee the privacy, integrity and authenticity of users. The current
approach to protect data involves the use of combinations of secret key [1] and public-key solutions [2],
which base their security on empirical evidence or on the difficulty of solving certain mathematical
problems respectively. A different approach has been explored since the 1980s, after Bennet and
Brassard [3] proposed their seminal quantum key distribution protocol. Today research in quantum
cryptography goes well beyond quantum key distribution [4,5].

Quantum-based cryptographic schemes have the conceptual appeal that security guarantees can
potentially be argued based on fundamental laws of physics. However, popular quantum protocols,
based on [3,6], commonly rely on single photon sources, which can be challenging to implement. As a
result, in recent years, the idea of using mesoscopic coherent states has gathered interest, and the
AlphaEta protocol is a prominent example of such a design (see, e.g., [7–10]). Its security has been the
topic of several papers, including [9,11–14]. AlphaEta is also cited in Lloyd’s work on quantum enigma
machines [15]; Lloyd notes the open problem to construct a provably secure quantum enigma machine using
linear optics and coherent states. As an alternative to AlphaEta, other optical cryptographic solutions
were considered, including the use of double random phase encoding (DRPE) [16–18]. It deserves
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noting that not only has academia been focusing on quantum technologies, but several industries have
started to commercialize quantum cryptographic tools [5], specifically for quantum key distribution
and quantum random number generation.

Capturing security guarantees that rely on physical assumptions with common security models
for encryption poses somewhat of a challenge, especially when trying to integrate computationally
secure primitives as well. Barbosa and van de Graaf rightfully point out that protocols based on
quantum optical noise appear to be a wonderful source of research questions [10], though. It is
tempting to harvest both the strength of existing (computationally secure) efficient cryptographic
constructions and the features offered by an AlphaEta-type protocol, where an eavesdropper faces an
additional, physical, hurdle.

Our Contribution

A protocol is proposed which takes advantage of the physical security guarantee offered from the
AlphaEta setup and builds on this using classical constructions. In Section 2, we review the AlphaEta
protocol and some definitions and results about all-or-nothing transforms (AONTs), a tool that has
already proved to be useful in Li et al.’s work [19]. To be able to work conveniently with individual
bits when discussing security, we introduce the notion of a restricted AONT and present a way of
constructing these type of transformations. We propose a security model for encryption schemes
using “hybrid ciphertexts”, invoking both an optical channel (like AlphaEta does) and a classical
communication channel. We present an (efficient) construction, building on AlphaEta, offering security
in our model.

The security guarantee we establish is information-theoretic: we leverage the optical channel
so that (physical) guarantees should prevent the adversary from learning any bit of the payload.
Standalone, this may not be satisfying for applications yet, but we can integrate classical (high-speed)
authenticated encryption. Then, with a heuristic argument, we create a situation where an adversary is
unlikely to even intercept the correct ciphertext, offering a conceptually interesting additional layer of
security: in traditional attack models, knowledge of the ciphertext is commonly considered as granted.
It seems fair to say that we offer the first formalized proposal dealing with such hybrid ciphertexts,
provably establishing the aforementioned advantage. It adds the physical security guarantee, but is
easier/more flexible to implement since not the whole ciphertext needs to be transmitted through the
optical channel.

2. Background and Tools

A protocol we will make use of is AlphaEta, and we briefly review the essential pieces,
following mainly [8].

2.1. The AlphaEta Protocol

Ciphertexts in AlphaEta are a sequence of light pulses, where each pulse consists of many photons.
They are represented using coherent states, and throughout, we use the following notation:

◦ 〈n〉: average number of photons per pulse
◦ β: number of bases used
◦ s: number of pulses sent in one round of the protocol

The two communicating parties are assumed to share a uniformly random (b1, . . . , bs) ∈
{0, . . . , β− 1}s that is unknown to the adversary and determines the bases used. Given a plaintext
a = (a1, . . . , as) ∈ {0, 1}s, the sender will transmit each bit ai in phase angle

ϕai ,bi
=

(
bi
β
+ ai

)
· π (1)
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to the receiver using the optical channel. Knowing the bases bi, the receiver measures ϕai ,bi
and maps

it to the nearest phase angle to determine the original plaintext bit ai.
The number of photons in each pulse follows a Poisson distribution with parameter 〈n〉.

