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Abstract: It is well accepted that the second law of thermodynamics describes an irreversible process,
which can be reflected by the entropy increase. Irreversible creep and fatigue damage can also be
represented by a gradually increasing damage parameter. In the current study, an entropy-based
failure prediction model for creep and fatigue is proposed based on the Boltzmann probabilistic
entropy theory and continuum damage mechanics. A new method to determine the entropy increment
rate for creep and fatigue processes is proposed. The relationship between entropy increase rate during
creep process and normalized creep failure time is developed and compared with the experimental
results. An empirical formula is proposed to describe the evolution law of entropy increase rate and
normalized creep time. An entropy-based model is developed to predict the change of creep strain
during the damage process. Experimental results of metals and alloys with different stresses and
at different temperatures are adopted to verify the proposed model. It shows that the theoretical
predictions agree well with experimental data.
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1. Introduction

In the past decades, fatigue of materials has been investigated extensively with respect to crack
nucleation, propagation, and life prediction under cyclic loading. Numerous theoretical models have
been proposed based on statistics or empirical methods. The models adopted in industry are usually
empirical and the physical mechanism of fatigue damage and life prediction still requires further study.

Creep is time-dependent and can be accelerated by increasing of the stress and temperature.
It is one of the common damage modes in engineering such as turbine blades, thermal plants,
and thermonuclear installations, especially at high-temperature conditions. The creep deformation can
emerge even when the applied stress is below the elastic limit, which is more pronounced when the
ambient temperature approaching the melting point of materials. Generally, the creep deformation
behavior is distinguished by three stages: The creep strain rate decreases constantly in the first stage;
the creep strain rate keeps almost constant in the second stage; and in the third stage, the creep rate
increases rapidly until failure. The potential physical mechanism of different stages can be explained
by the dislocation theory for metallic materials [1–6]. The dislocation density changes during the creep
process, micro-voids nucleate in the first stage, and the coalescence and propagation mechanism of
micro-voids occur in the second and the third stages simultaneously, which leads to the final fracture.

The relationship between creep strain rate and creep life was widely investigated theoretically
and experimentally for different engineering materials. Monkman and Grant [7] proposed a model to
describe the evolution law of steady creep strain rate and creep life and it was successfully applied to
metallic materials. This model was subsequently modified by considering the damage parameters to

Entropy 2019, 21, 1104; doi:10.3390/e21111104 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/1099-4300/21/11/1104?type=check_update&version=1
http://dx.doi.org/10.3390/e21111104
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 1104 2 of 16

describe the creep behavior [8–11]. Dyson and Gibbons [12] related the normalized creep strain and
time by considering the applied stress and damage variable during the creep process. The proposed
model linked the strain with time by introducing a damage variable. One of the widely adopted creep
life prediction models for carbon steel is proposed by Fields [13]. A power law is applied to relate the
creep stress and time. The parameters in this model can be determined from experiments [14].

The applications of thermodynamic methodology to contact problems [15–17] introduced entropy
into solid mechanics. The specific entropy was applied for the complex systems under mechanical
fatigue, thermal loading, friction, and wear conditions [18–20]. The entropy increase rate was studied
under the framework of Boltzmann probabilistic theory and continuum damage mechanics [21].
A low-cycle fatigue life prediction model was proposed with respect to the entropy increase rate [21].
Based on the second law of thermodynamics, creep damage process is also irreversible, which can be
represented by the increasing of entropy in the entire creep life.

In the current study, the entropy increase rate model and its application in fatigue life prediction
is reviewed. Then, the entropy increase rate model is applied to describe the creep behavior.
The relationship between entropy increase rate and normalized creep time is investigated based on the
experimental analysis. A unified entropy increase trend was observed for metallic materials under
different experimental conditions. An empirical formula is then proposed to describe the entropy
increase rate during creep process. An entropy-based creep life prediction model is obtained by
solving an ordinary differential equation. Comparison with experimental data indicates that the
proposed model can accurately predict creep behavior of metallic materials with different stresses
and temperatures.

2. The Change Regulation of Entropy Increase Rate during Degeneration Process

For ideal gas system, Boltzmann [22] defined a precise relationship between the disorder state
and entropy:

S = k0 ln(W) (1)

where k0 is the Boltzmann constant and W is the disorder state parameter, which represents the
probability of the system to exist in the current state relative to all the possible states. Although it is
difficult to determine the value of W, Equation (1) provides an approach to determine the disorder of
molecular thermal motion in the system.

