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Abstract: Image recovery from compressive sensing (CS) measurement data, especially noisy data
has always been challenging due to its implicit ill-posed nature, thus, to seek a domain where a signal
can exhibit a high degree of sparsity and to design an effective algorithm have drawn increasingly
more attention. Among various sparsity-based models, structured or group sparsity often leads to
more powerful signal reconstruction techniques. In this paper, we propose a novel entropy-based
algorithm for CS recovery to enhance image sparsity through learning the group sparsity of residual.
To reduce the residual of similar packed patches, the group sparsity of residual is described by
a Laplacian scale mixture (LSM) model, therefore, each singular value of the residual of similar packed
patches is modeled as a Laplacian distribution with a variable scale parameter, to exploit the benefits
of high-order dependency among sparse coefficients. Due to the latent variables, the maximum
a posteriori (MAP) estimation of the sparse coefficients cannot be obtained, thus, we design a loss
function for expectation–maximization (EM) method based on relative entropy. In the frame of EM
iteration, the sparse coefficients can be estimated with the denoising-based approximate message
passing (D-AMP) algorithm. Experimental results have shown that the proposed algorithm can
significantly outperform existing CS techniques for image recovery.

Keywords: compressive sensing (CS); residual leaning; group sparsity; Laplacian scale mixture (LSM);
relative entropy; denoising-based approximate message passing (D-AMP)

1. Introduction

Compressive sensing (CS) [1,2] has drawn quite an amount of attention as a novel digital signal
sampling theory when the signal is sparse in some domain. It performs signal acquisition and
processing using far fewer samples than required by the Nyquist rate. Breakthroughs in CS have the
potential to greatly reduce the sampling rates in numerous signal processing applications, such as
cameras, medical scanners, radar imaging, and fast analog to digital converters. The measurement
vector of a signal is obtained by a linear system through multiplying the signal by a known measurement
matrix, which is usually constructed from a Gaussian or Bernoulli random operator. If the signal that
contains few nonzero components is sparse under some proper basis, CS looks for the sparsest solution
of the underdetermined system to get an accurate reconstruction. Finding a sparse representation can
be achieved using greedy algorithms such as matching pursuit (MP) and orthogonal matching pursuit
(OMP) [3,4] or iterative shrinkage–thresholding algorithms and their variations such as fast iterative
shrinkage–thresholding algorithm (FISTA), a shorthand for Nesterov’s algorithm (NESTA) [5,6],
and Bayesian compressive sensing or sparse Bayesian learning (SBL) algorithms [7,8].
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Owing to the fact that exploiting a prior knowledge of the original signals plays a critical
role in the performance of compressive sensing reconstruction, much efforts have been made to
develop effective regularization terms or signal sparse models. However, most of the conventional
CS reconstruction methods exploit a set of fixed bases (e.g., Discrete Cosine Transform (DCT) [9],
wavelets [10], total variation (TV) [11,12], and learned dictionary [13,14]) for the entirety of signals.
Unfortunately, these methods, which are irrespective of the nonstationarity of natural signals and
cannot achieve a high enough degree of sparsity are less appropriate for many imaging applications.
For instance, CS reconstruction methods based on TV exploit the sparsity of image in gradient
domain, and the resulting convex optimization problems can be efficiently solved by the class of
surrogate-function-based methods, but these methods based on global sparsity favor piecewise
constant structures and hence make the image details become over-smoothed. The sparse model
based on learned dictionary [14] assumes that each patch of image can be accurately represented by
a few elements from a basis set called dictionary, which is learned from natural images, nonetheless,
the patch-based sparse representation model of natural images usually suffers from some limits,
such as dictionary learning with great computational complexity, ignoring the relationship among
sparse coefficients.

To rectify these problems, many works have incorporated additional prior knowledge about
transform coefficients into the CS recovery framework, such as Gaussian scale mixtures (GSM)
models [15], group sparsity [16], tree-structured wavelet [17,18], and nonlocal sparsity [19,20].
By modeling statistical dependencies among sparse coefficients, one can greatly reduce the uncertainty
about the unknown signal, resulting in more accurate reconstruction. For instance, the structure of
the wavelet coefficients is modeled by the hidden Markov (HM) model in [18] to exploit the tree
sparsity of image, and the turbo scheme that alternates between inference on the HM tree structure
with standard belief propagation and inference on the compressive sensing measurement structure
with the generalized approximate message passing algorithm is applied, leading to improvements
in performance, but it is based on global sparsity and thus limits its improvement. More recently,
deep learning-based methods that use no hand-designed and end-to-end training models learn how
to best use the structure within the external data with deep learning networks [21]. Either pure
convolutional layers (Deep Inverse [22]) or a combination of convolutional and fully connected layers
(DR2-Net [23] and ReconNet [24]) is used to build deep learning frameworks. Deep neural network
architectures that combine the model-based method and the data-driven method have been developed
in [25,26]. The idea of Generative Adversarial Networks (GAN) is used in magnetic resonance imaging
(MRI) recovery in [27,28] to reduce the aliasing artifacts. The generative network uses the u-net,
while the discriminative network uses the Deep Convolution GAN network. The deep CS method
has been proposed to recover images with uncertainty measurement of MRI in [29]. Unfortunately,
these methods are held back by the fact that there exists almost no theory governing their performance
and they take a lot of time and vast amounts of data to train.

