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Abstract: A discrete system’s heterogeneity is measured by the Rényi heterogeneity family of indices (also
known as Hill numbers or Hannah–Kay indices), whose units are the numbers equivalent. Unfortunately,
numbers equivalent heterogeneity measures for non-categorical data require a priori (A) categorical
partitioning and (B) pairwise distance measurement on the observable data space, thereby precluding
application to problems with ill-defined categories or where semantically relevant features must be
learned as abstractions from some data. We thus introduce representational Rényi heterogeneity (RRH),
which transforms an observable domain onto a latent space upon which the Rényi heterogeneity is
both tractable and semantically relevant. This method requires neither a priori binning nor definition
of a distance function on the observable space. We show that RRH can generalize existing biodiversity
and economic equality indices. Compared with existing indices on a beta-mixture distribution, we show
that RRH responds more appropriately to changes in mixture component separation and weighting.
Finally, we demonstrate the measurement of RRH in a set of natural images, with respect to abstract
representations learned by a deep neural network. The RRH approach will further enable heterogeneity
measurement in disciplines whose data do not easily conform to the assumptions of existing indices.

Keywords: heterogeneity; diversity; Rényi heterogeneity; representation learning; variational
autoencoder; functional diversity indices; Hill numbers; Leinster–Cobbold Index;
Rao’s quadratic entropy

1. Introduction

Measuring heterogeneity is of broad scientific importance, such as in studies of biodiversity
(ecology and microbiology) [1,2], resource concentration (economics) [3], and consistency of clinical
trial results (biostatistics) [4], to name a few. In most of these cases, one measures the heterogeneity of
a discrete system equipped with a probability mass function.

Discrete systems assume that all observations of a given state are identical (zero distance), and
that all pairwise distances between states are permutation invariant. This assumption is violated
when relative distances between states are important. For example, an ecosystem is not biodiverse if
all species serve the same functional role [5]. Although species are categorical labels, their pairwise
differences in terms of ecological functions differ and thus violate the discrete space assumptions.
Mathematical ecologists have thus developed heterogeneity measures for non-categorical systems,
which they generally call “functional diversity indices” [6–11]. These indices typically require a priori
discretization and specification of a distance function on the observable space.

The requirement for defining the state space a priori is problematic when the states are
incompletely observable: that is, when they may be noisy, unreliable, or invalid. For example,
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consider sampling a patient from a population of individuals with psychiatric disorders and assigning
a categorical state label corresponding to his or her diagnosis according to standard definitions [12].
Given that psychiatric conditions are not defined by objective biomarkers, the individual’s diagnostic
state will be uncertain. Indeed, many of these conditions are inconsistently diagnosed across raters [13],
and there is no guarantee that they correspond to valid biological processes. Alternatively, it is possible
that variation within some categorical diagnostic groups is simply related to diagnostic “noise,”
or nuisance variation, but that variation within other diagnostic groups constitutes the presence of
sub-strata. Appropriate measurement of heterogeneity in such disciplines requires freedom from the
discretization requirement of existing non-categorical heterogeneity indices.

Pre-specified distance functions may fail to capture semantically relevant geometry in the
raw feature space. For example, the Euclidean distance between Edmonton and Johannesburg is
relatively useless since the straight-line path cannot be traversed. Rather, the appropriate distances
between points must account for the data’s underlying manifold of support. Representation learning
addresses this problem by learning a latent embedding upon which distances are of greater semantic
relevance [14]. Indeed, we have observed superior clustering of natural images embedded on
Riemannian manifolds [15] (but also see Shao et al. [16]), and preservation of semantic hierarchies
when linguistic data are embedded on a hyperbolic space [17].

Therefore, we seek non-categorical heterogeneity indices without requisite a priori definition
of categorical state labels or a distance function. The present study proposes a solution to these
problems based on the measurement of heterogeneity on learned latent representations, rather than
on raw observable data. Our method, representational Rényi heterogeneity (RRH), involves learning
a mapping from the space of observable data to a latent space upon which an existing measure
(the Rényi heterogeneity [18], also known as the Hill numbers [19] or Hannah–Kay indices [20]) is
meaningful and tractable.

The paper is structured as follows. Section 2 introduces the original categorical formulation of
Rényi heterogeneity and various approaches by which it has been generalized for application on
non-categorical spaces [8,10,21]. Limitations of these indices are highlighted, thereby motivating Section
3, which introduces the theory of Representational Rényi Heterogeneity (RRH), which generalizes
the process for computing many indices of biodiversity and economic equality. Section 4 provides
an illustration of how RRH may be measured in various analytical contexts. We provide an exact
comparison of RRH to existing non-categorical heterogeneity indices under a tractable mixture of beta
distributions. To highlight the generalizability of our approach to complex latent variable models,
we also provide an evaluation of RRH applied to the latent representations of a handwritten image
dataset [22] learned by a variational autoencoder [23,24]. Finally, in Section 5 we provide a summary of
our findings and discuss avenues for future work.

2. Existing Heterogeneity Indices

2.1. Rényi Heterogeneity in Categorical Systems

There are many approaches to derive Rényi heterogeneity [18–20]. Here, we loosely follow
the presentation of Eliazar and Sokolov [25] by using the metaphor of repeated sampling from
a discrete system X with event space X = {1, 2, . . . , n} and probability distribution p = (pi)i=1,2,...,n.
The probability that q ∈ N>1 independent and identically distributed (i.i.d.) realizations of X,
sampled with replacement, will be identical is

PX
[
x1 = x2 = · · · = xq

]
=

n

∑
i=1

pq
i . (1)

Now let X∗ be an idealized reference system with a uniform probability distribution over n∗
categorical states, p∗ =

(
n−1
∗
)

i=1,2,...,n∗
, and let

(
x∗1, x∗2, . . . , x∗q

)
be a sample of q i.i.d. realizations of

X∗ such that
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PX
[
x1 = x2 = · · · = xq

]
= PX∗

[
x∗1 = x∗2 = · · · = x∗q

]
=

n∗

∑
i=1

n−q
∗ . (2)

We call X∗ an “idealized” categorical system because its probability distribution is uniform, and it
is a “reference” system for X in that the probability of drawing homogeneous samples of q observations
from both systems is identical. Substituting Equation (2) into Equation (1) and solving for n∗ yields the
Rényi heterogeneity of order q,

Πq (p) =

(
n

∑
i=1

pq
i

) 1
1−q

= n∗, (3)

whose units are the numbers equivalent of system X [1,26–28], insofar as n∗ is the number of states in
an “equivalent” (idealized reference) system X∗. Thus far, we have restricted the parameter q to take
integer values greater than 1 solely to facilitate this intuitive derivation in a concise fashion. However,
the elasticity parameter q in Equation (3) can be any real number (but q 6= 1), although in the context
of heterogeneity measurement only q ≥ 0 are used [1,25]. Despite Equation (3) being udefined at q = 1
directly, L’Hôpital’s rule can be used to show that the limit q→ 1 exists, wherein it corresponds to the
exponential of Shannon’s entropy [28,29], known as perplexity [30].

Equation (3) is the exponential of Rényi’s entropy [18], and is alternatively known as the
Hill numbers in ecology [1,19], Hannah–Kay indices in economics [20], and generalized inverse
participation ratio in physics [25]. Interestingly, it generalizes or can be transformed into several
heterogeneity indices that are commonly employed across scientific disciplines (Table 1).

Table 1. Relationships between Rényi heterogeneity and various diversity or inequality indices
for a system X with event space X = {1, 2, . . . , n} and probability distribution p = (pi)i=1,2,...,n.
The function 1[·] is an indicator function that evaluates to 1 if its argument is true or to 0 otherwise.

Index Expression

Observed richness [31] Π0 (p) = ∑n
i=1 1[pi > 0]

Perplexity [30] Π1 (p) = exp
{
−∑n

i=1 pi log pi
}

Inverse Simpson concentration [1] Π2 (p) =
(
∑n

i=1 p2
i
)−1

Berger-Parker Diversity Index [32,33] Π∞ (p) = (maxi pi)
−1

Rényi entropy [18] Rq (p) = log Πq (p)
Shannon entropy [29] H (p) = log Π1 (p)
Tsallis entropy [34] Tq (p) = 1

q−1

(
1−Πq (p)

1−q
)

Simpson concentration [35] Simpson(p) = (Π2 (p))
−1

Gini-Simpson index [36] GSI(p) = 1− Simpson(p)

Generalized entropy index [3,37] GEI (p) = 1
q(q−1)

[(
1
n Πq (p)

)1−q
− 1
]

2.1.1. Properties of the Rényi Heterogeneity

Equation (3) satisfies several properties that render it a preferable measure of heterogeneity.
These have been detailed elsewhere [1,20,25,28,33,38], but we focus on three properties that are of
particular relevance for the remainder of this paper.

First, Πq satisfies the principle of transfers [39,40] which states that any equality-increasing
transfer of probability between states must increase the heterogeneity. The maximal value of Πq is
attained if and only if pi = pj for all (i, j) ∈ {1, 2, . . . , n}. This property follows from Schur-concavity
of Equation (3) [20].

