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Abstract: We compute exact values respectively bounds of dissimilarity/distinguishability measures–in
the sense of the Kullback-Leibler information distance (relative entropy) and some transforms of more
general power divergences and Renyi divergences–between two competing discrete-time Galton-Watson
branching processes with immigration GWI for which the offspring as well as the immigration (importation)
is arbitrarily Poisson-distributed; especially, we allow for arbitrary type of extinction-concerning
criticality and thus for non-stationarity. We apply this to optimal decision making in the context
of the spread of potentially pandemic infectious diseases (such as e.g., the current COVID-19 pandemic),
e.g., covering different levels of dangerousness and different kinds of intervention/mitigation strategies.
Asymptotic distinguishability behaviour and diffusion limits are investigated, too.
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1. Introduction

(This paper is a thoroughly revised, extended and retitled version of the preprint arXiv:1005.3758v1
of both authors) Over the past twenty years, density-based divergences D(P, Q) –also known as
(dis)similarity measures, directed distances, disparities, distinguishability measures, proximity
measures–between probability distributions P and Q, have turned out to be of substantial importance
for decisive statistical tasks such as parameter estimation, testing for goodness-of-fit, Bayesian
decision procedures, change-point detection, clustering, as well as for other research fields such
as information theory, artificial intelligence, machine learning, signal processing (including image
and speech processing), pattern recognition, econometrics, and statistical physics. For some
comprehensive overviews on the divergence approach to statistics and probability, the reader is
referred to the insightful books of e.g., Liese & Vajda [1], Read & Cressie [2], Vajda [3], Csiszár &
Shields [4], Stummer [5], Pardo [6], Liese & Miescke [7], Basu et al. [8], Voinov et al. [9], the survey
articles of e.g., Liese & Vajda [10], Vajda & van der Meulen [11], the structure-building papers of
Stummer & Vajda [12], Kißlinger & Stummer [13] and Broniatowski & Stummer [14], and the references
therein. Divergence-based bounds of minimal mean decision risks (e.g., Bayes risks in finance) can be
found e.g., in Stummer & Vajda [15] and Stummer & Lao [16].

Amongst the above-mentioned dissimilarity measures, an important omnipresent subclass are
the so-called f−divergences of Csiszar [17], Ali & Silvey [18] and Morimoto [19]; important special
cases thereof are the total variation distance and the very frequently used λ−order power divergences
Iλ(P, Q) (also known as alpha-entropies, Cressie-Read measures, Tsallis cross-entropies) with λ ∈ R.
The latter cover e.g., the very prominent Kullback-Leibler information divergence I1(P, Q) (also
called relative entropy), the (squared) Hellinger distance I1/2(P, Q), as well as the Pearson chi-square
divergence I2(P, Q). It is well known that the power divergences can be build with the help of the
λ−order Hellinger integrals Hλ(P, Q) (where e.g., the case λ = 1/2 corresponds to the well-known
Bhattacharyya coefficient), which are information measures of interest by their own and which are also
the crucial ingredients of λ−order Renyi divergences Rλ(P, Q) (see e.g., Liese & Vajda [1], van Erven &
Harremoes [20]); the case R1/2(P, Q) corresponds to the well-known Bhattacharyya distance.

The above-mentioned information/dissimilarity measures have been also investigated in
non-static, time-dynamic frameworks such as for various different contexts of stochastic processes
like processes with independent increments (see e.g., Newman [21], Liese [22], Memin & Shiryaev [23],
Jacod & Shiryaev [24], Liese & Vajda [1], Linkov & Shevlyakov [25]), Poisson point processes (see e.g.,
Liese [26], Jacod & Shiryaev [24], Liese & Vajda [1]), diffusion prcoesses and solutions of stochastic differential
equations with continuous paths (see e.g., Kabanov et al. [27], Liese [28], Jacod & Shiryaev [24], Liese &
Vajda [1], Vajda [29], Stummer [30–32], Stummer & Vajda [15]), and generalized binomial processes (see e.g.,
Stummer & Lao [16]); further related literature can be found e.g., in references of the aforementioned
papers and books.
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Another important class of time-dynamic models is given by discrete-time integer-valued branching
processes, in particular (Bienaymé-)Galton-Watson processes without immigration GW respectively with
immigration (resp. importation, invasion) GWI, which have numerous applications in biotechnology,
population genetics, internet traffic research, clinical trials, asset price modelling, derivative pricing,
and many others. As far as important terminology is concerned, we abbreviatingly subsume both
models as GW(I) and, simply as GWI in case that GW appears as a parameter-special-case of GWI;
recall that a GW(I) is called subcritical respectively critical respectively supercritical if its offspring mean
is less than 1 respectively equal to 1 respectively larger than 1.

For applications of GW(I) in epidemiology, see e.g., the works of Bartoszynski [33], Ludwig [34],
Becker [35,36], Metz [37], Heyde [38], von Bahr & Martin-Löf [39], Ball [40], Jacob [41], Barbour &
Reinert [42], Section 1.2 of Britton & Pardoux [43]); for more details see Section 2.3 below.

For connections of GW(I) to time series of counts including GLM models, see e.g., Dion, Gauthier &
Latour [44], Grunwald et al. [45], Kedem & Fokianos [46], Held, Höhle & Hofmann [47], and Weiß [48];
a more comprehensive discussion can be found in Section 2.2 below.

As far as the combined study of information measures and GW processes is concerned, let us
first mention that (transforms of) power divergences have been used for supercritical Galton-Watson
processes without immigration for instance as follows: Feigin & Passy [49] study the problem to find
an offspring distribution which is closest (in terms of relative entropy type distance) to the original
offspring distribution and under which ultimate extinction is certain. Furthermore, Mordecki [50] gives
an equivalent characterization for the stable convergence of the corresponding log-likelihood process
to a mixed Gaussian limit, in terms of conditions on Hellinger integrals of the involved offspring
laws. Moreover, Sriram & Vidyashankar [51] study the properties of offspring-distribution-parameters
which minimize the squared Hellinger distance between the model offspring distribution and the
corresponding non-parametric maximum likelihood estimator of Guttorp [52]. For the setup of GWI
with Poisson offspring and nonstochastic immigration of constant value 1, Linkov & Lunyova [53]
investigate the asymptotics of Hellinger integrals in order to deduce large deviation assertions in
hypotheses testing problems.

In contrast to the above-mentioned contexts, this paper pursues the following main goals:

(MG1) for any time horizon and any criticality scenario (allowing for non-stationarities), to compute
lower and upper bounds–and sometimes even exact values–of the Hellinger integrals
Hλ (PA||PH), power divergences Iλ (PA||PH) and Renyi divergences Rλ (PA||PH) of two
alternative Galton-Watson branching processes PA and PH (on path/scenario space), where (i)
PA has Poisson(βA) distributed offspring as well as Poisson(αA) distributed immigration, and
(ii) PH has Poisson(βH) distributed offspring as well as Poisson(αH) distributed immigration;
the non-immigration cases are covered as αA = αH = 0; as a side effect, we also aim for
corresponding asymptotic distinguishability results;

(MG2) to compute the corresponding limit quantities for the context in which (a proper rescaling
of) the two alternative Galton-Watson processes with immigration converge to Feller-type
branching diffusion processes, as the time-lags between the generation-size observations tend
to zero;

(MG3) as an exemplary field of application, to indicate how to use the results of (MG1) for Bayesian
decision making in the epidemiological context of an infectious-disease pandemic (e.g.,
the current COVID-19), where e.g., potential state-budgetary losses can be controlled by
alternative public policies (such as e.g., different degrees of lockdown) for mitigations
of the time-evolution of the number of infectious persons (being quantified by a GW(I)).
Corresponding Neyman-Pearson testing will be treated, too.

Because of the involved Poisson distributions, these goals can be tackled with a high degree
of tractability, which is worked out in detail with the following structure (see also the full table of
contents after this paragraph): in Section 2, we first introduce (i) the basic ingredients of Galton-Watson
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processes together with their interpretations in the above-mentioned pandemic setup where it is
essential to study all types of criticality (being connected with levels of reproduction numbers), (ii) the
employed fundamental information measures such as Hellinger integrals, power divergences and
Renyi divergences, (iii) the underlying decision-making framework, as well as (iv) connections to
time series of counts and asymptotical distinguishability. Thereafter, we start our detailed technical
analyses by giving recursive exact values respectively recursive bounds–as well as their applications–of
Hellinger integrals Hλ (PA||PH) (see Section 3), power divergences Iλ (PA||PH) and Renyi divergences
Rλ (PA||PH) (see Sections 4 and 5). Explicit closed-form bounds of Hellinger integrals Hλ (PA||PH) will
be worked out in Section 6, whereas Section 7 deals with Hellinger integrals and power divergences of
the above-mentioned Galton-Watson type diffusion approximations.

2. The Framework and Application Setups

2.1. Process Setup

We investigate dissimilarity measures and apply them to decisions, in the following context.
Let the integer-valued random variable Xn (n ∈ N0) denote the size of the nth generation of a
population (of persons, organisms, spreading news, other kind of objects, etc.) with specified
characteristics, and suppose that for the modelling of the time-evolution n 7→ Xn we have the choice
between the following two (e.g., alternative, competing) models (H) and (A):

(H) a discrete-time homogeneous Galton-Watson process with immigration GWI, given by the
recursive description

X0 ∈ N; N0 3 Xn =
Xn−1

∑
k=1

Yn−1,k + Ỹn, n ∈ N, (1)

where Yn−1,k is the number of offspring of the kth object (e.g., organism, person) within the (n− 1)th
generation, and Ỹn denotes the number of immigrating objects in the nth generation. Notice that
we employ an arbitrary deterministic (i.e., degenerate random) initial generation size X0. We always
assume that under the corresponding dynamics-governing law PH

(GWI1) the collection Y :=
{

Yn−1,k, n ∈ N, k ∈ N
}

consists of independent and identically distributed
(i.i.d.) random variables which are Poisson distributed with parameter βH > 0,

(GWI2) the collection Ỹ :=
{

Ỹn, n ∈ N
}

consists of i.i.d. random variables which are Poisson
distributed with parameter αH ≥ 0 (where αH = 0 stands for the degenerate case of having
no immigration),

(GWI3) Y and Ỹ are independent.

(A) a discrete-time homogeneous Galton-Watson process with immigration GWI given by the same
recursive description (1), but with different dynamics-governing law PA under which (GWI1) holds
with parameter βA > 0 (instead of βH > 0), (GWI2) holds with αA ≥ 0 (instead of αH ≥ 0), and (GWI3)
holds. As a side remark, in some contexts the two models (H) and (A) may function as a “sandwich”
of a more complicated not fully known model.

Basic and advanced facts on general GWI (introduced by Heathcote [54]) can be found e.g., in
the monographs of Athreya & Ney [55], Jagers [56], Asmussen & Hering [57], Haccou [58]; see also
e.g., Heyde & Seneta [59], Basawa & Rao [60], Basawa & Scott [61], Sankaranarayanan [62], Wei &
Winnicki [63], Winnicki [64], Guttorp [52] as well as Yanev [65] (and also the references therein all those)
for adjacent fundamental statistical issues including the involved technical and conceptual challenges.

For the sake of brevity, wherever we introduce or discuss corresponding quantities simultaneously
for both models H and A, we will use the subscript • as a synonym for either the symbol H or A.
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For illustration, recall the well-known fact that the corresponding conditional probabilities
P•(Xn = · |Xn−1 = k) are again Poisson-distributed, with parameter β• · k + α•.

In oder to achieve a transparently representable structure of our results, we subsume the involved
parameters as follows:

(PS1) PSP is the set of all constellations (βA, βH, αA, αH) of real-valued parameters βA > 0, βH > 0,
αA > 0, αH > 0, such that βA 6= βH or αA 6= αH (or both); in other words, both models are
non-identical and have non-vanishing immigration;

(PS2) PNI is the set of all (βA, βH, αA, αH) of real-valued parameters βA > 0, βH > 0, αA = αH = 0,
such that βA 6= βH; this corresponds to the important special case that both models have no
immigration and are non-identical;

(PS3) the resulting disjoint union will be denoted by P = PSP ∪ PNI.

Notice that for (unbridgeable) technical reasons, we do not allow for “crossovers” between
“immigration and no-immigration” (i.e., αA = 0 and αH 6= 0, respectively, αA 6= 0 and αH = 0).
For practice, this is not a strong restriction, since one may take e.g., αA = 10−12 and αH = 1.

For the non-immigration case α• = 0 one has the following extinction properties (see e.g., Harris [66],
Athreya & Ney [55]). As usual, let us define the extinction time τ := min

{
i ∈ N : X` = 0 for all integers

` ≥ i
}

if this minimum exists, and τ := ∞ else. Correspondingly, let B := {τ < ∞} be the extinction
set. If the offspring mean β• satisfies β• < 1—which is called the subcritical case– or β• = 1—which is
known as the critical case–then extinction is certain, i.e., there holds P(B | X0 = 1) = 1. However, if the
offspring mean satisfies β• > 1—which is called the supercritical case–then there is a probability greater
than zero, that the population never dies out, i.e., P(B | X0 = 1) ∈]0, 1[. In the latter case, Xn explodes
(a.s.) to infinity as n→ ∞.

In contrast, for the (nondegenerate, nonvanishing) immigration case α• 6= 0 there is no extinction,
viz. P(B | X0 = 1) = 0, although there may be zero population X`0 = 0 for some intermediate time
`0 ∈ N; but due to the immigration, with probability one there is always a later time `1 > `0, such that
X`1 > 0. Nevertheless, also for the setup α• 6= 0 it is important to know whether β• T 1—which is
still called (super-, sub-)criticality–since e.g., in the case β• < 1 the population size Xn converges
(as n → ∞) to a stationary distribution on N whereas for β• > 1 the behaviour is non-stationary
(non-ergodic), see e.g., Athreya & Ney [55].

At this point, let us emphasize that in our investigations (both for α• = 0 and for α• 6= 0) we do
allow for “crossovers” between “different criticalities”, i.e., we deal with all cases βA T 1 versus all

cases βH T 1; as will be explained in the following, this unifying flexibility is especially important for
corresponding epidemiological-model comparisons (e.g., for the sake of decision making).

One of our main goals is to quantitatively compare (the time-evolution of) two competing GWI
modelsH and A with respective parameter sets (βH, αH) and (βA, αA), in terms of the information
measures Hλ (PA||PH) (Hellinger intergrals), Iλ (PA||PH) (power divergences), Rλ (PA||PH) (Renyi
divergences). The latter two express a distance (degree of dissimilarity) betweenH and A. From this,
we shall particularly derive applications for decision making under uncertainty (including tests).