This statistical fluctuation is the quantum noise, which is intrinsic and cannot be avoided. This 〈n〉
is also related to the phase angle ϕ used to modulate light pulses. Hence, there are fluctuations in
the phase angle ϕ as well. The security of a protocol using coherent states is based on the difficulty
of determining the right phase angle if the basis is not known. An eavesdropper, not knowing the
basis, faces an intrinsic error that can be bounded from below by a value that can be made close to
1/2. Whereas the intended recipient, knowing the shared basis in which to measure, can recover any
plaintext bit almost perfectly (bit error rates are below 10−9).

In [8], it is shown that if a plaintext bit is chosen uniformly at random, which is typical for a key
transport application, then the minimum probability of error Pe that an eavesdropper can achieve in
the bit determination can be arbitrarily close to 1/2 by choosing the appropriate parameters β and
〈n〉 (see ([8] Figure 3)). Therefore, the entropy about a bit of the plaintext given the measurement is
reduced by only a small quantity ε and the mutual information of both random variables approaches
that value ε (see ([8] Figure 4)).

In the next section, we recall a theoretical tool which will enable us to split a payload between
two different types of channels—an optical one and a classical one—without jeopardizing security.

2.2. All-or-Nothing Transforms

Let `, s be positive integers such that 1 ≤ ` ≤ s and X be a finite set with |X| = v. We say that
φ : Xs −→ Xs is an (`, s, v)-all-or-nothing transform (AONT) provided that all of the following holds:

1. φ is a bijection.
2. If any s− ` of the s output values y1, . . . , ys are fixed, then any ` of the input values xi (1 ≤ i ≤ s)

are completely undetermined, in an information-theoretic sense.

Following [20,21], throughout we use a definition of AONTs in terms of the entropy function H:

Definition 1. Let X1, . . . , Xs, Y1, . . . , Ys be random variables taking values from the finite set X, with |X| = v.
These 2s random variables define an (`, s, v)-AONT provided that the following conditions, are satisfied:

1. H(Y1, . . . , Ys|X1, . . . , Xs) = 0,
2. H(X1, . . . , Xs|Y1, . . . , Ys) = 0
3. For all X ⊆ {X1, . . . , Xs} with |X | = `, and for all Y ⊆ {Y1, . . . , Ys} with |Y| = `, it holds that

H(X |{Y1, . . . , Ys}\Y) = H(X ). (2)

The definition of a linear AONT is the obvious one:

Definition 2. Let X be a finite field. An all-or-nothing transform is linear if each yi is an X-linear function of
x1, . . . , xs.

The following theorem provides a method to obtain linear AONTs [21]:

Theorem 1. Let q be a prime power and M ∈ Fs×s
q invertible. Then M defines a linear (`, s, q)-AONT

φ : Fq
s −→ Fq

s

x 7→ xM−1 (3)

if and only if every ` by ` submatrix of M is invertible.
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3. Results

With this preparation, we are ready to discuss the type of encryption schemes we are interested in
here more formally.

3.1. Symmetric-key Encryption Using Mesoscopic Coherent States

Motivated by AlphaEta, we consider symmetric key encryption, where parts of the ciphertext can
be non-classical: it can be a sequence of coherent states. When decrypting a ciphertext, a measurement
should be done to obtain a classical bitstring from the coherent states. This together with the classical
part forms the reconstructed ciphertext. Afterwards, from the reconstructed ciphertext, the plaintext can
be recovered:

Definition 3. A symmetric-key encryption scheme using mesoscopic coherent states is a triple of algorithms
as follows:

• KeyGen: Given a key length, outputs a corresponding secret key k.
• Enc: Given a plaintext m and secret key k, it outputs a ciphertext c, consisting of a sequence of coherent

states and a bitstring:
c = (|ψ1〉 , . . . , |ψj〉 , c1, . . . , c`) (4)

• Dec: This process consists of two phases. Given a ciphertext c and a secret key k, the sequence of coherent
states in c is measured in the first phase. Now c can be considered a classical bitstring when entering the
second phase of the decryption. The final output of the algorithm is the plaintext m.