The relation between entropy per unit mass and the disorder parameter was improved by
Basaran et al. [20]. The disorder state parameter W was defined as a function of the entropy S,
Avogadro constant, and the specific mass ms: W = exp(Sms/N0). Basaran et al. [23–27] proposed
a relation between the entropy per unit mass and disorder state parameter; a damage law is then
developed, which links the damage parameter D and entropy S:

D = Dcr
W −W0

W
= Dcr

[
1− exp

(
−

ms(S− S0)

N0k0

)]
(2)

where W0 represents the disorder corresponding to the initial state of the continuous medium with
entropy S0 and Dcr is the critical value of damage approaching final failure.

The degeneration process, such as creep and fatigue, is not only a damage process, but also
irreversible, which is consistent with the second law of thermodynamics. Although the damage
variable is an artificially defined quantity in the viewpoint of solid mechanics, it has the same trend
for entropy without decreasing. Determination of damage parameters requires different physical
quantities including the elasticity modulus, micro-hardness, density, and electrical resistance etc.
Variation of these physical quantities represents the corresponding microstructure change of material.
The variation of entropy during the damage process represents the logarithm change of the molecular
configurations [22]. Both quantities represent the microstructure change in different states, one for an
outward manifestation and the other for the essential molecular configurations. In addition, the entropy
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and damage parameters are all monotonically changed during the degeneration process. Hence, it is
possible to establish a connection between the damage variable and entropy.

A classical damage rate model was proposed by Bonora [28] based on the continuous damage
mechanics and the plastic part of the Ranberg–Osgood power law:

.
D = −

.
λ
∂Φ
∂Y

=
K2

2Ea0

(Dcr −D)
α−1
α

p
f
(
σm

σeq

) .
λ

1−D
(3)

where K and a0 are the material constants,
.
λ is plastic multiplier, α is the damage exponent and can

be obtained by determining the change of elastic modulus during the damage process, f
(
σm
σeq

)
is a

factor, and for uniaxial loading f
(
σm
σeq

)
= 1. By applying the relation between plastic multiplier

.
λ and

cumulative plastic strain rate
.
p:

.
λ =

.
p·(1−D), Equation (3) can be written in another form:

.
D =

K2

2Ea0

(Dcr −D)
α−1
α

p
f
(
σm

σeq

) .
p
p

(4)

The damage variable D has two threshold values, D0 and Dcr. The threshold D0 represents the
initial value of damage variable presented in material microstructure or the value at the beginning of
creep or fatigue damage accumulation. The threshold Dcr is the critical value of damage variable when
creep or fatigue failure occurs. The corresponding cumulative plastic strain for D = D0 and D = Dcr

are pth and pcr, respectively. Integrating Equation (4) between [D, Dcr] and [p, pcr] gives:

(D−Dcr)
1/α =

K2

2Ea0α
ln

(
pcr

p

)
f
(
σm

σeq

)
. (5)

Based on the plasticity damage dissipation potentials in Equation (2), an entropy increasing rate
model for uniaxial state was proposed (detailed derivation can be found in [21]):

.
S =

N0k0α

ms ln(pcr/p) f
(
σm/σeq

) [ .
f
(
σm

σeq

)
ln

(
pcr

p

)
− f

(
σm

σeq

) .
p
p

]
(6)

For the uniaxial loading case, Equation (6) can be written as:

.
S =

N0k0α

ms ln(pcr/p)
·

.
p
p

(7)

Equation (7) describes the entropy increase rate for general mechanical process and the proposed
model was successfully applied to the low-cycle fatigue life prediction of metallic materials [21]:

Nin
N f

= −
N0k0α
scrms

[
ln

(
ln

(
pcr

p

))
− ln

(
ln

(
pcr

pth

))]
(8)

All the parameters in Equation (8) have clear physical meaning, where N0 and k0 are physical
constants; α, ms, scr, pth, and pcr are parameters related to the material properties and can be obtained
from experiments. It should be note that Equation (8) can also be applied in the accelerated fatigue test;
the fatigue life can be obtained by the same initial cycles of fatigue with a well-determined database.

