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Abstract: The purpose of this study is to introduce an improved Luedeking–Piret model that
represents a structurally simple biomass concentration approach. The developed routine provides
acceptable accuracy when fitting experimental data that incorporate the target protein concentration
of Escherichia coli culture BL21 (DE3) pET28a in fed-batch processes. This paper presents system
identification, biomass, and product parameter fitting routines, starting from their roots of origin to the
entropy-related development, characterized by robustness and simplicity. A single tuning coefficient
allows for the selection of an optimization criterion that serves equally well for higher and lower
biomass concentrations. The idea of the paper is to demonstrate that the use of fundamental knowledge
can make the general model more common for technological use compared to a sophisticated artificial
neural network. Experimental validation of the proposed model involved data analysis of six
cultivation experiments compared to 19 experiments used for model fitting and parameter estimation.

Keywords: gray box; relative entropy; microbial cultivation; numerical convex optimization;
parameter estimation; stoichiometry

1. Introduction

Biotechnology plants seek to increase the productivity and controllability of cell cultivations.
In order to achieve those two quality conditions, they need a trustworthy data collection system that
provides mandatory variables in real time to smoothly control processes and achieve the required
productivity. A system like this would require compatible equipment that might restrict access due
to financial concerns, because it is not compatible with the chosen system or may lack functionality.
However, it is worth replacing sophisticated equipment with soft sensors that estimate the desired
non-observable parameters from the measured data collected [1,2].

In previous works [3], the biomass estimation model relied on stoichiometry, where biomass
maintenance eventually proved to be the third-order polynomial term. The biomass maintenance term
consists of oxygen consumption, not only for maintenance, but also for product synthesis [4]. This study
suggests fundamental knowledge based on the Luedeking–Piret model [5], in which the infrastructure
of the maintenance term consists of both actual biomass maintenance and target protein production.
In this case, the proposed model is clearer and can achieve greater accuracy. The main aim of this paper
is to estimate the Luedeking–Piret model parameters in the offline mode using product information.
Simultaneously, this paper provides an alternative way to fit a protein production model and analyze
the parameters of the model based on offline data. To date, few studies and publications have estimated
the state of target proteins using a soft-sensor approach. The majority of published works estimating
target protein productivity and biomass concentration use an artificial neural network (ANN) approach.
The novelty of this study is that it involves the fundamental knowledge of incorporating target protein
synthesis into a product and biomass concentration model. This results in a rational parametric model
that can serve as an alternative approach to ANN. Parameters of the proposed model of estimation
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have practical significance; therefore, approach-related artifacts are less expected and their elimination
is manually controllable during the development of industrial processes.

Section 2: Materials and Methods describe the materials, strains, and bioreactor system operating
conditions. Section 3: Basis of Biomass and Product Model Fitting reviews the idea and basis of this
study. Section 4: System Identification and Parameter Estimation presents the derivation of a known
method for fitting to target protein and biomass concentration models. It also lays out a general
formula for oxygen consumption according to the stoichiometric coefficients of biomass, which is
relevant to the specific culture of Escherichia coli. Section 5: Experimental Validation provides results
from experimental data supporting the validity of the improved Luedeking–Piret model and an offline
estimation of target protein and biomass concentrations. Section 6: Conclusions discusses the results
and concludes the final statements of this study.

2. Materials and Methods

2.1. Cell Strains

In this work, E. coli BL21 (DE3) pET28a (Novagen) served as the test object in all experiments [4]
in order to validate biomass and protein model fitting. The product of E. coli BL21 (DE3) appeared in
two forms: Active soluble and insoluble forms, which were formed as inclusion bodies. In this study,
the target product was insoluble protein, inclusion bodies. The protein’s expression was under the
control of the T7 promoter after induction with 1 mM isopropyl-D-1-thiogalactopyranoside (IPTG).