Nonlocal sparsity, which refers to the fact that a patch often has many nonlocal similar patches to it
across the image, has shown most beneficial to CS image recovery. The nonlocal total variation (NLTV)
regularization model for CS image recovery has been proposed in [19] by using the self-similarity
property in gradient domain. In order to obtain the adaptive sparsity regularization term for CS image
recovery process, the local piecewise autoregressive model is designed in [20]. In [30], similar patches
are grouped to form a two-dimensional data matrix for characterizing the low-rank property, leading
to the CS recovery method via nonlocal low-rank regularization (NLR-CS). In [31,32], the probabilistic
graphical model is established, which uses collaborative filtering [33] to promote sparsity of packed
patches. Meanwhile, composite sparse models are developed to soften and complement the nonlocal
sparsity for irregular structures, so as to preserve image details. A new framework for image
compressive sensing recovery via structural group sparse representation (SGSR) modeling is proposed
in [34], which enforces image sparsity and self-similarity simultaneously under a unified framework
in an adaptive group domain. In [35], two sets of complementary ideas for regularizing image
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reconstruction process are proposed, the sparsity regularization parameters are locally estimated for
each coefficient and updated along with adaptive learning of PCA-based dictionaries. The nonlocal
self-similarity constraint is introduced into the overall cost functional to improve the robustness of
the model. In [36], the CS reconstruction algorithm takes both the low-rank constraint of similar
image patches and the bilateral filter constraint as the joint prior information of natural images to
enhance the recovery effect of image textures and edges, thus improving the performance of the CS
algorithm. In [37], the low-rank and total variation regularizations are jointly utilized for MR image
super-resolution. Despite the steady progress in CS methods based on nonlocal sparsity, they still tend
to smooth the detailed image textures, degrading the image visual quality, for the reason that the lack
of self-repetitive structures and noise corruption for data is unavoidable.

In this work, we propose a novel prior model for image CS reconstruction by residual sparse
learning. To improve the performance of nonlocal sparse-based image reconstruction, the concept
of residual sparsity of similar packed patches is proposed, and thus, the problem of image CS
reconstruction is turned into one that reduces the residual. In order to reduce the residual, we first
obtain some good estimation of the original image by the Block-Matching and 3D filtering (BM3D)
method [33], and then centralize the sparse coefficients of the intermediate noisy image to the estimation.
Through the Bayesian method, we can determine the adaptive parameters of this optimization problem.
More specifically, the residual is represented by Laplacian scale mixture (LSM) [38] models, which are
usually adopted to model the sparse coefficients. Each singular value of similar residual matrices
packed and rearranged by similar patches of the intermediate noisy image and the pre-estimations is
modeled as a Laplacian distribution with a variable scale parameter, resulting in weighted singular
value minimization problems, where weights are adaptively assigned according to the signal-to-noise
ratio. To solve this model, the expectation–maximization (EM) [39] method with a loss function of
relative entropy is adopted, turning the CS recovery problem into a prior information estimation
problem and a singular value minimization problem. Specially, owing to its promising performance
and efficiency, we are motivated to apply the denoising-based approximate message passing (D-AMP)
algorithm, which is an iterative algorithm that can be used in signal and image reconstruction by
performing denoising at each iteration [40], to solve the latter. Experimental results on natural images
show that our approach can achieve more accurate reconstruction than other competing approaches.

2. Background

2.1. Compressed Sensing

Compressive sensing (CS) is a signal acquisition technique that enables accurate reconstructions of
images from far fewer measurements, acquired by linear projection (i.e., y = Ax + w) than the number
of unknowns, where x ∈ Cn is the original signal, y ∈ Cm is the measurement vector, A ∈ Cm×n is
the measurement matrix, and w denotes the additive noise. It is an underdetermined linear system
because of m < n. When the underlying signal is sufficiently sparse in some transform domain or
dictionary, this underdetermined problem can be solved by greedily tracing the sparsest solution with
greedy-based algorithms, iteratively denoising the intermediate noisy signal with iterative thresholding
algorithms, or Bayesian inferences with sparse Bayesian learning algorithms. The image reconstruction
problem in CS is often formulated as follows:

x̂ = argmin
x

1
2
‖y−Ax‖22 + λ<(x) (1)

The first term is the data fidelity term that represents the closeness of the solution to the
measurements. The second term is a regularization term that represents a priori sparse information
of the original signal. λ is a regularization parameter that balances the contribution of both terms.
In (1), x is a vectorized version of the image to be reconstructed, y denotes the imaging measurements,
A is the sensing or measurement matrix for the application. In a single pixel camera, A is a sequence
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of 1s and 0s representing the modulation of a micromirror array, while in a compressively sampled
MRI, A might be samples of an n × n Fourier matrix. CS recovery methods exploit the sparsity of
signal in some transform domain or dictionary, such as wavelets, total variation (TV), and learned
dictionary, leading to various forms of <(x) (i.e., ‖Ψx‖1, ‖Dx‖1 (using a convex relaxation of the `0

counting “norm” for sparsity), and ‖x‖TV respectively).