2.2. Connections to Time Series of Counts

It is well known that a Galton-Watson process with Poisson offspring (with parameter β•) and
Poisson immigration (with parameter α•) is “distributionally” equal to each of the following models
(listed in “tree-type” chronological order):

(M1) a Poissonian Generalized Integer-valued Autoregressive process GINAR(1) in the sense of Gauthier
& Latour [67] (see also Dion, Gauthier & Latour [44], Latour [68], as well as Grunwald
et al. [45]), that is, a first-order autoregressive times series with Poissonian thinning (with
parameter β•) and Poissonian innovations (with parameter α•);
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(M2) Poissonian first order Conditional Linear Autoregressive model (Poissonian CLAR(1)) in the sense
of Grunwald et al. [45] (and earlier preprints thereof) (since the conditional expectation is
EP•[Xn|Fn−1] = α• + β• · Xn−1); this can be equally seen as Poissonian autoregressive
Generalized Linear Model GLM with identity link function (cf. [45] as well as Chapter 4 of
Kedem & Fokianos [46]), that is, an autoregressive GLM with Poisson distribution as random
component and the identity link as systematic component;
the same model was used (and generalized)

(M2i) under the name BIN(1) by Rydberg & Shephard [69] for the description of the number
Xn of stock transactions/trades recorded up to time n;

(M2ii) under the name Poisson autoregressive model PAR(1) by Brandt & Williams [70] for the
description of event counts in political and other social science applications;

(M2iii) under the name Autoregressive Conditional Poisson model ACP(1,0) by Heinen [71];
(M2iv) by Held, Höhle & Hofmann [47] as well as Held et al. [72], as a description of the

time-evolution of counts from infectious disease surveillance databases, where β•
(respectively, α•) is interpreted as driving parameter of epidemic (respectively,
endemic) component; in principle, this type of modelling can be also implicitly
recovered as a special case of the epidemics-treating work of Finkenstädt, Bjornstad
& Grenfell [73], by assuming trend- and season-neglecting (e.g., intra-year) measles
data in urban areas of about 10 million people (provided that their population size
approximation extends linearly);

(M2v) under the name integer-valued Generalized Autoregressive Conditional Heteroscedastic
model INGARCH(1,0) by Ferland, Latour & Oraichi [74] (since the conditional variance
is VarP•[Xn|Fn−1] = α• + β• · Xn−1), see also Weiß [75]; this has been refinely
named as INARCH(1) model by Weiß [76,77], and frequently applied thereafter;
for an “overlapping-generation type” interpretation of the INARCH(1) model, which
is an adequate description for the time-evolution of overdispersed counts with an
autoregressive serial dependence structure, see Weiß & Testik [78]; for a corresponding
comprehensive recent survey (also to more general count time series), the reader is
referred to the book of Weiß [48];

Moreover, according to the general considerations of Grunwald et al. [45], the Poissonian
Galton-Watson model with immigration may possibly be “distributionally equal” to an integer-valued
autoregressive model with random coefficient (thinning).

Nowadays, besides the name homogeneous Galton-Watson model with immigration GWI, the name
INARCH(1) seems to be the most used one, and we follow this terminology (with emphasis on GWI).
Typical features of the above-mentioned models (M1) to (M2v), are the use of Z as the set of times, and
the assumptions α• > 0 as well as β• ∈]0, 1[, which guarantee stationarity and ergodicity (see above). In
contrast, we employ N0 as the set of times, degenerate (and thus, non-equilibrium) starting distribution,
and arbitrary α• ≥ 0 as well as β• > 0. For such a situation, as explained above, we quantitatively
compare two competing GWI modelsH and A with respective parameter sets (βH, αH) and (βA, αA).
Since–as can be seen e.g., in (29) below—we basically employ only (conditionally) distributional
ingredients, such as the corresponding likelihood ratio (see e.g., (13) to (15), (27) to (29) below), all the
results of the Sections 3–6 can be immediately carried over to the above-mentioned time-series contexts (where
we even allow for non-stationarities, in fact we start with a one-point/Dirac distribution); for the sake
of brevity, in the rest of the paper this will not be mentioned explicitly anymore.

Notice that a Poissonian GWI as well as all models (M1) and (M2) are–despite of their conditional
Poisson law– typically overdispersed since

EP•[Xn] = α• + β• · EP•[Xn−1] ≤ α• + β• · EP•[Xn−1] + β2
• ·VarP•[Xn−1] = VarP•[Xn], n ∈ N\{1},
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with equality iff (i.e., if and only if) α• = 0 (NI) and Xn−2 = 0 (extinction at n− 2 with n ≥ 3).

2.3. Applicability to Epidemiology

The above-mentioned framework can be used for any of the numerous fields of applications of
discrete-time branching processes, and of the closely related INARCH(1) models. For the sake of
brevity, we explain this—as a kind of running-example—in detail for the currently highly important
context of the epidemiology of infectious diseases. For insightful non-mathematical introductions to
the latter, see e.g., Kaslow & Evans [79], Osterholm & Hedberg [80]; for a first entry as well as overviews
on modelling, the reader is referred to e.g., Grassly & Fraser [81], Keeling & Rohani [82], Yan [83,84],
Britton [85], Diekmann, Heesterbeek & Britton [86], Cummings & Lessler [87], Just et al. [88], Britton
& Giardina [89], Britton & Pardoux [43]. A survey on the particular role of branching processes in
epidemiology can be found e.g., in Jacob [41].

Undoubtedly, by nature, the spreading of an infectious disease through a (human, animal,
plant) population is a branching process with possible immigration. Indeed, typically one has the
following mechanism:

(D1) at some time tE
k –called the time of exposure (moment of infection)—an individual k of a

specified population is infected in a wide sense, i.e., entered/invaded/colonized by a number of
transmissible disease-causative pathogens (etiologic agents such as viruses, bacteria, protozoans
and other parasites, subviruses (e.g., prions and plant viroids), etc.); the individual is then a host
(of pathogens);

(D2) depending on the level of immunity and some other factors, these pathogens may
multiply/replicate within the host to an extent (over a threshold number) such that at time
tI
k some of the pathogens start to leave their host (shedding of pathogens); in other words,

the individual k becomes infectious at the time tI
k of onset of infectiousness. Ex post, one can

then say that the individual became infected in the narrow sense at earlier time tE
k and call

it a primary case. The time interval [tE
k , tI

k[ is called the latent/latency/pre-infectious period of k,
and tI

k − tE
k its duration (in some literature, there is no verbal distinction between them); notice

that tI
k may differ from the time tOS

k of onset (first appearance) of symptoms, which leads to the
so-called incubation period [tE

k , tOS
k [; if tI

k < tOS
k then [tI

k, tOS
k [ is called the pre-symptomatic period;

(D3) as long as the individual k stays infectious, by shedding of pathogens it may infect in a narrow
sense a random number Yk ∈ N0 of other individuals which are susceptible (i.e., neither immune
nor already infected in a narrow sense), where the distribution of Yk depends on the individual’s
(natural, voluntary, forced) behaviour, its environment, as well as some other factors e.g.,
connected with the type of pathogen transmission; the newly infected individuals are called
offspring of k, and secondary cases if they are from the same specified population or exportations
if they are from a different population; from the view of the latter, these infections are imported
cases and thus can be viewed as immigrants;

(D4) at the time tR
k of cessation of infectiousness, the individual stops being infectious (e.g., because of

recovery, death, or total isolation); the time interval [tI
k, tR

k [ is called the period of infectiousness (also
period of communicability, infectious/infective/shedding/contagious period) of k, and tR

k − tI
k its duration

(in some literature, there is no verbal distinction between them); notice that tR
k may differ from

the time tCS
k of cessation (last appearance) of symptoms which leads to the so-called sickness period

[tOS
k , tCS

k [;
(D5) this branching mechanism continues within the specified population until there are no infectious

individuals and also no importations anymore (eradication, full extinction, total elimination)–
up to a specified final time (which may be large or even infinite);

All the above-mentioned times t·k and time intervals are random, by nature. Two further connected
quantities are also important for modelling (see e.g., Yan & Chowell [84] (p. 241ff), including a history
of corresponding terminology). Firstly, the generation interval (generation time, transmission interval)
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is the time interval from the onset of infectiousness in a primary case (called the infector) to the onset
of infectiousness in a secondary case (called the infectee) infected by the primary case; clearly, the
generation interval is random, and so is its duration (often, the (population-)mean of the latter is also
called generation interval). Typically, generation intervals are important ingredients of branching
process models of infectious diseases. Secondly, the serial interval describes time interval from the onset
of symptoms in a primary case to the onset of symptoms in a secondary case infected by the primary
case. By nature, the serial interval is random, and so is its duration (often, the (population-)mean
of the latter is also called serial interval). Typically, the serial interval is easier to observe than the
generation interval, and thus, the latter is often approximately estimated from data of the former.
For further investigations on generation and serial intervals, the reader is referred to e.g., Fine [90],
Svensson [91,92], Wallinga & Lipsitch [93], Forsberg White & Pagano [94], Nishiura [95], Scalia
Tomba et al. [96], Trichereau et al. [97], Vink, Bootsma & Wallinga [98], Champredon & Dushoff [99],
Just et al. [88], and–especially for the novel COVID-19 pandemics—An der Heiden & Hamouda [100],
Ferretti et al. [101], Ganyani et al. [102], Li et al. [103], Nishiura, Linton & Akhmetzhanov [104],
Park et al. [105].

With the help of the above-mentioned individual ingredients, one can aggregatedly build numerous
different population-wide models of infectious diseases in discrete time as well as in continuous time;
the latter are typically observed only in discrete-time steps (discrete-time sampling), and hence in
the following we concentrate on discrete-time modelling (of the real or the observational process).
In fact, we confine ourselves to the important task of modelling the evolution n 7→ Xn of the number
of incidences at “stage” n, where incidence refers to the number of new infected/infectious individuals.
Here, n may be a generation number where, inductively, n = 0 refers to the generation of the first
appearing primary cases in the population (also called initial importations), and n refers to the generation
of offsprings of all individuals of generation n− 1. Alternatively, n may be the index of a physical
(“calender”) point of time tn, which may be deterministic or random; e.g., (tn)n∈N may be a strictly
increasing series of (i) equidistant deterministic time points (and thus, one can identify tn = n in
appropriate time units such as days, weeks, bi-weeks, months), or (ii) non-equidistant deterministic
time points, or (iii) random time points (as a side remark, let us mention that in some situations, Xn

may alternatively denote the number of prevalences at “stage” n, where prevalence refers to the total
number of infected/infectious individuals (e.g., through some methodical tricks like “self-infection”)).

In the light of this, one can loosely define an epidemic as the rapid spread of an infectious disease
within a specified population, where the numbers Xn of incidences are high (or much higher than
expected) for that kind of population. A pandemic is a geographically large-scale (e.g., multicontinental
or worldwide) epidemic. An outbreak/onset of an epidemic in the narrow sense is the (time of) change
where an infectious disease turns into an epidemic, which is typically quantified by exceedance over
an threshold; analogously, an outbreak/onset of a pandemic is the (time of) change where the epidemic
turns into a pandemic. Of course, one goal of infectious-disease modelling is to quantify “early enough”
the potential danger of an emerging outbreak of an epidemic or a pandemic.

Returning to possible models of the incidence-evolution n 7→ Xn, its description
may be theoretically derived from more detailed, time-finer, highly sophisticated,
individual-based “mechanistic” infectious-disease models such as e.g., continuous-time
suscetible-exposed-infectious-recovered (SEIR) models (see the above-mentioned introductory
texts); however, as e.g., pointed out in Held et al. [72], the estimation of the correspondingly involved
numerous parameters may be too ambitious for routinely collected, non-detailed disease data, such as
e.g., daily/weekly counts Xn of incidences–especially in decisive emerging/early phases of a novel
disease (such as the current COVID-19 pandemic). Accordingly, in the following we assume that Xn

can be approximately described by a Poissonian Galton-Watson process with immigration respectively
a (“distributionally equal”) Poissonian autoregressive Generalized Linear Model in the sense of (M2).
Depending on the situation, this can be quite reasonable, for the following arguments (apart from
the usual “if the data say so”). Firstly, it is well known (see e.g., Bartoszynski [33], Ludwig [34],
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Becker [35,36], Metz [37], Heyde [38], von Bahr & Martin-Löf [39], Ball [40], Jacob [41], Barbour &
Reinert [42], Section 1.2 of Britton & Pardoux [43]) that in populations with a relatively high number
of susceptible individuals and a relatively low number of infectious individuals (e.g., in a large
population and in decisive emerging/early phases of the disease spreading), the incidence-evolution
n 7→ Xn can be well approximated by a (e.g., Poissonian) Galton-Watson process with possible
immigration where n plays the role of a generation number. If the above-mentioned generation interval
is “nearly” deterministic (leading to nearly synchronous, non-overlapping generations)—which is the
case e.g., for (phases of) Influenza A(H1N1)pdm09, Influenza A(H3N2), Rubella (cf. Vink, Bootsma
& Wallinga [98]), and COVID-19 (cf. Ferretti et al. [101])—and the length of the generation interval
is approximated by its mean length and the latter is tuned to be equal to the unit time between
consecutive observations, then n plays the role of an observation (surveillance) time. This effect is even
more realistic if the period of infectiousness is nearly deterministic and relatively short. Secondly,
as already mentioned above, the spreading of an infectious disease is intrinsically a (not necessarily
Poissonian Galton-Watson) branching mechanism, which may be blurred by other effects in a way
that a Poissonian autoregressive Generalized Linear Model is still a reasonably fitting model for the
observational process in disease surveillance. The latter have been used e.g., by Finkenstädt, Bjornstad
& Grenfell [73], Held, Höhle & Hofmann [47], and Held et al. [72]; they all use non-constant parameters
(e.g., to describe seasonal effects, which are however unknown in early phases of a novel infectious
disease such as COVID-19). In contrast, we employ different new–namely divergence-based–statistical
techniques, for which we assume constant parameters but also indicate procedures for the detection of
changes; the extension to non-constant parameters is straightforward.

Returning to Galton-Watson processes, let us mention as a side remark that they can be also used to
model the above-mentioned within-host replication dynamics (D2) (e.g., in the time-interval [tE

k , tI
k[ and

beyond) on a sub-cellular level, see e.g., Spouge [106], as well as Taneyhill, Dunn & Hatcher [107] for
parasitic pathogens; on the other hand, one can also employ Galton-Watson processes for quantifying
snowball-effect (avalanche-effect, cascade-effect) type, economic-crisis triggered consequences of
large epidemics and pandemics, such as e.g., the potential spread of transmissible (i) foreclosures
of homes (cf. Parnes [108]), or clearly also (ii) company insolvencies, downsizings and credit-risk
downgradings; moreover, the time-evolution of integer-valued indicators concerning the spread of
(rational or unwarranted) fears resp. perceived threats may be modelled, too.