Second, Πq satisfies the replication principle [1,38,41], which is equivalent to stating that
Equation (3) scales linearly with the number of equally probable states in an idealized categorical
system [25]. More formally, consider a set of systems X1, X2, . . . , XN with probability distributions
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p1, p2, . . . , pN over respective discrete event spaces X1,X2, . . . ,XN . These systems are also assumed to
satisfy the following properties:

1. Event spaces are disjoint: Xi ∩ Xj = ∅ for all (i, j) ∈ {1, 2, . . . , N} where i 6= j
2. All systems have equal heterogeneity: Πq (p1) = Πq (p2) = · · · = Πq (pi) = · · · = Πq (pN)

The replication principle states that if we combine X1, X2, . . . , XN into a pooled system X with
probability distribution p̄, then

Πq (p̄) = NΠq (pi) (4)

must hold (see Appendix A for proof that Rényi heterogeneity satisfies the replication principle).
The replication principle suggests that Equation (3) satisfies a property known as decomposability,

in that the heterogeneity of a pooled system can be decomposed into that arising from variation within
and between component subsystems. However, we require that this property be satisfied when either
(A) subsystems’ event spaces are overlapping, or (B) subsystems do not have equal heterogeneity.
The decomposability property will be particularly important for Section 3, and so we detail it further
in Section 2.1.2.

2.1.2. Decomposition of Categorical Rényi Heterogeneity

Consider a system X defined by pooling subsystems X1, X2, . . . , XN with potentially overlapping
event spaces X1,X2, . . . ,XN , respectively. The event space of the pooled system is defined as

X = ∪N
i=1Xi = {1, 2, . . . , n} . (5)

Furthermore, we define the matrix P =
(

pij
)j=1,2,...,n

i=1,2,...,N whose ith row is the probability of system
Xi being observed in each state j ∈ {1, 2, . . . , n}.

It may be the case that some subsystems comprise a larger proportion of X than others.
For instance, if the probability distribution for subsystem Xi was estimated based on a larger sample
size than that of Xj, one may want to weight the contribution of Xi higher. Thus, we define a column
vector of weights w = (wi)i=1,2,...,N over the N subsystems such that ∑N

i=1 wi = 1 and wi ≥ 0 for all i.
The probability distribution over states in the pooled system X may thus be computed as p̄ = ∑N

i=1 wipi,
from which the definition of pooled heterogeneity follows:

ΠP
q (P, w) =

[
n

∑
j=1

(
N

∑
i=1

wi pij

)q] 1
1−q

. (6)

One can interpret ΠP
q (P, w) as the effective number of states in the pooled categorical system X.

Jost [28] showed that the within-group heterogeneity, which is the effective number of unique
states arising from individual component systems, can be defined as

ΠW
q (P, w) =

∑N
i=1 wq

i

(
∑n

j=1 pq
ij

)
∑N

k=1 wq
k


1

1−q

, (7)

For example, in the case where all subsystems have disjoint event spaces with heterogeneity equal
to constant ν, then they each contribute ν unique states to the pooled system X.

Deriving the between-group heterogeneity ΠB
q (P, w), is thus straightforward. If the effective

total number of states in the pooled system is ΠP
q (P, w), and the effective number of unique states

contributed by distinct subsystems is ΠW
q (P, w), then

ΠB
q (P, w) =

ΠP
q (P, w)

ΠW
q (P, w)

(8)
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is the effective number of completely distinct subsystems in the pooled system X. A word of caution is
warranted. If we require that within-group heterogeneity is a lower bound on pooled heterogeneity [42],
then (Jost [28], see Proofs 2 and 3) showed that Equation (8) will hold (A) at any value of q when
weights are equal (i.e., wi = 1/N for all i ∈ {1, 2, . . . , N}), or (B) only at q = 0 and q = 1 if weights
are unequal.

2.1.3. Limitations of Categorical Rényi Heterogeneity

The chief limitation of Rényi heterogeneity (Equation (3)) is its assumption that all states in
a system X (with event space X = {1, 2, . . . , n} and probability distribution p = (pi)i=1,2,...,n) are
categorical. More formally, the dissimilarity between a pair of observations (x, y) ∈ X from this system
is defined by the discrete metric

d∗(x, y) = 1− δxy, (9)

where δxy is Kronecker’s delta, which takes a value of 1 if x = y and 0 otherwise. Since the discrete
metric assumption is an idealization, we have continued to use the asterisk to qualify an arbitrary
distance function d(·, ·) as categorical in nature. The resulting expected pairwise distance matrix
between states in X is

D∗ = [d∗(i, j)]j=1,2,...,n
i=1,2,...,n = 1 1> − I, (10)

where 1 = (1)i=1,2,...,n is a column vector of ones, and I =
(
δij
)j=1,2,...,n

i=1,2,...,n is the n× n identity matrix.
Clearly, many systems of interest in the real world are not categorical. For example, although we

may label a sample of organisms according to their respective species, there may be differences between
these taxonomic classes that are relevant to the functioning of the ecosystem as a whole [5]. It is also
possible that no valid and reliable set of categorical labels is known a priori for a system whose event
space is naturally non-categorical.

2.2. Non-Categorical Heterogeneity Indices

Consider a system X with probability distribution p = (pi)i=1,2,...,n defined over event space X =

{1, 2, . . . , n} and equipped with dissimilarity function dX(·, ·). We assume that dX is more general than
the discrete metric (Equation (9)), and further still need not be a true (metric) distance. For such systems,
there are three heterogeneity indices whose units are numbers equivalent, and respect the replication
principle [6,8,10,11,21]. Much like our derivation of the Rényi heterogeneity in Section 2.1, these indices
quantify the heterogeneity of a non-categorical system as the number of states in an idealized reference
system, but differ primarily in how the idealized reference is defined. We begin with a discussion of
the Numbers-Equivalent Quadratic Entropy (Section 2.2.1), followed by the Functional Hill Numbers
(Section 2.2.2) and the Leinster–Cobbold index [10] (Section 2.2.3).

2.2.1. Numbers Equivalent Quadratic Entropy

Rao [43] introduced the diversity index commonly known as Rao’s quadratic entropy (RQE),

Q1 (D, p) =
n

∑
i=1

n

∑
j=1

Dij pi pj (11)

where D is an n× n matrix where Dij = dX(i, j) for states (i, j) ∈ X .
Ricotta and Szeidl [21] assume that Dij = 1 means that states i and j are maximally dissimilar

(i.e., categorically different), and that Dij = 0 means i = j, which occurs when X is a categorical
system. An arbitrary dissimilarity matrix D can be rescaled to respect this assumption by applying the
following transformation:

D̃ =
D−minij Dij

maxij Dij −minij Dij
. (12)
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Under this transformation, Ricotta and Szeidl [21] search for an idealized categorical reference
system X∗ with event space X∗ = {1, 2, . . . , n∗}, probability distribution p∗ =

(
n−1
∗
)

i=1,2,...,n∗
, and RQE

equal to that of X. For a column vector of ones, 1 = (1)i=1,2,...,n∗ , and the identity matrix I =(
δij
)j=1,2,...,n∗

i=1,2,...,n∗
, this is

Q1
(
D̃, p

)
= Q1

(
11> − I, p∗

)
. (13)

Expanding the right-hand side, we have

Q1
(
D̃, p

)
=

n∗

∑
i=1

n∗

∑
j=1

n−2
∗
(
1− δij

)
= 1− 1

n∗
. (14)

Recalling that Πq (p∗) = n∗ and substituting into Equation (14) yields

Πq (p∗) =
[
1−Q1

(
D̃, p

)]−1 , (15)

which establishes the units of
[
1−Q1

(
D̃, p

)]−1 as numbers equivalent.
For consistency, we require that Πq (p∗) = Πq (p) if D̃ were categorical. This only holds at q = 2:

[
1−Q1

(
D̃, p

)]−1
=

[
1−

n

∑
i=1

n

∑
j=1

pi pj
(
1− δij

)]−1

=

(
n

∑
i=1

p2
i

)−1

= Π2 (p∗) . (16)

Based on this result, Ricotta and Szeidl [21] define the numbers equivalent quadratic entropy
Q̂e as

Q̂e
(
D̃, p

)
=
(
1−Q1

(
D̃, p

))−1 . (17)

This can be interpreted as the inverse Simpson concentration of an idealized categorical reference
system whose average pairwise distance between states is equal to Q1

(
D̃, p

)
.

2.2.2. Functional Hill Numbers

Chiu and Chao [8] derived the Functional Hill Numbers, denoted Fq, based on a similar procedure
to that of Ricotta and Szeidl [21]. However, whereas Q̂e uses a purely categorical system as the
idealized reference, Fq requires only that

Q1 (D, p) =
n∗

∑
i=1

n∗

∑
j=1

Q1 (D, p) p∗i p∗j =
n∗

∑
i=1

n∗

∑
j=1

Q1 (D, p) n−2
∗ , (18)

which means that the idealized reference system is one for which the between-state distance matrix
is set to Q1 (D, p) everywhere (or to 0 along the leading diagonal and Q1 (D, p) n∗/(n∗ − 1) on the
off diagonals).

Chiu and Chao [8] generalized Rao’s quadratic entropy to include the elasticity parameter q ≥ 0

Qq (D, p) =
n

∑
i=1

n

∑
j=1

Dij
(

pi pj
)q , (19)

and sought to find n∗ for the idealized reference system satisfying Equation (18) and the following:

Qq (D, p) =
n∗

∑
i=1

n∗

∑
j=1

Q1 (D, p)
(

1
n∗

1
n∗

)q
. (20)

Solving Equation (20) for n∗ yields the functional Hill numbers of order q:

Fq (D, p) =
(

Qq (D, p)
Q1 (D, p)

) 1
2(1−q)

= n∗, (21)
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which is the effective number of states in an idealized categorical reference system whose distance
function is scaled by a factor of Q1 (D, p) n∗/(n∗ − 1).

2.2.3. Leinster–Cobbold Index

The index derived by Leinster and Cobbold [10], denoted Lq, is distinct from Q̂e and Fq in two
ways. First, for a given system X, the Lq is not derived based on finding an idealized reference
system X∗ whose average between-state dissimilarity is equal to that of X. Second, it does not use
a dissimilarity matrix; rather, it uses a measure of similarity or affinity.