2.2. CS Recovery Based on Nonlocal Sparsity

As shown in Figure 1, self-repeating patterns are abundant in natural image, which can be
characterized by the nonlocal sparsity. Most nonlocal regularization models consist of two components:
patch grouping, for characterizing self-similarity of images and group sparse approximation, for sparsity
enforcement. As shown in Figure 1, patches in images are grouped and rearranged to form low-rank
matrices. More specifically, for each local patch we can find the first M most similar nonlocal patches
to it. In practice, this can be done by block matching based on Euclidean distance within a local
window of size F× F. Let Rix (or xi) denote an exemplar patch located at the i-th position, which is
the vectorized version of the patch. Patches that are similar to Rix are found to form the matrix
Xi = [Ri1x, Ri2x, . . . , RiN x], Xi ∈ RM×N, M ≥ N, including Rix itself. Because the patches are similar,
the formed matrix has a low-rank property. An objective function that reflects the group sparsity of
similar patches with a low-rank regularization term for CS recovery can be formulated as follows:

x̂ = argmin
x

1
2
‖y−Ax‖22 + µ

∑G

i=1

{
‖Xi − Li‖

2
F + λ‖Li‖∗

}
(2)

where µ and λ are two regularization parameters, G is the total number of similar patch groups, Li is
the low-rank data matrices to be estimated; ‖Li‖∗ is the nuclear norm of Li, taking a sum value of its
singular values, therefore, ‖Li‖∗ =

∑
j |li, j|, li = [li,1, li,2, . . . , li,N] denotes the singular value vector of Li.
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2.3. Denoising-Based Approximate Message Passing

The minimizing problems (e.g., Equations (1) and (2)) can be solved by iterative optimization
algorithms, such as iterative shrinkage–thresholding methods [5,41], alternating direction method of
multipliers (ADMM) [42], or Bregman iterative algorithms [43]. The approximate message-passing
reconstruction algorithm defined by Donoho et al. [40], based on the theory of belief propagation
in graphical models, has recently become a popular algorithm for solving signal reconstruction
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problems in linear systems, as defined in Equation (1). By employing quadratic approximation,
the belief propagation is turned into a simple version with less computation [44]. The final alternating
expressions in the approximate message passing (AMP) algorithm to solve min

x
‖y−Ax‖22/2 + λ‖Ψx‖1

where Ψx denotes the wavelet transform of x are

x(t+1) = η(x(t) + A∗z(t)) (3)

z(t) = y−Ax(t) +
z(t−1)

m
‖η′(x(t−1) + A∗z(t−1))‖1 (4)

where x(t) and z(t) are the estimates of x and the residual at iteration t. The iteration starts from
x(0)= 0, z(0)= y. A∗ is the conjugate transpose of A. The functions η(·) and η′(·) are the wavelet threshold
function and its first derivative, respectively. The last term in Equation (4) is called the “Onsager
reaction term” [19] in statistical physics. This Onsager reaction term helps improve the phase transition
(trade-off between the measurement rate and signal sparsity) of the reconstruction process over existing
iterative shrinkage–thresholding algorithms [5,41]. Some AMP variants [45,46] have been proposed
with various forms of <(x), such as total variation and the Cauchy prior in wavelet domain [46].
The AMP algorithm can be summarized in three steps: the residue update step (i.e., Equation (4)),
the back-projection step to yield a noisy image, and the proximal denoising correction (i.e., Equation (3)).
As a result, the AMP algorithm can be turned into the denoising-based approximate message passing
algorithm [31]. In [31], each denoiser is treated as a black box to estimate the original signal through
the denoising of the intermediate noisy image. Thus, instead of assuming any knowledge of the signal
information, the D-AMP algorithm employs the denoising algorithm to achieve its goal, which makes
the D-AMP algorithm applicable to a wide variety of signal classes and a wide variety of denoisers.
The D-AMP algorithm employs a denoiser in the following iteration:

x(t+1) = D(x(t) + A∗z(t)) (5)

z(t) = y−Ax(t) +
z(t−1)

m
D′(x(t−1) + A∗z(t−1)) (6)

where D(·) denotes the denoising operator. Note that it is not easy to compute the Onsager term,
because it involves computing the derivative D′(·), and D(·) do not have an explicit input–output
relation. In [30], the Monte Carlo (MC) method [47] is utilized to simulate D′(·) with random numbers.
Note that the intermediate noisy image is defined by h(t) = x(t) + A∗z(t) as the input of the denoising
operator D(·).

3. Image CS Recovery via Nonlocal Residual Learning and D-AMP

3.1. Residual Learning

Image nonlocal self-similarity has been widely adopted in patch-based image CS reconstruction
methods. Despite the great success, most of the existing works exploit the nonlocal sparsity by enforcing
the packed patches to be as similar as possible, resulting in over-smoothed outcomes. In fact, unlike
large-scale edges, the fine-scale textures have much higher randomness in local structure, and they are
hard to characterize by using existing nonlocal models. In this paper, we propose a novel nonlocal
model with residual learning. We first obtain some good estimation of the original image by the BM3D
method, and then centralize the sparse coefficients of the intermediate noisy image to the estimation.
Following the D-AMP algorithm, we first propose a denoising model as follows:

Âi = argmin
Ai

‖Hi −DiAi‖
2
F + λ‖Di(Ai − Bi)‖∗ (7)
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where ‖ · ‖F is the Frobenius norm, Hi is the low-rank data matrix of the noisy image, Ai is the group
sparse coefficients of Hi, Bi denotes the true group sparse coefficients, Di is an orthogonal dictionary,
which is obtained by performing singular value decomposition (SVD) on Hi, and λ is a regularization
parameter. Bi cannot be obtained in practice, nonetheless, we can compute some good estimation of it
by the BM3D method. The residual S is defined as

S = D(A− B) (8)

Instead of pursuing a smoothed B with ‖DiAi‖∗, A is encouraged to be with a little noise in Equation
(7), thus, the results in favor of preserving details.