Summing up things, we model the evolution n 7→ Xn of the number of incidences at stage n by a
Poissonian Galton Watson process with immigration GWI

X0 ∈ N; N0 3 Xn =
Xn−1

∑
k=1

Yn−1,k + Ỹn, n ∈ N, cf. (1), (GWI1)–(GWI3) with law P•,

(where Yn−1,k corresponds to the Yk of (D3), equipped with an additional stage-index n − 1),
respectively by a corresponding “distributionally equal”–possibly non-stationary– Poissonian
autoregressive Generalized Linear Model in the sense of (M2); depending on the situation, we may
also fix a (deterministic or random) upper time horizon other than infinity. Recall that both models are
overdispersed, which is consistent with the current debate on overdispersion in connection with the
current COVID-19 pandemic. In infectious-disease language, the sum ∑

Xn−1
k=1 Yn−1,k can also be loosely

interpreted as epidemic component (in a narrow sense) driven by the parameter β•, and Ỹn as endemic
component driven by the parameter α•. In fact, the offspring mean (here, β•) is called reproduction number
and plays a major role–also e.g., in the current public debate about the COVID-19 pandemic–because
it crucially determines the rapidity of the spread of the disease and—as already indicated above in
the second and third paragraph after (PS3)–also the probability that the epidemic/pandemic becomes
(maybe temporally) extinct or at least stationary at a low level (that is, endemic). For this to happen, β•
should be subcritical, i.e., β• < 1, and even better, close to zero. Of course, the size of the importation
mean α• ≥ 0 matters, too, in a secondary order.
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Keeping this in mind, let us discuss on which factors the reproduction number β• and the
importation mean α• depend upon, and how they can be influenced/controlled. To begin with, by
recalling the above-mentioned points (D1) to (D5) and by adapting the considerations of e.g., Grassly
& Fraser [81] to our model, one encounters the fact that the distribution of the offspring Yn−1,k—here
driven by the reproduction number (offspring mean) β•—depends on the following factors:

(B1) the degree of infectiousness of the individual k, with three major components:

(B1a) degree of biological infectiousness; this reflects the within-host dynamics (D2) of the
“representative” individual k, in particular the duration and amount of the corresponding
replication and shedding/excretion of the infectious pathogens; this degree depends thus
on (i) the number of host-invading pathogens (called the initial infectious dose), (ii) the type
of the pathogen with respect to e.g., its principal capabilities of replication speed, range of
spread and drug-sensitivity, (iii) features of the immune system of the host k including
the level of innate or acquired immunity, and (iv) the interaction between the genetic
determinants of disease progression in both the pathogen and the host;

(B1b) degree of behavioural infectiousness; this depends on the contact patterns of an
infected/infectious individual (and, if relevant, the contact patterns of intermediate
hosts or vectors), in relation to the disease-specific type of route(s) of transmission of
the infectious pathogens (for an overview of the latter, see e.g., Table 3 of Kaslow &
Evans [79]); a long-distance-travel behaviour may also lead to the disease exportation to
another, outside population (and thus, for the latter to a disease importation);

(B1c) degree of environmental infectiousness; this depends on the location and environment of
the host k, which influences the duration of outside-host survival of the pathogens (and,
if relevant, of the intermediate hosts or vectors) as well as the speed and range of their
outside-host spread; for instance, high temperature may kill the pathogens, high airflow
or rainfall dynamics may ease their spread, etc.

(B2) the degree of susceptibility of uninfected individuals who have contact with k, with the following
three major components (with similar background as their infectiousness counterparts):

(B2a) degree of biological susceptibility;
(B2b) degree of behavioural susceptibility;
(B2c) degree of environmental susceptibility.

All these factors (B1a) to (B2c) can be principally influenced/controlled to a
certain–respective–extent. Let us briefly discuss this for human infectious diseases, where one
major goal of epidemic risk management is to operate countermeasures/interventions in order to
slow down the disease transmission (e.g., by reducing the reproduction number β• to less than 1)
and eventually even break the chain of transmission, for the sake of containment or mitigation;
preparedness and preparation are motives, too, for instance as a part of governmental pandemic
risk management.

For instance, (B1a) can be reduced or even erased through pharmaceutical interventions such as
medication (if available), and preventive strengthening of the immune system through non-extreme
sports activities and healthy food.

Moreover, the following exemplary control measures for (B2) can be either put into action by
common-sense self-behaviour, or by large-scale public recommendations (e.g., through mass media),
or by rules/requirements from authorities:

(i) personal preventive measures such as frequent washing and disinfecting of hands; keeping hands
away from face; covering coughs; avoidance of handshakes and hugs with non-family-members;
maintaining physical distance (e.g., of two meters) from non-family-members; wearing a
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face-mask of respective security degree (such as homemade cloth face mask, particulate-filtering
face-piece respirator, medical (non-surgical) mask, surgical mask); self-quarantine;

(ii) environmental measures, such as e.g., cleaning of surfaces;
(iii) community measures aimed at mild or stringent social distancing, such as e.g.,

prohibiting/cancelling/banning gatherings of more than z non-family members (e.g., z =

2, 5, 10, 100, 1000 in various different phases and countries during the current COVID-19
pandemic); mask-wearing (see above); closing of schools, universities, some or even all
nonessential (“system-irrelevant”) businesses and venues; home-officing/work ban; home
isolation of disease cases; isolation of homes for the elderly/aged (nursing homes); stay-at-home
orders with exemptions, household or even general quarantine; testing & tracing; lockdown of
entire cities and beyond; restricting the degrees of travel freedom/allowed mobility (e.g., local,
union-state, national, international including border and airport closure). The latter also affects
the mean importation rate α•, which can be controlled by vaccination programs in “outside
populations”, too.

As far as the degree of biological susceptibility (B2a) is concerned, one obvious therapeutic
countermeasure is a mass vaccination program/campaign (if available).

In case of highly virulent infectious diseases causing epidemics and pandemics with substantial
fatality rates, some of the above-mentioned control strategies and countermeasures may (have to) be
“drastic” (e.g., lockdown), and thus imply considerable social and economic costs, with a huge impact
and potential danger of triggering severe social, economic and political disruptions.

In order to prepare corresponding suggestions for decisions about appropriate control measures
(e.g., public policies), it is therefore important–especially for a novel infectious disease such as the
current COVID-19 pandemic–to have a model for the time-evolution of the incidences in (i) a natural
(basically uncontrolled) set-up, as well as in (ii) the control set-ups under consideration. As already
mentioned above, we assume that all these situations can be distilled into an incidence evolution
n 7→ Xn which follows a Poissonian Galton-Watson process with respectively different parameter
pairs (β•, α•). Correspondingly, we always compare two alternative models (H) and (A) with
parameter pairs (βH, αH) and (βA, αA) which reflect either a “pure” statistical uncertainty (under
the same uncontrolled or controlled set-up), or the uncertainty between two different potential control
set-ups (for the sake of assessing the potential impact/efficiency of some planned interventions,
compared with alternative ones); the economic impact can be also taken into account, within a Bayesian
decision framework discussed in Section 2.5 below. As will be explained in the next subsections, we
achieve such comparisons by means of density-based dissimilarity distances/divergences and related
quantities thereof.

From the above-mentioned detailed explanations, it is immediately clear that for the described
epidemiological context one should investigate all types of criticality and importation means for the
therein involved two Poissonian Galton-Watson processes with/without immigration (respectively the
equally distributed INARCH(1) models); in particular, this motivates (or even “justifies”) the necessity
of the very lengthy detailed studies in the Sections 3–7 below.

2.4. Information Measures

Having two competing models (H) and (A) at stake, it makes sense to study questions such
as “how far are they apart?” and thus “how dissimilar are they?”. This can be quantified in terms
of divergences in the sense of directed (i.e., not necessarily symmetric) distances, where usually the
triangular inequality fails. Let us first discuss our employed divergence subclasses in a general set-up
of two equivalent probability measures PH, PA on a measurable space (Ω,F ). In terms of the parameter
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λ ∈ R, the power divergences—also known as Cressie-Read divergences, relative Tsallis entropies, or
generalized cross-entropy family– are defined as (see e.g., Liese & Vajda [1,10])

0 ≤ Iλ (PA||PH) :=


I (PA||PH) , if λ = 1,

1
λ(λ−1) (Hλ (PA||PH)− 1) , if λ ∈ R\{0, 1},

I (PH||PA) , if λ = 0, (2)

where
I (PA||PH) :=

∫
pA log

pA
pH

dµ ≥ 0 (3)

is the Kullback-Leibler information divergence (also known as relative entropy) and

Hλ (PA||PH) :=
∫

Ω
pλ
A p1−λ
H dµ ≥ 0 (4)

is the Hellinger integral of order λ ∈ R\{0, 1}; for this, we assume as usual without loss of generality
that the probability measures PH, PA are dominated by some σ−finite measure µ, with densities

pA =
dPA
dµ

and pH =
dPH
dµ

(5)

defined on Ω (the zeros of pH, pA are handled in (3) and (4) with the usual conventions). Clearly, for
λ ∈ {0, 1} one trivially gets

H0 (PA||PH) = H1 (PA||PH) = 1 .

The Kullback-Leibler information divergences (relative entropies) in (2) and (3) can alternatively be
expressed as (see, e.g., Liese & Vajda [1])

I (PA||PH) = lim
λ↗1

1− Hλ (PA||PH)
λ(1− λ)

, I (PH||PA) = lim
λ↘0

1− Hλ (PA||PH)
λ(1− λ)

. (6)

Apart from the Kullback-Leibler information divergence (relative entropy), other prominent examples
of power divergences are the squared Hellinger distance 1

2 I1/2 (PA||PH) and Pearson’s χ2−divergence
2 I2 (PA||PH); the Hellinger integral H1/2 (PA||PH) is also known as (multiple of) the Bhattacharyya
coefficent. Extensive studies about basic and advanced general facts on power divergences, Hellinger
integrals and the related Renyi divergences of order λ ∈ R\{0, 1}

0 ≤ Rλ (PA||PH) :=
1

λ(λ− 1)
log Hλ (PA||PH) , with log 0 = −∞, (7)

can be found e.g., in Liese & Vajda [1,10], Jacod & Shiryaev [24], van Erven & Harremoes [20] (as a side
remark, R1/2 (PA||PH) is also known as (multiple of) Bhattacharyya distance). For instance, the integrals
in (3) and (4) do not depend on the choice of µ. Furthermore, one has the skew symmetries

Hλ (PA||PH) = H1−λ (PH||PA) , as well as Iλ (PA||PH) = I1−λ (PH||PA) , (8)

for all λ ∈ R (see e.g., Liese & Vajda [1]). As far as finiteness is concerned, for λ ∈]0, 1[ one gets the
rudimentary bounds

0 < Hλ (PA||PH) ≤ 1 , and equivalently, (9)

0 ≤ Iλ (PA||PH) =
1− Hλ (PA||PH)

λ(1− λ)
<

1
λ(1− λ)

, (10)
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where the lower bound in (10) (upper bound in (9)) is achieved iff PA = PH. For λ ∈ R\]0, 1[, one gets
the bounds

0 ≤ Iλ (PA||PH) ≤ ∞ , and equivalently, 1 ≤ Hλ (PA||PH) ≤ ∞ , (11)

where, in contrast to above, both the lower bound of Hλ (PA||PH) and the lower bound of Iλ (PA||PH) is
achieved iff PA = PH; however, the power divergence Iλ (PA||PH) and Hellinger integral Hλ (PA||PH)
might be infinite, depending on the particular setup.

The Hellinger integrals can be also used for bounds of the well-known total variation

0 ≤ V(PA||PH) := 2 sup
A∈F

{
PA(A)− PH(A)

}
=
∫

Ω
|pA − pH| dµ ,

with pA and pH defined in (5). Certainly, the total variation is one of the best known statistical
distances, see e.g., Le Cam [109]. For arbitrary λ ∈]0, 1[ there holds (cf. Liese & Vajda [1])

1− V(PA||PH)
2

≤ Hλ(PA||PH) ≤
(

1 +
V(PA||PH)

2

)max{λ,1−λ} (
1− V(PA||PH)

2

)min{λ,1−λ}
.

From this together with the particular choice λ = 1
2 , we can derive the fundamental

universal bounds

2
(
1− H 1

2
(PA||PH)

)
≤ V(PA||PH) ≤ 2

√
1−

(
H 1

2
(PA||PH)

)2 . (12)

We apply these concepts to our setup of Section 2.1 with two competing models (H) and (A) of
Galton-Watson processes with immigration, where one can take Ω ⊂ NN0

0 to be the space of all paths
of (Xn)n∈N. More detailed, in terms of the extinction set B := {τ < ∞} and the parameter-set notation
(PS1) to (PS3), it is known that for PSP the two laws PH and PA are equivalent, whereas for PNI the two
restrictions PH|B and PA|B are equivalent (see e.g., Lemma 1.1.3 of Guttorp [52]); with a slight abuse of
notation we shall henceforth omit |B . Consistently, for fixed time n ∈ N0 we introduce PA,n := PA|Fn

and PH,n := PH|Fn
as well as the corresponding Radon-Nikodym-derivative (likelihood ratio)

Zn :=
dPA,n

dPH,n
, (13)

where (Fn)n∈N denotes the corresponding canonical filtration generated by X := (Xn)n∈N; in other
words, Fn reflects the “process-intrinsic” information known at stage n. Clearly, Z0 = 1. By choosing
the reference measure µ = PH,n one obtains from (4) the Hellinger integral Hλ (PA,0||PH,0) = 1, as well
as and for all n ∈ N

Hλ (PA,n||PH,n) = EPH,n
[
(Zn)

λ
]
, (14)

I (PA,n||PH,n) = EPA,n
[

log Zn
]
, (15)

from which one can immediately build Iλ (PA,n||PH,n) (λ ∈ R) respectively Rλ (PA,n||PH,n) (λ ∈
R\{0, 1}) respectively bounds of V (PA,n||PH,n) via (2) respectively (7) respectively (12).

The outcoming values (respectively bounds) of Hλ (PA,n||PH,n) are quite diverse and depend on
the choice of the involved parameter pairs (βH, αH), (βA, αA) as well as λ; the exact details will be
given in the Sections 3 and 6 below.

Before we achieve this, in the following we explain how the outcoming dissimilarity results
can be applied to Bayesian testing and more general Bayesian decision making, as well as to
Neyman-Pearson testing.
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2.5. Decision Making under Uncertainty

Within the above-mentioned context of two competing models (H) and (A) of Galton-Watson
processes with immigration, let us briefly discuss how knowledge about the time-evolution of
the Hellinger integrals Hλ (PA,n||PH,n)–or equivalently, of the power divergences Iλ (PA,n||PH,n),
cf. (2)—can be used in order to take decisions under uncertainty, within a framework of Bayesian
decision making BDM, or alternatively, of Neyman-Pearson testing NPT.

In our context of BDM, we decide between an action dH “associated with” the (say) hypothesis
law PH and an action dA “associated with” the (say) alternative law PA, based on the sample path
observation Xn := {Xl : l ∈ {0, 1, . . . , n} } of the GWI-generation-sizes (e.g., infectious-disease
incidences, cf. Section 2.3) up to observation horizon n ∈ N. Following the lines of Stummer &
Vajda [15] (adapted to our branching process context), for our BDM let us consider as admissible
decision rules δn : Ωn 7→ {dH, dA} the ones generated by all path sets Gn ∈ Ωn (where Ωn denotes the
space of all possible paths of (Xk)k∈{1,...,n}) through

δn(Xn) := δGn(Xn) :=

{
dA, if Xn ∈ Gn,
dH, if Xn /∈ Gn,

as well as loss functions of the form(
L(dH,H) L(dH,A)
L(dA,H) L(dA,A)

)
:=

(
0 LA
LH 0

)
(16)

with pregiven constants LA > 0, LH > 0 (e.g., arising as bounds from quantities in worst-case
scenarios); notice that in (16), dH is assumed to be a zero-loss action underH and dA a zero-loss action
under A. Per definition, the Bayes decision rule δGn,min minimizes–over Gn—the mean decision loss

L(δGn) := pprior
H · LH · Pr

(
δGn(Xn) = dA

∣∣∣H) + pprior
A · LA · Pr

(
δGn(Xn) = dH

∣∣∣A)
= pprior

H · LH · PH,n(Gn) + pprior
A · LA · PA,n(Ωn − Gn) (17)

for given prior probabilities pprior
H = Pr(H) ∈]0, 1[ for H and pprior

A := Pr(A) = 1− pprior
H for A.