3. The Relation of Entropy Increase Rate and Normalized Creep Time

As the creep process is also an irreversible degradation process, Equation (7) can be applied in the
creep process.
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To investigate the increase rate of entropy in the creep process, a wide variety of creep experimental
data for metals and alloys from literature were adopted [29–38]. Detailed experimental data sources
are listed in Table 1 and summarized as follows: Creep tests for 9Cr–1Mo steel were performed at
different temperatures (500 ◦C, 550 ◦C, 600 ◦C, and 650 ◦C) under various stress levels from 80 MPa to
320 Mpa by using a uniaxial-load creep test frame [29,30]. Creep tests for 9Cr–3W–3Co–1CuVNbB
were performed at different temperatures (625 ◦C, 650 ◦C, and 675 ◦C) and stress levels (120–220 MPa)
by using creep machines (RDJ 50 CRIMS) [31]. Creep tests for aluminum alloys [32,33] were adopted
to verify the proposed model. Creep tests for Bar 257 were performed at 650 ◦C with a stress range
from 70 MPa to 100 MPa [34]. Creep tests of Ni-base superalloy were performed at different directions
and heat treatments [35]. Creep tests of Q460 steel were carried out at nine temperatures in the range
of 300–900 ◦C and at various stress levels ranging from 13 MPa to 509 MPa [36]. Constant load creep
tests of Co–Cr–Mo alloy were conducted at a temperature range of 650–800 ◦C and a stress range
of 240–330 MPa [37]. The creep samples of DZ125 were machined such that the applied stress is
along the [001] orientation [38]. The creep entropy increase rate was determined by Equation (7).
The cumulative plastic strain rate was obtained by taking the slope of figures, which contains two
coordinate axes: Creep strain and creep time. Other parameters were determined in the previous
research [21]. The negative entropy increase rate (-dS/dt) with normalized creep time (t/tf) for materials
at different temperatures and applied creep stresses are shown in Figure 1.

Table 1. The experimental data adopted in the current study.

Materials Experimental Data Sources

9Cr–1Mo steel [29,30]
9Cr–3W–3Co–1CuVNbB martensite ferritic steel [31]

Aluminium alloy at 150 ◦C [32]
Al 2024-T3 [33]

Al 2124 [33]
Bar 257 steel at 650 ◦C [34]

Ni-base superalloy [35]
Q460 steel [36]

Co–Cr–Mo alloy [37]
DZ125 super alloy [38]
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Figure 1. Change of the entropy increase rate with normalized creep time in the whole creep process:
(a) 9Cr–1Mo steel at different temperatures; (b) 9Cr–1Mo steel under different treatment conditions
(Q + T and SPWHT); (c) 9Cr–3W–3Co–1CuVNbB steel at different temperatures; (d–f) aluminum alloy
at different temperatures; (g) Bar 257 steel and Ni-base super alloy at different temperatures; (h) Q460
steel at different temperatures.

As shown in Figure 1, the variation trend of entropy increase rate in creep process remains
almost identical for different materials. In the early stage of creep, the dislocation multiplication and
continuous movement lead to hardening of material. The entropy increasing rate decreases rapidly
with time and then reaches a balance state. In the second stage, the creep strain rate achieves the
minimum value and the entropy of the system increases at a fixed rate. In the last stage, the creep strain
rate increases rapidly until the final fracture. The massive point defect separates out quickly at the
grain boundary. The vacancy defect accelerates the creep strain rate and the final fracture. The entropy
increasing rate of the system also increases rapidly in the last creep stage, which corresponds to
increasing of the disorder degree of microstructure; the entropy increase rate attains infinity large
when the final fracture occurs.

It should be noted that the entropy increase rate always keeps positive although its value reduces
first and then increases; this phenomenon is consistent with the second law of thermodynamics.
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Comparison with experimental data shows that degeneration process during creep can be well
represented by Equation (7).

To describe the variation trend of entropy increase rate with normalized creep time, an empirical
formula is proposed based on the boundary features and the characteristics of Figure 1:

.
S = A·

1
t
·

1

ln
(
t/t f

) (9)

where A is a parameter related to the constant creep stress, environment temperature, and material
properties; t f is the time when final creep fracture occurs. The curve shape of Equation (9) shows
sufficient similarity to ensure the characterization of entropy increase rate by continuous functions.