The optimization problem in Equation (7) is a nuclear norm proximal problem [48], which can be
easily solved in closed-form by imposing a soft thresholding operation on the singular values of the
observation matrix (i.e., by taking a derivative with respect to Ai):

Âi = S λ
2
(DT

i Hi − Bi) + Bi (9)

where Hi = U
∑

VT is the SVD of Hi. When Hi is a square matrix, U and V come out to be the
principal component analysis (PCA) dictionary D. S λ

2
(DT

i Hi − Bi) is the soft thresholding function

on the vectorized version of the sparse coefficients DT
i Hi − Bi with parameter λ

2 . We substitute our
denoising method for the denoising operator D(·) in Equations (5) and (6), and finally obtain our CS
recovery method by combining with the D-AMP algorithm. However, the regularization parameter
λ is hard to determine, which might be the key to the success of CS recovery, thus we employ the
Laplacian scale mixture model to represent the sparse coefficients of the residual, and then use the
Bayesian inference to adaptively determine the parameters.

3.2. LSM Prior Modeling

The regularization parameter in variational image restoration is intrinsically connected with the
shape parameter of sparse coefficients’ distribution in Bayesian methods. How to set those parameters
in a principled yet spatially adaptive fashion turns out to be a challenging problem, especially for the
class of nonlocal image models. To model the sparse coefficients of the residual with the Laplacian
scale mixture distribution, we first offer some definitions about LSM.

A random variable θi = κ−1
i ςi is a Laplacian scale mixture if ςi has a Laplacian distribution

with scale 1 (i.e., p(ςi) = exp(−|ςi|)/2), and the multiplier variable κi is a positive random variable
with probability p(κi) [38]. Supposing that ςi and κi are independent, conditioned on the parameter
κi, the coefficient θi has a Laplacian distribution with inverse scale p(θi|κi) = κiexp(−κi|θi|)/2.
The distribution over θi is therefore a continuous mixture of Laplacian distributions with different
inverse scales:

p(θi) =

∫
∞

0
p(θi|κi)p(κi)dκi =

∫
∞

0

κi
2

exp(−κi|θi|)p(κi)dκi (10)

The distribution in Equation (10) is defined as a Laplacian scale mixture. Note that for most choices of
p(κi), we do not have an analytical expression for p(θi).

We formulate the LSM prior model, and apply the maximum a posteriori (MAP) theory to estimate
the original signal. Let a, b, and h represent the vectorized version of A, B, and H respectively. Using
Bayesian formula, we might derive the following MAP estimation problem

â = argmin
a

p(a|h) = argmin
a

p(h|a)p(a) (11)
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According to Equation (11), we need to define the likelihood term p(h|a) and the prior distribution
p(a). First, the additive noise v is assumed to be white Gaussian with variance σ2, therefore, v ∼ N(0, σ2).
Thus, we have the following likelihood

p(h|a) =
1

(2πσ2)n/2
exp(−

1
2σ2 ‖h−Da‖22) (12)

Second, we characterize the nonlocal sparsity of image with the Laplacian scale mixture model.
Let si = [si,1, si,2, . . . , si,N] be the singular value vector of the low-rank matrix Si = DT

i (Ai − Bi). For
each coefficient si, j, we assign it a Laplacian distribution with a variable scale parameter,

p(si, j) =

∫
∞

0
p(si, j|γi, j)p(γi, j)dγi, j =

∫
∞

0

γi, j

2
exp(−γi, j|si, j|)p(γi, j)dγi, j (13)

with a Gamma distribution prior over the scale parameter (i.e., γi, j ∼ Gamma(α, β)). The observation
that the distribution of singular values of the residual can be modeled by a Laplacian was proposed
and validated in [49]. Here, we extend this idea by viewing the scale parameter as a random variable,
for achieving a better spatial adaptation. Assuming that si, j are i.i.d, then the LSM prior of the sparse
coefficient s can be expressed as p(s) =

∏G
i=1
∏N

j=1 p(si, j).
The proposed hierarchical model is summarized in Figure 2. We will have an objective function

that can be maximized with respect to x, if we observe the latent variable γ. The standard approach
in machine learning when confronted with such a problem is the EM algorithm. Note that once we
determine the spare coefficient vector s, the spare coefficient matrix Ai can be obtained using the
equation Si = DT

i (Ai − Bi).
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3.3. Entropy-Based Algorithm for CS Recovery

We design an algorithm for CS Recovery with entropy theory [50]. We simultaneously learn the
hidden parameters and do inference. To accomplish this task, the D-AMP algorithm is embedded
within an EM framework. We design a loss function with the relative entropy of Q to a denoted by
J(Q, a) (i.e., the Kullback–Leibler divergence). With Jensen’s inequality and according to Equation (11),
we can obtain the upper bound on the posterior likelihood

− log p(s|h) ≤ − log p(h|s) −
∫
γ

Q(γ) log
p(s,γ)
Q(γ)

dγ := J(Q(γ), a(s)) (14)

where,

log p(s,γ) = log p(s|γ) + log p(γ) =
G∑

i=1

N∑
j=1

(−γi, j|si, j|+ log
γi, j

2
) + log p(γ) (15)
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Performing coordinate descent in the function J(Q, a) leads to the following updates that are
usually called the E step and the M step.