2.2. Medium and Culture Conditions

Experimental data [6–8] served as the basis for analysis in this study. Genetically modified E. coli
BL21 (DE3) pET28a strain was cultivated in a B. Braun 10 L bioreactor. Due to confidentiality restrictions,
the authors of Reference [6] claimed that the organism expressed commercial protein, and no specific
details are available on the target recombinant protein. The initial medium volume at inoculation
was 5 L. The cultivation medium contained mineral salt medium, consisted of Na2SO4, 2.0 g/L;
(NH4)2SO4, 2.46 g/L; NH4Cl, 0.5 g/L; K2HPO4, 14.6 g/L; NaH2PO4 ×H2O, 3.6 g/L; (NH4)2–H–citrate
1.0 g/L; MgSO4 × 7H2O, 1.2 g/L; trace element solution, 2 mL/L; thiamine, 0.1 g/L; and kanamycin,
0.1 g/L [6]. Cultivation experiments took place in fed-batch mode with zero glucose concentration in
the bioreactor at the inoculation time. Pumping of the feed solution containing glucose and mineral
salts in the same composition as the starting medium started after inoculation in the bioreactor [7].
During all experiments, after inoculation, the initial biomass inside the bioreactor was 0.25 g/L of dry
cell weight (DCW). At the beginning of cultivation, the feed rate of the substrate was set very low,
approximately 11–15 g/h, and used substrate solution with as low as 300 g/kg glucose concentration to
avoid overdose, which resulted in substrate inhibition or a different metabolic pathway. At ~4 g/L
biomass concentration in medium, feed solution of 600 g/kg replaced the one with 300 g/kg glucose
concentration [8]. The temperature set point in the bioreactor was set at 35 ◦C. The induction time was
10 h since inoculation. Tracking of off-gassing from the bioreactor was done online, and a paramagnetic
oxygen sensor (Maihak Oxor 610) operated for O2 concentration observation. An Ingold DO probe
(Mettler Toledo) measured dissolved oxygen tension (DOT) values. The DOT set point was set to
25% of saturation [9]. pH was measured with an Ingold pH probe (Mettler Toledo) and kept at 7.0
using a PID controller [10]. After the action of cell disruption, separation of the soluble fraction,
and solubilization of inclusion bodies, SDS-PAGE electrophoresis helped to determine the amount of the
target protein. The method for measuring protein concentration (g/L) consisted of several preparation
steps. Initially, 200 g of wet biomass was dissolved in 1 mL of solution and mixed for 30 min. After that
SDS-PAGE, (sodium dodecyl sulfate polyacrylamide gel) electrophoresis was performed on 200 µL of
the suspension sample to measure the amount of total protein concentration. The remainder of the
suspension was mixed with SDS (sodium dodecyl sulfate) buffer to dissolve all proteins and centrifuged
for 15 min at 4 ◦C with 20,000 G force. After centrifugation, SDS-PAGE electrophoresis was used to
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determine the soluble protein concentration in a 200 µL sample. The remaining supernatant discarded
and replaced with 1 mL of water, then mixed and centrifuged. After decanting the supernatant, 1 mL of
solubilization buffer (8M urea; 50 mM, pH 8.0 Tris base) was added and mixed for approximately 12 h.
The final step after mixing was the measuring of insoluble protein (inclusion bodies) concentration
with SDS-PAGE electrophoresis.

3. Basis of Biomass and Product Model Fitting

A previous study [3] showed that the development of a biomass concentration estimator required
data that was linked to the biomass growth rate. Oxygen uptake rate (OUR) was the main characteristic
variable that provided information about the biosynthesis phenomenon [7,11,12]. To enforce soft
sensors [13,14], OUR must have been an online measurement coming from devices that registered
not only mass airflow, but also O2 concentration in the off-gas [15]. This study proposes biomass
concentration and protein model fitting based on a mass balance equation. For fed batch cultivations,
such a model originates from the Luedeking–Piret model. The mass balance model represents the
relationship between oxygen uptake rate (OUR) and biomass growth characteristics [5]:

OUR(t) = α·X′(t) + β·X(t) (1)

In Equation (1), X is dry biomass concentration (g/L), t is duration time since inoculation (h)
and stoichiometric coefficients α and β represent cell metabolism of oxygen consumption, where α

describes the cell’s oxygen consumption yield for biomass growth (α ≡ Yo2/X, [ g(O2)/g(X)]) and
β describes the cell’s oxygen consumption for maintenance (β ≡ mO2/X, [g(O2)/g(X)/h]) [16–18].
Çalik [19], studying the effects of pH on benzaldehyde lyase production by Escherichia coli, and
Kocabaş [20], studying l-tryptophan production, clarified that oxygen consumption consisted of three
parts: Cell growth, maintenance, and byproduct formation. In order to enable model fitting of protein
and biomass concentration, this study suggests modifying the Luedeking–Piret model in Equation (1)
by adding parameter γ, which represents the oxygen consumption yield for protein synthesis rate
P ′(t) (γ ≡ Yo2/p) [4,21]:

OUR(t) = α· X ′(t) + β·X(t) + γ· P ′(t), (2)

where the last term represents the oxygen update rate for product formation.

4. System Identification and Parameter Estimation

4.1. Stoichiometric Parameter Estimation

In a previous study [3], there was an assumption that stoichiometric parameter β, the oxygen
maintenance term, was not a process constant, and one explanation was that it embraced the target
protein P production:

OUR(t) = α· X ′(t) + β(X)·X(t), (3)

where the β function had the form

β(X) ≡ β(X(t)) = kβ2·X2(t) + kβ1·X(t) + kβ0. (4)

Equation (3) gives acceptable results, but is highly uncertainty for the β term [3], which can be
seen in Figure 1, where β(X) is the maintenance coefficient as a function of biomass concentration and
β(tm) is the maintenance coefficient observed at discrete time tm and is associated with biomass X at
time tm. Graph data for Figure 1 originated from Reference [3].
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In order to refine the model to a simpler and more versatile one, an additional parameter γ(X)
extends the parsimonious model [22] to the shape of Equation (5):

OUR(t) = α· X ′(t) + β(X)·X(t) + γ(X)· P ′(t). (5)

This represents the main novelty of this study, protein production yield γ [4,21], which is assumed
to be a function of biomass concentration X in a gray box model of Equation (3) [6,22]. The motivation
of Equation (5) is that, through a convex programming procedure, the parameters with higher statistical
significance overcome those with lower significance by leaving their entries populated with zero
values. Babaeipour et al. [23] showed that protein productivity depends on IPTG and biomass
concentrations at the induction time. In previous research [6], experiments had the same 1 mM amount
of isopropyl-D-1-thiogalactopyranoside (IPTG). However, the biomass concentration at the induction
time in each cultivation process was different. We found that it had a significant impact on the biomass
model fitting. Our analysis showed that the product formation parameter γ(X) is a function of biomass
concentration at induction time [24]:

γ(X) = kγ·(X(t) −Xind), (6)

where Xind is biomass concentration at induction time and kγ is the product synthesis yield, which is
assumed to be constant. In summary, the full gray box model of the estimator has the form:

OUR(t) = α· X ′(t) + kγ·(X(t) −Xind)· P ′(t)+(
kβ2·X2(t) + kβ1·X(t) + kβ0

)
·X(t).