Remark 1. We allow the sequence of coherent states or the classical bitstring to be empty to include both
classical and purely quantum symmetric-key encryption schemes, such as AlphaEta.

Figure 1 illustrates the overall structure of a symmetric-key encryption scheme using mesoscopic
coherent states, highlighting the two different communication channels.

Figure 1. Overview of a symmetric-key encryption scheme using mesoscopic coherent states.

For such a scheme to be useful, we assume that the intended recipient, knowing the secret key
and leaving aside channel imperfections, can recover correctly the plaintext from the ciphertext. This is
captured by correctness:

Definition 4. A symmetric-key encryption scheme using mesoscopic coherent states is δ-correct if (Deck ◦
Enck)(m) = m except with a probability smaller than δ, for all k generated by KeyGen and all plaintexts m.

Notice that AlphaEta satisfies Definition 4, as discussed in [10]; the intended recipient can recover
a plaintext bit with an error rate below 10−9.

A user or adversary not knowing the secret information, should obtain as little information
about a plaintext bit as possible. The entropy of a plaintext bit given the reconstructed ciphertext
should not be very different from the entropy about that plaintext bit. We use this as motivation for
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the following security definition. One could consider stronger security notions, in particular when
allowing ciphertext expansion, but the following notion seems adequate when aiming at a composition
with a classical scheme as discussed in Section 4.1.

Definition 5. Let (KeyGen, Enc, Dec) be a symmetric-key encryption scheme using mesoscopic coherent states.
Let Pi denote the random variable taking the value of a plaintext bit and Ci denote the random variables taking
the value of classical ciphertext bits. Let C̃1, . . . , C̃l represent the random variables taking the value of the
reconstructed ciphertext bits, i.e, C̃is correspond to the bits obtained after the corresponding measurement of the
coherent states. We say that (KeyGen, Enc, Dec) is ε-secure if for 1 ≤ i ≤ s:

|H(Pi|C̃1, . . . , C̃`, C`+1, . . . , Cs)− H(Pi)| ≤ ε (5)

Remark 2. The AlphaEta protocol satisfies Definition 5, assuming the a priori probability distribution for a bit
is the discrete uniform probability.

As discussed in [10], the amount of information that the adversary, not knowing the bases, can obtain
through eavesdropping can be made sufficiently small by choosing the parameters 〈n〉 and β appropriately.
For example, for 〈n〉 = 100 and β = 5, the minimum probability of error is PE

e ≈ 0.476. So H(P|C̃) =

−PE
e log2 PE

e − (1− PE
e ) log2 PE

e ≈ 0.998. Since H(P) = 1, this will imply AlphaEta is ε-secure for ε = 0.002
for the chosen parameters.

Moreover, the mutual information of the plaintext bit and reconstructed ciphertext is equal to ε, since
I(P, C̃) = H(P) − H(P|C̃). A graph of PE

e and I(P, C̃) as a function of 〈n〉 and β can be found in [10],
where it can be seen how they can be made as close to 1/2 and 0, respectively, as desired by choosing the
appropriate parameters.

Once the secret key is exposed, previous transmissions using the exposed key could become
vulnerable. An adversary may have obtained previous ciphertexts, which, knowing the secret key,
could potentially be decrypted and the messages would be known. Owing to the fact that in a
symmetric-key encryption scheme using mesoscopic coherent states, parts of the ciphertext may be
non-classical and we assume the adversary to conduct measurements on those parts, we can hope for
some type of forward secrecy, however:

Definition 6. For t ∈ N, let Pt
i be the random variable taking the value of a plaintext bit, and Ct

i the
random variables taking the value of classical ciphertext bits at time t. Let C̃t