The Leinster–Cobbold index may be derived by simple extension of Equation (3). Assuming X
has state space X = {1, 2, . . . , n} with probability distribution p = (pi)i=1,2,...,n, we note that

Πq (p) =

(
n

∑
i=1

pq
i

) 1
1−q

=

[
n

∑
i=1

pi (Ip)q−1
i

] 1
1−q

. (22)

Here, I is the n × n identity matrix representing the pairwise similarities between states in
X. The Leinster–Cobbold index generalizes I to be any n × n similarity matrix S, yielding the
following formula:

Lq (S, p) =

 n

∑
i=1

pi

(
n

∑
j=1

Sij pj

)q−1
 1

1−q

. (23)

The similarity matrix can be obtained from a dissimilarity matrix by the transformation Sij =

e−uDij , where u ≥ 0 is a scaling factor. When u = 0, then S is 1 everywhere. Conversely, when u→ ∞,
then S approaches I. The Leinster–Cobbold index can thus be interpreted as an effective number if
the states are in an idealized reference system (i.e., one with uniform probabilities over states) whose
topology is also governed by the similarity matrix S.

2.2.4. Limitations of Existing Non-Categorical Heterogeneity Indices

We illustrate several limitations of the Q̂e, Fq, and Lq indices using a simple 3-state system X with
event space X = {1, 2, 3} over which we specify a probability distribution

p(κ) =



(1, 0, 0)> κ = 0(
1
3 , 1

3 , 1
3

)>
κ = 1

(0, 0, 1)> κ = ∞(
1

1+
√

κ+κ
,
√

κ
1+
√

κ+κ
, κ

1+
√

κ+κ

)>
Otherwise

(24)

where 0 ≤ κ is a parameter that smoothly varies the level of inequality. When κ = 1 the distribution
is perfectly even (Figure 1A). Since an undirected graph of the system is arranged in a triangle with
height h and base b, we also specify the following parametric distance matrix,

D(h, b) =


0 b

√
b2

4 + h2

b 0
√

b2

4 + h2√
b2

4 + h2
√

b2

4 + h2 0

 , (25)

which allows us to smoothly vary the level of dissimilarity between states in X. Importantly,
Equation (25) allows us to generate distance matrices that are either metric (when h < b

√
3/2;

Definition 1) or ultrametric (when h ≥ b
√

3/2; Definition 2). This is illustrated in Figure 1B.
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1 2

3
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p( = 1)

1 2

3
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p( = 10)

D12 = b = 1
D

23 =
b 24 +

h 2

D 13
=D 23

h = 0.6

Metric
h < b 3/2

D12 = b = 1

D
23 =

b
24

+
h

2

D 1
3

=
D 2

3

h = 2

Ultrametric
h b 3/2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Height (h)

1.0

1.5

2.0

2.5

3.0

3.5

In
de

x 
Va

lu
e

 Metric  Ultrametric 
(C) Comparison of Indices

Even ( = 1)
Skewed ( = 10)

Qe

F1
L1

0 5 10 15 20
Similarity Matrix Scale (u)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

L 1

(D) Effect of u Parameter on L1

Even ( = 1)
Skewed ( = 10)
Very Skewed ( = 100)

(A) Probability Distribution over States (B) Metric vs. Ultrametric Distances

Figure 1. Illustration of simple three-state system under which we compare existing non-categorical
heterogeneity indices. Panel A depicts a three state system X as an undirected graph, with node
sizes corresponding to state probabilities governed by Equation (24). As 0 ≤ κ diverges further from
κ = 1, the probability distribution over states becomes more unequal. Panel B visually represents
the parametric pairwise distance matrix D(h, b) of Equation (25) (h is height, b is base length, Dij is
distance between states i and j). In the examples shown in Panels B and C, we set b = 1. Specifically,
we provide visual illustration of settings for which the distance function on X is a metric (Definition 1;
when h < b

√
3/2) or ultrametric (Definition 2; when h ≥ b

√
3/2). Panel C compares the numbers

equivalent quadratic entropy (solid lines marked Q̂e; Section 2.2.1), functional Hill numbers (at q = 1,
dashed lines marked F1; Section 2.2.2), and the Leinster–Cobbold Index (at q = 1, dotted lines marked
L1; Section 2.2.3) for reporting the heterogeneity of X. The y-axis reports the value of respective indices.
The x-axis plots the height parameter for the distance matrix D(h, 1) (Equation (25) and Panel B).
The range of h at which D(h, 1) is only a metric is depicted by the gray shaded background. The range
of h shown with a white background is that for which D(h, 1) is ultrametric. For each index, we plot
values for a probability distribution over states that is perfectly even (κ = 1; dotted markers) or skewed
(κ = 10; vertical line markers). Panel D shows the sensitivity of the Leinster–Cobbold index (L1; y-axis)
to the scaling parameter 0 ≤ u (x-axis) used to transform a distance matrix into a similarity matrix
(Sij = e−uDij ). This is shown for three levels of skewness for the probability distribution over states
(no skewness at κ = 1, dotted markers; significant skewness at κ = 10, vertical line markers; extreme
skewness at κ = 100, square markers).

Definition 1 (Metric distance). A function d : X ×X → R≥0 on a set X is a metric if and only if all of the
following conditions are satisfied for all (x, y, z) ∈ X :

1. Non-negativity: d(x, y) ≥ 0
2. Identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y
3. Symmetry: d(x, y) = d(y, x)
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4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Definition 2 (Ultrametric distance). A function d : X ×X → R≥0 on a set X is ultrametric if and only
if, for all (x, y, z) ∈ X , criteria 1-3 for a metric are satisfied (Definition 1), in addition to the ultrametric
triangle inequality:

d(x, z) ≤ max {d(x, y), d(y, z)} (26)

Figure 1C compares the Q̂e, Fq, and Lq indices when applied to X across variation in between-state
distances (via Equation (25)) and skewness in the probability distribution over states (Equation (24)).
With respect to the numbers equivalent quadratic entropy (Q̂e; Section 2.2.1), we note that its behavior
is categorically different with respect to whether the distance matrix is ultrametric. That is Q̂e increases
with the triangle height parameter h (Equation (25)) until it passes the ultrametric threshold, after which
it decreases monotonically with h. The behavior of Q̂e is sensible in the ultrametric range. When the
distance matrix is scaled, as in Equation (12), pulling one of the three states in X further away from the
remaining two should function similarly to progressively merging the latter states. Thus, the behavior
of Q̂e is highly sensitive to whether a given distance matrix is ultrametric (which will often not be the
case in real-world applications).

With respect to Fq, a notable benefit in comparison to Q̂e is that Fq behaves consistently regardless
of whether distance is ultrametric. However, Figure 1 shows other drawbacks. First, we can see that
Fq becomes insensitive to D(h, 1) when p(κ) is perfectly even (shown analytically in Appendix A).
Second, Fq can paradoxically estimate a greater number of states than the theoretical maximum allows.
That this occurs when the state probability distribution is more unequal violates the principle of
transfers [20,33,39,40] (Section 2.1.1). This is made more problematic since Figure 1C shows it occurs
when one state is being pushed closer to the others (i.e., with smaller values of h). To summarize,
the functional Hill numbers are estimating more states than are really present despite the reduction in
between-state distances and greater inequality in the probability mass function.

Figure 1C shows that the Leinster-Cobbold index compares favorably to Fq because the former
does not lose sensitivity to dissimilarity when p(κ) is perfectly even. However, Figure 1D shows
that the Leinster-Cobbold index is particularly sensitive to the form of similarity transformation.
In the present case, the maximal value of the Lq gradually approaches 3 as u grows (and only when
u→ ∞ does it reach 3), while progressively losing sensitivity to distance. As mentioned by Leinster
and Cobbold [10], the choice of u or other similarity transformation is dependent on the importance
assigned to functional differences between states. However, it is not clear how a given similarity
transformation (e.g., u), and therefore the idealized reference system of Lq, should be validated.

Above all of the idiosyncratic limitations of existing numbers equivalent heterogeneity indices,
we must highlight two basic assumptions they all share. First, they continue to assume that some valid
and reliable categorical partitioning on X is known a priori. Second, they assume that a distance function
specified a priori describes semantically relevant geometry of the system in question. These two limitations
are not independent, since an unreliable categorical partitioning of the state space will lead to erroneous
estimates of the pairwise distances between states. Thus, we seek an approach for measuring heterogeneity
that has neither these limitations, nor those shown above to be specific to the other numbers equivalent
heterogeneity indices for non-categorical systems.

3. Representational Rényi Heterogeneity

In this section, we propose an alternative approach to the indices of Section 2.2 that we call
representational Rényi heterogeneity (RRH). It involves transforming X into a representation Z,
defined on an unobservable or latent event space Z , that satisfies two criteria:

1. The representation Z captures the semantically relevant variation in X
2. Rényi heterogeneity can be directly computed on Z
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Satisfaction of the first criterion can only be ascertained in a domain-specific fashion. Since Z
is essentially a model of X, investigators must justify that this model is appropriate for the scientific
question at hand. For example, an investigator may evaluate the ability of X to be reconstructed from
representation Z under cross-validation. The second criterion simply means that the transformation
of X → Z must specify a probability distribution on Z upon which the Rényi heterogeneity can be
directly computed.