As a side remark let us mention that, in a certain sense, the involved model (parameter) uncertainty
expressed by the “superordinate” Bernoulli-type law Pr = Bin(1, pprior

H ) can also be reinterpreted as a
rudimentary static random environment caused e.g., by a random Bernoulli-type external static force.

By straightforward calculations, one gets with (13) the minimizing path set Gn,min =

{
Zn ≥

pprior
H LH

pprior
A LA

}
leading to the minimal mean decision loss, i.e., the Bayes risk,

Rn := min
Gn
L(δGn) = L(δGn,min) =

∫
Ωn

min
{

pprior
H LH, pprior

A LA Zn

}
dPH,n . (18)

Notice that—by straightforward standard arguments—the alternative decision procedure

take action dA (resp. dH) if LH · p
post
H (Xn) ≤ (resp. >) LA · p

post
A (Xn)

with posterior probabilities ppost
H (Xn) := pprior

H
(1−pprior

H )·Zn(Xn) + pprior
H

=: 1− ppost
A (Xn), leads exactly to the

same actions as δGn,min . By adapting the Lemma 6.5 of Stummer & Vajda [15]—which on general
probability spaces gives fundamental universal inequalities relating Hellinger integrals (or equivalently,
power divergences) and Bayes risks—one gets for all LH > 0, LA > 0, pprior

H ∈]0, 1[, λ ∈]0, 1[ and
n ∈ N the upper bound

Rn ≤ Λλ
A Λ1−λ

H Hλ (PA,n||PH,n) , with ΛH := pprior
H LH, ΛA := (1− pprior

H )LA, (19)
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as well as the lower bound

(Rn)
min{λ,1−λ} · (ΛH + ΛA −Rn)

max{λ,1−λ} ≥ Λλ
A Λ1−λ

H Hλ (PA,n||PH,n)

which implies in particular the “direct” lower bound

Rn ≥
Λ

max{1, λ
1−λ }

A Λ
max{1, 1−λ

λ }
H

(ΛA + ΛH)
max{ λ

1−λ , 1−λ
λ }
· (Hλ (PA,n||PH,n))

max{ 1
λ , 1

1−λ } . (20)

By using (19) (respectively (20)) together with the exact values and the upper (respectively lower)
bounds of the Hellinger integrals Hλ (PA,n||PH,n) derived in the following sections, we end up with
upper (respectively lower) bounds of the Bayes risk Rn. Of course, with the help of (2) the bounds
(19) and (20) can be (i) immediately rewritten in terms of the power divergences Iλ (PA,n||PH,n) and
(ii) thus be directly interpreted in terms of dissimilarity-size arguments. As a side-remark, in such
a Bayesian context the λ−order Hellinger integral Hλ (PA,n||PH,n) = EPH,n

[
(Zn)λ

]
(cf. (14)) can

be also interpreted as λ−order Bayes-factor moment (with respect to PH,n), since Zn = Zn(Xn) =

ppost
A (Xn)

ppost
H (Xn)

/
pprior
A

pprior
H

is the Bayes factor (i.e., the posterior odds ratio of (A) to (H), divided by the prior

odds ratio of (A) to (H)).
At this point, the potential applicant should be warned about the usual way of asynchronous

decision making, where one first tests (A) versus (H) (i.e., LA = LH = 1 which leads to 0–1 losses
in (16)) and afterwards, based on the outcoming result (e.g., in favour of (A)), takes the attached
economic decision (e.g., dA); this can lead to distortions compared with synchronous decision making
with “full” monetary losses LA and LH, as is shown in Stummer & Lao [16] within an economic context
in connection with discrete approximations of financial diffusion processes (they call this distortion
effect a non-commutativity between Bayesian statistical and investment decisions).

For different types of–mainly parameter estimation (squared-error type loss function)
concerning—Bayesian analyses based on GW(I) generation size observations, see e.g., Jagers [56],
Heyde [38], Heyde & Johnstone [110], Johnson et al. [111], Basawa & Rao [60], Basawa &
Scott [61], Scott [112], Guttorp [52], Yanev & Tsokos [113], Mendoza & Gutierrez-Pena [114], and
the references therein.

Within our running-example epidemiological context of Section 2.3, let us briefly discuss the
role of the above-mentioned losses LA and LH. To begin with, as mentioned above the unit-free
choice LA = LH = 1 corresponds to Bayesian testing. Recall that this concerns with two alternative
infectious-disease models (H) and (A) with parameter pairs (recall the interpretation of β• as
reproduction number and α• as importation mean) (βH, αH) and (βA, αA) which reflect either a
“pure” statistical uncertainty (under the same uncontrolled or controlled set-up), or the uncertainty
between two different potential control set-ups (for the sake of assessing the potential impact/efficiency
of some planned interventions, compared with alternative ones). As far as non-unit-free–e.g.,
macroeconomic or monetary–losses is concerned, recall that some of the above-mentioned control
strategies (countermeasures, public policies, governmental pandemic risk management plans) may
imply considerable social and economic costs, with a huge impact and potential danger of triggering
severe social, economic and political disruptions; a corresponding tradeoff between health and
economic issues can be incorporated by choosing LA and LH to be (e.g., monetary) values which reflect
estimates or upper bounds of losses due to wrong decisions, e.g., if at stage n due to the observed
data one erroneously thinks (reinforced by fear) that a novel infectious disease (e.g., COVID-19) will
lead (or re-emerge) to a severe pandemic and consequently decides for a lockdown with drastic
future economic consequences, versus, if one erroneously thinks (reinforced by carelessness) that the
infectious disease is (or stays) non-severe and consequently eases some/all control measures which
will lead to extremely devastating future economic consequences. For the estimates/bounds of LA and
LH, one can e.g., employ (i) the comprehensive stochastic studies of Feicht & Stummer [115] on the
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quantitative degree of elasticity and speed of recovery of economies after a sudden macroeconomic
disaster, or (ii) the more short-term, German-specific, scenario-type (basically non-stochastic) studies
of Dorn et al. [116,117] in connection with the current COVID-19 pandemic.

Of course, the above-mentioned Bayesian decision procedure can be also operated in sequential
way. For instance, suppose that we are encountered with a novel infectious disease (e.g., COVID-19) of
non-negligible fatality rate and let (A) reflect a “potentially dangerous” infectious-disease-transmission
situation (e.g., a reproduction number of substantially supercritical case βA = 2, and an importation
mean of αA = 10, for weekly appearing new incidence-generations) whereas (H) describes a “relatively
harmless/mild” situation (e.g., a substantially subcritical βH = 0.5, αH = 0.2). Moreover, let dA
respectively dH denote (non-quantitatively) the decision/action to accept (A) respectively (H). It can
then be reasonable to decide to stop the observation process n 7→ Xn (also called surveillance or
online-monitoring) of incidence numbers at the first time at which n 7→ Zn = Zn(Xn) exceeds the
threshold pprior

H /pprior
A ; if this happens, one takes dA as decision (and e.g., declare the situation as

occurrence of an epidemic outbreak and start with control/intervention measures (however, as explained
above, one should synchronously involve also the potential economic losses)) whereas as long as this
does not happen, one continues the observation (and implicitly takes dH as decision). This can be

modelled in terms of the pair (τ̃, dA) with (random) stopping time τ̃ := inf
{

n ∈ N : Zn ≥
pprior
H

pprior
A

}
(with the usual convention that the infimum of the empty set is infinity), and the corresponding decision
dA. After the time τ̃ < ∞ and e.g., immediate subsequent employment of some control/counter
measures, one can e.g., take the old model (A) as new (H), declare a new target (A) for the desired
quantification of the effectiveness of the employed control measures (e.g., a mitigation to a slightly
subcritical case of βA = 0.95, αH = 0.8), and starts to observe the new incidence numbers until
the new target (A) has been reached. This can be interpreted as online-detection of a distributional
change; a related comprehensive new framework for the use of divergences (even much beyond power
divergences) for distributional change detection can be found e.g., in the recent work of Kißlinger &
Stummer [118]. A completely different, SIR-model based, approach for the detection of change points
in the spread of COVID-19 is given in Dehning et al. [119]. Moreover, other different surveillance
methods can be also found e.g., in the corresponding overview of Frisen [120] and the Swedish
epidemics outbreak investigations of Friesen & Andersson & Schiöler [121].

One can refine the above-mentioned sequential procedure via two (instead of one) appropriate
thresholds c1 < c2 and the pair (τ̆, δτ̆), with the stopping time τ̆ := inf

{
n ∈ N : Zn /∈ [c1, c2]

}
as well

as corresponding decision rule

δτ̆ :=

{
dA, if Zτ̆ > c2,

dH, if Zτ̆ < c1.

An exact optimized treatment on the two above-mentioned sequential procedures, and
their connection to Hellinger integrals (and power divergences) of Galton-Watson processes with
immigration, is beyond the scope of this paper.

As a side remark, let us mention that our above-mentioned suggested method of Bayesian
decision making with Hellinger integrals of GWIs differs completely from the very recent work of
Brauner et al. [122] who use a Bayesian hierarchical model for the concrete, very comprehensive study
on the effectiveness and burden of non-pharmaceutical interventions against COVID-19 transmission.

The power divergences Iλ (PA,n||PH,n) (λ ∈ R) can be employed also in other ways within
Bayesian decision making, of statistical nature. Namely, by adapting the general lines of Österreicher &
Vajda [123] (see also Liese & Vajda [10], as well as diffusion-process applications in Stummer [5,31,32])
to our context of Galton-Watson processes with immigration, we can proceed as follows. For the sake
of comfortable notations, we first attach the value θ := 1 to the GWI model (A) (which has prior
probability pprior

A ∈ ]0, 1[) and θ := 0 to (H) (which has prior probability 1− pprior
A ). Suppose we
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want to decide, in an optimal Bayesian way, which degree of evidence deg ∈ [0, 1] we should attribute
(according to a pregiven loss function LO) to the model (A). In order to achieve this goal, we choose a
nonnegatively-valued loss function LO(θ, deg) defined on {0, 1} × [0, 1], of two types which will be
specified below. The risk at stage 0 (i.e., prior to the GWI-path observations Xn), from the optimal
decision about the degree of evidence deg concerning the decision parameter θ, is defined as

BRLO
(

pprior
A

)
:= min
deg∈[0,1]

{
(1− pprior

A ) · LO(0, deg) + pprior
A · LO(1, deg)

}
,

which can be thus interpreted as a minimal prior expected loss (the minimum will always exist).
The corresponding risk posterior to the GWI-path observations Xn, from the optimal decision about the
degree of evidence deg concerning the parameter θ, is given by

BRpost
LO

(
pprior
A

)
:=
∫

Ωn
BRLO

(
ppost
A (Xn)

) (
pprior
A dPA,n + (1− pprior

A ) dPH,n
)

,

which is achieved by the optimal decision rule (about the degree of evidence)

D
∗(Xn

)
:= arg min

deg∈[0,1]

{ (
1− ppost

A (Xn)
)
· LO(0, deg) + ppost

A (Xn) · LO(1, deg)
}

.

The corresponding statistical information measure (in the sense of De Groot [124])

∆BRLO
(

pprior
A

)
:= BRLO

(
pprior
A

)
−BRpost

LO

(
pprior
A

)
≥ 0

represents the reduction of the decision risk about the degree of evidence deg concerning the parameter
θ, that can be attained by observing the GWI-path Xn until stage n. For the first-type loss function
L̃O(θ, deg) := deg− (2 deg− 1) · 1{1}(θ), defined on {0, 1} × [0, 1] with the help of the indicator function
1A(.) on the set A, one can show that

D
∗(Xn

)
:=


0, if ppost

A (Xn) ∈ [0, 1
2 [,

1, if ppost
A (Xn) ∈ ] 1

2 , 1[,

any number in [0, 1], if ppost
A (Xn) =

1
2 ,

as well as the representation formula

Iλ (PA,n||PH,n) =
∫ 1

0
∆BRL̃O

(
pprior
A

)
·
(

1− pprior
A

)λ−2
·
(

pprior
A

)−1−λ
dpprior
A , λ ∈ R, (21)

(cf. Österreicher & Vajda [123], Liese & Vajda [10], adapted to our GWI context); in other words, the
power divergence Iλ (PA,n||PH,n) can be regarded as a weighted-average statistical information measure
(weighted-average decision risk reduction). One can also use other weights of pprior

A in order to get bounds
of Iλ (PA,n||PH,n) (analogously to Stummer [5]).

For the second-type loss function LOλ,χ(θ, deg) := λθ−1 deg
λ−θ

χλ (1−χ)1−λ (1−λ)θ (1−deg)λ−θ defined on {0, 1}×
[0, 1] with parameters λ ∈]0, 1[ and χ ∈]0, 1[, one can derive the optimal decision rule

D
∗(Xn

)
= ppost

A (Xn)

as well as the representation formula as a limit statistical information measure (limit decision risk reduction)

Iλ (PA,n||PH,n) = lim
χ→pprior

A

∆BRLOλ,χ

(
pprior
A

)
=: ∆BRLO

λ,p
prior
A

(
pprior
A

)
(22)
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(cf. Österreicher & Vajda [123], Stummer [5], adapted to our GWI context).
As an alternative to the above-mentioned Bayesian-decision-making applications of Hellinger

integrals Hλ (PA,n||PH,n), let us now briefly discuss the use of the latter for the corresponding
Neyman-Pearson (NPT) framework with randomized tests Tn : Ωn 7→ [0, 1] of the hypothesis PH
against the alternative PA, based on the GWI-generation-size sample path observations Xn := {Xl :
l ∈ {0, 1, . . . , n} }. In contrast to (17) and (18) a Neyman-Pearson test minimizes—over Tn–the type
II error probability

∫
Ωn

(1− Tn)dPA,n in the class of the tests for which the type I error probability∫
Ωn
Tn dPH,n is at most ς ∈]0, 1[. The corresponding minimal type II error probability

Eς (PA,i||PH,i) := inf
Ti :
∫

Ωi
Ti dPH,i≤ς

∫
Ωi

(1− Ti)dPA,i

can for all ς ∈]0, 1[, λ ∈]0, 1[, i ∈ I be bounded from above by

Eς
(

PA,i||PH,i
)
≤ EU

ς

(
PA,i||PH,i

)
:= min

{
(1− λ) ·

(
λ

ς

)λ/(1−λ)

·
(

Hλ

(
PA,i||PH,i

) )1/(1−λ)
, 1

}
, (23)

and for all λ > 1, i ∈ I it can be bounded from below by

Eς
(

PA,i||PH,i
)
≥ E L

ς

(
PA,i||PH,i

)
:= (1− ς)λ/(λ−1) ·

(
Hλ

(
PA,i||PH,i

) )1/(1−λ)
, (24)

which is an adaption of a general result of Krafft & Plachky [125], see also Liese & Vajda [1] as well as
Stummer & Vajda [15]. Hence, by combining (23) and (24) with the exact values respectively upper
bounds of the Hellinger integrals H1−λ (PA,n||PH,n) from the following sections, we obtain for our
context of Galton-Watson processes with Poisson offspring and Poisson immigration (including the
non-immigration case) some upper bounds of Eς (PA,n||PH,n), which can also be immediately rewritten
as lower bounds for the power 1 − Eς (PA,n||PH,n) of a most powerful test at level ς. In contrast
to such finite-time-horizon results, for the (to our context) incompatible setup of Galton-Watson
processes with Poisson offspring but nonstochastic immigration of constant value 1, the asymptotic
rates of decrease as n → ∞ of the unconstrained type II error probabilities as well as the type I
error probabilites were studied in Linkov & Lunyova [53] by a different approach employing also
Hellinger integrals. Some other types of Galton-Watson-process concerning Neyman-Pearson testing
investigations different to ours can be found e.g., in Basawa & Scott [126], Feigin [127], Sweeting [128],
Basawa & Scott [61], and the references therein.