1, . . . , C̃t
` represent the random

variables taking the value of the reconstructed ciphertext bits, i.e., C̃t
i s correspond to the bits obtained after

the corresponding measurement of coherent states at time t. Let K1, . . . , Kt represent the sequence of random
variables taking the values of the symmetric key, i.e., values in {0, . . . , β− 1}s. We assume after time t (when the
ciphertext has been sent and the measurements without knowing Kt have been realized), K1, . . . , Kt is revealed.
A symmetric-key encryption scheme using mesoscopic coherent states is ε-forward secure if for all t we have

|H(Pt
i |C̃t

1, . . . , C̃t
`, Ct

`+1, . . . , Ct
s, K1, . . . , Kt)− H(Pt

i )| ≤ ε. (6)

3.2. A Hybrid Construction

Instead of applying a symmetric-key encryption scheme using mesoscopic coherent states directly
to plaintexts, we will apply preprocessing. This will enable us to send (large) parts of the ciphertexts
over a (potentially cheaper) classical communication channel without sacrificing security. One benefit
is that the somewhat subtle problem of error correction on the optical channel, can be localized to a
smaller payload.
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3.2.1. Description and Design Rationale

Suppose party A wants to send an s-bit message to party B. We would like to invoke a linear
AONT to transform the ciphertext such that if some blocks are missing, the entropy about other blocks
is not reduced. We are particularly interested in the situation q = 2 and l = 1, with field elements
representing bits. We try to “hide” individual input bits of an AONT where almost the complete output
of the AONT is potentially available to an adversary. Unfortunately, the conditions of Theorem 1
cannot be satisfied when ` = 1, q = 2 and s ≥ 2, since the matrix in which all entries equal 1 is not
invertible. To fix this issue, consider an s by s matrix M with entries in F2 with exactly s− 1 entries
equal to zero. From [21] (Lemma 7), M is invertible over F2 if and only if the zero entries occur in s− 1
different rows and in s− 1 different columns. We will consider such matrices M with the zero-entries
being arranged as follows:

M =


1 1 1 1 . . . 1
1 0 1 1 . . . 1
1 1 0 1 . . . 1
...

...
...

...
. . .

...
1 1 1 1 . . . 0


So the first row of M contains all entries qual to 1. This means that each xj value of the input

depends on the value y1 of the output. Thus, if y1 is unknown, any value of the input is completely
undetermined. Therefore, if we consider this restriction, the above linear transformation M behaves as
an AONT. As with Definition 1, we can define a restricted AONT.

Definition 7. Let X1, . . . , Xs, Y1, . . . , Ys be random variables taking on values in the finite set X. These 2s
random variables define a {1}-restricted AONT provided that the following conditions are satisfied:

1. H(Y1, . . . , Ys|X1, . . . , Xs) = 0
2. H(X1, . . . , Xs|Y1, . . . , Ys) = 0
3. For all i such that 1 ≤ i ≤ s, H(Xi|Y2, . . . , Ys) = H(Xi).

We can generalize Definition 7 to an Υ-restricted AONT.

Definition 8. Let X1, . . . , Xs, Y1, . . . , Ys be random variables taking on values in the finite set X. These 2s
random variables define an Υ-restricted AONT provided that the following conditions are satisfied:

1. H(Y1, . . . , Ys|X1, . . . , Xs) = 0
2. H(X1, . . . , Xs|Y1, . . . , Ys) = 0
3. Let Y = {Yυ : υ ∈ Υ} represent the collection of hidden bits. For all i such that 1 ≤ i ≤ s, it holds that

H(Xi|{Y1, . . . , Ys}\Y) = H(Xi). (7)

For convenience, we will simply speak of an `-restricted AONT instead of an
{1, . . . , `}-restricted AONT.

Proposition 1. Let M ∈ GLs(F2). Let x = (x1 x2 . . . xs) and y = (y1 y2 . . . ys) where x = yM. If `
coordinates of y are unknown, then there are 2` possible preimages x.

Proof. Suppose one hides l values of y. Since each bit has two possibilities, this leads to 2l possible
choices for y. Since M is a bijection, it implies that there are also 2` candidates for the correct
preimage x.