Figure 2 illustrates the basic idea of RRH. However, the specifics of this framework differ
based on the topology of the representation Z. Thus, the remainder of this section discusses the
following approaches:

A. Application of standard Rényi heterogeneity (Section 2.1) when Z is a categorical representation
B. Deriving parametric forms for Rényi heterogeneity when Z is a non-categorical representation

 (Observable)  (Latent)

xi
x j

z0

z1

p(z|x)

(A) Categorical Latent Space

 (Observable)  (Latent)

xi

zi

x j

z j

p(z|x)

(B) Non-Categorical Latent Space

Figure 2. Graphical illustration of the two main approaches for computing representational Rényi
heterogeneity. In both cases, we map sampled points on an observable space X onto a latent space
Z , upon which we apply the Rényi heterogeneity measure. The mapping is illustrated by the curved
arrows, and should yield a posterior distribution over the latent space. Panel A shows the case in
which the latent space is categorical (for example, discrete components of a mixture distribution on
a continuous space). Panel B illustrates the case in which the latent space has non-categorical topology.
A special case of the latter mapping may include probabilistic principal components analysis. When the
latent space is continuous, we must derive a parametric form for the Rényi heterogeneity.

3.1. Rényi Heterogeneity on Categorical Representations

Let X be a system defined on an observable space X that is non-categorical and nx-dimensional.
Consider the scenario in which the semantically relevant variation in X is categorical: for instance,
images of different object categories stored in raw form as real-valued vectors. An investigator may be
interested in measuring the effective number of states in X with respect to this categorical variation.
This requires transforming X into a semantically relevant categorical representation Z upon which
Equation (3) can be applied.

Assume we have a large random sample of N points X = (xi)i=1,2,...,N from system X. We can
conceptualize each discrete observation xi in this sample as the single point in the event space of
a perfectly homogeneous subsystem Xi. When pooled, the subsystems {Xi}i=1,2,...,N constitute X.
The contribution weights of each subsystem to X as a whole are denoted w = (wi)i=1,2,...,N , where

∑N
i=1 wi = 1 and wi ≥ 0.

We now specify a vector-valued function f : X → P(Z) such that x 7→ f(x) =
[

f j(x)
]

j=1,2,...,nz
is

a mapping from nx-dimensional coordinates on the observable space, x ∈ X , onto an nz-dimensional
discrete probability distribution over Z = {1, 2, . . . , nz}. Thus, f(xi) can be conceptualized as mapping
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subsystem Xi onto its categorical representation Zi. After defining f, the effective number of states in
the latent representation of Xi can be computed as

Πq (xi) =

(
nz

∑
j=1

f q
j (xi)

) 1
1−q

. (27)

When Πq (xi) = 1, then f assigns x to a single category with perfect certainty. Conversely,
when Πq (xi) = nz, then either xi belongs to all categorical states with equal probability, or f is
maximally uncertain about the mapping of point xi.

Mapping all points X onto the categorical latent space yields a collection of subsystems
{Zi}i=1,2,...,N , which generate Z when pooled. Using Equation (6), we can compute the effective
number of total states in Z as the pooled heterogeneity:

ΠP
q (X, w) =

[
nz

∑
j=1

(
N

∑
i=1

wi f j(xi)

)q] 1
1−q

, (28)

Unfortunately, ΠP
q (X, w) counts some heterogeneity that is due to uncertainty in the model (i.e.,

that quantified by Equation (27)). We, therefore, compute the effective number of states in Z per point
x ∈ X using the within-group heterogeneity formula (Equation (7)):

ΠW
q (X, w) =

∑N
i=1 wq

i

(
∑nz

j=1 f q
j (xi)

)
∑N

k=1 wq
k


1

1−q

. (29)

Finally, the effective number of states (points) in X—with respect to the categorical variation
modeled by Z—can then be computed using the between-group heterogeneity formula (Equation (8)):

ΠB
q (X, w) =

ΠP
q (X, w)

ΠW
q (X, w)

. (30)

Example 1 demonstrates that current methods of measuring biodiversity and wealth concentration
can be viewed as special cases of categorical RRH.

Example 1 (Classical measurement of biodiversity and economic equality as categorical RRH).
Definitions necessary for this example are shown in Table 2. The traditional analysis of species diversity
and economic equality can be recovered from an RRH-based formulation when f is assumed to be deterministic
and w =

(
N−1)

i=1,2,...,N . In this case within-group heterogeneity can be shown to reduce to 1:

ΠW
q (X, w) =

[
N

∑
i=1

N−q

∑N
k=1 N−q

(
nz

∑
j=1

f q
j (xi)

)] 1
1−q

=

[
N

∑
i=1

N−1 (1)

] 1
1−q

= 1.

(31)

Thus, we have
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ΠB
q (X, w) = ΠP

q (X, w)

=

[
nz

∑
j=1

(
N

∑
i=1

N−1 f j(xi)

)q] 1
1−q

=

[
nz

∑
j=1

(Nj

N

)q
] 1

1−q

,

(32)

which yields the categorical Rényi heterogeneity (Hill numbers for biodiversity analysis and Hannah–Kay indices
in the economic setting [19,20]), and by extension many diversity indices to which it is connected (Table 1).
Thus, traditional analysis of species biodiversity and economic equality are special cases of representational Rényi
heterogeneity where the representation is specified by a mapping onto degenerate distributions over categorical
labels. The only differences lie in the definition of observable and latent spaces, and the representational models.

In the case of biodiversity analysis, the model f in real-world practice may simply be a human expert
assigning species labels to a sample of organisms from a field study. In the economic setting, one may speculate
that f would essentially reduce to contracts specifying ownership of assets, whose value is deemed by market forces.

Table 2. Definitions in formulation of classical biodiversity and economic equality analysis as
categorical representational Rényi heterogeneity. Superscripted indexing on x = (xi)

i=1,...,nx denotes
that this is a row vector.

Analytical Context
Symbol Biodiversity Economic Equality

X Ecosystem, whose observation
yields an organism denoted by
vector x = (xi)

i=1,...,nx ∈ X

A system of resources,
whose observation yields
an asset denoted by vector
x = (xi)

i=1,...,nx ∈ X

X ⊆ Rnx nx-dimensional feature space of
organisms in the ecosystem

nx-dimensional feature space
of assets in the economy,
whose topology is such that
the “economic” or monetary
value is equal at each coordinate
x ∈ X

Z =
{

z ∈ {0, 1}nz : ∑nz
i=1 zi = 1

}
nz-dimensional space of one-hot
species labels

nz-dimensional space of one-hot
labels over wealth-owning agents

f : X → P(Z) A model that performs the
mapping x 7→ f(x) of organisms to
discrete probability distributions
over Z

A model that performs the
mapping x 7→ f(x) of assets to
discrete probability distributions
over Z

Ni ∈ N+ The number of organisms
observed belonging to species
i ∈ {1, . . . , nz}

The number of equal valued assets
belonging to agent i ∈ {1, . . . , nz}

N = ∑nz
i=1 Ni The total number of organisms

observed
The total quantity of assets
observed

X =
(

xij

)j=1,...,nx

i=1,...,N
A sample of N organisms A sample of N assets

w = (wi)i=1,...,N Sample weights, such that wi ≥ 0 and ∑N
i=1 wi = 1
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3.2. Rényi Heterogeneity on Non-Categorical Representations

In Section 3.1, we dealt with instances in which semantically relevant variation in X is categorical,
such as when object categories are embedded in images stored as real-valued vectors. Here, we consider
scenarios in which the semantically relevant information in an observable system X is non-categorical:
for instance, where a piece of text contains information about semantic concepts best represented
as real-valued “word vectors” [44,45]. Measuring the effective number of distinct states in X with
respect to this continuous variation requires transforming X into a semantically relevant continuous
representation Z upon which procedures analogous to those of Section 3.1 may be undertaken.

Let Z be defined on an nz-dimensional event space Z ⊆ Rnz over which there exists a family
of parametric probability distributions P(Z) of a form chosen by the experimenter. Let f : X →
P(Z) be a model that performs the mapping x 7→ f (·|x) from a point x ∈ X on the observable
space to a probability density on Z . For example, if P(Z) is the family of multivariate Gaussians,
then f (z|xi) = N (z|µi, Σi), where µi and Σi are the Gaussian mean and covariance functions at xi,
respectively. Given a sample X = (xi)i=1,2,...,N , as in Section 3.1, we compute the continuous analogue
of Equation (27) as follows

Πq (xi) =

(∫
Z

f q(z|xi) dz
) 1

1−q
. (33)

This formula yields the effective size of the domain of a uniform distribution on Rnz whose Rényi
heterogeneity is equal to Πq (xi) (proof is given in Appendix A). Thus, it is possible for Πq (xi) to be
less than 1, though it will remain non-negative.

Similar to the procedure in Section 3.1, we now define a continuous version of the
within-observation heterogeneity

ΠW
q (X, w) =

[
N

∑
i=1

wq
i

∑N
j=1 wq

j

∫
Z

f q(z|xi) dz

] 1
1−q

, (34)

which estimates the effective size of the latent space occupied per observable point x ∈ X .
In order to compute the pooled heterogeneity ΠP

q (X, w), the experimenter must specify the form
of the pooled distribution, here denoted f̄w. The conceptually most simple approach is non-parametric,
using a model average,

f̄w (z|X) =
N

∑
i=1

wi f (z|xi), (35)

whereby the pooled heterogeneity would be

ΠP
q (X, w) =

[∫
Z

(
N

∑
i=1

wi f (z|xi)

)q

dz

] 1
1−q

. (36)

The integral in Equation (36) may often be analytically intractable and potentially difficult to
solve accurately in high dimensions with numerical methods. Furthermore, some areas of Z may be
assigned low probability by f (z|xi) for all i ∈ {1, 2, . . . , N}. This is not a problem as the sample X
becomes infinitely large. However, with finite samples, it may be the case that some representational
states in Z are unlikely simply because we have not sampled from the corresponding regions of X .
An alternative to Equation (35) is therefore to specify a parametric pooled distribution

f̄w (·|X) = Ξ f (X, w) , (37)
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where Ξ f is a deterministic function that combines f (·|xi) for i ∈ {1, 2, . . . , N} into a valid probability
density on Z . In this case, the pooled Rényi heterogeneity is simply

ΠP
q (X, w) =

(∫
Z

f̄ q
w(z|X) dz

) 1
1−q

. (38)

Using either Equation (36) or (38) as the pooled heterogeneity and Equation (34) as the
within-group heterogeneity, the effective number of distinct states in X—with respect to the
non-categorical representation Z—can then be computed using Equation (30).