2.6. Asymptotical Distinguishability

The next two concepts deal with two general families (PA,i)i∈I and (PH,i)i∈I of probability
measures on the measurable spaces (Ωi,Fi)i∈I , where the index set I is either N0 or R+. For them,
the following two general types of asymptotical distinguishability are well known (see e.g.,
LeCam [109], Liese & Vajda [1], Jacod & Shiryaev [24], Linkov [129], and the references therein).

Definition 1. The family (PA,i)i∈I is contiguous to the family (PH,i)i∈I – in symbols, (PA,i) / (PH,i)– if for
all sets Ai ∈ Fi with limi→∞ PH,i(Ai) = 0 there holds limi→∞ PA,i(Ai) = 0.

Definition 2. Families of measures (PA,i)i∈I and (PH,i)i∈I are called entirely separated (completely
asymptotically distinguishable)—in symbols, (PA,i)4 (PH,i)–if there exist a sequence im ↑ ∞ as m ↑ ∞
and for each m ∈ N0 an Aim ∈ Fim such that limm→∞ PA,im(Aim) = 1 and limm→∞ PH,im(Aim) = 0.

It is clear that the notion of contiguity is the attempt to carry the concept of absolute continuity
over to families of measures. Loosely speaking, (PA,i) is contiguous to (PH,i), if the limit limi→∞(PA,i)

(existence preconditioned) is absolute continuous to the limit limi→∞(PH,i). However, for the definition
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of contiguity, we do not need to require the probability measures to converge to limiting probability
measures. On the other hand, entire separation is the generalization of singularity to families
of measures.

The corresponding negations will be denoted by / and 4. One can easily check that a family
(PA,i) cannot be both contiguous and entirely separated to a family (PH,i). In fact, as shown in
Linkov [129], the relation between the families (PA,i) and (PH,i) can be uniquely classified into the
following distinguishability types:

(a) (PA,i) / . (PH,i) ;
(b) (PA,i) / (PH,i), (PH,i) / (PA,i) ;
(c) (PA,i) / (PH,i), (PH,i) / (PA,i) ;
(d) (PA,i) / . (PH,i), (PA,i) 4 (PH,i) ;
(e) (PA,i) 4 (PH,i) .

As demonstrated in the above-mentioned references for a general context, one can conclude
the type of distinguishability from the time-evolution of Hellinger integrals. Indeed, the following
assertions can be found e.g., in Linkov [129], where part (c) was established in Liese & Vajda [1] and
(f), (g) in Vajda [3].

Proposition 1. The following assertions are equivalent:

(a) (PA,i) 4 (PH,i) ,

(b) lim inf
i→∞

Hλ(PA,i||PH,i) = 0 for all λ ∈]0, 1[,

(c) there exists a λ ∈ ]0, 1[ : lim inf
i→∞

Hλ(PA,i||PH,i) = 0 , (25)

(d) there exists a π ∈ ]0, 1[ : lim inf
i→∞

eπ(PA,i||PH,i) = 0 ,

(e) lim sup
i→∞

V(PA,i||PH,i) = 2 ,

( f ) there exists a λ ∈ ]0, 1[ : lim sup
i→∞

Iλ(PA,i||PH,i) =
1

λ · (1− λ)
,

(g) lim sup
i→∞

Iλ(PA,i||PH,i) =
1

λ · (1− λ)
, for all λ ∈]0, 1[.

In combination with the discussion after Definition 2, one can thus interpret the λ−order Hellinger
integral Hλ(PA,i||PH,i) as a “measure” for the distinctness of the two families PA,i and PH,i up to a
fixed finite time horizon i ∈ I .

Furthermore, for the contiguity we obtain the equivalence (see e.g., Liese & Vajda [1], Linkov [129])

(PA,i) / (PH,i) ⇐⇒ lim inf
λ↗1

{
lim inf

i→∞
Hλ (PA,i||PH,i)

}
= 1 (26)

⇐⇒ lim sup
λ↗1

{
lim sup

i→∞
λ · (1− λ) · Iλ (PA,i||PH,i)

}
= 0.

All the above-mentioned general results can be applied to our context of two competing Poissonian
Galton-Watson processes with immigration (GWI) (H) and (A) (reflected by the two different laws
PH resp. PA with parameter pairs (βH, αH) resp. (βA, αA)), by taking PA,i := PA|Fi

and PH,i := PH|Fi
.

Recall from the preceding subsections (by identifying i with n) that the latter two describe the stochastic
dynamics of the respective GWI within the restricted time-/stage-frame {0, 1, . . . , i}.

In the following, we study in detail the evolution of Hellinger integrals between two competing
models of Galton-Watson processes with immigration, which turns out to be quite extensive.
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3. Detailed Recursive Analyses of Hellinger Integrals

3.1. A First Basic Result

In terms of our notations (PS1) to (PS3), a typical situation for applications in our mind is that one
particular constellation (βA, βH, αA, αH) ∈ P (e.g., obtained from theoretical or previous statistical
investigations) is fixed, whereas–in contrast–the parameter λ ∈ R\{0, 1} for the Hellinger integral or
the power divergence might be chosen freely, e.g., depending on which (transform of a) dissimilarity
measure one decides to choose for further analysis. At this point, let us emphasize that in general we
will not make assumptions of the form β• T 1, i.e., upon the type of criticality.

To start with our investigations, in order to justify for all n ∈ N0

Zn :=
dPA,n

dPH,n
(cf. (13)),

(14) and (15) (as well as Iλ (PA,n||PH,n) for λ ∈ R respectively Rλ (PA,n||PH,n) for λ ∈ R\{0, 1}),
we first mention the following straightforward facts: (i) if (βA, βH, αA, αH) ∈ PNI, then PA,n and
PH,n are equivalent (i.e., PA,n ∼ PH,n), as well as (ii) if (βA, βH, αA, αH) ∈ PSP, then PA,n and PH,n
are equivalent (i.e., PA,n ∼ PH,n). Moreover, by recalling Z0 = 1 and using the “rate functions”
f•(x) = β• x + α• (x ∈ [0, ∞[), a version of (13) can be easily determined by calculating for each
~x := (x0, x1, x2, · · · ) ∈ Ω := N×N0 ×N0 × · · ·

Zn(~x) =
n

∏
k=1

Zn,k(~x) with Zn,k(~x) := exp
{
−
(

fA(xk−1)− fH(xk−1)
)} [ fA(xk−1)

fH(xk−1)

]xk

,

where for the last term we use the convention
( 0

0
)x

= 1 for all x ∈ N0. Furthermore, we define for each
~x ∈ Ω

Z(λ)
n,k (~x) := exp

{
−
(
λ fA(xk−1) + (1− λ) fH(xk−1)

)} [( fA(xk−1))
λ ( fH(xk−1))

1−λ
]xk

xk!
(27)

with the convention (0)0

0! = 1 for the last term. Accordingly, one obtains from (14) the Hellinger integral
Hλ (PA,0||PH,0) = 1, as well as for all (βA, βH, αA, αH, λ) ∈ P × (R\{0, 1})

Hλ (PA,1||PH,1) = exp
{
( fA(x0))

λ ( fH(x0))
(1−λ) − (λ fA(x0) + (1− λ) fH(x0))

}
(28)

for x0 = X0 ∈ N, and for all n ∈ N\{1}

Hλ (PA,n||PH,n) = EPH,n
[
(Zn)

λ
]
=

∞

∑
x1=0
· · ·

∞

∑
xn=0

n

∏
k=1

Z(λ)
n,k (~x)

=
∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x) · e

−(λ fA(xn−1)+(1−λ) fH(xn−1))
∞

∑
xn=0

[
( fA(xn−1))

λ ( fH(xn−1))
1−λ

]xn

xn!

=
∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x) · exp{( fA(xn−1))

λ ( fH(xn−1))
1−λ − (λ fA(xn−1) + (1− λ) fH(xn−1))}. (29)

From (29), one can see that a crucial role for the exact calculation (respectively the derivation of
bounds) of the Hellinger integral is played by the functions defined for x ∈ [0, ∞[

φλ(x) := φ(x, βA, βH, αA, αH, λ) := ϕλ(x)− fλ(x) , with (30)

ϕλ(x) := ϕ(x, βA, βH, αA, αH, λ) := ( fA(x))λ ( fH(x))1−λ and (31)
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fλ(x) := f (x, βA, βH, αA, αH, λ) := λ fA(x) + (1− λ) fH(x) = αλ + βλ x , (32)

where we have used the λ-weighted-averages

αλ := α(αA, αH, λ) := λ · αA + (1− λ) · αH and βλ := β(βA, βH, λ) := λ · βA + (1− λ) · βH.

Since λ plays a special role, henceforth we typically use it as index and often omit (βA, βH, αA, αH).
According to Lemma A1 in the Appendix A.1, it follows that for λ ∈]0, 1[ (respectively λ ∈ R\[0, 1])
one gets φλ(x) ≤ 0 (respectively φλ(x) ≥ 0) for all x ∈ [0, ∞[. Furthermore, in both cases there holds
φλ(x) = 0 iff fA(x) = fH(x), i.e., for x = x∗ := αA−αH

βH−βA
≥ 0. This is consistent with the corresponding

generally valid upper and lower bounds (cf. (9) and (11)) 0 < Hλ (PA,n||PH,n) ≤ 1 , for λ ∈
]0, 1[ , 1 ≤ Hλ (PA,n||PH,n) ≤ ∞ , for λ ∈ R\[0, 1] .

As a first indication for our proposed method, let us start by illuminating the simplest case λ ∈
R\{0, 1} and γ := αHβA − αAβH = 0. This means that (βA, βH, αA, αH) ∈ PNI ∪ PSP,1, where PSP,1

is the set of all (componentwise) strictly positive (βA, βH, αA, αH) with βA 6= βH, αA 6= αH and
βA
βH

= αA
αH
6= 1 (“the equal-fraction-case”). In this situation, all the three functions (30) to (32) are

linear. Indeed,
ϕλ(x) = pE

λ + qE
λ x (33)

with pE
λ := αλ

A α1−λ
H and qE

λ := βλ
A β1−λ
H (where the index E stands for exact linearity). Clearly, qE

λ > 0
on PNI ∪ PSP,1, as well as pE

λ > 0 on PSP,1 and pE
λ = 0 on PNI. Furthermore,

φλ(x) = rE
λ + sE

λ x

with rE
λ := pE

λ − αλ = αλ
A α1−λ
H − (λαA + (1− λ)αH) and sE

λ := qE
λ − βλ = βλ

A β1−λ
H − (λβA + (1−

λ)βH). Due to Lemma A1 one knows that on PNI ∪ PSP,1 one gets sE
λ < 0 for λ ∈]0, 1[ and sE

λ > 0 for
λ ∈ R\[0, 1]. Furthermore, on PSP,1 one gets rE

λ < 0 (resp. rE
λ > 0) for λ ∈]0, 1[ (resp. λ ∈ R\[0, 1]),

whereas on PNI, the no-immigration setup, we get for all λ ∈ R\{0, 1} rE
λ = 0.

As it will be seen later on, such kind of linearity properties are useful for the recursive handling
of the Hellinger integrals. However, only on the parameter set PNI ∪ PSP,1 the functions ϕλ and φλ

are linear. Hence, in the general case (βA, βH, αA, αH, λ) ∈ P ×R\{0, 1} we aim for linear lower and
upper bounds

ϕL
λ(x) := pL

λ + qL
λ x ≤ ϕλ(x) ≤ ϕU

λ (x) := pU
λ + qU

λ x , (34)

x ∈ [0, ∞[ (ultimately, x ∈ N0), which by (30) and (31) leads to

φλ(x)


≤ φU

λ (x) := rU
λ + sU

λ · x := (pU
λ − αλ) + (qU

λ − βλ) · x ,

≥ φL
λ(x) := rL

λ + sL
λ · x := (pL

λ − αλ) + (qL
λ − βλ) · x ,

(35)

x ∈ [0, ∞[ (ultimately, x ∈ N0). Of course, the involved slopes and intercepts should satisfy reasonable
restrictions. Later on, we shall impose further restrictions on the involved slopes and intercepts,
in order to guarantee nice properties of the general Hellinger integral bounds given in Theorem 1
below

(
for instance, in consistency with the nonnegativity of ϕλ we could require pU

λ ≥ pL
λ ≥ 0,

qU
λ ≥ qL

λ ≥ 0 which nontrivially implies that these bounds possess certain monotonicity properties
)
.

For the formulation of our first assertions on Hellinger integrals, we make use of the following notation:
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Definition 3. For all (βA, βH, αA, αH, λ) ∈ P × R\{0, 1} and all p, q ∈ R let us define the sequences(
a(q)n

)
n∈N0

and
(

b(p,q)
n

)
n∈N0

recursively by

a(q)0 := 0 ; a(q)n := ξ
(q)
λ

(
a(q)n−1

)
:= q · ea(q)n−1 − βλ, n ∈ N, (36)

b(p,q)
0 := 0 ; b(p,q)

n := p · ea(q)n−1 − αλ, n ∈ N. (37)

Notice the interrelation a
(qA

λ )
1 = sA

λ and b
(pA

λ ,qA
λ )

1 = rA
λ for A ∈ {E, L, U}. Clearly, for all q ∈ R\{0}

and p ∈ R one has the linear interrelation

b(p,q)
n =

p
q

a(q)n +
p
q

βλ − αλ, n ∈ N. (38)

Accordingly, we obtain fundamental Hellinger integral evaluations:

Theorem 1.