Entropy 2019, 21, 872 7 of 14

Remark 3. While being strong, one should note that the guarantees of our restricted AONT are also limited:
if available, two yi-values can be combined to obtain the corresponding sum of xi-values. Specifically, one can
express y in terms of x as y = xM−1 where

M−1 =


0 1 1 . . . 1
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . 1


if s is even. If s is odd, the form of M−1 is similar except that m11 = 1. It can be observed that yi = x1 + xi,
for all i = 2, . . . , s. Thus, one may take the sum of yp and yq to obtain the sum of xp and xq (for p, q 6= 1):

yp + yq = x1 + xp + x1 + xq

= xp + xq
(8)

Proposition 1 applies to linear restricted AONTs, and we will proceed by applying an `-restricted
AONT as in Definition 8. The bits represented by Y will be transmitted to party B through the optical
channel with AlphaEta, while the rest can be sent through a public classical channel.

It is crucial that the bits sent through the optical channel are received correctly. Otherwise,
because of the properties of the (restricted) AONT, no bit of the plaintext could be recovered. Thus we
will apply an error-correcting code to the bits indexed by Y beforehand. One concern here is the impact
of this added redundancy on security, and we will stick here to an embarrassingly trivial approach:
For each bit in Y , we will repeat it r times with r being odd. Barbosa pointed out that in this case the
system can be designed to a desired security level PE

e , through the correct choice of 〈n〉 and β [8]. Thus,
even with the r-repeated sequence, the adversary’s error probability can be made close to 1/2.

Figure 2 shows the main components of our protocol. A more detailed description of the
algorithms as described in Definition 3 is provided in Figure 3.

Figure 2. How a message is sent using the new construction.

Remark 4. The protocol describes how to encrypt a single s-bit plaintext block. To handle arbitrary length
plaintexts, one could in a first approach break the plaintext into blocks of length s (using padding if needed) and
apply the protocol block by block. However, more elaborate “modes of operation” could be explored and analyzed,
e.g., a “tree construction": the restricted AONT is applied to multiple blocks individually and afterwards, several
bits of the corresponding resulting blocks are chosen and fed into the restricted AONT again. After that step, one
chooses the bits to be sent through the AlphaEta channel and the ones to be sent classically. We leave the analysis
of such modes of operation to future work.
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KeyGen: Generates a sequence of bases b of length r`.

Enc: Given a plaintext m of length s and a secret key b, a sequence of bases of length r`:

• The plaintext is preprocessed using the restricted AONT described in Definition 8,
obtaining y1, . . . , ys. We categorize the y1, . . . , ys as the collections of visible bits and
hidden bits.

• We apply the binary r repetition code to the hidden ` bits (w.l.o.g. we assume they are
y1, . . . , y`) obtaining bits a1, . . . , ar`.

• We use the AlphaEta protocol to send these bits: bit ai is sent over the optical channel
in phase angle ϕai ,bi

.
• The remaining bits y`+1, . . . , ys are transmitted via a classical channel.

Dec: On input a ciphertext c = (|ψ1〉 , . . . |ψr`〉 , y`+1, . . . , ys) and the secret key:

• Part of the of the plaintext is classical: y`+1, . . . , ys.
• Taking the quantum part |ψ1〉 , . . . |ψr`〉, the secret basis is used to measure the i-th

outcome of the quantum channel in the basis biπ/β, obtaining a1, . . . , ar`.
• Decodes using the repetition code and recovering y1, . . . , y`.
• With both parts, the restricted AONT is applied to y1, . . . , ys to recover plaintext m.

Figure 3. A quantum symmetric-key encryption scheme.

3.2.2. Security Analysis

The proposed hybrid construction, satisfies the notion of correctness and security as defined in
Section 3.1:

Proposition 2. Let T be an `-restricted AONT on Fs
2, let C be a binary repetition code of odd length r, and and

assume that AlphaEta is δ-correct. Then the protocol in Figure 2 is δ′-correct according to Definition 4 where

δ′ = 1−

 r−1
2

∑
i=0

(
r
i

)
δi(1− δ)r−i

`

. (9)

Proof. The recipient receives all but r` elements of the plaintext through the classical channel and the
missing r` elements via AlphaEta. Using the shared key of the AlphaEta protocol, since this protocol is
δ-correct, the recipient recovers each of the corresponding r` elements with probability of error smaller
than δ. Since C is a binary repetition code, each codeword containing up to (r− 1)/2 errors can be
decoded correctly. This can be done with probability greater than

r−1
2

∑
i=0

(
r
i

)
δi(1− δ)r−i. (10)