Q(t+1) = argmin
Q

J(Q, a(t)) (16)

a(t+1) = argmin
a

J(Q(t+1), a) (17)

The E step and the M step represent the prior learning and the signal sparse coefficient
reconstruction, respectively. First, we have equality in the Jensen inequality if Q(γ) = p(γ|s),
which implies that the E step reduces to Q(t+1) = p(γ|s(t)). Second, let τ denote the expectation with
respect to Q(γ), therefore, τi, j =

∫
γi, j
γi, jQ(γi, j)dγi, j. The M Step (17) simplifies to

a(t+1)
i = argmin

ai

‖h(t+1)
i −Dai‖

2

2

2σ2 +
N∑

j=1

τ
(t+1)
i, j |si, j| (18)

Finally, we have the proposed objective function for residual learning. These two teams are the data
fidelity term and the nonlocal regularization, respectively.

The Gamma distribution and Laplacian distribution are conjugate, therefore, the posterior
probability of γi, j given si, j is also a Gamma distribution with parameters α+ 1 and β+ |si, j|. Hence,
the expectations are given by

τ
(t+1)
i, j =

∫
γi, j

γi, jp(γi, j|s
(t)
i, j )dγi, j =

α+ 1

β+ |s(t)i, j |
(19)

Once the prior parameters are estimated, the residual learning problem Equation (18) can be
solved with various sparse reconstruction algorithms [5,6,43]. Firstly, we perform the BM3D denoising
operator on h(t) to get an estimation of the original image. Secondly, we build the low-rank matrix H(t)

i ,

and then transform the data from spatial domain to SVD domain to get the dictionary D(t)
i . Note that

H(t)
i is the matrix form of h(t)i . Thirdly, using si = Di(ai − bi), we rewrite Equation (18) as

s(t+1)
i = argmin

si

‖h(t+1)
i − si −D(t+1)

i b(t+1)
i ‖

2

2

2σ2 +
N∑

j=1

τ
(t+1)
i, j |si, j| (20)

Taking a derivative with respect to si, its global optimum is

s(t+1)
i = max((D(t+1)

i )
T

h(t+1)
i − b(t+1)

i − σ2τ
(t+1)
i , 0) (21)

where the noise variance σ2 is obtained by maximum likelihood estimation [30] (i.e., σ2 = ‖z(t)‖
2
2/m).

Using Si = Di(Ai − Bi), Ai can be computed by

A(t+1)
i = (D(t+1)

i )
T

S(t+1)
i + B(t+1)

i (22)

Afterward, we obtain the matrix constructed by similar patches, therefore, X(t+1)
i = D(t+1)

i A(t+1)
i ,

and then recover x(t+1) by averaging all reconstructed patches. In general, the proposed algorithm is
summarized in Algorithm 1, named as the D-AMP algorithm with residual learning (RL-DAMP).
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Algorithm 1. The D-AMP Algorithm with Residual Learning.

Input: y, A, T, α, β, x0 = 0, z0 = y.
For t = 1 to T do
(a) Approximate the Onsager correction term via the MC method.
(b) Update the residual z(t) with Equation (6).
(c) Obtain the intermediate noisy image h(t) = x(t) + A∗z(t), and estimate the noise variance σ2.
(d) Perform the denoising operator based on residual learning:

For i = 1 to G do
(I) Perform the BM3D denoising operator on h(t) to get the image Db.

(II) Construct the low-rank matrix H(t)
i and perform the SVD on H(t)

i to get the dictionary D(t)
i .

(III) Estimate the expectations of scale parameters τ(t+1)
i, j via Equation (19).

(IV) Compute the global optimums of coefficients s(t+1)
i via Equation (21), and then obtain A(t+1)

i via Equation (22).

(V) Obtain the matrix constructed by similar patches, therefore, X(t+1)
i = D(t+1)

i A(t+1)
i .

(VI) If i = G, recover the whole image x(t+1) by aggregating all recovered pixels.

4. Experiments

Numerous experiments have been conducted to show the superiority of the proposed CS
recovery method RL-DAMP by comparing with image reconstruction algorithms, including three
nonlocal sparsity algorithms: NLR-CS [30], BM3D-AMP [31], and the AMP algorithm with low-rank
regularization (LR-AMP) [36], and a deep learning algorithm ADMM-Net (the Net with Alternating
Direction Method of Multipliers) [25]. The experimental results including objective quality, subjective
quality, and runtime are present. Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) are used for quantitative evaluation.

We generated the CS measurements by randomly sampling the Fourier transform coefficients of
test images (i.e., A is partial Fourier transform with m rows and n columns). Thus, the sampling ratio
was m/n. We followed the sampling strategy of previous works [12,17], which randomly choose more
Fourier coefficients from low frequency and less on high frequency, and set the sampling ratio near
to 0.2, as CS imaging is always interested in low-sampling-ratio cases. In our experiments, both the
natural images and simulated MR images with size of 256 × 256 or 128 × 128 were used to verify the
performance of the proposed CS method, as shown in Figure 3.
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4.1. Parameter Settings