Experimental data for different metallic materials have been adopted to verify Equation (9).
For simplification, six group of experimental data for different material are shown in Figure 2.
In general, the theoretical predictions agree well with the experimental data.
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Figure 2. Verification of the proposed model compared with experimental data: (a) 9Cr–1Mo steel at
823 K with creep stress = 220 MPa [26]; (b) 9Cr–1Mo steel in quenched and tempered (Q + T) at 1146 K
with creep stress = 100 MPa [27]; (c) 9Cr–3W–3Co–1CuVNbB at 923 K with creep stress = 160 MPa [28];
(d) Al 2124 at 503 K with creep stress = 190 MPa [30]; (e) Ni-based super alloy direct aging treatment at
718 ◦C/8 h/FC + 621 ◦C/10 h/AC [32]; (f) Q460 at 723 K with creep stress = 178 MPa [33].
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As shown in Figure 2, the entropy increase rate can be well described by Equation (9). The slight
fluctuation of some experimental data points in the stable creep stage may originate from the deviation
of data recording form reference. Entropy approaches infinity when the final fracture occurs, thus the
change of entropy increase rate in the first creep stage is smaller than that of the third stage. While in the
first stage, the entropy is limited although the entropy increase rate is discontinuous at the moment
of applying stress. In the stable creep stage, the entropy increase rate approaches zero and this
phenomenon is consistent for different experimental conditions. Thus, the increasing of entropy during
creep process is related to the change of dislocation, which corresponds to the microstructure changes
in the thermodynamic level.

4. The Entropy-Based Creep Strain Prediction Model

The change regulation of entropy increase rate during creep process is investigated.
From Equations (7) and (9), an entropy-based creep strain rate prediction equation can be obtained:

.
p =

Amsp
N0k0α

·
1

tln
(
t/t f

) (10)

Equation (10) can be regarded as an ordinary differential equation. After adjustment of
Equation (10) and integral on both sides, the creep strain can be obtained:

p = pcr/ exp
(
exp

(
ln

(
ln

(
pcr

pth

))
− B

[
ln

(
ln

( t f

t

))
− ln

(
ln

( t f

tth

))]))
(11)

B =
Ams

N0k0α
(12)

where pth is the initial value of cumulative plasticity in the microstructure of material, which represents
the value at the beginning of creep damage accumulation; pcr is the threshold value of cumulative
plastic variable when creep failure occurs. The corresponding creep time when p = pth and p = pcr are
tth and t f , respectively. The parameter B is related to the applied stress, temperature, and material
properties. Equation (11) can be used to predict the creep strain during the creep damage process.

To verify the developed model, experimental data for different metals and alloys were adopt
for comparison. The main parameter in Equation (11) is B, which is related to the applied stress,
temperature, and material properties such as elastic modulus. It can be obtained by fitting the
experimental data through Equation (11). The threshold value of cumulative plastic strain and
threshold time can be obtained from experiments. The initial value of cumulative plastic strain and
creep time is determined by taking the first group of experimental data point and make the iterative
operations. The predictions of the developed model are compared with experimental data for different
materials in the following sections.

4.1. Ni-Base Super Alloy

The creep properties of Ni-base super alloy at different build directions and heat treatments were
studied experimentally by Kuo et al. [35]. Comparison of theoretical prediction with experimental data
is shown in Figure 3. In general, the predictions agree well with experimental results. The applied
stress (550 MPa) and temperature (923 K) remain unchanged for different test conditions. The main
difference comes from the microstructure, which is reflected by different values of B in the developed
model. However, it is difficult to effectively quantify microstructure for Ni-base super alloy at different
build directions and heat treatments and establish the relation between B and microstructure.
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4.2. Q460 Steel

The creep property of high-strength Q460 steel at different temperatures was studied by
Wang et al. [36]. Decreasing of the maximum creep strain with the stress level was considered
because sufficient plasticity can be developed with longer duration [36]. The maximum creep strain
shows no obvious relation with creep stress for most of the cases. As shown in Figure 4, the prediction
results agree well with the experimental data for both 723 K and 823 K cases. The absolute value of
B is obtained by fitting the experimental data, which increases with the applied stress. The detailed
discussion of B is given in the next section.
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4.3. Bar 257 Steel at 923K