(7)

In electrical systems, disturbances and interferences are inevitable, and the model’s parameters
and estimated values are distorted [11]. Urniezius et al. [3] and Schaepe et al. [13] showed that
cumulative signals had less disturbance and an improved signal-to-noise ratio (SNR). In order for
the original signal to be cumulative, this study employs an integral approach, which is a good noise
filter [25]. After integration, the improved Luedeking–Piret model in Equation (7) becomes more
resistant to state variable noise [26]:∫ t

t0
OUR(t∗)dt∗ = α·

∫ t
t0

X ′(t∗)dt∗ + kγ·

∫ t
t0
(X(t∗) −Xind)·P′(t∗)dt∗+∫ t

t0

(
kβ2·X2(t∗) + kβ1·X(t∗) + kβ0

)
·X(t∗)dt∗.

(8)

After model analysis and calculations, the obtained results show that the stoichiometric parameter
β(X), the oxygen maintenance term for biomass concentration, is extremely low in comparison to other
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stoichiometric parameters during the whole cultivation process. The convex estimation of coefficients
kβ2, kβ1, kβ0, manifested in this study, shows that all of those coefficients obtain zero values in this
parsimonious model. The phenomenon where the biomass maintenance factor is absent from the
growth process can be explained by the fact that the biomass concentration at the induction moment is
relatively low (around 30 g/L) and the biomass maintenance term is negligible in this specific situation.
A previous study [3] presented biomass maintenance model fitting procedures; therefore, Equation (8)
considers only two terms of oxygen consumption:∫ t

t0

OUR(t∗)dt∗ = α·

∫ t

t0

X′(t∗)dt∗ + kγ·

∫ t

t0

(X(t∗) −Xind)·P′(t∗)dt∗. (9)

Integration with parts [27] of the last term in Equation (9) enables model fitting of biomass
concentration. This helps to remove the protein production rate containing considerable uncertainty:∫ t

t0
OUR(t∗)dt∗ = α·(X(t) −X(t0))+

kγ·

(
P(t)·(X(t) −Xind) −

∫ t
t0
(X(t∗) −Xind)

′
·P(t∗)dt∗

)
,

(10)

The differential of current biomass concentration minus biomass concentration at induction time
simplifies to (X(t∗) −Xind)

′ =
d(X(t∗)−Xind)

dt∗ =
dX(t∗)

dt∗ . Therefore,∫ t
t0
(X(t∗) −Xind)

′
·P(t∗)dt∗ =

∫ t
t0

dX(t∗)
dt∗ ·P(t

∗)dt∗ =∫ t
t0

P(t∗)dX(t∗) ≈
∑m

l=1(Xl −Xl−1)·Pl,
(11)

where the last integral of Equation (11) represents the left-hand Riemann sum [28], when the time’s
t sample has an index of m. Discrete DCW samples define variable Xm ≡ X(t), where m ∈ [1, nm];
nm is the total number (hours) of offline sampling intervals and X0 ≡ X(t0) is an initial biomass
concentration after inoculation in the bioreactor. Introducing cOURm ≡

∫ t
t0

OUR(t∗) dt∗ and Equation
(11) into Equation (10) yields:

cOURm = α·(Xm −X0) + kγ·(Pm·(Xm −Xind) −
∑m

l=1
(Xl −Xl−1)·Pl). (12)

The final formula for offline model fitting of biomass concentration is as follows:

Xm =
cOURm + α·X0 + kγ·Pm·Xind + kγ·

∑m
l=1(Xl −Xl−1)·Pl

α+ Pm·kγ
. (13)

Equation (13) also represents the prediction value of the proposed model, i.e., it serves as the
constraint over the probabilistic mean 〈Xm〉.

4.2. Procedure for Offline Analysis of Stoichiometry Parameters

Fitting the biomass concentration parameters to the gray box model means that the analysis of
offline bioprocess data evaluates the stoichiometric parameters of the cell strain. Equation (13) shows
that the essential data must consist of dry cell weight (DCW) or an optical density (OD) value (o.u.),
which is converted to DCW by multiplying it by a factor of 0.4 g/L/o.u. [29], cumulative oxygen uptake
rate (cOUR), and insoluble target protein values. However, the time duration of the process since
inoculation is not required during this gray box model fitting procedure.