Therefore, the recipient can recover all ` bits sent through the AlphaEta channel and therefore
obtain the s elements of the plaintext with probability of error smaller than

1−

 r−1
2

∑
i=0

(
r
i

)
δi(1− δ)r−i

`

. (11)

Remark 5. By ([10] Theorem 1), for the AlphaEta protocol δ is less that 10−9. As shown in Section 4.2,
this allows acceptably small values for δ′.

In the proof of the following theorem, we are assuming the probability of Yi = 0 and Yi = 1 equals
1/2 to use the results in [8] and assume the measurements and the values sent through AlphaEta to be
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close to independent. In case we would like to provably ensure this as part of the protocol, we could
apply a one-time pad (only) to the bits a1, . . . , ar` prior to sending them through the AlphaEta channel.

Theorem 2. Let T be an `-restricted AONT on Fs
2, let C be a binary repetition code of odd length r, and assume

that AlphaEta is ε-secure. Then the protocol in Figure 2 is ε-secure according to Definition 5.

Proof. We will use some properties about the entropy function. In particular, we recall the Chain Rule
for entropy and a Corollary. For any random variables X, Y and Z, the following holds:

H(Y|X) = H(X, Y)− H(X) (12)

H(X|Z) = H(X, Y|Z)− H(Y|X, Z) (13)

Throughout the proof, we will use capital letters to denote the random variables taking the values
of the corresponding plaintext and ciphertext bits.

The ciphertext for our protocol is of the form c = (|ψ1〉 , . . . |ψr`〉 , y`+1, . . . , ys) as described in
Figure 3 . Let Xi denote the random variable corresponding to a bit of plaintext. After measuring the
non-classical part, one should obtain a1, . . . , ar`. Not knowing the bases, one obtains ã1, . . . , ãr`. Thus,
the reconstructed ciphertext is of the form y = ã1, . . . , ãr`, y`+1, . . . , ys. The entropy of the i-th bit of
plaintext is hardly reduced after seeing the reconstructed ciphertext:

H(Xi|Y) = H(Xi|Y`+1, . . . , Ys, Ã1, . . . , Ãr`)

= H(Y`+1, . . . , Ys, Xi|Ã1, . . . , Ãr`)− H(Y`+1, . . . , Ys|Ã1, . . . , Ãr`)

= H(Y`+1, . . . , Ys, Xi)− H(Y`+1, . . . , Ys)− ε

= H(Xi|Y`+1, . . . , Ys) + H(Y`+1, . . . , Ys)− H(Y`+1, . . . , Ys)− ε

= H(Xi)− ε (14)

The second equality comes from the Corollary of the chain rule of entropy. Since the AlphaEta
protocol provides the guarantee that the Ã1, . . . , Ãr` are randomly independent from any Y1, . . . , Ys

(as discussed in Section 2.1, seeing ãi provides only a small information about the sent bits, ε), the third
equality holds. By applying the Chain rule of entropy to the term H(Y`+1, . . . , Ys, Xi), we get the fourth
equality. The last equality comes from the guarantee of our restricted AONT.

3.3. Forward Security

Following the motivation in Section 3.1, we want to show that our hybrid construction satisfies
the forward security property on a bit-wise level. We let xt

i represent a plaintext bit and yt =

ãt
1, . . . , ãt

rl , yt
l+1, . . . , yt

s represent the reconstructed ciphertext at time period t for t ∈ N. Let k1, . . . , kt

represent the sequence of the secret keys. We assume after time t (when the ciphertext has been
sent and the measurements without knowing kt have been realized), kt becomes public information.
Even with knowledge of k1, . . . , kt, the entropy of the random variable taking the value of a plaintext
bit Xt

i is hardly reduced:

Theorem 3. If AlphaEta is ε-secure in transmitting a single bit, C a binary repetition code with odd length r,
and T an `-restricted restricted AONT on Fs

2, then, the protocol in Figure 4 is ε-forward secure according to
Definition 6.