As shown in Figure 5, the predictions of proposed model agree well with the experimental data
for Bar 257 steel at 923 K [34], except for the applied stress of 70 MPa. The predicted creep strain is
slight larger around the final fracture region. The absolute value of B also increases with the applied
stress. The prediction with an applied stress of 87 MPa does not cover the last two data points as the
prediction is composed of 1000 data points; this problem can be solved by making the data points
denser (for instance, 3000 data points).
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4.4. Al 2124 at 503K and 533K

The high-temperature creep behaviors of Al 2124 at 473 K, 503 K, and 533 K were studied by
Li et al. [33]. The theoretical prediction results are shown in Figure 6. Because the discontinuity of
experimental data at 473 K (235 MPa) during the creep damage process, only the experimental data of
503 K and 533 K were selected to benchmark the proposed model. It shows that the prediction results
agree well with the experimental data. With increasing of the applied stress, the absolute value of B
increases as well.
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4.5. Cr–1Mo Steel at 823K and 923K

The creep behavior of modified 9Cr–1Mo steel at 823 K and 923 K were studied by Zhang et al. [30].
Comparison of the experimental data and prediction results are shown in Figure 7. The maximum creep
strain approaches at 923 K for different stresses. However, this phenomenon was not observed for most
of the other metals and alloys. Thus, it is hard to take the maximum plastic strain to evaluate the creep
life [30]. The creep strain was well predicted with creep time by the proposed model. The absolute
value of B increases with the applied stress.
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4.6. Cr–3W–3Co–1CuVNbB Martensite Ferritic at 898 K, 923 K, and 948 K

Xiao et al. [31] systematically investigated the creep behavior of 9Cr–3W–3Co–1CuVNbB martensite
ferritic steel for a temperature range of 898 K to 948 K under uniaxial tensile stress from 120 to 220 MPa.
As shown in Figure 8, predictions of the proposed model agree well with the experimental data. For the
creep behavior of 9Cr–3W–3Co–1CuVNbB steel under 898 K, the first creep stage has a relatively longer
time compared with other temperatures. It is difficult for the traditional models to predict the creep
strain under these circumstances (it only maintains a certain precision in the first or third stages) [32].
The predictions of proposed model agree well with the experimental data except under the applied
stress of 120 MPa at 948 K. Considering that the proposed model is single-parameter, the accuracy of
prediction is acceptable.



Entropy 2019, 21, 1104 11 of 16Entropy 2019, 21, x FOR PEER REVIEW 11 of 16 

 

  
(a) (b) 

 
(c) 

Figure 8. Prediction result of 9Cr–3W–3Co–1CuVNbB martensite ferritic steel at (a) 898 K, (b) 923 K, 251 
and (c) 948 K. 252 

4.7. Cr–1Mo Ferritic Steel in Quenched and Tempered (Q+T) and Simulated Post Weld Heat Treatment 253 
(Spwht) Conditions 254 

The creep behavior of 9Cr–1Mo ferritic steel under SPWHT and Q + T treatment was studied by 255 
Choudhary [30]. The experimental data are compared with theoretical prediction, as shown in Figure 256 
9. The predictions of proposed model agree well with the experimental data except under Q + T and 257 
SPWHT condition with the applied stress of 90 MPa. The second case is because the estimated 𝑝𝑡ℎ is 258 
not converged. The prediction is obtained by setting 𝑝𝑡ℎ as the first experimental data point. At the 259 
same time, the creep experiments usually accompanied with a certain degree of discreteness. 260 

  
(a) (b) 

Figure 8. Prediction result of 9Cr–3W–3Co–1CuVNbB martensite ferritic steel at (a) 898 K, (b) 923 K,
and (c) 948 K.

4.7. Cr–1Mo Ferritic Steel in Quenched and Tempered (Q+T) and Simulated Post Weld Heat Treatment
(Spwht) Conditions

The creep behavior of 9Cr–1Mo ferritic steel under SPWHT and Q + T treatment was studied by
Choudhary [30]. The experimental data are compared with theoretical prediction, as shown in Figure 9.
The predictions of proposed model agree well with the experimental data except under Q + T and
SPWHT condition with the applied stress of 90 MPa. The second case is because the estimated pth is
not converged. The prediction is obtained by setting pth as the first experimental data point. At the
same time, the creep experiments usually accompanied with a certain degree of discreteness.
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4.8. Co–Cr–Mo Alloy