Figure 3 demonstrates the difference between the parametric and non-parametric approaches to
pooling for non-categorical RRH, and Example 2 demonstrates one approach to parametric pooling for
a mixture of multivariate Gaussians.

5 0 5
z

0.0

0.1

0.2

pd
f

fw(z|X) =
N

i = 1
wif(z|xi)

fw(z|X) = f(X, w)
f(z|x1)
f(z|x2)

Figure 3. Illustration of approaches to computing the pooled distribution on a simple representational
space Z = R. In this example, two points on the observable space, (x1, x2) ∈ X , are mapped onto
the latent space via model f (·|xi) for i ∈ {1, 2}, which indexes univariate Gaussians over Z (depicted
as hatched patterns for x1 and x2, respectively). A pooled distribution computed non-parametrically
by model-averaging (Equation (35)) is depicted as the solid black line. The parametrically pooled
distribution (see Example 2) is depicted as the dashed black line. The parametric approach implies the
assumption that further samples from X would yield latent space projections in some regions assigned
low probability by f (z|x1) and f (z|x2).

Example 2 (Parametric pooling of multivariate Gaussian distributions). Let X = (xi)i=1,2,...,N be a sample
of nx-dimensional vectors from a system X with event space X ⊆ Rnx . Let Z be a latent representation of X
with nz-dimensional event space Z = Rnz . Let

f (z|xi) = N (z|µi, Σi) (39)

be a model that returns a multivariate Gaussian density with mean µi and covariance Σi given point xi ∈ X .
Finally, let w = (wi)i=1,2,...,N be weights assigned to each sample in X such that wi ≥ 0 and ∑N

i=1 wi = 1.
If one assumes that the pooled distribution over Z given the set of components

f (z|x1), f (z|x2), . . . , f (z|xN) is itself a multivariate Gaussian,

f̄w (z|X) = N (z|µ∗, Σ∗) (40)

with nz × 1 pooled mean,

µ∗ =
N

∑
i=1

wiµi (41)

and nz × nz pooled covariance matrix
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Σ∗ = −µ∗µ
>
∗ +

N

∑
i=1

wi

[
Σi + µiµ

>
i

]
, (42)

then the pooled heterogeneity ΠP
q is therefore simply the Rényi heterogeneity of a multivariate Gaussian,

Πq (Σ) =


Undefined q = 0
(2πe)

nz
2
√
|Σ| q = 1

(2π)
nz
2
√
|Σ| q = ∞

(2π)
nz
2 q

nz
2(q−1)

√
|Σ| Otherwise

(43)

evaluated at Σ∗. The derivation is provided in Appendix A [46]. Equation (43) at Σ∗ is interpreted as the
effective size of space Z occupied by the complete latent representation of X under model f .

The within-group heterogeneity can be obtained for the set of components [ f (z|xi)]i=1,2,...,N by solving
Equation (34) for the Gaussian densities, yielding:

ΠW
q (Σ1:N , w) =



Undefined q = 0

exp
{

1
2

(
nz + ∑N

i=1 wi log |2πΣi|
)}

q = 1

0 q = ∞

(2π)
nz
2

(
∑N

i=1
w̄q

i |Σi |
1
2

q
nz
2

) 1
1−q

Otherwise

, (44)

where we denote Σ1:N = {Σi}i=1,2,...,N for parsimony, and w̄i = wi

(
∑N

j=1 wq
j

)−1/q
. Equation (44) estimates

the effective size of the nz-dimensional representational space occupied per state x ∈ X .
The effective number of states in X with respect to the continuous representation Z is thus the between-group

heterogeneity ΠB
q which can be computed as the ratio Πq (Σ∗) /ΠW

q (Σ1:N , w). The properties of this
decomposition—specifically the conditions under which ΠB

q ≥ 1 (Lande’s requirement [28,42])—are discussed
further elsewhere [46].

4. Empirical Applications of Representational Rényi Heterogeneity

In this section, we demonstrate two applications of RRH under assumptions of categorical
(Section 4.1) and continuous (Section 4.2) latent spaces. First, Section 4.1, uses a simple closed-form
system consisting of a mixture of two beta distributions on the (0,1) interval to give exact comparisons
of the behavior of RRH against that of existing non-categorical heterogeneity indices (Section 2.2).
This experiment provides evidence that existing non-categorical heterogeneity indices can demonstrate
counterintuitive behavior under various circumstances. Second, Section 4.2 demonstrates that RRH can
yield heterogeneity measurements that are sensible and tractably computed, even for highly complex
mappings f : X → P(Z). There, we use a deep neural network to compute the effective number of
observations in a database of handwritten images with respect to compressed latent representations
on a continuous space.

4.1. Comparison of Heterogeneity Indices Under a Mixture of Beta Distributions

Consider a system X with event space X on the open interval (0, 1), containing an embedded,
unobservable, categorical structure represented by the latent system Z with event space Z = {1, 2}.
The systems’ collective behavior is governed by the joint distribution of a beta mixture model (BMM),

p(x, z) = 1[z = 1](1− θ1)Betaθ2,θ3 (x) + 1[z = 2]θ1Betaθ3,θ2 (x) , (45)
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where Betaα,β (x) is the probability density function for a beta distribution with shape parameters α, β,
and θ = (θ1, θ2, θ3) are parameters. The indicator function 1[·] evaluates to 1 if its argument is true,
and to 0 otherwise. The prior distribution is

p(z) = 1[z = 1](1− θ1) + 1[z = 2]θ1, (46)

and marginal probability of observable data is as follows (see Figure 4 for illustrations):

p(x) = (1− θ1)Betaθ2,θ3 (x) + θ1Betaθ3,θ2 (x) . (47)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

pd
f

1 = 0.5, 2 = 2, 3 = 8

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

1 = 0.1, 2 = 2, 3 = 8
p(x)
( )

p(x|z = 1)
p(x|z = 2)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3
1 = 0.5, 2 = 8, 3 = 8

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

1.0

1.2

1.4

1.6

1.8

2.0

B q
(

)

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

1.0

1.2

1.4

1.6

1.8

2.0 q = 1
q = 2
q = inf
( )

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

1.0

1.2

1.4

1.6

1.8

2.0

Figure 4. Demonstration of data-generating distribution (top row; Equations (45)–(47)), and relationship
between the representational model’s decision threshold (Equations (48) and (50)) and categorical
representational Rényi heterogeneity (bottom row). The optimal decision boundary (Equation (50)) is
shown as a gray vertical dashed line in all plots. Each column depicts a specific parameterization of
the data-generating system (parameters are stated above the top row). Top Row: Probability density
functions for data-generating distributions. Shaded regions correspond to the two mixture components.
Solid black lines denote the marginal distribution (Equation (47)). The x-axis represents the observable
domain, which is the (0,1) interval. Bottom Row: Effect of varying categorical representational
Rényi heterogeneity (RRH) for q ∈ {1, 2, ∞} across different category assignment thresholds for the
beta-mixture models shown in the top row. Varying levels of decision boundary are plotted on the x-axis.
The y-axis shows the resulting between-observation RRH. Black dots highlight the RRH computed at
the optimal decision boundary.

To facilitate exact comparisons between heterogeneity indices, below, let us assume we have
a model f : X → P(Z) that maps an observation x ∈ X onto a degenerate distribution over Z :

fθ(z|x) = 1[z = 1]1[x ≤ τ(θ)] + 1[z = 2]1[x > τ(θ)]. (48)

The subscripting of fθ denotes that the model is optimized such that the threshold 0 ≤ τ(θ) ≤ 1
is the solution to

p (z = 1|x = τ(θ)) = p (z = 2|x = τ(θ)) , (49)
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which is

τ(θ) =



[(
θ−1

1 − 1
) 1

2(θ2−θ3) (1− θ1)
1

2(θ2−θ3) θ
− 1

2(θ2−θ3)
1 + 1

]−1

θ2 − θ3 6= 0

0
(
(θ2 = θ3) ∧ (θ1 > 1

2 )
)

1 Otherwise

(50)

Under this model, the categorical RRH at point x ∈ X is

Πq (x) =

(
2

∑
i=1

f q
θ (z = i|x)

) 1
1−q

= (1q [x ≤ τ(θ)] + 1
q [x > τ(θ)])

1
1−q = 1. (51)

The expected value of fθ(z = 2|x) with respect to the data generating distribution
(Equation (47)) is

f̄θ(z = 2) = Ex∼p(x) [ fθ(z = 2|x)]

=
∫ 1

0
p(x)1 [x > τ(θ)] dx

=
∫ 1

τ(θ)
p(x) dx

= (1− θ1)I1
x (θ2, θ3) + θ1 I1

x (θ3, θ2) ,

(52)

where Ix1
x0 (a, b) is the generalized regularized incomplete beta function (BetaRegularized[x0, x1, a, b]

command in the Wolfram language and betainc(a, b, x0, x1,regularized=True) in Python’s mpmath
package). Equation (52) implies that f̄θ(z = 1) = 1− f̄θ(z = 2). The pooled heterogeneity is thus
expressed as a function of θ as follows:

ΠP
q (θ) =



∑2
i=1 1[ f̄θ(z = i) > 0] q = 0

exp
{
−∑2

i=1 f̄θ(z = i) log f̄θ(z = i)
}

q = 1(
maxi f̄θ(z = i)

)−1 q = ∞(
∑2

i=1 f̄ q
θ(z = i)

) 1
1−q Otherwise

. (53)

As a function of θ, the within-group heterogeneity is

ΠW
q (θ) =

[∫ 1

0

pq(x)∫ 1
0 pq(u) du

(
2

∑
i=1

fθ(z = i|x)
)q

dx

] 1
1−q

=

[∫ 1

0

pq(x)∫ 1
0 pq(u) du

(1) dx

] 1
1−q

= 1,

(54)

and therefore the between-group heterogeneity is ΠB
q (θ) = ΠP

q (θ).
Analytic expressions for the existing non-categorical heterogeneity indices Q̂e (Equation (17)),

Fq (Equation (21)), and Lq (Equation (23)) were computed as “best-case” scenarios, as follows.
First, the probability distributions over states for all expressions was the true prior distribution
(Equation (46)). Distance matrices—and by extension, the similarity matrix for Lq—were computed
using the closed-form expectation of the absolute distance between two beta-distributed random
variables (see Appendix B and the Supplementary Materials).



Entropy 2020, 22, 417 18 of 30

Figure 5 compares the categorical RRH against Q̂e, Fq, and Lq for BMM distributions of
varying degrees of separation, and across different mixture component weights (0.5 ≤ θ1 < 1).
Without significant loss of generality, we show only those comparisons at q = 1 (which excludes the
numbers equivalent quadratic entropy), and q = 2.

The most salient differences between these indices occur when the BMM mixture components
completely overlap (i.e., at θ2 = θ3). The RRH correctly identifies that there is effectively only one
component, regardless of mixture weights. Only the Leinster–Cobbold index showed invariance to the
mixture weights when θ2 = θ3, but it could not correctly identify that data were effectively unimodal.

The other stark difference arose when the mixture components were furthest apart (here when
θ2 = 5 and θ3 = 20). At this setting, the functional Hill numbers showed a paradoxical increase in the
heterogeneity estimate as the prior distribution on components was skewed. The Leinster–Cobbold
index was appropriately concave throughout the range of prior weights, but it never reached a value
of 2 at its peak (as expected based on the predictions outlined in Section 2.2.3). Conversely, the RRH
was always concave and reached a peak of 2 when both mixture components were equally probable.
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Figure 5. Comparison of categorical representational Rényi heterogeneity (Πq), the functional Hill
numbers (Fq), the numbers equivalent quadratic entropy (Q̂e), and the Leinster–Cobbold index (Lq)
within the beta mixture model. Each row of plots corresponds to a given separation between the
beta mixture components. Column 1 illustrates the beta mixture distributions upon which indices
were compared. The x-axis plots the domain of the distribution (open interval between 0 and 1).
The y-axis shows the corresponding probability density. Different line styles in Column 1 provides
visual examples of the effect of changing the θ1 parameter over the range [0.5,1]. Column 2 compares
Πq (solid line), Fq (dashed line), and Lq (dotted line), each at elasticity q = 1. The x-axis shows the
value of the 0.5 ≤ θ1 < 1 parameter at which the indices were compared. Index values are plotted
along the y-axis. Column 3 compares the indices shown in Column 2, as well as Q̂e (dot-dashed line).
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4.2. Representational Rényi Heterogeneity is Scalable to Deep Learning Models

In this example, the observable system X is that of images of handwritten digits defined on
an event space X = [0, 1]784 of dimension nx = 784 (the black and white images are flattened
from 28× 28 pixel matrices into 784-dimensional vectors). Our sample X =

(
xij
)j=1,2,...,784

i=1,2,...,N from this
space is the familiar MNIST training dataset [22] (Figure 6), which consists of N = 60, 000 images
roughly evenly distributed across digits {0, 1, . . . , 9}, and where approximately 10% of all images
come from each class. We assume each image carries equal importance, given by a weight vector
w =

(
N−1)

i=1,2,...,N . We are interested in measuring the heterogeneity of X with respect to a continuous
latent representation Z defined on event space Z = R2. In the present example, this space is simply the
continuous 2-dimensional compression of an image that best facilitates its reconstruction. We choose
a dimensionality of nz = 2 for the latent space in order to facilitate a pedagogically useful visualization
of the latent feature representation, below. Unlike Section 4.1, in the present case we have no explicit
representation of the true marginal distribution over the data, p(x).

Figure 6. Sample images from the MNIST dataset [22].

Having defined the observable and latent spaces, measuring RRH now requires defining a model
f : X → P(Z) that maps a (flattened) image vector xi ∈ X onto a probability distribution over the
latent space. Our chosen model is the encoder module of a pre-trained convolutional variational
autoencoder (cVAE) provided by the (https://colab.research.google.com/github/smartgeometry-ucl/
dl4g/blob/master/variational_autoencoder.ipynb, Smart Geometry Processing Group at University
College London) (Figure 7) [23,24]:

https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_autoencoder.ipynb
https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_autoencoder.ipynb
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Data: Xi∈
nx

Encoder:(zi|CNN(Xi))

Latent Representation

zi∈
nz

Decoder: CNN(zi)

Reconstruction: X i∈
nx

(a) Schematic of the model architecture. (b) Visualization of the two-dimensional latent space.
Figure 7. Panel A: Illustration of the convolutional variational autoencoder (cVAE) [23].
The computational graph is depicted from top to bottom. An nx-dimensional input data Xi (white
rectangle) is passed through an encoder (in our experiment this is a convolutional neural network,
CNN) which parameterizes an nz-dimensional multivariate Gaussian over the coordinates zi for the
image’s embedding on the latent space Z = Rnz . The latent embedding can then be passed through
a decoder (blue rectangle) which is a neural network employing transposed convolutions (here denoted
CNN>) to yield a reconstruction X̂i of the original input data. The objective function for this network
is a variational lower bound on the model evidence of the input data (see Kingma and Welling [23]
for details). Panel B: Depiction of the latent space learned by the cVAE. This model was a pre-trained
model from the (https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/
variational_autoencoder.ipynb, Smart Geometry Processing Group at University College London).

fφ(z|xi) = N (z|m(xi), C(xi)) (55)

where φ are the encoder’s parameters, which specify a convolutional neural network (CNN)
whose output layer returns a 2 × 1 mean vector m(xi) and a 2 × 1 log-variance vector s(xi)

given xi. For simplicity, we denote the latter as the 2 × 2 diagonal covariance matrix C(xi) =(
esj(xi)δjk

)k=1,2

j=1,2
. Further details of the cVAE and its training can be found in Kingma and

Welling [23,24], although the specific implementation in this paper was a pre-trained implementation by
the (https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_
autoencoder.ipynb, Smart Geometry Processing Group at University College London). Briefly, the cVAE
learns to generate a compressed latent representation (via encoder fφ, which is an approximate
posterior distribution) that contains enough information about the input xi to facilitate its reconstruction
by a “decoder” module. The objective function is a lower bound on the model evidence p(x), which if
maximized is equivalent to minimizing the Kullback–Leibler divergence between the approximate
and true (but unknown) posteriors fφ and p(z|x), respectively.

The continuous RRH under the model in Equation (55) for a single example xi ∈ X can be
computed by merely evaluating the Rényi heterogeneity of a multivariate Gaussian (Equation (43) in
Example 2) for the covariance matrix given by C(xi). This is interpreted as the effective area of the
2-dimensional latent space consumed by representation of xi.

Since the handwritten digit images belong to groups of “Zeros, Ones, Twos, . . . , Nines,”
this section will call the quantity ΠW

q the within-observation heterogeneity (rather than the
“within-group” heterogeneity) in order to avoid its interpretation as measuring the heterogeneity
of a group of digits. Rather, it is interpreted as the effective area of latent space consumed by
representation of a single observation x ∈ X on average. It is computed by evaluation of Equation (44)
at C(X) = {C(xi)}i=1,2,...,N , given uniform weights on samples.

https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_autoencoder.ipynb
https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_autoencoder.ipynb
https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_autoencoder.ipynb
https://colab.research.google.com/github/smartgeometry-ucl/dl4g/blob/master/variational_autoencoder.ipynb
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Finally, to compute the pooled heterogeneity ΠP
q , we use the parametric pooling approach detailed

in Example 2, wherein the pooled distribution is a multivariate Gaussian with mean and covariance
given by Equations (41) and (42), respectively. The pooled heterogeneity is then merely Equation (43)
evaluated at C∗(X), and represents the total amount of area in the latent space consumed by the
representation of X under fφ. The effective number of observations in X with respect to the continuous
latent representation Z is, therefore, given by the between-observation heterogeneity:

ΠB
q (C(X), w) =

ΠP
q (C∗(X))

ΠW
q (C(X), w)

. (56)

Equation (56) gives the effective number of observations in X because it uses the entire sample X
(of course, assuming X provides adequate coverage of the observable event space). However, one could
compute the effective number of observations in a subset of X, if necessary. Let X(j) = (xk)k=1,2,...,Nj

be
the subset of Nj points in X found in the observable subspace Xj ⊂ X (such as the subspace of MNIST

digits corresponding to a given digit class). Given corresponding weights w(j) =
(

N−1
j

)
k=1,2,...,Nj

,

Equation (56) is then simply

ΠB
q

(
C(X(j)), w(j)

)
=

ΠP
q

(
C∗(X(j))

)
ΠW

q
(
C(X), w(j)

) . (57)

Figure 8 shows the effective number of observations in the subsets of MNIST images belonging
to each image class, under the continuous representation learned by the cVAE. One can appreciate
that the MNIST class of “Ones” (in the training set) has the smallest effective number of observations.
Subjective visual inspection of the MNIST samples in Figure 6 may suggest that the Ones are indeed
relatively more homogeneous as a group than the other digits (this claim is given further objective
support in Appendix C based on deep similarity metric learning [47,48]).
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Figure 8. Heterogeneity for the subset of MNIST training data belonging to each digit class respectively
projected onto the latent space of the convolutional variational autoencoder (cVAE). The leftmost plot
shows the pooled heterogeneity for each digit class (the effective total area of latent space occupied by
encoding each digit class). The middle plot shows the within-observation heterogeneity (the effective
total area of latent space per encoded observation of each digit class, respectively). The rightmost
plot shows the between-observation heterogeneity (the effective number of observations per digit
class). Recall that Rényi heterogeneity on a continuous distribution gives the effective size of the
domain of an equally heterogeneous uniform distribution on the same space, which explains why the
within-observation heterogeneity values here are less than 1.