Proof. According to Bayes’ Rule of entropy, for any random variables X, Y,

H(Y|X) = H(X|Y)− H(X) + H(Y). (15)
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We will use capital letters to denote the random variables taking the values of the corresponding
plaintext bits, reconstructed ciphertext and the keys. Hence, H(Xt

i |Yt, K1, . . . , Kt) is equal to

H(Yt, Xt
i |K1, . . . , Kt)− H(Yt|K1, . . . , Kt)(Coroll.)

= H(K1, . . . , Kt|Yt, Xt
i )− H(K1, . . . , Kt)+

H(Yt, Xt
i )− H(Yt|K1, . . . , Kt) (Bayes’ R.)

= H(Yt, Xt
i )− H(Yt|K1, . . . , Kt)

= H(Yt) + H(Xt
i |Yt)− H(Yt|K1, . . . , Kt)(Chain R.)

= H(Yt) + H(Xt
i )− ε− H(Yt|K1, . . . , Kt) (Th. 2)

≥ H(Yt) + H(Xt
i )− H(Yt)− ε

= H(Xt
i )− ε

(16)

Since the secret keys K1, . . . , Kt have been revealed, H(K1, . . . , Kt|Yt, Xt
i ) as well as H(K1, . . . , Kt)

are zero. Hence, the third equality holds. In addition, the inequality holds since H(Yt|K1, . . . , Kt) ≤
H(Yt).

Figure 4. Description of an AlphaEta-based forward secure protocol.

4. Discussion

In our security discussion of the protocol, the plaintext was assumed to be comprised of
independently uniformly chosen bits. Moreover, we did so far not address the problem of ensuring
authentication or integrity.

4.1. Integrating Classical Authenticated Encryption

A pragmatic approach to address these issues is to apply a (high-speed) authenticated
encryption to the plaintext, prior to the use of the restricted AONT. Specifically, here we choose
the encrypt-then-MAC approach, leveraging the popular combination of the ChaCha20 stream cipher
and Poly1305 authenticator [22].
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Applying this combination results in a ciphertext that is (computationally) indistinguishable from
random. (The ChaCha20 block function is a pseudo-random function (PRF) [23]. In addition, the last
step of Poly1305 adds a fresh pseudo-random string, which can be derived using the ChaCha20 block
function [22] and results in an authenticator that is (computationally) indistinguishable from random.)
An overview of integrating such an additional classical preprocessing in our protocol is shown in
Figure 5. Details are given in Figure 6.

Figure 5. How the message is sent using the hybrid construction with authenticated encryption scheme;
AEAD represents the application of ChaCha20 and Poly1305.

KeyGen: Generates a sequence of bases b of length r` and a symmetric key for the AEAD
(ChaCha20 and Poly1305).

Enc: Given a plaintext m of length s and a secret key b, a sequence of bases of length r`, as well
as the secret key for the AEAD:

• The plaintext is preprocessed using the AEAD, obtaining x1, . . . , xs.
• The plaintext is preprocessed using the restricted AONT described in Definition 8

obtaining y1, . . . , ys. We categorize the outcome as the collections of visible bits and
hidden bits.

• We apply the binary r repetition code to the hidden ` bits (w.l.o.g. we assume they are
y1, . . . , y`) obtaining bits a1, . . . , ar`.

• We use the AlphaEta protocol to send these bits: bit ai is sent over the optical channel
in phase angle ϕai ,bi

.
• The visible bits a`+1, . . . , as will be transmitted via a classical channel.

Dec: On input a ciphertext c = (|ψ1〉 , . . . |ψr`〉 , c`+1, . . . , cs) and the secret key:

• Part of the of the plaintext is classical: c`+1, . . . , cs.
• Taking |ψ1〉 , . . . |ψr`〉, the secret basis is used to measure the i-th outcome of the

AlphaEta channel in the basis biπ/β, obtaining c1, . . . , cr`.
• Decodes using the repetition code and recovering a1, . . . , a`.
• With both parts, the restricted AONT is applied to a1, . . . , as to recover x1, . . . , xs.
• The AEAD is reversed and the plaintext is recovered.