The model for fitting parameter values is a gray box model, because collected experimental data
are combined with fundamental knowledge about bioprocesses [30]. The posterior distribution for the
m-th offline sample is:

Pposterior(Xm) ∼ N
(
〈Xm〉,σ2

〈X〉

)
, (14)
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where every sampled prediction m has a constant variance σ2
〈X〉. Prior distribution also has the form of

Gaussian distribution [31,32]:
Plikelihood(Xm) ∼ N

(
Xy

m,σ2
X,m

)
, (15)

where Xy
m is the mth observation value of the biomass concentration and its individual variance is

σ2
X,m. Integration of relative entropy [31] yields:

Sm
(
Pposterior, Plikelihood

)
= −

∫
∞

−∞
Pposterior(Xm)· ln

Pposterior(Xm)

Plikelihood(Xm)
dXm

= −
(〈Xm〉−Xy

m)
2

2·σ2
X,m

+ c,
(16)

where a further procedure neglects coefficient c. In a previous study [31], the uncertainty of prior
distribution was set as equal to the squared observed value. However, Reference [3] showed that there
are trade-offs between the least squares approach and the squared mean absolute percentage error
(MAPE) criterion. A separate tuning coefficient Kexp [3] is required to adjust uncertainty:

σ2
X,m ∼

X2
m

1−Kexp + X2
m·Kexp

, (17)

which yields the sum of two criteria after insertion into Equation (16)

Sm
(
Pposterior, Plikelihood

)
= −

(〈Xm〉−Xy
m)

2

2·
X2

m
1−Kexp+X2

m ·Kexp

,

= −
(〈Xm〉−Xy

m)
2
·(1−Kexp)

2·X2
m

−
(〈Xm〉−Xy

m)
2
·Kexp

2 .

(18)

The tuning coefficient Kexp
(
0 ≤ Kexp ≤ 1

)
with a value of 1 recreates the least squares approach,

which has a higher penalty for bigger criterion values. Meanwhile, the value of zero results in the
squared MAPE criterion [31], which restricts estimation errors to smaller overall criterion values.
Such criteria showed acceptable practical benefits in a generic case of a biomass model fitting procedure.
As a result, the least squares method is combined with the squared MAPE to apply the advantages of
both criteria and top overcome their disadvantages, where Kexp is an empirical “weight” coefficient
between the two additive terms of the optimization criterion.

4.3. Model of Product Model Fitting

Product evaluation technology is a complex soft sensor and is important for the biotechnology
industry, demonstrating process efficiency and saving time in protein measurements [9]. In this study,
the basic idea of the protein model fitting comes from Levisauskas’ research [33], claiming that relative
protein synthesis is a function of the specific biomass growth rate:

dPx

dx
= qpx(µ, Px), (19)

where qpx is a specific protein accumulation rate (U/g/h), µ is a specific biomass growth rate (1/h), and Px

is specific protein activity (U/g), where protein concentration is divided by biomass concentration,
Px(t) = P(t)/X(t) [33]. Data analysis and studies have shown that production synthesis is linearly
dependent on the specific growth rate (SGR) of the biomass and the product concentration acts as an
inhibitor of product synthesis [34]:

dPx

dx
= qpx(µ, Px) = Pmax(µ, X) − kt·PX(t). (20)
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In Equation (16), coefficient kt is a corresponding time constant that is assumed to be a form
of the self-inhibition effect [35]. Pmax is a maximal specific product concentration value, which is
asymptotically dependent on µ. The specific biomass growth rate and biomass concentration determine
the maximum specific product concentration term [36], which represents the maximum possible protein
concentration in the current process state:

Pmax(µ, X) = µ(t)·(km0 + km1·(X(t) −Xind)), (21)

where km0 and km1 are empirical coefficients proposed by this study, km0 relates to SGR and protein
synthesis, and km1 links the biomass concentration at the induction time and productivity [23].
Equation (21) is only valid after induction and biomass concentration at induction time is a prerequisite.
Before IPTG injection into the bioreactor, coefficient km1 is equal to zero and the maximum specific
product concentration term becomes:

Pmax(µ, X) = µ(t)·km0. (22)

The protein model fitting is comparable to the gray box model and the biomass concentration
model. Prior to performing the coefficient evaluation, the gray box model, represented by Equation (20),
integrates to:

PX(t) =

t∫
t0

Pmax(t∗)dt∗ − kt·

∫ t

t0

PX(t∗)dt∗ (23)

The integrals of Equation (23) are expressed as the left-hand Riemann sum [28], i.e.,
∫ t

t0
Pmax(t∗)dt∗ ≈∑m

j=1 Pmax,j·∆tj,j−1;
∫ t

t0
PX(t∗)dt∗ ≈ PX,m·∆tm, m−1 +

∑m−1
j=1 PX,j·∆tj,j−1; when time’s t sample is indexed by

m, discrete protein values define the variable PX,m ≡ PX(t), where m ∈ [1, nm]. The final formula of
protein model fitting is as follows:

Pm =

(∑m
j=i Pmax,j·∆tj,j−1 − kt·

∑m−1
j=1 Px,j·∆tj,j−1

)
·Xm

1 + ∆tm,m−1·kt
. (24)

Model fitting uses Equation (24) for a prediction value 〈Pm〉 and observed product concentrations
Py

m inside convex optimization.