Figure 9 demonstrates the correspondence of between-observation heterogeneity (i.e., the effective
number of observations) and the visual diversity of different samples from the latent space of our
cVAE model. For each image in the MNIST training dataset, we computed the effective location
of its latent representation: m(xi) for i ∈ {1, 2, . . . , N}. For each of these image representations,
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we defined a “neighborhood” including the 49 other images whose latent coordinates were closest
in Euclidean distance (which is sensible on the latent space given the Gaussian prior). For all such
neighbourhoods defined, we then reconstructed the corresponding images on X , whose between-
observation heterogeneity was then computed using Equation (57). Figure 9b shows the estimated
effective number of observations for the latent neighborhoods with the greatest and least heterogeneity.
One can appreciate that neighborhoods with ΠB

q close to 1 include images with considerably less
diversity than neighborhoods with ΠB

q closer to the upper limit of 49. These data suggest that the
between-observation heterogeneity—which is the effective number of observations in X with respect to
the latent features learned by a cVAE—can indeed correspond to visually appreciable sample diversity.

(a) Illustration of analysis.

B
q = 44.39 B

q = 35.81 B
q = 33.69 B

q = 30.99

B
q = 1.33 B

q = 1.39 B
q = 1.51 B

q = 1.58

(b) Heterogeneity of patches in the latent space.
Figure 9. Visual illustration of MNIST image samples corresponding to different levels of
representational Rényi heterogeneity under the convolutional variational autoencoder (cVAE). Panel (a)
illustrates the approach to this analysis. Here, the surface Z shows hypothetical contours of
a probability distribution over the 2-dimensional latent feature space. The surface X represents
the observable space, upon which we have projected an “image” of the latent space Z for illustrative
purposes. We first compute the expected latent locations m(xi) for each image xi ∈ X . (A1) We then
define the latent neighbourhood of image xi as the 49 images whose latent locations are closest to
m(xi) in Euclidean distance. (A2) Each coordinate in the neighbourhood of m(xi) is then projected
onto a corresponding patch on the observable space of images. (A3) These images are then projected
as a group back onto the latent space, where Equation (57) can be applied, given equal weights over
images, to compute the effective number of observations in the neighbourhood of xi. Panel (b) plots
the most and least heterogeneous neighbourhoods so that we may compare the estimated effective
number of observations with the visually appreciable sample diversity.

5. Discussion

This paper introduced representational Rényi heterogeneity, a measurement approach that
satisfies the replication principle [1,38,41] and is decomposable [28] while requiring neither a priori
(A) categorical partitioning nor (B) specification of a distance function on the input space. Rather,
the experimenter is free to define a model that maps observable data onto a semantically relevant
domain upon which Rényi heterogeneity may be tractably computed, and where a distance function
need not be explicitly manipulated. These properties facilitate heterogeneity measurements for several
new applications. Compared to state-of-the-art comparator indices under a beta mixture distribution,
RRH more reliably quantified the number of unique mixture components (Section 4.1), and under
a deep generative model of image data, RRH was able to measure the effective number of distinct
images with respect to latent continuous representations (Section 4.2). In this section, we further
synthesize our conclusions, discuss their implications, and highlight open questions for future research.

The main problem we set out to address was that all state of the art numbers equivalent
heterogeneity measures (Section 2.2) require a priori specification of a distance function and categorical
partitioning on the observable space. To this end, we showed that RRH does not require categorical
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partitioning of the input space (Section 3). Although our analysis under the two-component BMM
assumed that the number of components was known, RRH was the only index able to accurately
identify an effectively singular cluster (i.e., where mixture components overlapped; Figure 5). We also
showed that the categorical RRH did not violate the principle of transfers [39,40] (i.e., it was strictly
concave with respect to mixture component weights), unlike the functional Hill numbers (Figure 5).
Future studies should extend this evaluation to mixtures of other distributional forms in order to better
characterize the generalizability of our conclusions.

Sections 3.1 and 3.2 both showed that RRH does not require specification of a distance function
on the observable space. Instead, one must specify a model that maps the observable space onto
a probability distribution over the latent representation. This is beneficial since input space distances
are often irrelevant or misleading. For example, latent representations of image data learned by
a convolutional neural network will be robust to translations of the inputs since convolution is
translation invariant. However, pairwise distances on the observable space will be exquisitely
sensitive to semantically irrelevant translations of input data. Furthermore, semantically relevant
information must often be learned from raw data using hierarchical abstraction. Ultimately, when (A)
pre-defined distance metrics are sensitive to noisy perturbations of the input space, or (B) the relevant
semantic content of some input data is best captured by a latent abstraction, the RRH measure will be
particularly useful.

The requirement of specifying a representational model f : X → P(Z) implies the additional
problem of model selection. In Section 3, we noted that the determination of whether a model is
appropriate must be made in a domain-specific fashion. For instance, the method by which ecologists
assign species labels prior to measurement of species diversity implies the use of a mapping from the
observable space of organisms to a degenerate distribution over species labels (Example 1). In Section 4.2,
we used the encoder module of a cVAE (a generative model based on a convolutional neural network
architecture [23,24]) to represent images as 2-dimensional real-valued vectors in order to demonstrate
our ability to capture variation in digits’ written forms (see Figures 7B and 9). Someone concerned
with measuring heterogeneity of image batches in terms of the digit-class distribution could choose
a categorical latent representation corresponding to the digit classes (this would return the effective
number of digit classes per sample). Regardless, the model used to map between observations and the
latent space should be validated using either explanatory power (e.g., maximization of a lower bound
on the model evidence), generalizability (e.g., out of sample predictive power), or another approach
that is justifiable within the investigator’s scientific domain of interest.

In addition to the results of empirical applications of RRH in Section 4, we were also able to
show that RRH generalizes the process by which species diversity and indices of economic equality
are computed (Example 1). In doing so, we are able to clarify some of the assumptions inherent
in those indices. Specifically, that assignment of species or ownership labels (in ecological and
economic settings, respectively) corresponds to mapping from an observable space, such as the space
of organisms’ identifiable features or the space of economic resources, onto a degenerate distribution
over the categorical labels (Table 2). It is possible that altering the form of that mapping may yield new
insights about ecological and economic diversity.

In conclusion, we have introduced an approach for measuring heterogeneity that requires neither
(A) categorical partitioning nor (B) distance measure on the observable space. Our RRH method enables
measurement of heterogeneity in disciplines where categorical entities are unreliably defined, or where
relevant semantic content of some data is best captured by a hierarchical abstraction. Furthermore, our
approach includes many existing heterogeneity indices as special cases, while facilitating clarification
of many of their assumptions. Future work should evaluate the RRH in practice and under a broader
array of models.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-
4300/22/4/417/s1, Supplementary materials include code for Sections 2–4 and Appendix B
(RRH_Supplement_3State_BMM_CVAE.ipynb), and Appendix C (RRH_Supplement_Siamese.ipynb).

http://www.mdpi.com/1099-4300/22/4/417/s1
http://www.mdpi.com/1099-4300/22/4/417/s1
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Appendix A. Mathematical Appendix

Proposition A1. Rényi heterogeneity (Equation (3)) obeys the replication principle.

Proof. The Rényi heterogeneity for a single distribution pi = (pij)j=1,2,...,ni , where ni ∈ N+ is the size
of the state space in system i, is

Πq(pi) =

(
ni

∑
j=1

pq
ij

) 1
1−q

(A1)

and for the aggregation of N subsystems is

Πq(p̄i) =

(
N

∑
i=1

ni

∑
j=1

( pij

N

)q
) 1

1−q

. (A2)

The replication principle asserts that

Πq(p̄) = NΠq(pi). (A3)

Let λi = ∑ni
j=1 pq

ij and recall that λi = λk for all (i, k) ∈ {1, 2, . . . , N}. Then,

(
N−q

N

∑
i=1

ni

∑
j=1

pq
ij

) 1
1−q

= N

(
ni

∑
j=1

pq
ij

) 1
1−q

(
N−q

N

∑
i=1

λi

) 1
1−q

= Nλ
1

1−q
i(

N1−qλi

) 1
1−q

= Nλ
1

1−q
i

Nλ
1

1−q
i = Nλ

1
1−q
i .