For fair comparisons, we offer and analyze the parameters of our algorithms and the comparison
algorithms. All codes were downloaded from the authors’ websites. Default settings in their codes
were adopted for the reason that parameter optimization has been done by the authors of the original
paper. The main parameters of these algorithms were set as follows: (a) Patch size and the number
of similar patches for each exemplar patch. In our method, to obtain a dictionary which is a square
matrix, the constructed low-rank matrix must be also a square matrix. Therefore, the patch size was set
to 6 × 6, and a total of 36 similar patches were selected for each exemplar patch. These two parameters
in LR-AMP are the same for comparisons, although the constructed low-rank matrix in LR-AMP must
not be a square matrix. These two parameters are 8 × 8, 16 and 6 × 6, 43 in BM3D-AMP and NLR-CS,
respectively. We have tried to set these parameters to be the same as the ones of RL-DAMP, but not
getting better performance. It is not easy to search similar blocks for too large patch size; thus, these two
parameters should be appropriately set up. (b) To reduce the computational complexity, we extracted
exemplar image patch in every 5 pixels along both horizontal and vertical directions. In practice,
the smaller this parameter the better. It is the same in LR-AMP, and is 3 and 6 pixels in BM3D-AMP
and NLR-CS, respectively. (c) For better CS recovery performance, some parameters in our method
were tuned empirically, including: the parameters of Gamma distribution α = 0, β = 0.01, as suggested
in [38]. There are also empirical parameters in other methods, which can be found in their papers.
(d) All nonlocal sparsity algorithms terminated after 50 iterations, except 130 iterations for NLR-CS.
All experiments were on a desktop with 3.80GHz AMD A10-5800K CPU. MATLAB version is R2018a.
We first present the experimental results for noiseless CS measurements, and then report the results
using noisy CS measurements. The noisy CS measurements are mixed with Gaussian white noise with
standard deviation 8 or 15.

4.2. Experiments on Noiseless Data

To reduce the randomness, all results were recorded by averaging the values after repeating
each experiment five times for each image. The PSNR and SSIM comparison results of recovered
images by competing CS recovery methods are shown in Figure 4. From Figure 4, one can see that
the highest PSNR and SSIM results were achieved by the proposed algorithm RL-DAMP. In fact,
the average PSNR gain over BM3D-AMP, LR-AMP, ADMM-Net and NLR-CS can be as much as 0.34 dB,
0.55 dB, 0.99 dB, and 1.25 dB. The PSNR and SSIM curves declined with the decrease in sampling
ratio. RL-DAMP always performed better at all sampling ratio. Besides, the proposed algorithm
RL-DAMP outperformed the LR-AMP algorithm, which validates the effectiveness of our residual
learning strategy. Note that the LR-AMP algorithm is similar to the RL-DAMP method without using
the residual learning strategy, which solves the following objective function:

Âi = argmin
Ai

‖Hi −DiAi‖
2
F + λ‖DiAi‖∗ (23)

By comparing RL-DAMP with LR-AMP in the experiments, we can analyze the effect of our
residual learning strategy.

We can compare three D-AMP related algorithms: RL-DAMP, BM3D-AMP, and LR-AMP in terms
of steps, penalties, complexity, and convergence, and then validate them in our following experiments.
Three D-AMP related algorithms all have two steps: a denoising and a residual update step. The sparse
penalties of RL-DAMP and LR-AMP can be shown in Equations (7) and (23), respectively, while BM3D-AMP,
which uses the BM3D denoiser as the implicit sparse terms, does not have explicit penalties. Note that,
these sparse penalties play a role of the denoising step in the general steps of the D-AMP-related algorithms.
Recall that, G is the total number of similar patch groups, the size of the low-rank matrices is M×N,
where M is the number of similar patches, and the size of an image patch is

√
N ×

√
N. The most

time-consuming operation in our method is that performing the SVD on the low-rank matrix to get the
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dictionary. The complexity of this step is O(GM3). This step is also the most time-consuming operation of
LR-AMP; thus, its complexity is also O(GM3). The most time-consuming operation of BM3D-AMP is
that performing the three-dimensional (3D) wavelet transform on the 3D image cube. The complexity

of this step is O(G
√

N
3
). Note that M ≥ N, thus, the complexity of RL-DAMP and LR-AMP is higher

than the one of BM3D-AMP. As the BM3D method is written in C language, the running time of the
BM3D-AMP method is much shorter. These three methods are based on the D-AMP algorithm and inherit
its convergence. The convergence can be validated in the following experiments with the iteration number
vs. PSNR curves and CPU (central processing unit) time vs. PSNR curves.