(a) For all (βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1)×R\{0, 1}, all initial population sizes X0 ∈ N and all
observation horizons n ∈ N one can recursively compute the exact value

Hλ(PA,n||PH,n) = exp
{

a
(qE

λ)
n X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

}
=: Vλ,X0,n, (39)

where αA
βA

can be equivalently replaced by αH
βH

. Recall that qE
λ := βλ

A β1−λ
H . Notice that on PNI ×

(R\{0, 1}) the formula (39) simplifies significantly, since αA = αH = 0.
(b) For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\{0, 1}), all coefficients pL

λ, pU
λ , qL

λ, qU
λ ∈ R which

satisfy (35) for all x ∈ N0
(
and thus in particular pL

λ ≤ pU
λ , qL

λ ≤ qU
λ

)
, all initial population sizes

X0 ∈ N and all observation horizons n ∈ N one gets the following recursive (i.e., recursively computable)
bounds for the Hellinger integrals:

for λ ∈]0, 1[ : BL
λ,X0,n := B̃

(pL
λ ,qL

λ)
λ,X0,n < Hλ(PA,n||PH,n) ≤ min

{
B̃
(pU

λ ,qU
λ )

λ,X0,n , 1
}

=: BU
λ,X0,n , (40)

for λ ∈ R\[0, 1] : BL
λ,X0 ,n := max

{
B̃
(pL

λ ,qL
λ)

λ,X0 ,n , 1
}
≤ Hλ(PA,n||PH,n) < B̃

(pU
λ ,qU

λ )

λ,X0 ,n =: BU
λ,X0 ,n , (41)

where for general λ ∈ R\{0, 1}, p ∈ R, q ∈ R\{0} we use the definitions

B̃(p,q)
λ,X0 ,n := exp

{
a(q)n · X0 +

n

∑
k=1

b(p,q)
k

}
= exp

{
a(q)n · X0 +

p
q

n

∑
k=1

a(q)k + n ·
(

p
q

βλ − αλ

)}
, (42)

as well as
B̃(p,0)

λ,X0,n := exp
{
− βλ · X0 +

(
p · e−βλ − αλ

)
· n
}

.

Remark 1.

(a) Notice that the expression B̃(p,q)
λ,X0,n can analogously be defined on the parameter set PNI ∪ PSP,1. For the

choices qE
λ := βλ

Aβ1−λ
H > 0 and pE

λ := αλ
Aα1−λ
H = qE

λ ·
αA
βA

= qE
λ ·

αH
βH
≥ 0 one gets (pE

λ/qE
λ) · βλ −

αλ = 0, and thus the characterization B̃
(pE

λ ,qE
λ)

λ,X0,n = Vλ,X0,n as the exact value (rather than a lower/upper
bound (component)).

(b) In the case q = βλ one gets the explicit representation B̃(p,q)
λ,X0,n = exp

{(
p− αλ

)
· n
}

.
(c) Using the skew symmetry (8), one can derive alternative bounds of the Hellinger integral by switching to

the transformed parameter setup (
←→
βA ,
←→
βH,←→αA ,←→αH ,

←→
λ ) := (βH, βA, αH, αA, 1− λ). However, this does

not lead to different bounds: define
←→
φ ←→

λ
, ←→ϕ ←→

λ
and
←→

f ←→
λ

analogously to (30), (31) and (32) by
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replacing the parameters (βA, βH, αA, αH, λ) with (
←→
βA ,
←→
βH,←→αA ,←→αH ,

←→
λ ). Then, there holds

←→
f ←→

λ
(x) =

fλ(x), ←→ϕ ←→
λ
(x) = ϕλ(x) and

←→
φ ←→

λ
(x) = φλ(x), and the set of (lower and upper bound) parameters

pL
λ, qL

λ, pU
λ , qU

λ satisfying (35) does not change under this transformation.
(d) If there are no other restrictions on pL

λ, pU
λ , qL

λ, qU
λ than (35), the bounds in (40) and (41) can have some

inconvenient features, e.g., being 1 for all (large enough) n ∈ N, having oscillating n-behaviour, being
suboptimal in certain (other) senses. For a detailed discussion, the reader is referred to Section 3.16 ff.
below.

(e) For the (to our context) incompatible setup of GWI with Poisson offspring but nonstochastic immigration
of constant value 1, the exact values of the corresponding Hellinger integrals (i.e., an “analogue” of part
(a)) was established in Linkov & Lunyova [53].

Proof of Theorem 1. Let us fix (βA, βH, αA, αH) ∈ P as well as x0 := X0 ∈ N, and start with arbitrary
λ ∈]0, 1[. We first prove the upper bound BU

λ,X0,n of part (b). Correspondingly, we suppose that the
coefficients pU

λ , qU
λ satisfy (35) for all x ∈ N0. From (28), (30), (31), (32) and (35) one gets immediately

BU
λ,X0,1 in terms of the first sequence-element a

(qU
λ )

1 (cf. (36)). With the help of (29) for all observation
horizons n ∈ N\{1} we get (with the obvious shortcut for n = 2)

Hλ (PA,n||PH,n) =
∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x) · exp

{
ϕλ(xn−1)− fλ(xn−1)

}
<

∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x) · exp

{
(pU

λ − αλ) + (qU
λ − βλ) xn−1

}
=

∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x) · exp

{
b
(pU

λ ,qU
λ )

1 + a
(qU

λ )
1 xn−1

}
= exp

{
b
(pU

λ ,qU
λ )

1

} ∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x) · exp

{
exp

{
a
(qU

λ )
1

}
ϕλ(xn−2)− fλ(xn−2)

}
< exp

{
b
(pU

λ ,qU
λ )

1

} ∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x)

· exp
{(

exp
{

a
(qU

λ )
1

}
pU

λ − αλ

)
+

(
exp

{
a
(qU

λ )
1

}
qU

λ − βλ

)
· xn−2

}
< exp

{
b
(pU

λ ,qU
λ )

1

} ∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x) · exp

{
b
(pU

λ ,qU
λ )

2 + a
(qU

λ )
2 xn−2

}
< · · · < exp

{
a
(qU

λ )
n x0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}
. (43)

Notice that for the strictness of the above inequalities we have used the fact that φλ(x) < φU
λ (x) for

some (in fact, all but at most two) x ∈ N0 (cf. Properties 3(P19) below). Since for some admissible
choices of pU

λ , qU
λ and some n ∈ N the last term in (43) can become larger than 1, one needs to take

into account the cutoff-point 1 arising from (9). The lower bound BL
λ,X0,n of part (b), as well as the

exact value of part (a) follow from (29) in an analogous manner by employing pL
λ, qL

λ and pE
λ, qE

λ

respectively. Furthermore, we use the fact that for (βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1)×]0, 1[ one gets

from (38) the relation b
(pE

λ ,qE
λ)

n = αA
βA

a
(qE

λ)
n . For the sake of brevity, the corresponding straightforward

details are omitted here. Although we take the minimum of the upper bound derived in (43) and 1,
the inequality BL

λ,X0,n < BU
λ,X0,n is nevertheless valid: the reason is that for constituting a lower bound,

the parameters pL
λ, qL

λ must fulfill either the conditions
[
pL

λ − αλ < 0 and qL
λ − βλ ≤ 0

]
or
[
pL

λ − αλ ≤ 0
and qL

λ − βλ < 0
]

(or both), which guarantees that BL
λ,X0,n < 1. The proof for all λ ∈ R\[0, 1] works
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out completely analogous, by taking into account the generally valid lower bound Hλ(PA,n||PH,n) ≥ 1
(cf. (11)).

3.2. Some Useful Facts for Deeper Analyses

Theorem 1(b) and Remark 1(a) indicate the crucial role of the expression B̃(p,q)
λ,X0,n and that

the choice of the quantities p, q depends on the underlying (e.g., fixed) offspring-immigration
parameter constellation (βA, βH, αA, αH) as well as on the (e.g., selectable) value of λ, i.e., pA

λ =

pA (βA, βH, αA, αH, λ) and qA
λ = qA (βA, βH, αA, αH, λ) with A ∈ {E, L, U}. In order to study the

desired time-behaviour n 7→ B̃(·,·)
λ,X0,n of the Hellinger integral bounds resp. exact values, one therefore

faces a six-dimensional (and thus highly non-obvious) detailed analysis, including the search for
criteria (in addition to (35)) on good/optimal choices of pL

λ, qL
λ, pU

λ , qU
λ . Since these criteria will (almost)

always imply the nonnegativity of pA
λ , qA

λ (A ∈ {L, U}) and pE
λ ≥ 0, qE

λ > 0 (cf. Remark 1(a)),

let us first present some fundamental properties of the underlying crucial sequences
(

a(q)n

)
n∈N

and(
b(p,q)

n

)
n∈N

for general p ≥ 0, q ≥ 0.

Properties 1. For all λ ∈ R the following holds:

(P1) If 0 < q < βλ, then the sequence
(

a(q)n

)
n∈N

is strictly negative, strictly decreasing and converges to the

unique negative solution x(q)0 ∈]− βλ, q− βλ[ of the equation

ξ
(q)
λ (x) = q · ex − βλ = x . (44)

(P2) If 0 < q = βλ, then a(q)n ≡ 0.

(P3) If q > max{0, βλ}, then the sequence
(

a(q)n

)
n∈N

is strictly positive and strictly increasing. Notice that

in this setup, q = 1 implies min{1, eβλ−1} = eβλ−1 < q.

(P3a) If additionally q ≤ min
{

1 , eβλ−1}, then the sequence
(

a(q)n

)
n∈N

converges to the smallest

positive solution x(q)0 ∈]0,− log q] of the Equation (44) .

(P3b) If additionally q > min
{

1 , eβλ−1}, then the sequence
(

a(q)n

)
n∈N

diverges to ∞, faster than

exponentially (i.e., there do not exist constants c1, c2 ∈ R such that a(q)n ≤ ec1+c2n for all n ∈ N).

(P4) If q = 0, then one gets a(0)n ≡ −βλ.

Due to the linear interrelation (38), these results directly carry over to the behaviour of the sequence(
b(p,q)

n

)
n∈N

:

(P5) If p > 0 and 0 < q < βλ, then the sequence
(

b(p,q)
n

)
n∈N

is strictly decreasing and converges to

p · ex(q)0 − αλ. Trivially, b(p,q)
1 = p− αλ.

(P5a) If additionally p < αλ, then
(

b(p,q)
n

)
n∈N

is strictly negative for all n ∈ N.

(P5b) If additionally p = αλ, then
(

b(p,q)
n

)
n∈N

is strictly negative for all n ∈ N\{1}.

(P5c) If additionally p > αλ, then
(

b(p,q)
n

)
n∈N

is strictly positive for some (and possibly for all) n ∈ N.

(P6) If 0 < q = βλ, then b(p,q)
n ≡ p− αλ.

(P7) If p > 0 and q > max{0, βλ}, then the sequence
(

b(p,q)
n

)
n∈N

is strictly increasing.



Entropy 2020, 22, 874 26 of 121

(P7a) If additionally q ≤ min
{

1 , eβλ−1}, then the sequence
(

b(p,q)
n

)
n∈N

converges to p · ex(q)0 − αλ ∈]
p− αλ, p/q− αλ

]
; this limit can take any sign, depending on the parameter constellation.

(P7b) If additionally q > min
{

1 , eβλ−1}, then the sequence
(

b(p,q)
n

)
n∈N

diverges to ∞, faster than
exponentially.

(P8) For the remaining cases we get: b(0,q)
n ≡ −αλ and b(p,0)

n ≡ p · e−βλ − αλ (p ∈ R, q ∈ R).

Moreover, in our investigations we will repeatedly make use of the function ξ
(q)
λ (·) from the definition

(36) of a(q)n (see also (44)), which has the following properties:

(P9) For q ∈]0, ∞[ and all λ ∈ R\{0, 1} the function ξ
(q)
λ (·) is strictly increasing, strictly convex and smooth,

and there holds

(P9a) ξ
(q)
λ (0)


< 0, if q < βλ,
= 0, if q = βλ,
> 0, if q > βλ.

(P9b) lim
x→−∞

ξ
(q)
λ (x) = −βλ , and lim

x→∞
ξ
(q)
λ (x) = ∞ .

The proof of these properties is provided in Appendix A.1. From Properties 1 (P1) to (P4) we can
see, that the behaviour of the sequence

(
a(q)n

)
n∈N

can be classified basically into four different types;

besides the case (P2) where a(q)n is constant, the sequence can be either (i) strictly decreasing and convergent
(e.g., for the NI case (βA, βH, αA, αH, λ) = (0.5, 2, 0, 0, 0.5) leading to βλ = λβA + (1− λ)βH = 1.25
and to q := qE

λ = βλ
Aβ1−λ
H = 1, cf. (33) resp. Theorem 1(a)), or (ii) strictly increasing and convergent

(e.g., for (βA, βH, αA, αH, λ) = (0.5, 2, 0, 0, 1.5) leading to βλ = −0.25, q := qE
λ = 0.25), or (iii) strictly

increasing and divergent (e.g., for (βA, βH, αA, αH, λ) = (0.5, 2, 0, 0, 2.7) leading to βλ = −2.05, q := qE
λ ≈

0.047366). Within our running-example epidemiological context of Section 2.3, this corresponds to a
“potentially dangerous” infectious-disease-transmission situation (H) (with supercritical reproduction
number βH = 2), whereas (A) describes a “mild” situation (with “low” subcritical βA = 0.5).

As already mentioned before, the sequences
(

a(q)n

)
n∈N

and
(

b(p,q)
n

)
n∈N

–whose behaviours for

general p ≥ 0 and q ≥ 0 were described by the Properties 1–have to be evaluated at setup-dependent
choices p = pλ = p (βA, βH, αA, αH, λ) and q = qλ = q (βA, βH, αA, αH, λ). Hence, for fixed
(βA, βH, αA, αH), one of the questions–which arises in the course of the desired investigations of
the time-behaviour of the Hellinger integral bounds (resp. exact values)–is for which λ ∈ R the
sequence

(
a(qλ)

n

)
n∈N

converges. In the following, we illuminate this for the important special case

qλ = βλ
Aβ1−λ
H . Suppose at first that βA 6= βH. Properties 1 (P1) implies that for λ ∈]0, 1[ one has

limn→∞ a(qλ)
n = x(qλ)

0 ∈] − βλ, qλ − βλ[, and Lemma A1 states that qλ − βλ < 0. For λ ∈ R\[0, 1],

there holds qλ > max{0, βλ}, and from (P3) one can see that
(

a(qλ)
n

)
n∈N

does not converge to x(qλ)
0 in

general, but for qλ ≤ min{1, eβλ−1} which constitutes an implicit condition on λ. This can be made
explicit, with the help of the auxiliary variables

λ− := λ−(βA, βH) :=


inf
{

λ ≤ 0 : βλ
Aβ1−λ
H ≤ min

{
1 , exp{λβA + (1− λ)βH − 1}

}}
,

in case that the set is nonempty,
0, else,

λ+ := λ+(βA, βH) :=


sup

{
λ ≥ 1 : βλ

Aβ1−λ
H ≤ min

{
1 , exp{λβA + (1− λ)βH − 1}

}}
,

in case that the set is nonempty,
1, else.
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For the constellation βA = βH > 0 we clearly obtain qλ = βλ
Aβ1−λ
H = βA = βH = βλ. Hence,

(P2) implies that the sequence
(

a(qλ)
n

)
n∈N

converges for all λ ∈ R\{0, 1} and we can set λ− := −∞

as well as λ+ := ∞. Incorporating this and by adapting a result of Linkov & Lunyova [53] on
λ−(v1, v2), λ+(v1, v2) for βA 6= βH, we end up with

Lemma 1. (a) For all βA > 0, βH > 0 with βA 6= βH there holds

λ− = λ−(βA, βH) =


0, if βH ≥ 1,

λ̆, if βH < 1 and βA /∈ [βH, βH z(βH)],

−∞, if βH < 1 and βA ∈]βH, βH z(βH)],

λ+ = λ+(βA, βH) =


1, if βA ≥ 1,

λ̆, if βA < 1 and βH /∈ [βA, βA z(βA)],

∞, if βA < 1 and βH ∈]βA, βA z(βA)],

where

λ̆ := λ̆(βA, βH) :=
βH − 1− log (βH)

βH − βA + log
(

βA
βH

) { < 0, if βH < 1 and βA /∈ [βH, βH z(βH)],

> 1, if βA < 1 and βH /∈ [βA, βA z(βA)].