(A4)

Since limq→1 λ
1

1−q
i exists (it is the perplexity index), the result also holds at q = 1.

Proposition A2. For a system X with probability mass function represented by the vector p = (pi)i=1,2,...,n
on event space X = {1, 2, . . . , n}, with distance function dX : X ×X → R≥0 represented by the n× n matrix
D = [dX(i, j)]j=1,2,...,n

i=1,2,...,n , the functional Hill numbers family of indices

Fq (D, p) =
(

Qq (D, p)
Q1 (D, p)

) 1
2(1−q)

(A5)

is insensitive to dX(i, j) for all (i, j) ∈ X when p is uniform.

Proof. The proof is direct given substitution of p =
(
n−1)

i=1,2,...,n into Equation (A5).
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Fq (D, p) =
(

Qq (D, p)
Q1 (D, p)

) 1
2(1−q)

=

(
n−2q ∑n

i=1 ∑n
j=1 dX(i, j)

n−2 ∑n
i=1 ∑n

j=1 dX(i, j)

) 1
2(1−q)

= n (A6)

Proposition A3 (Rényi Heterogeneity of a Continuous System). The Rényi heterogeneity of a system X
with event space X ⊆ Rn and pdf f ∈ P(X ) is equal to the magnitude of the volume of an n-cube over which
there is a uniform probability density with the same Rényi heterogeneity as that given by f .

Proof. Let the basic integral of X be defined as
∫
X f q(x) dx. Furthermore, let X∗ be an idealized

reference system with a uniform probability density f∗ on X with lower bounds 0 = (0)i=1,...,n and
upper bounds u = (u∗)i=1,...,n where u∗ ≥ 0 is the side length of an n-cube. We assume that X∗ has
basic integral

∫
X f q
∗ (x) dx such that

∫
X

f q(x) dx =
∫
X

f q
∗ (x) dx

=
n

∏
i=1

u1−q
∗

= un(1−q)
∗ .

(A7)

Solving Equation (A7) for un
∗ gives the Rényi heterogeneity of order q. At q 6= 1,

un
∗ =

(∫
X

f q(x) dx
) 1

1−q
(A8)

and in the limit of q→ 1, Equation (A8) becomes the exponential of the Shannon (differential) entropy.
Thus, Πq is interpreted as the volume of an n-cube of side length u∗, over which there is a uniform
distribution giving the same heterogeneity as X.

Proposition A4 (Rényi heterogeneity of a multivariate Gaussian). The Rényi heterogeneity of an
n-dimensional multivariate Gaussian with probability density function (pdf)

f (x|µ, Σ) = (2π)−
n
2 |Σ|−

1
2 e−

1
2 (x−µ)>Σ−1(x−µ), (A9)

with mean µ = (µi)i=1,2,...,n and covariance matrix Σ =
(
Σij
)j=1,2,...,n

i=1,2,...,n is

Πq (Σ) =


Undefined q = 0
(2πe)

n
2
√
|Σ| q = 1

(2π)
n
2
√
|Σ| q = ∞

(2π)
n
2 q

n
2(q−1)

√
|Σ| Otherwise

. (A10)

Proof. Let Σ−1 = UΛU−1 be the eigendecomposition of the inverse covariance matrix into
an orthonormal matrix of eigenvectors U and n× n diagonal matrix Λ with eigenvalues (λi)i=1,2,...,n
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down the leading diagonal. Furthermore, let dxi
dyj

= Uij and use the substitution y = U−1 (x− µ) to
proceed as follows:

Πq (Σ) =

[
(2π)−

qn
2 |Σ|−

q
2

∫
e−

q
2 (x−µ)>Σ−1(x−µ) dx

] 1
1−q

=

(
(2π)−

qn
2 |Σ|−

q
2

∫
e−

q
2 y>Λy dy

) 1
1−q

=

(
(2π)−

qn
2 |Σ|−

q
2

(
(2π)n

qn ∏n
i=1 λi

) 1
2
) 1

1−q

=

(
(2π)−

qn
2 |Σ|−

q
2

(
(2π)n

qn |Λ|

) 1
2
) 1

1−q

= q
n

2(q−1) (2π)
n
2

√
|Σ|

(A11)

which holds only at q /∈ {0, 1, ∞}. At q = 1, we have

lim
q→1

log Πq (Σ) = lim
q→1

(
n

2(q− 1)
log q

)
+

n
2

log(2π) +
1
2

log |Σ|

=
n
2
+

n
2

log(2π) +
1
2

log |Σ| ,
(A12)

and therefore,

Π1 (Σ) = (2πe)
n
2

√
|Σ|. (A13)

One can then easily show that Π0(Σ) is undefined and that as q→ ∞,

Π∞ (Σ) = (2π)
n
2

√
|Σ|. (A14)

Appendix B. Expected Distance Between two Beta-Distributed Random Variables

To compute the numbers equivalent RQE Q̂e, the functional Hill numbers Fq, and the
Leinster-Cobbold index Lq under the beta mixture model, we must derive an analytical expression for
the distance matrix. This involves the following integral:

d(x, y) =
∫ 1

0

∫ 1

0
|x− y| f (x)g(y) dx dy, (A15)

where f (x) = Betaα1,β1(x) and g(y) = Betaα2,β2(y). By exploiting the identity

|x− y| = x + y− 2 min{x, y}, (A16)

and expanding, the integral is greatly simplified and gives the following closed-form solution:

d(x, y) = 〈x〉 − 〈y〉+ η (Φa − α1Φb) , (A17)

where

η =
2Γ(α1)Γ(β2)Γ(α1 + α2 + 1)

B(α1, β1)B(α2, β2)
, (A18)

and where 〈y〉 = α2
α2+β2

, 〈x〉 = α1
α1+β1

, and the Φ’s are regularized hypergeometric functions:
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Figure A1. Numerical verification of the analytical expression for the expected absolute distance
between two Beta-distributed random variables. Solid lines are the theoretical predictions.
Ribbons show the bounds between 25th–75th percentiles (the interquartile range, IQR) of the
simulated values.

Φa = 3 F̃2

[
α1, α1 + α2 + 1, 1− β1

α1 + 1, α1 + α2 + β2 + 1
, 1

]
(A19)

Φb = 3 F̃2

[
α1 + 1, α1 + α2 + 1, 1− β1

α1 + 2, α1 + α2 + β2 + 1
, 1

]
(A20)

Figure A1 provides numerical verification of this result. One simply uses Equation (A17) to
compute the analytic distance matrix

D(α1, β1, α2, β2) =

(
d(x, x) d(x, y)
d(y, x) d(y, y)

)
, (A21)

which, with the component probabilities (Equation (46)), can be used to compute Q̂e, Fq, and Lq using
the formulas shown in the main body.

Appendix C. Evidence Supporting Relative Homogeneity of MNIST “Ones”

In our evaluation of non-categorical RRH using the MNIST data, we asserted that the class
of handwritten Ones were relatively more homogeneous than other digits. Our initial statement
was based simply on visual inspection of samples from the dataset, wherein the Ones ostensibly
demonstrate fewer relevant feature variations than other classes. However, to test this hypothesis
more objectively, we conducted an empirical evaluation using similarity metric learning.

We implemented a deep neural network architecture known as a “siamese network” [47] to
learn a latent distance metric on the MNIST classes. Our siamese network architecture is depicted in
Figure A2a. Training is conducted by sampling batches of 10,000 image pairs from the MNIST test set,
where 5000 pairs are drawn from the same class (i.e., a pair of Fives or a pair of Threes), and 5000 pairs
are drawn from different classes (i.e., the pairs [2,3] or [1,7]). The siamese network is then optimized
using gradient-based methods over 100 epochs using the contrastive loss function [48] (Figure A2a).
This analysis may be reproduced in the Supplementary Materials.

After training, we sampled same-class pairs (n = 25,000) and different-class pairs (n = 25,000)
from the MNIST training set (which contains 60,000 images). Pairwise distances for each sample
were computed using the trained siamese network. If the “ones” are indeed the most homogeneous
class, they should demonstrate a generally smaller pairwise distance than other digit class pairs.
We evaluated this hypothesis by comparing empirical cumulative distribution functions (CDF) on
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the class-pair distances (Figure A2b). Our results show that the empirical CDF for “1–1” image pairs
dominate that of all other class pairs (where the distance between pairs of “ones” is lower).

Sample A: XA
(k) Sample B: XB

(k)

Shared

Weights
CNN CNN

Embedding A: zA Embedding B: zB

DAB = ||zA-zB||2

Contrastive Loss

ℒ = [yA=yB]DAB
2 + [yA≠yB](-DAB)+

2

(a)

2 4 6 8
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(b)
Figure A2. Depiction of the siamese network architecture and the empirical cumulative distribution
function for pairwise distances between digit classes. (a) Depiction of a siamese network architecture.

At iteration k, each of two samples, X(k)
A and X(k)

B , are passed through a convolutional neural network
to yield embeddings zA and zB, respectively. The class label for samples A and B are denoted yA and
yB, respectively. The L2-norm of these embeddings is computed as DAB. The network is optimized
on the contrastive loss [48] L. Here I[·] is an indicator function, (b) Empirical cumulative distribution
functions (CDF) for pairwise distances between images of the listed classes under the siamese network
model. The x-axis plots the L2-norm between embedding vectors produced by the siamese network.
The y-axis shows the proportion of samples in the respective group (by line color) whose embedded L2
norms were less than the specified threshold on the x-axis. Class groups are denoted by different line
colors. For instance, “0-0” refers to pairs where each image is a “zero.” We combine all disjoint class
pairs, for example “0–8” or “3–4,” into a single empirical CDF denoted as “A 6=B.”
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