Figure 6. A symmetric-key encryption scheme using mesoscopic coherent states with incorporated AEAD.

4.2. Choosing Parameters

The inputs of the AEAD using ChaCha20 cipher and Poly1305 Authenticator include a 256-bit
key, a 96-bit nonce, an arbitrary length plaintext, and an arbitrary length additional authenticated data.
For simplicity, here we assume the latter to be empty, though one could consider a situation for our
protocol where parts of the payload does not require confidentiality. The output of the AEAD is a
ciphertext of the same length as the plaintext and a 128-bit tag. It seems reasonable to choose 128 bits
as a block size for the input and output of the AEAD. For further detailed parameters of the AEAD,
one can refer to [22].

Once we have preprocessed the plaintext using the AEAD, we will apply the restricted AONT.
We use the linear construction based on the matrix M−1 as defined in Section 3.2.1. To take advantage
of the property of the restricted AONT, we would like its input to be greater than 128 bits. Let us
consider the case where the inputs are 256-bit blocks. That means the matrix M−1 will have dimension
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256 by 256. The outputs of the restricted AONT are also 256-bit blocks. We collect the first 128 bits
as the hidden bits to be sent over the AlphaEta channel. The remaining bits will be sent over the
classical channel.

We apply a binary repetition code of odd length to our collection of hidden bits. Recall the
probability of error for transmitting one bit:

Perr = 1−
r−1

2

∑
i=0

(
r
i

)
δi(1− δ)r−i (17)

where r is the length of the code and δ is the channel error probability. Table 1 (computed by means of
the computer algebra system Magma [24]) demonstrates the probability of error δ′ for transmitting 128
hidden bits given the length of the binary repetition code and the channel error probability.

Table 1. Probability of error for transmitting 128 bits with a repetition code.

rrr r−1
2

r−1
2

r−1
2 δδδ δ′δ′δ′

3 1 10−9 3.84× 10−16

10−5 3.84× 10−8

10−1 0.9736

7 3 10−9 4.48× 10−33

10−5 4.48× 10−17

10−1 0.2951

101 50 10−9 2.56× 10−428

10−5 2.56× 10−224

10−1 1.47× 10−22

One can see the improvement in the correctness parameter of the symmetric-key encryption
scheme using mesoscopic coherent states.

5. Conclusions

In this paper, we give a definition for a symmetric-key encryption scheme using mesoscopic
states, including a security definition for such a scheme. We provide an example of such schemes using
AlphaEta in combination with a variant of a classical AONT and error correction. Leveraging both an
optical and a classical communication channel, we obtain an efficient construction with an interesting
(information-theoretic) security guarantee. A forward security property is from a classical point of view
quite remarkable: even after revealing the complete secret key, due to the underlying physical principle,
the individual bits of the payload still remain hidden. In combination with a classical authenticated
encryption, our design creates a situation where an adversary, based on physical principles, does not
have even access to the classical output of a cipher, adding a conceptually interesting layer of security
to a classical cipher, this being the main advantage over classical solutions.

When using repetition codes in our construction, the correctness parameter is improved,
while the security parameter does not change, and only some part of the ciphertext is transmitted
through the optical channel, which poses an advantage with respect to purely quantum schemes.
From an implementation point of view, it deserves noting that our design integrates naturally with
existing experimental setups for AlphaEta. All the steps we add can be seen as pre-processing
and post-processing of the payload, cf. Figure 2. Therefore, for potential users, e.g., in industry,
the experimentally demanding implementation of the optical channel does not have to be altered to be
able to benefit from the security guarantees our approach offers. In addition, if one is willing to work
with heuristic security arguments, the integration of classical authenticated encryption as outlined in
Section 4.1 appears fairly attractive.
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In general, symmetric-key encryption schemes using mesoscopic states as defined here,
should interface naturally with schemes like AlphaEta, as the cryptographic processing assumes
certain (abstract) guarantees provided by the invoked optical channel only. In this paper we leave
the integration of more involved error correction techniques as future work; it seems fair to say that
already our basic design offers a reasonably efficient combination of classical and physical techniques
for securing a data transmission.
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