The creep behavior of Co−Cr−Mo alloy at different temperatures (923 K, 973 K, 1023 K, 1073 K)
was investigated by Sun et al. [37]. The experiments were carried out at a constant applied stress
(240 MPa). The theoretical prediction is compared with experimental data, as shown in Figure 10.
The transverse axes is taken as logarithmic coordinates to make the difference of experimental data
more obvious. Generally, the prediction results agree well with the experimental data.
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4.9. DZ125 Super Alloy

The creep behavior of DZ125 super alloy at different creep stresses and temperatures was
investigated by Fu et al. [38]. The theoretical prediction is compared with experimental data, as shown
in Figure 11. The theoretical predictions agree well with the all five groups of experimental data.
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5. Parametric Analysis of the Proposed Model

As is well known, the creep strain is strongly influenced by the applied stress and temperature.
The creep strain will increase with higher applied stress and temperature. These effects cannot be
ignored in the creep analysis. Therefore, the parameter B in Equation (11) should be associated with
the applied stress and temperature. Assuming that these two effects are irrelevant, which is commonly
accepted in the traditional models [39], the parameter B should have a form as follows:

B = M· f (σ)·g(T) (13)

where M is a coefficient that contains α, ms, k0, and N0. The relation between B and applied stress are
verified by the experimental data in Section 4. The values of B and its linear fitting with applied stress
are shown in Figure 12:

Entropy 2019, 21, x FOR PEER REVIEW 13 of 16 

 

 277 

Figure 11. Prediction result of DZ125 super alloy at different creep stresses and temperatures. 278 

5. Parametric Analysis of the Proposed Model 279 

As is well known, the creep strain is strongly influenced by the applied stress and temperature. 280 
The creep strain will increase with higher applied stress and temperature. These effects cannot be 281 
ignored in the creep analysis. Therefore, the parameter B in Equation (11) should be associated with 282 
the applied stress and temperature. Assuming that these two effects are irrelevant, which is 283 
commonly accepted in the traditional models [39], the parameter B should have a form as follows: 284 

𝐵 = 𝑀 ∙ 𝑓(𝜎) ∙ 𝑔(𝑇) (13) 

where M is a coefficient that contains 𝛼, 𝑚𝑠, 𝑘0, and 𝑁0. The relation between B and applied stress 285 
are verified by the experimental data in Section 4. The values of B and its linear fitting with applied 286 
stress are shown in Figure 12: 287 

  
(a) (b) 

 
(c) 

Figure 12. The relation between the parameter B and applied stress. 288 Figure 12. The relation between the parameter B and applied stress. (a) 9Cr-1Mo steel;
(b) 9Cr-3W-3Co-1CuVNbB and Bar 257 steel; (c) Al and Q460 steel.



Entropy 2019, 21, 1104 14 of 16

As shown in Figure 12, with increasing of the applied stress, the value of B also shows a
near-linear increasing trend for different materials. In the current study, the value of B has a relative
concentration range of 0.2~0.7 (maximum = 0.645 for Q460 steel at 210 MPa 823 K; minimum = 0.231
for 9Cr–3W–3Co–1CuVNbB at 210 MPa 898 K).

The relationship between B and temperature is shown in Figure 13. With the increase
in temperature, the value of B also increases for 9Cr–3W–3Co–1CuVNbB and Co–Cr–Mo alloy.
Although the relationship between B and temperature approaches linear for Co–Cr–Mo alloy,
determination of an accurate relationship still requires more experimental data.
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6. Conclusions

Based on the continuum damage mechanics and the statistical definition of entropy, the entropy
increasing rate during creep process is investigated. The conclusions are summarized as follows:

1. The entropy increasing rate for creep is investigated with experimental data for different metallic
materials. Similar entropy increasing trend is observed with normalized creep time. A theoretical
model is proposed to describe the relationship based on the characteristic of boundary conditions.
Comparison with experimental data shows that the developed model gives reasonably accurate
estimation of entropy increasing rate in the creep process.

2. An entropy-based creep strain prediction model is proposed with respect to the entropy increasing
rate. Predictions of the proposed model agree well with the experimental data for different
metallic materials.

3. The single parameter B in the proposed model is associated with the applied stress and temperature.
In general, the parameter increases linearly with the applied stress.
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