4.4. Identification of E. Coli Parameters by Convex Optimization

The process of identifying E. coli BL21 (DE3) pET28a strain’s stoichiometric parameters and
protein model fitting coefficients is based on the convex optimization method and the maximization of
entropy [31,37]. Figure 2 depicts the workflow of the optimization procedure.

Convex optimization uses the maximization of entropy as an indicator of local extremum
detections [38]. Equation (18) helps with identification of stoichiometry parameters and Equation (25)
does the same for the product model fitting:

SP,m = −

(
〈Pm〉 − Py

m

)2
·

(
1−Kexp

)
2·X2

m
−

(
〈Pm〉 − Py

m

)2
·Kexp

2
(25)



Entropy 2019, 21, 1221 8 of 14

Entropy 2020, 22, x 7 of 14 

 

time is a prerequisite. Before IPTG injection into the bioreactor, coefficient k୫ଵ is equal to zero and 
the maximum specific product concentration term becomes: P୫ୟ୶(μ, X) = μ(t) ∙ k୫. (22) 

The protein model fitting is comparable to the gray box model and the biomass concentration 
model. Prior to performing the coefficient evaluation, the gray box model, represented by  
Equation (20), integrates to: 

Pଡ଼(t) = න P୫ୟ୶(t∗)𝑑t∗୲
୲బ − k୲ ∙ න Pଡ଼(t∗)୲

୲బ 𝑑t∗ (23) 

The integrals of Equation (23) are expressed as the left-hand Riemann sum [28], i.e.,  P୫ୟ୶(t∗)𝑑t∗୲୲బ ≈ ∑ P୫ୟ୶,୨ ∙ ∆t୨,୨ିଵ୫୨ୀଵ  ; Pଡ଼(t∗)୲୲బ 𝑑t∗ ≈ Pଡ଼,୫ ∙ ∆t୫,୫ିଵ + ∑ Pଡ଼,୨ ∙ ∆t୨,୨ିଵ୫ିଵ୨ୀଵ ; when time’s t 
sample is indexed by m, discrete protein values define the variable Pଡ଼,୫ ≡ Pଡ଼(t), where m ∈ [1, n୫]. 
The final formula of protein model fitting is as follows: P୫ =  ቀ∑ ౣ౮,ౠ∙∆୲ౠ,ౠషభౠౣస ି୩౪∙∑ ౮,ౠ∙∆୲ౠ,ౠషభౣషభౠసభ ቁ∙ଡ଼ౣଵା∆୲ౣ,ౣషభ∙୩౪ . (24) 

Model fitting uses Equation (24) for a prediction value 〈P୫〉 and observed product 
concentrations P୫୷  inside convex optimization. 

4.4. Identification of E. Coli Parameters by Convex Optimization 

The process of identifying E. coli BL21 (DE3) pET28a strain’s stoichiometric parameters and 
protein model fitting coefficients is based on the convex optimization method and the maximization 
of entropy [31,37]. Figure 2 depicts the workflow of the optimization procedure. 

 
Figure 2. Workflow of structural scheme for convex optimization method identifying stoichiometric 
and product model fitting parameters. 

Convex optimization uses the maximization of entropy as an indicator of local extremum 
detections [38]. Equation (18) helps with identification of stoichiometry parameters and Equation (25) 
does the same for the product model fitting: 

S,୫ = − ൫〈P୫〉 − P୫୷ ൯ଶ ∙ ൫1 − Kୣ୶୮൯2 ∙ X୫ଶ − ൫〈P୫〉 − P୫୷ ൯ଶ ∙ Kୣ୶୮2  (25) 

Figure 2. Workflow of structural scheme for convex optimization method identifying stoichiometric
and product model fitting parameters.

5. Experimental Validation

For the comparison of results, the mean absolute error (MAE) and mean absolute percentage error
(MAPE) are operated as evaluation criteria. The definition of MAE is [39]:

MAE =

∑n
i=1

∣∣∣ŷi − yi

∣∣∣
n

, (26)

where n is the number of data counts, ŷi is the estimation result, and yi is the observed value from the
cultivation process. MAPE has the expression [40]:

MAPE =
100 %

n

n∑
i=1

∣∣∣∣∣∣ ŷi − yi

yi

∣∣∣∣∣∣. (27)

Root mean square error (RMSE) represents the square root of the residuals of the differences
between predicted and observed values. The formula is as follows [39]:

RMSE =

√∑n
i=1

(
ŷi − yi

)2

n
. (28)

The experimental data of the fed-batch cultivation process of Escherichia coli were taken from
Reference [6]. In order to test and validate the proposed models of this paper, data from 19 cultivation
experiments were used in the system identification analysis. The start of this research included
investigating a suitable expression describing stoichiometry parameters in biomass model fitting.
Multiple tests employed various formulations, including previous assumptions on polynomial
maintenance [3]. The purpose was to indicate the most suitable formula that describes cell stoichiometry.
Table 1 describes the best-achieved coefficient values for the fitted model.

Table 1. Analysis results of biomass concentration models. MAE, mean absolute error; MAPE, mean
absolute percentage error.

Model α kβ0 kβ1 kβ2 kγ MAE MAPE

Equation (3) 0.996 0.07 0.00084 0 — 1.422 8.85%
Equation (12) 0.997 0 0 0 2.705 0.68 6.92%
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The MAE and MAPE values show the average from 19 experiments. The results of protein model
fitting Equation (24) are presented in Table 2.