We classify the test images into two sets: the set of magnetic resonance (MR) images and the set of
natural images. The PSNR comparison results of these two image sets by competing CS recovery methods
are shown in Figure 5. From Figure 5, one can see that: (1) the PSNR curves of all algorithms on MR
images are higher than the ones on natural images, for the reason that the structure of MR images is much
more regular; (2) the proposed algorithm RL-DAMP always performed better than other reconstruction
methods for both MR images and natural images, which implies that the assumption of the nonlocal sparsity
structure is appropriate for both MR images and natural images; (3) the deep learning method ADMM-Net
achieved better PSNR results on MR images than natural images because it uses the MR images as the
training samples, which is less appropriate for natural images with much more irregular structures.
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Figure 4. Average Peak Signal-to-Noise Ratio (PSNR) (a) and Structural Similarity Index (SSIM) (b) at
different sample ratios.
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To facilitate the evaluation of subjective qualities, Figures 6 and 7 show the visual comparisons of
the reconstructed results on Boat and Chest image with 20% sampling by different methods respectively,
while the corresponding iterative curves are given in Figures 8 and 9, respectively. From Figures 6 and 7,
we can clearly see that the proposed algorithm RL-DAMP performed better than others, which enjoyed
great advantages in producing clearer images, for example, on the area of ropes and beach in Figure 6,
and blood vessels in Figure 7. It could not only perfectly reconstruct large-scale sharp edges, but also well
recover small-scale fine structures. The images reconstructed by the LR-AMP and BM3D-AMP methods
were over-smoothed. These two methods have a strong assumption of the nonlocal self-similarity structure,
however, many images with irregular structures do not strictly follow this assumption. With the use of
residual learning, the RL-DAMP algorithm can overcome this issue. Visual artifacts can still be as clearly
observed on the image produced by the ADMM-Net method, especially for natural images, which implies
that the generalization ability of the algorithm need to enhance. The visual results recovered by the NLR-CS
algorithm were always inferior to RL-DAMP, with the lower PSNR or SSIM values and less details. We could
find that the RL-DAMP algorithm was the closest to the original with only 20% sampling ratio, which had
great superiority on the images with irregular structures because of the residual learning. The superiority of
the proposed algorithm in visual quality could be demonstrated by these results.
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32.08 dB, SSIM: 0.9068); (c) BM3D-AMP (PSNR: 32.29 dB, SSIM: 0.9387); (d) ADMM-Net (PSNR: 32.71 dB,
SSIM: 0.9226); (e) LR-AMP (PSNR: 31.92 dB, SSIM: 0.9435); (f) RL-DAMP (PSNR: 33.92 dB, SSIM: 0.9473).
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Figure 7. Visual comparisons on Chest image at 18% sampling ratio. (a) The original; (b) NLR-CS
(PSNR: 30.80 dB, SSIM: 0.9065); (c) BM3D-AMP (PSNR: 31.70 dB, SSIM: 0.9353); (d) ADMM-Net (PSNR:
32.33 dB, SSIM: 0.9187); (e) LR-AMP (PSNR: 31.05 dB, SSIM: 0.9353); (f) RL-DAMP (PSNR: 32.57 dB,
SSIM: 0.9435).

The CPU time and PSNR are traced in each iteration for each of reconstruction methods. Figure 8a (or
Figure 9a) and Figure 8b (or Figure 9b) present the iteration number vs. PSNR curves and CPU time vs.
PSNR curves, respectively. In the case of NLR-CS with more iterations, its results are every two iterations,
presented in our Figures. Although residual learning definitely cost a little more time to solve, which
made RL-DAMP slower than LR-AMP, it achieved the best performance in terms of PSNR and CPU time
after about 20 iterations, in Figures 8a and 9a, and after about 150 s, in Figures 9b and 10b. These curves
demonstrate that RL-DAMP can converge to a good reconstructed result in a reasonable amount of time
and can reduce requirement for the number of measurements or increase the accuracy of the solution with
the same measurements. The RL-DAMP algorithm was relatively slow. The main computational burdens
were introduced by iteratively applying SVD on each patch group. The deep learning method ADMM-Net
was the fastest one, which took only several seconds to reconstruct an image, but it spent a lot of time to
train a deep learning network.
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Figure 8. Iterative curves on Boat image at 20% sampling ratio. (a) Average PSNR to iterations;
(b) Average PSNR to CPU (central processing unit) time.
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Figure 9. Iterative curves on Chest image at 20% sampling ratio. (a) Average PSNR to iterations;
(b) Average PSNR to CPU time.

4.3. Experiments on Noisy Data

Considering in realistic settings compressive samples are subject to measurement noise, we conducted
similar experiments with noisy CS measurements to demonstrate the robustness of the proposed RL-DAMP
to noise. Noisy sampling can be modeled by y = Ax+w, where w represents additive white Gaussian
noise (AWGN). The standard deviations of AWGN 8 and 15 were used in our experiments, representing the
environment with low noise and high noise, respectively. In Figure 10, we compare the performance of
the proposed RL-DAMP to other CS reconstructed methods when varying amounts of measurement noise
were present. In Figures 11–14, we provide visual comparisons between the reconstructions in the presence
of measurement noise. The corresponding iteration number vs. PSNR curves and CPU time vs. PSNR
curves are present in Figures 11 and 12, which show that all algorithms converged to reconstructed results
quickly. The trends of PSNR comparisons in these figures are consistent with previous experiments. But the
quality of the images reconstructed by all CS methods degraded seriously as measurement noise increased.
The RL-DAMP method was found to be exceptionally robust to noise in the experiments. Because it is
based on the denoising-based approximate message passing algorithm, which regards the regularization
operation as a denoising process. When these noises exited in the process of CS measurement, the amplitude
of noises, which was relevant to the threshold of regularization (see (21)) could be estimated by the proposed
algorithm, thus, our method can reduce the noise effectively.
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Figure 10. Average PSNR at different sample ratios with measurement noise with standard deviation 8
and 15. (a) The standard deviation is 8; (b) the standard deviation is 15.
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Figure 11. Iterative curves on Barbara image at 20% sampling ratio with measurement noise with
standard deviation 15. (a) Average PSNR to iterations; (b) average PSNR to CPU time.
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Figure 12. Iterative curves on Brain image at 20% sampling ratio with measurement noise with standard
deviation 8. (a) Average PSNR to iterations; (b) average PSNR to CPU time.
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To fully demonstrate the performance of the proposed algorithm, we also tested our method on 
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ADMM-Net was trained for the image with size of 256 × 256, it cannot be run on images with other 
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visual comparisons of the reconstructed results on Barbara image with 20% sampling by different 
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see that the proposed algorithm RL-DAMP performed better than others on both noiseless data and 
noisy data, which is consistent with the experiments on images with size of 256 × 256. Our method 
produced clearer images with more small-scale fine structures (e.g., on the area of background and 
headscarf) and achieved the best PSNR and SSIM results. The superiority of the proposed algorithm 
on small-size image could be demonstrated by these results. We also provide the sampling mask 
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sampling strategy randomly chose more Fourier coefficients from low frequency and less on high 
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Figure 14. Visual comparisons on Brain image at 20% sampling ratio with measurement noise with
standard deviation 8. (a) The original; (b) NLR-CS (PSNR: 32.65 dB, SSIM: 0.8714); (c) BM3D-AMP
(PSNR: 33.63 dB, SSIM: 0.8962); (d) ADMM-Net (PSNR: 31.21 dB, SSIM: 0.8107); (e) LR-AMP (PSNR:
32.93 dB, SSIM: 0.8743); (f) RL-DAMP (PSNR: 34.05 dB, SSIM: 0.8976).