Here, for fixed β ∈]0, ∞[\{1} we denote by z(β) the unique solution of the equation log(x)− β(x− 1) = 0,
x ∈]0, ∞[\{1}. For β = 1, z(β) = 1 denotes the unique solution of log(x)− (x− 1) = 0, x ∈]0, ∞[.
(b) For all βA = βH > 0 one gets λ− = λ−(βA, βH) = −∞ as well as λ+ = λ+(βA, βH) = ∞.
Notice that the relationship λ̆(βA, βH) = 1− λ̆(βH, βA) is consistent with the skew symmetry (8).

A corresponding proof is given in Appendix A.1.
With these auxiliary basic facts in hand, let us now work out our detailed investigations of the

time-behaviour n 7→ Hλ(PA,n||PH,n), where we start with the exactly treatable case (a) in Theorem 1.

3.3. Detailed Analyses of the Exact Recursive Values, i.e., for the Cases (βA, βH, αA, αH) ∈ PNI ∪ PSP,1

In the no-immigration-case (βA, βH, αA, αH) ∈ PNI and in the equal-fraction-case
(βA, βH, αA, αH) ∈ PSP,1, the Hellinger integral can be calculated exactly in terms of Hλ(PA,n||PH,n) =

Vλ,X0,n (cf. (39)), as proposed in part (a) of Theorem 1. This quantity depends on the behaviour of

the sequence
(

a
(qE

λ)
n

)
n∈N

, with qE
λ := βλ

Aβ1−λ
H > 0, and of the sum

(
αA
βA

∑n
k=1 a

(qE
λ)

k

)
n∈N

. The last

expression is equal to zero on PNI. On PSP,1, this sum is unequal to zero. Using Lemma A1 we
conclude that qE

λ < βλ (resp. qE
λ > βλ) iff λ ∈]0, 1[ (resp. λ ∈ R\[0, 1]), since on PNI ∪ PSP,1 there holds

βA 6= βH. Thus, from Properties 1 (P1) we can see that the sequence
(

a
(qE

λ)
n

)
n∈N

is strictly negative,

strictly decreasing and it converges to the unique solution x
(qE

λ)
0 ∈]− βλ, qE

λ − βλ[ of the Equation (44)

if λ ∈]0, 1[. For λ ∈ R\[0, 1], (P3) implies that the sequence
(

a
(qE

λ)
n

)
n∈N

is strictly positive, strictly

increasing and converges to the smallest positive solution x
(qE

λ)
0 ∈]0,− log(qE

λ)] of the Equation (44) in
case that (P3a) is satisfied, otherwise it diverges to ∞. Thus, we have shown the following detailed
behaviour of Hellinger integrals:
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Proposition 2. For all (βA, βH, αA, αH, λ) ∈ PNI×]0, 1[ and all initial population sizes X0 ∈ N there holds

(a) Hλ(PA,1||PH,1) = exp
{(

βλ
A β1−λ
H − λβA − (1− λ)βH

)
X0

}
< 1,

(b) the sequence (Hλ(PA,n||PH,n))n∈N given by

Hλ(PA,n||PH,n) = exp
{

a
(qE

λ)
n X0

}
=: Vλ,X0,n

is strictly decreasing,

(c) lim
n→∞

Hλ(PA,n||PH,n) = exp
{

x
(qE

λ)
0 X0

}
∈ ]0, 1[ ,

(d) lim
n→∞

1
n

log Hλ(PA,n||PH,n) = 0

(e) the map X0 7→ Vλ,X0,n is strictly decreasing.

Proposition 3. For all (βA, βH, αA, αH, λ) ∈ PNI × (R\[0, 1]) and all initial population sizes X0 ∈ N there
holds with qE

λ := βλ
Aβ1−λ
H

(a) Hλ(PA,1||PH,1) = exp
{ (

βλ
A β1−λ
H − βλ

)
· X0

}
> 1,

(b) the sequence (Hλ(PA,n||PH,n))n∈N given by

Hλ(PA,n||PH,n) = exp
{

a
(qE

λ)
n · X0

}
=: Vλ,X0,n

is strictly increasing,

(c) lim
n→∞

Hλ(PA,n||PH,n) =

 exp
{

x
(qE

λ)
0 · X0

}
> 1, if λ ∈ [λ−, λ+] \ [0, 1],

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(d) lim
n→∞

1
n

log Hλ(PA,n||PH,n) =

{
0, if λ ∈ [λ−, λ+] \ [0, 1],
∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ Vλ,X0,n is strictly increasing.

In the case (βA, βH, αA, αH) ∈ PSP,1, the sequence
(

a
(qE

λ)
n

)
n∈N

under consideration is formally

the same, with the parameter qE
λ := βλ

Aβ1−λ
H > 0. However, in contrast to the case PNI, on PSP,1 both

the sequence
(

a
(qE

λ)
n

)
n∈N

and the sum
(

αA
βA

∑n
k=1 a

(qE
λ)

k

)
n∈N

are strictly decreasing in case that λ ∈]0, 1[,

and strictly increasing in case that λ ∈ R\[0, 1]. The respective convergence behaviours are given in
Properties 1 (P1) and (P3). We thus obtain

Proposition 4. For all (βA, βH, αA, αH, λ) ∈ PSP,1×]0, 1[ and all initial population sizes X0 ∈ N there holds
with qE

λ := βλ
Aβ1−λ
H

(a) Hλ(PA,1||PH,1) = exp
{(

βλ
A β1−λ
H − βλ

)
·
(

X0 +
αA
βA

)}
< 1,

(b) the sequence (Hλ(PA,n||PH,n))n∈N given by

Hλ(PA,n||PH,n) = exp

{
a
(qE

λ)
n · X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

}
=: Vλ,X0,n

is strictly decreasing,

(c) lim
n→∞

Hλ(PA,n||PH,n) = 0 ,

(d) lim
n→∞

1
n

log Hλ(PA,n||PH,n) =
αA
βA
· x(q

E
λ)

0 < 0 ,

(e) the map X0 7→ Vλ,X0,n is strictly decreasing.
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Proposition 5. For all (βA, βH, αA, αH, λ) ∈ PSP,1× (R\[0, 1]) and all initial population sizes X0 ∈ N there
holds with qE

λ := βλ
Aβ1−λ
H

(a) Hλ(PA,1||PH,1) = exp
{(

βλ
A β1−λ
H − βλ

)
·
(

X0 +
αA
βA

)}
> 1,

(b) the sequence (Hλ(PA,n||PH,n))n∈N given by

Hλ(PA,n||PH,n) = exp

{
a
(qE

λ)
n · X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

}
=: Vλ,X0,n

is strictly increasing,

(c) lim
n→∞

Hλ(PA,n||PH,n) = ∞,

(d) lim
n→∞

1
n

log Hλ(PA,n||PH,n) =

 αA
βA
· x(q

E
λ)

0 > 0, if λ ∈ [λ−, λ+] \ [0, 1] ,

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ Vλ,X0,n is strictly increasing.

Due to the nature of the equal-fraction-case PSP,1, in the assertions (a), (b), (d) of the Propositions 4
and 5, the fraction αA/βA can be equivalently replaced by αH/βH.

Remark 2. For the (to our context) incompatible setup of GWI with Poisson offspring but nonstochastic
immigration of constant value 1, an “analogue” of part (d) of the Propositions 4 resp. 5 was established in Linkov
& Lunyova [53].

3.4. Some Preparatory Basic Facts for the Remaining Cases (βA, βH, αA, αH) ∈ PSP\PSP,1

The bounds BL
λ,X0,n, BU

λ,X0,n for the Hellinger integral introduced in formula (40) in Theorem 1 can
be chosen arbitrarily from a (pL

λ, qL
λ, pU

λ , qU
λ )-indexed set of context-specific parameters satisfying (34),

or equivalently (35).
In order to derive bounds which are optimal, with respect to goals that will be discussed later,

the following monotonicity properties of the sequences
(

a(q)n

)
n∈N

and
(

b(p,q)
n

)
n∈N

(cf. (36), (37)) for

general, context-independent parameters q and p, will turn out to be very useful:

Properties 2.

(P10) For 0 ≤ q1 < q2 < ∞ there holds a(q1)
n < a(q2)

n for all n ∈ N.

(P11) For each fixed q ≥ 0 and 0 ≤ p1 < p2 < ∞ there holds b(p1,q)
n < b(p2,q)

n , for all n ∈ N.

(P12) For fixed p > 0 and 0 ≤ q1 < q2 it follows b(p,q1)
n < b(p,q2)

n for all n ∈ N.
(P13) Suppose that 0 ≤ p1 < p2 and 0 ≤ q2 < q1. For fixed n ∈ N, no dominance assertion can be conjectured

for b(p1,q1)
n , b(p2,q2)

n . As an example, consider the setup (βA, βH, αA, αH, λ) = (0.4, 0.8, 5, 3, 0.5);
within our running-example epidemiological context of Section 2.3, this corresponds to a “nearly
dangerous” infectious-disease-transmission situation (H) (with nearly critical reproduction number
βH = 0.8 and importation mean of αH = 3), whereas (A) describes a “mild” situation (with “low”
subcritical βA = 0.4 and αA = 5). On the nonnegative real line, the function φλ(x) can be bounded
from above by the linear functions φU,1

λ (x) := p1 + q1x := 4.040 + 0.593 · x as well as by φU,2
λ (x) :=

p2 + q2x := 4.110 + 0.584 · x. Clearly, p1 < p2 and q1 > q2. Let us show the first eight elements and
the respective limits of the corresponding sequences b(p1,q1)

n , b(p2,q2)
n :

n 1 2 3 4 5 6 7 8 · · · ∞

b(p1,q1)
n 0.040 0.011 −0.005 −0.015 −0.021 −0.024 −0.026 −0.028 · · · −0.029

b(p2,q2)
n 0.110 0.045 0.007 −0.014 −0.026 −0.033 −0.036 −0.039 · · · −0.041
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(P14) For arbitrary 0 < p1, p2 and 0 ≤ q1, q2 ≤ min{1, eβλ−1} suppose that log(p1) + x(q1)
0 < log(p2) +

x(q2)
0 . Then there holds

p1 · ex
(q1)
0 − αλ = lim

n→∞

1
n

n

∑
k=1

b(p1,q1)
k < lim

n→∞

1
n

n

∑
k=1

b(p2,q2)
k = p2 · ex(q2)

0 − αλ .

From (P10) to (P12) one deduces that both sequences
(

a(q)n

)
n∈N

and
(

b(p,q)
n

)
n∈N

are monotone

in the general parameters p, q ≥ 0. Thus, for the upper bound of the Hellinger integral BU
λ,X0,n

we should use nonnegative context-specific parameters pU
λ = pU (βA, βH, αA, αH, λ) and qU

λ =

qU (βA, βH, αA, αH, λ) which are as small as possible, and for the lower bound BL
λ,X0,n we should use

nonnegative context-specific parameters pL
λ = pL (βA, βH, αA, αH, λ) and qL

λ = qL (βA, βH, αA, αH, λ)

which are as large as possible, of course, subject to the (equivalent) restrictions (34) and (35).
To find “optimal” parameter pairs, we have to study the following properties of the function

φλ(·) = φ(·, βA, βH, αA, αH, λ) defined on [0, ∞[ in (30) (which are also valid for the previous parameter
context (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1)):

Properties 3.

(P15) One has

φλ(x) = (αA + βAx)λ (αH + βHx)1−λ − λ(αA + βAx) + (1− λ)(αH + βHx)

{
≤ 0, if λ ∈ ]0, 1[,

≥ 0, if λ ∈ R\[0, 1],

where equality holds iff fA(x) = fH(x) for some x ∈ [0, ∞[ iff x = x∗ := αA−αH
βH−βA

∈ [0, ∞[ .

(P16) There holds

φλ(0) = αλ
Aα1−λ
H − αλ

{
≤ 0, if λ ∈ ]0, 1[,

≥ 0, if λ ∈ R\[0, 1],

with equality iff αA = αH together with βA 6= βH (cf. Lemma A1).

(P17) For all λ ∈ R\{0, 1} one gets

φ′λ(x) = λβA ( fA(x))λ−1 ( fH(x))1−λ + (1− λ)βH ( fA(x))λ ( fH(x))−λ − βλ .

(P18) There holds

lim
x→∞

φ′λ(x) = βλ
Aβ1−λ
H − βλ

{
≤ 0, if λ ∈ ]0, 1[,

≥ 0, if λ ∈ R\[0, 1],

with equality iff βA = βH together with αA 6= αH (cf. Lemma A1).

(P19) There holds

φ′′λ(x) = −λ(1− λ) ( fA(x))λ−2 ( fH(x))−λ−1 (αAβH − αHβA)
2

{
≤ 0, if λ ∈ ]0, 1[,

≥ 0, if λ ∈ R\[0, 1],

with equality iff (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1). Hence, for (βA, βH, αA, αH) ∈
PSP\PSP,1, the function φλ is strictly concave (convex) for λ ∈]0, 1[ (λ ∈ R\[0, 1]).

Notice that φ′λ(0) = λβA
(

αA
αH

)λ−1
+ (1 − λ)βH

(
αA
αH

)λ
− βλ can be either negative

(e.g., for the setup (βA, βH, αA, αH, λ) ∈
{
(4, 2, 3, 1, 0.5) , (4, 2, 5, 1, 2)

}
, or zero

(e.g., for (βA, βH, αA, αH, λ) ∈
{
(4, 2, 4, 1, 0.5), (4, 2, 3, 1, 2)

}
), or positive (e.g.,

for (βA, βH, αA, αH, λ) ∈
{
(4, 2, 5, 1, 0.5),(4, 2, 2, 1, 2)

}
), where the exemplary parameter
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constellations have concrete interpretations in our running-example epidemiological context of
Section 2.3. Accordingly, for λ ∈]0, 1[, due to concavity and (P17), the function φλ(·) can be either
strictly decreasing, or can obtain its global maximum in ]0, ∞[, or–only in the case βA = βH—can be
strictly increasing. Analogously, for λ ∈ R\[0, 1], the function φλ(·) can be either strictly increasing,
or can obtain its global minimum in ]0, ∞[, or–only in the case βA = βH—can be strictly decreasing.