Table 2. Values of protein model parameters according to Equation (24).

E. Coli BL21 (DE3) pET28a

km0 = 0.2346
km1 = −0.0172

kt = 0.0687

Table 2 presents the model parameters that produce the protein estimation results of this study.
These parameters are only suitable for the genetically modified E. coli BL21 (DE3) pET28a cell strain
investigated in this study and is mentioned in the Materials and Methods Section. Equation (24)
mainly describes the recurrent procedure of offline estimation. Protein estimates were determined
from previous protein estimates and offline biomass measurements. First, parameters km0 and km1

were used for determination of Pmax,j in Equation (21). This equation also used an approximate value

of SGR, µj �
(
Xj −Xj−1

)
/
(
Xj·∆tj,j−1

)
. Equation (24) was only dependent on offline biomass observations

in this study, or online biomass estimates in future applications. After calculating the protein value
using Equation (24), the “normalized” protein value Px,j = Pj/Xj served as input for the estimation
of the next target protein value by Equation (24). In this way, model fitting used the equation in a
recursive manner and had no dependency on target product related state variables.

Protein and biomass model fitting results are presented in Table 3 using the best-fit configurations
of models parameters.

Table 3. Analysis of biomass and product concentration models. RMSE, root mean square error.

Dry Biomass Concentration (Dry Cell Weight, DCW) Product

No. MAE (g/L) MAPE (%) RMSE (g) MAE (g/L) MAPE (%) RMSE (g)

1 0.728 6.802 5.212 0.139 5.378 0.571
2 0.762 4.997 6.621 0.231 6.095 0.647
3 0.860 11.022 6.172 0.473 52.526 2.91
4 0.388 4.458 3.085 0.184 13.265 1.248
5 0.798 8.02 6.107 0.527 82.075 3.258
6 0.512 8.82 3.703 0.113 6.7898 0.608
7 0.595 4.787 4.605 0.127 6.957 0.84
8 0.311 4.433 2.191 0.629 35.36 3.757
9 0.576 6.046 4.266 0.178 11.250 1.471

10 0.873 9.017 6.166 0.634 33.844 4.147
11 0.582 5.248 4.468 0.1407 8.286 0.872
12 0.61 5.884 5.264 0.31 19.407 1.946
13 0.7642 5.477 4.962 0.318 39.614 1.834
14 0.404 3.862 3.563 0.056 7.001 0.594
15 0.531 5.724 3.726 0.137 9.681 0.914
16 0.628 7.532 4.503 0.066 4.504 0.401
17 0.86 7.057 6.685 0.16 17.13 1.042
18 1.262 11.767 9.218 0.134 10.328 1.026
19 0.862 10.582 5.933 0.111 8.15 0.738

Therefore, the average MAE of biomass model fitting since the start of the bioprocess of inoculation
is 0.679 g/L and that of product model fitting is 0.246 g/L. The overall average MAPE of biomass model
fitting since the start of inoculation is 6.92% and that of product model fitting is 19.87%. The overall
average RMSE of biomass model fitting since the start of inoculation is 5.07 g and that of product
model fitting is 1.517 g. The MAPE, MAE, and RMSE of the product model fitting neglects the very
first measurement after induction, since it has less meaning for MAPE when product synthesis starts.
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To validate the identified model parameters shown in Table 2, data from six cultivation experiments of
the same cell culture were processed.

According to the validation data shown in Table 4, the average MAE of biomass since the start of
inoculation is 0.636 g/L and that of product is 0.099 g/L. The overall average MAPE of biomass since
the start of inoculation is 7.09% and that of product is 8.22%. The overall average RMSE of biomass
since the start of inoculation is 4.577% and that of product is 0.656%.

Table 4. Model validation results.

Dry Biomass Concentration (DCW) Product

No. MAE (g/L) MAPE (%) RMSE (g) MAE (g/L) MAPE (%) RMSE (g)

1 0.769 8.594 5.279 0.128 11.947 0.7222
2 0.481 7.39 2.916 0.0813 6.565 0.491
3 0.843 8.107 6.354 0.0563 7.86 0.397
4 0.727 5.25 5.975 0.05 4.996 0.323
5 0.596 7.199 4.17 0.134 8.715 0.821
6 0.402 6.033 2.768 0.149 9.26 1.185

Figure 3 portrays some typical biomass model fitting results and Figure 4 shows biomass validation
results. These results show that estimation approaches for biomass concentration and product attained
acceptable precision without compromising the simplicity of implementation. The proposed models
show a simplistic structure while being accurate and a basis of fundamental knowledge. The main
purpose of this paper is to show evidence that biomass and protein model fitting can be handled from
the fundamental point of view based on stoichiometry Equation (1) and protein synthesis Equation (19),
without the need for an artificial neural network (ANN) or other hybrid black box systems requiring
data training [6,41–43]. Training procedures normally require huge amounts of training data, while
this study proposes an approach that helps with the identification of the parameters once per strain.
For comparison, the results of ANN and the model in this paper are compared in Table 5.
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Table 5. Comparison of prediction quality of the model in this paper and Gnoth et al. [6] model.