4.4. Experiments on Small-Size Images

To fully demonstrate the performance of the proposed algorithm, we also tested our method on
small-size images. We resized all images to 128 × 128. Since the net of the deep learning method
ADMM-Net was trained for the image with size of 256 × 256, it cannot be run on images with other
sizes. Thus, this experiment did not include the ADMM-Net method. Figures 15 and 16 show the
visual comparisons of the reconstructed results on Barbara image with 20% sampling by different
methods on noiseless data and noisy data, respectively. From Figures 15 and 16, we can clearly see
that the proposed algorithm RL-DAMP performed better than others on both noiseless data and
noisy data, which is consistent with the experiments on images with size of 256 × 256. Our method
produced clearer images with more small-scale fine structures (e.g., on the area of background and
headscarf) and achieved the best PSNR and SSIM results. The superiority of the proposed algorithm
on small-size image could be demonstrated by these results. We also provide the sampling mask image
at 20% sampling ratio with these two sizes in Figure 17, from which we can see that our sampling
strategy randomly chose more Fourier coefficients from low frequency and less on high frequency. It is
consistent with the sampling strategy in previous works [12,17].
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(a) The original; (b) NLR-CS (PSNR: 29.18 dB, SSIM: 0.8890); (c) BM3D-AMP (PSNR: 28.49 dB, SSIM:
0.8997); (d) LR-AMP (PSNR: 29.73 dB, SSIM: 0.9233); (e) RL-DAMP (PSNR: 29.94 dB, SSIM: 0.9240).
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Figure 16. Visual comparisons on Barbara image at 20% sampling ratio with size of 128 × 128 with
measurement noise with standard deviation 8. (a) The original; (b) NLR-CS (PSNR: 27.17 dB, SSIM:
0.8369); (c) BM3D-AMP (PSNR: 27.01 dB, SSIM: 0.8366); (d) LR-AMP (PSNR: 27.74 dB, SSIM: 0.8486);
(e) RL-DAMP (PSNR: 27.93 dB, SSIM: 0.8495).
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Figure 17. The sampling mask at 20% sampling ratio with different sizes. (a) 256 × 256; (b) 128 × 128. 

5. Conclusions 

In this paper, we have presented a new entropy-based approach toward image CS 
reconstruction based on nonlocal residual learning and denoising-based approximate message 
passing algorithm. Nonlocal residual learning enables us to enhance the group sparsity of similar 
patches; denoising-based approximate message passing algorithm in the frame of the EM method 
offers a principled and computationally efficient solution to image reconstruction from recovered 
patches. By taking the scale parameter of the LSM model as a random variable, it makes the practical 
representation much more feasible for achieving a better spatial adaptation. When compared against 
existing CS techniques, our RL-DAMP method is mostly favored in terms of both subjective and 
objective qualities. Our simulations and experiments on a variety of images demonstrate the 
superiority of the proposed algorithm to several nonlocal sparsity-based algorithms or solvers and a 
deep learning method in CS image recovery. Moreover, it shows significant performance 
improvements over a wide range of images, including natural and MR ones. How the nonlocally 
regularized image reconstruction algorithm jointly works with the deep learning method deserves 
further study. 
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5. Conclusions

In this paper, we have presented a new entropy-based approach toward image CS reconstruction
based on nonlocal residual learning and denoising-based approximate message passing algorithm.
Nonlocal residual learning enables us to enhance the group sparsity of similar patches; denoising-based
approximate message passing algorithm in the frame of the EM method offers a principled and
computationally efficient solution to image reconstruction from recovered patches. By taking the scale
parameter of the LSM model as a random variable, it makes the practical representation much more
feasible for achieving a better spatial adaptation. When compared against existing CS techniques, our
RL-DAMP method is mostly favored in terms of both subjective and objective qualities. Our simulations
and experiments on a variety of images demonstrate the superiority of the proposed algorithm to
several nonlocal sparsity-based algorithms or solvers and a deep learning method in CS image recovery.
Moreover, it shows significant performance improvements over a wide range of images, including
natural and MR ones. How the nonlocally regularized image reconstruction algorithm jointly works
with the deep learning method deserves further study.
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