RMSE (g)

Total Biomass Total Soluble Protein Total Insoluble Protein

Conventional model
from Gnoth et al. [6] 10.81 1.78 0.87

Hybrid network from
Gnoth et al. [6] 4.71 1.28 0.62

Model in this study 4.577 - 0.656

Moreover, instead of induction time [6], this study suggests using biomass concentration at
induction, which better confirms conventional bioprocess development practices. The results of protein
model fitting are shown in Figure 5 and are validated in Figure 6.
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6. Conclusions

This paper suggests two functional models for biomass and product concentration, which are
crucial for the later development of online product and biomass estimators. The biomass model fitting
approach uses the stoichiometry model proposed by Luedeking and Piret in 1959. This study assumed
that the estimation routines are dependent on stoichiometry parameters of the strain and the biomass
concentration at the time of induction. The proposed model fitting method utilizes only few inputs:
Specific biomass growth rate and biomass concentration at time of induction. The approach is thus
based on fundamental knowledge about biosynthesis. Analysis of process data from 19 cultivation
experiments validated the routines. Evaluation errors confirmed that the approach is relevant for
model fitting of the Escherichia coli BL21 (DE3) pET28a cell strain. The overall average MAE of biomass
model fitting was 0.679 g/L and that of product model fitting was 0.246 g/L. The overall average MAPE
of biomass model fitting was 6.92% and that of product model fitting was 19.87%. The suggested
approach does not depend on any numeric initial optimization conditions and does not require any
bioreactor parameters. The proposed approach has certain benefits compared to artificial neural
networks. Training procedures normally require a huge amount of training data, while this study
proposes an approach that helps with the identification (training) of parameters once per strain. This
study suggests using a more general biomass concentration at induction, normally defined in contract
or biotechnological protocols.
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20. Kocabaş, P.; Çalık, P.; Özdamar, T.H. Fermentation characteristics of l-tryptophan production by
thermoacidophilic Bacillus acidocaldarius in a defined medium. Enzyme Microb. Technol. 2006, 39, 1077–1088.
[CrossRef]

21. Sivashanmugam, A.; Murray, V.; Cui, C.; Zhang, Y.; Wang, J.; Li, Q. Practical protocols for production of very
high yields of recombinant proteins using Escherichia coli. Protein Sci. 2009, 18, 936–948. [CrossRef]

22. Zymnis, A.; Boyd, S.; Gorinevsky, D. Mixed linear system estimation and identification. Signal Process. 2010,
90, 966–971. [CrossRef]

http://dx.doi.org/10.1016/S1367-5788(00)00012-2
http://dx.doi.org/10.3390/s141224441
http://dx.doi.org/10.1186/s12934-019-1241-7
http://dx.doi.org/10.1016/j.bej.2010.01.011
http://dx.doi.org/10.1002/jbmte.390010406
http://dx.doi.org/10.1007/s00253-010-2608-1
http://www.ncbi.nlm.nih.gov/pubmed/20535469
http://dx.doi.org/10.1016/j.jbiotec.2005.09.013
http://www.ncbi.nlm.nih.gov/pubmed/16293333
http://dx.doi.org/10.1016/j.jbiotec.2014.09.002
http://dx.doi.org/10.1007/s00253-008-1765-y
http://dx.doi.org/10.1007/s00253-009-2114-5
http://dx.doi.org/10.1016/0168-1656(91)90046-X
http://dx.doi.org/10.1002/biot.201500016
http://www.ncbi.nlm.nih.gov/pubmed/26228573
http://dx.doi.org/10.2174/2211550102666131217235246
http://dx.doi.org/10.1016/S0168-1656(00)00366-7
http://dx.doi.org/10.12720/jolst.1.3.163-167
http://dx.doi.org/10.1007/s00449-012-0848-4
http://www.ncbi.nlm.nih.gov/pubmed/23178981
http://dx.doi.org/10.1016/j.jbiotec.2007.03.020
http://dx.doi.org/10.1016/j.enzmictec.2005.07.029
http://dx.doi.org/10.1016/j.enzmictec.2006.02.012
http://dx.doi.org/10.1002/pro.102
http://dx.doi.org/10.1016/j.sigpro.2009.09.022


Entropy 2019, 21, 1221 14 of 14

23. Babaeipour, V.; Shojaosadati, S.A.; Maghsoudi, N. Maximizing Production of Human Interferon-γ in HCDC
of Recombinant E. coli. Iran. J. Pharm Res. 2013, 12, 563–572. [PubMed]

24. Jenzsch, M.; Gnoth, S.; Kleinschmidt, M.; Simutis, R.; Lübbert, A. Improving the batch-to-batch reproducibility
of microbial cultures during recombinant protein production by regulation of the total carbon dioxide
production. J. Biotechnol. 2007, 128, 858–867. [CrossRef] [PubMed]

25. Jenzsch, M.; Simutis, R.; Eisbrenner, G.; Stückrath, I.; Lübbert, A. Estimation of biomass concentrations
in fermentation processes for recombinant protein production. Bioprocess Biosyst. Eng. 2006, 29, 19–27.
[CrossRef]

26. Petkov, S.B.; Davis, R.A. On-line biomass estimation using a modified oxygen utilization rate. Bioprocess Eng.
1996, 15, 43–45. [CrossRef]

27. Brand, L. TotalBoox. TBX Advanced Calculus; Dover Publications: Mineola, NY, USA, 2013;
ISBN 978-0-486-15799-3.

28. Swokowski, E.W. Calculus with Analytic Geometry, 2nd ed.; Prindle, Weber & Schmidt: Boston, MA, USA,
1979; ISBN 978-0-87150-268-1.

29. Shiloach, J.; Fass, R. Growing E. coli to high cell density—A historical perspective on method development.
Biotechnol. Adv. 2005, 23, 345–357. [CrossRef]

30. Bohlin, T. Practical Grey-Box Process Identification: Theory and Applications; Advances in Industrial Control;
Springer: London, UK, 2006; ISBN 978-1-84628-402-1.

31. Urniezius, R.; Galvanauskas, V.; Survyla, A.; Simutis, R.; Levisauskas, D. From Physics to Bioengineering:
Microbial Cultivation Process Design and Feeding Rate Control Based on Relative Entropy Using Nuisance
Time. Entropy 2018, 20, 779. [CrossRef]

32. Giffin, A.; Urniezius, R. The Kalman Filter Revisited Using Maximum Relative Entropy. Entropy 2014, 16,
1047–1069. [CrossRef]

33. Levisauskas, D.; Galvanauskas, V.; Henrich, S.; Wilhelm, K.; Volk, N.; Lübbert, A. Model-based optimization
of viral capsid protein production in fed-batch culture of recombinant Escherichia coli. Bioprocess Biosyst. Eng.
2003, 25, 255–262. [CrossRef]

34. Galvanauskas, V.; Volk, N.; Simutis, R.; Lübbert, A. Design of recombinant protein production processes.
Chem. Eng. Commun. 2004, 191, 732–748. [CrossRef]

35. Miao, F.; Kompala, D.S. Overexpression of cloned genes using recombinant Escherichia coli regulated by a T7
promoter: I. Batch cultures and kinetic modeling. Biotechnol. Bioeng. 1992, 40, 787–796. [CrossRef] [PubMed]

36. Schuler, M.M.; Marison, I.W. Real-time monitoring and control of microbial bioprocesses with focus on
the specific growth rate: Current state and perspectives. Appl. Microbiol. Biotechnol. 2012, 94, 1469–1482.
[CrossRef] [PubMed]

37. Urniezius, R. Convex programming for semi-globally optimal resource allocation. In AIP Conference
Proceedings; AIP Publishing: Beirut, Lebanon, 2016; p. 040002.

38. Giffin, A.; Urniezius, R. Simultaneous State and Parameter Estimation Using Maximum Relative Entropy
with Nonhomogenous Differential Equation Constraints. Entropy 2014, 16, 4974–4991. [CrossRef]

39. Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error
(RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]

40. de Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for regression models.
Neurocomputing 2016, 192, 38–48. [CrossRef]

41. Gnoth, S.; Jenzsch, M.; Simutis, R.; Lübbert, A. Control of cultivation processes for recombinant protein
production: A review. Bioprocess Biosyst. Eng. 2008, 31, 21–39. [CrossRef]

42. Galvanauskas, V.; Simutis, R.; Lübbert, A. Hybrid process models for process optimisation, monitoring and
control. Bioprocess Biosyst. Eng. 2004, 26, 393–400. [CrossRef]

43. Gnoth, S.; Jenzsch, M.; Simutis, R.; Lübbert, A. Product formation kinetics in genetically modified E. coli
bacteria: Inclusion body formation. Bioprocess Biosyst. Eng. 2008, 31, 41–46. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/24250663
http://dx.doi.org/10.1016/j.jbiotec.2006.12.022
http://www.ncbi.nlm.nih.gov/pubmed/17306401
http://dx.doi.org/10.1007/s00449-006-0051-6
http://dx.doi.org/10.1007/BF00435527
http://dx.doi.org/10.1016/j.biotechadv.2005.04.004
http://dx.doi.org/10.3390/e20100779
http://dx.doi.org/10.3390/e16021047
http://dx.doi.org/10.1007/s00449-002-0305-x
http://dx.doi.org/10.1080/00986440490276056
http://dx.doi.org/10.1002/bit.260400706
http://www.ncbi.nlm.nih.gov/pubmed/18601182
http://dx.doi.org/10.1007/s00253-012-4095-z
http://www.ncbi.nlm.nih.gov/pubmed/22569637
http://dx.doi.org/10.3390/e16094974
http://dx.doi.org/10.3354/cr030079
http://dx.doi.org/10.1016/j.neucom.2015.12.114
http://dx.doi.org/10.1007/s00449-007-0163-7
http://dx.doi.org/10.1007/s00449-004-0385-x
http://dx.doi.org/10.1007/s00449-007-0161-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Cell Strains 
	Medium and Culture Conditions 

	Basis of Biomass and Product Model Fitting 
	System Identification and Parameter Estimation 
	Stoichiometric Parameter Estimation 
	Procedure for Offline Analysis of Stoichiometry Parameters 
	Model of Product Model Fitting 
	Identification of E. Coli Parameters by Convex Optimization 

	Experimental Validation 
	Conclusions 
	References