(P20) For all λ ∈ R\{0, 1} one has

lim
x→∞

(
φλ(x)− (r̃λ + s̃λ x)

)
= 0 ,

for r̃λ := p̃λ − αλ := λαA

(
βA
βH

)λ−1
+ (1− λ)αH

(
βA
βH

)λ

− αλ

and s̃λ := q̃λ − βλ := βλ
Aβ1−λ
H − βλ .

The linear function φ̃λ(x) := r̃λ + s̃λ · x constitutes the asymptote of φλ(·). Notice that if βA = βH
one has s̃λ = 0 = r̃λ; if βA 6= βH we have s̃λ < 0 in the case λ ∈]0, 1[ and s̃λ > 0 if
λ ∈ R\[0, 1]. Furthermore, φλ(0) < r̃λ if λ ∈]0, 1[ and φλ(0) > r̃λ if λ ∈ R\[0, 1], (cf.
Lemma A1(c1) and (c2)). If αA = αH (and thus βA 6= βH), then the intercept r̃λ is strictly positive
if λ ∈]0, 1[ resp. strictly negative if λ ∈ R\[0, 1]. In contrast, for the case αA 6= αH, the intercept
r̃λ can assume any sign, take e.g., (βA, βH, αA, αH, λ) ∈ {(3.7, 0.9, 2.0, 1.0, 0.5), (4, 2, 1.6, 1, 2)}
for r̃λ > 0, (βA, βH, αA, αH, λ) ∈ {(3.6, 0.9, 2.0, 1.0, 0.5), (4, 2, 1.5, 1, 2)} for r̃λ = 0,
and (βA, βH, αA, αH, λ) ∈ {(3.5, 0.9, 2.0, 1.0, 0.5), (4, 2, 1.4, 1, 2)} for r̃λ < 0; again, the exemplary
parameter constellations have concrete interpretations in our running-example epidemiological context
of Section 2.3.

The properties (P15) to (P20) above describe in detail the characteristics of the function φλ(·) =

φ(·, βA, βH, αA, αH, λ). In the previous parameter setup PNI ∪ PSP,1, this function is linear, which can
be seen from (P19). In the current parameter setup PSP\PSP,1, this function can basically be classified
into four different types. From (P16) to (P20) it is easy to see that for all current parameter constellations
the particular choices

pA
λ := αλ

Aα1−λ
H > 0, qA

λ := βλ
Aβ1−λ
H > 0, (45)

which correspond to the following choices in (35)

rA
λ := αλ

Aα1−λ
H − αλ ≤ 0 (resp. ≥ 0), sA

λ := βλ
Aβ1−λ
H − βλ ≤ 0 (resp. ≥ 0),

– where A = L (resp. A = U)–lead to the tightest lower bound BL
λ,X0,n (resp. upper bound BU

λ,X0,n) for
Hλ(PA,n||PH,n) in (40) in the case λ ∈]0, 1[ (resp. λ ∈ R\[0, 1]). Notice that for the previous parameter
setup (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1) these choices led to the exact values of the Hellinger integral

and to the simplification
(

pE
λ/qE

λ

)
· βλ − αλ = 0, which implies b

(pE
λ ,qE

λ)
n = (αA/βA) · a

(qE
λ)

n . In contrast,
in the current parameter setup (βA, βH, αA, αH) ∈ PSP\PSP,1 we only derive the optimal lower (resp.
upper) bound for λ ∈]0, 1[ (resp. λ ∈ R\[0, 1]) by using the parameters pA

λ , qA
λ for A = L (resp. A = U)

and
(

pA
λ /qA

λ

)
· βλ − αλ 6= 0. For a better distinguishability and easier reference we thus stick to the

L−notation (resp. U−notation) here.

3.5. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[

The discussion above implies that the lower bound BL
λ,X0,n for the Hellinger integral

Hλ(PA,n||PH,n) in (40) is optimal for the choices pL
λ, qL

λ > 0 defined in (45). If βA 6= βH, due to

Properties 1 (P1) and Lemma A1, the sequence
(

a
(qL

λ)
n

)
n∈N

is strictly negative and strictly decreasing

and converges to the unique negative solution of the Equation (44). Furthermore, due to (P5),
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the sequence
(

b
(pL

λ ,qL
λ)

n

)
n∈N

, as defined in (37), is strictly decreasing. Since b
(pL

λ ,qL
λ)

1 = pL
λ − αλ ≤ 0 by

Lemma A1, with equality iff αA = αH, the sequence
(

b
(pL

λ ,qL
λ)

n

)
n∈N

is also strictly negative (with the

exception b
(pL

λ ,qL
λ)

1 = 0 for αA = αH) and strictly decreasing. If βA = βH and thus αA 6= αH, due to (P2),

(P6) and Lemma A1, there holds a
(qL

λ)
n ≡ 0 and b

(qL
λ)

n ≡ pL
λ − αλ < 0. Thus, analogously to the cases

PNI ∪ PSP,1 we obtain

Proposition 6. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ and all initial population sizes X0 ∈ N
there holds with pL

λ := αλ
Aα1−λ
H , qL

λ := βλ
Aβ1−λ
H

(a) BL
λ,X0,1 = exp

{(
βλ
A β1−λ
H − βλ

)
· X0 + αλ

Aα1−λ
H − αλ

}
< 1,

(b) the sequence of lower bounds
(

BL
λ,X0,n

)
n∈N

for Hλ(PA,n||PH,n) given by

BL
λ,X0,n = exp

{
a
(qL

λ)
n · X0 +

pL
λ

qL
λ

n

∑
k=1

a
(qL

λ)

k + n ·
(

pL
λ

qL
λ

· βλ − αλ

)}
is strictly decreasing,

(c) lim
n→∞

BL
λ,X0,n = 0 ,

(d) lim
n→∞

1
n

log BL
λ,X0,n =

pL
λ

qL
λ

·
(

x
(qL

λ)
0 + βλ

)
− αλ = pL

λ · ex
(qL

λ
)

0 − αλ < 0 .

(e) the map X0 7→ BL
λ,X0,n is strictly decreasing.

3.6. Goals for Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[

For parameter constellations (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[, in contrast to the treatment
of the lower bounds (cf. the previous Section 3.5), the fine-tuning of the upper bounds of the
Hellinger integrals Hλ(PA,n||PH,n) is much more involved. To begin with, let us mention that the
monotonicity-concerning Properties 2 (P10) to (P12) imply that for a tight upper bound BU

λ,X0,n (cf. (40))
one should choose parameters pU

λ ≥ pL
λ > 0, qU

λ ≥ qL
λ > 0 as small as possible. Due to the concavity

(cf. Properties 3 (P19)) of the function φλ(·), the linear upper bound φU
λ (·) (on the ultimately relevant

subdomain N0) thus must hit the function φλ(·) in at least one point x ∈ N0, which corresponds to
some “discrete tangent line” of φλ(·) in x, or in at most two points x, x + 1 ∈ N0, which corresponds to
the secant line of φλ(·) across its arguments x and x + 1. Accordingly, there is in general no overall best
upper bound; of course, one way to obtain “good” upper bounds for Hλ(PA,n||PH,n) is to solve the
optimization problem

(
pU

λ , qU
λ

)
:= arg min

(pU
λ ,qU

λ )

{
exp

{
a
(qU

λ )
n · X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}}
, (46)

subject to the constraint (35). However, the corresponding result generally depends on the particular
choice of the initial population X0 ∈ N and on the observation time horizon n ∈ N. Hence, there is
in general no overall optimal choice of pU

λ , qU
λ without the incorporation of further goal-dependent

constraints such as limn→∞ BU
λ,X0,n = 0 in case of limn→∞ Hλ(PA,n||PH,n) = 0. By the way, mainly

because of the non-explicitness of the sequence
(

a
(qU

λ )
n

)
n∈N

(due to the generally not explicitly

solvable recursion (36)) and the discreteness of the constraint (35), this optimization problem seems
to be not straightforward to solve, anyway. The choice of parameters pU

λ , qU
λ for the upper bound

BU
λ,X0,n ≥ Hλ(PA,n||PH,n) can be made according to different, partially incompatible (“optimality-”

resp. “goodness-”) criteria and goals, such as:
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(G1) the validity of BU
λ,X0,n < 1 simultaneously for all initial configurations X0 ∈ N, all observation

horizons n ∈ N and all λ ∈]0, 1[, which leads to a strict improvement of the general upper bound
Hλ(PA,n||PH,n) < 1 (cf. (9));

(G2) the determination of the long-term-limits limn→∞ Hλ(PA,n||PH,n) respectively limn→∞ BU
λ,X0,n

for all X0 ∈ N and all λ ∈]0, 1[; in particular, one would like to check whether
limn→∞ Hλ(PA,n||PH,n) = 0, which implies that the families of probability distributions
(PA,n)n∈N and (PH,n)n∈N are asymptotically distinguishable (entirely separated), cf. (25);

(G3) the determination of the time-asymptotical growth rates limn→∞
1
n log

(
Hλ(PA,n||PH,n)

)
resp.

limn→∞
1
n log

(
BU

λ,X0,n
)

for all X0 ∈ N and all λ ∈]0, 1[.

Further goals–with which we do not deal here for the sake of brevity–are for instance (i) a very
good tightness of the upper bound BU

λ,X0,n for n ≥ N for some fixed large N ∈ N, or (ii) the criterion
(G1) with fixed (rather than arbitrary) initial population size X0 ∈ N.

Let us briefly discuss the three Goals (G1) to (G3) and their challenges: due to Theorem 1, Goal

(G1) can only be achieved if the sequence
(

a
(qU

λ )
n

)
n∈N

is non-increasing, since otherwise, for each fixed

observation horizon n ∈ N there is a large enough initial population size X0 such that the upper bound

component B̃
(pU

λ ,qU
λ )

λ,X0,n becomes larger than 1, and thus BU
λ,X0,n = 1 (cf. (40)). Hence, Properties 1 (P1) and

(P2) imply that one should have qU
λ ≤ βλ. Then, the sequence

(
b
(pU

λ ,qU
λ )

n

)
n∈N

is also non-increasing.

However, since b
(pU

λ ,qU
λ )

n might be positive for some (even all) n ∈ N, the sum
(

∑n
k=1 b

(pU
λ ,qU

λ )

k

)
n∈N

is

not necessarily decreasing. Nevertheless, the restriction

qU
λ − βλ ≤ 0 and pU

λ − αλ ≤ 0, where at least one of the inequalities is strict, (47)

ensures that both sequences
(

a
(qU

λ )
n

)
n∈N

and
(

b
(pL

λ ,qU
λ )

n

)
n∈N

are nonpositive and decreasing, where at

least one sequence is strictly negative, implying that the sum
(

∑n
k=1 b

(pU
λ ,qU

λ )

k

)
n∈N

is strictly negative

for n ≥ 2 and strictly decreasing. To see this, suppose that (47) is satisfied with two strict inequalities.

Then,
(

a
(qU

λ )
n

)
n∈N

as well as
(

b
(pL

λ ,qU
λ )

n

)
n∈N

are strictly negative and strictly decreasing. If qU
λ = βλ

and pU
λ < αλ, we see from (P2) and (P6) that a

(qU
λ )

n ≡ 0 and that b
(pU

λ ,qU
λ )

n ≡ pU
λ − αλ < 0 (notice that

αλ = 0 is not possible in the current setup PSP\PSP,1 and for λ ∈]0, 1[). In the last case qU
λ < βλ and

pU
λ = αλ, from (P1) and (P5) it follows that

(
a
(qU

λ )
n

)
n∈N

is strictly negative and strictly decreasing,

as well as that b
(pU

λ ,qU
λ )

1 = 0 and
(

b
(pL

λ ,qU
λ )

n

)
n∈N

is strictly decreasing and strictly negative for n ≥ 2.

Thus, whenever (47) is satisfied, the sum
(

∑n
k=1 b

(pU
λ ,qU

λ )

k

)
n∈N

is strictly negative for n ≥ 2 and

strictly decreasing.

To achieve Goal (G2), we have to require that the sequence
(

a
(qU

λ )
n

)
n∈N

converges, which is the

case if either qU
λ ≤ βλ or βλ < qU

λ ≤ min{1, eβλ−1} (cf. Properties 1 (P1) to (P3)). From the upper bound

component B̃
(pU

λ ,qU
λ )

λ,X0,n (42) we conclude that Goal (G2) is met if the sequence
(

b
(pU

λ ,qU
λ )

n

)
n∈N

converges

to a negative limit, i.e., limn→∞ b
(pU

λ ,qU
λ )

n = pU
λ · e

x
(qU

λ
)

0 − αλ < 0. Notice that this condition holds true

if (47) is satisfied: suppose that qU
λ < βλ, then x

(qU
λ )

0 < 0 and pU
λ · e

x
(qU

λ
)

0 − αλ < pU
λ − αλ ≤ 0. On the

other hand, if pU
λ − αλ < 0, one obtains x

(qU
λ )

0 ≤ 0 leading to pU
λ · e

x
(qU

λ
)

0 − αλ ≤ pU
λ − αλ < 0.
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The examination of Goal (G2) above enters into the discussion of Goal (G3): if the sequence(
a
(qU

λ )
n

)
n∈N

converges and limn→∞ BU
λ,X0,n = 0, then there holds

lim
n→∞

1
n

log
(

BU
λ,X0,n

)
= lim

n→∞

1
n

log
(

B̃
(pU

λ ,qU
λ )

λ,X0,n

)
= pU

λ · e
x
(qU

λ
)

0 − αλ . (48)

For the case (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[, let us now start with our comprehensive
investigations of the upper bounds, where we focus on fulfilling the condition (47) which tackles Goals
(G1) and (G2) simultaneously; then, the Goal (G3) can be achieved by (48). As indicated above, various
different parameter subcases can lead to different Hellinger-integral-upper-bound details, which we
work out in the following. For better transparency, we employ the following notations (where the first
four are just reminders of sets which were already introduced above)

PNI :=
{
(βA, βH, αA, αH) ∈ [0, ∞[4 : αA = αH = 0; βA > 0; βH > 0; βA 6= βH

}
,

PSP :=
{
(βA, βH, αA, αH) ∈ ]0, ∞[4 : (αA 6= αH) or (βA 6= βH) or both

}
,

P := PNI ∪ PSP,

PSP,1 :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA

=
αH
βH

}
,

PSP,2 := { (βA, βH, αA, αH) ∈ PSP : αA = αH, βA 6= βH } ,

PSP,3 :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH

}
= PSP,3a ∪ PSP,3b ∪ PSP,3c ,

PSP,3a :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH
,

αA − αH
βH − βA

∈ ]−∞, 0[
}

,

PSP,3b :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH
,

αA − αH
βH − βA

∈ ]0, ∞[\N
}

,

PSP,3c :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH
,

αA − αH
βH − βA

∈ N
}

,

PSP,4 := { (βA, βH, αA, αH) ∈ PSP : αA 6= αH > 0, βA = βH } = PSP,4a ∪ PSP,4b ,

PSP,4a := { (βA, βH, αA, αH) ∈ PSP : αA 6= αH > 0, βA = βH ∈ ]0, 1[ } ,

PSP,4b := { (βA, βH, αA, αH) ∈ PSP : αA 6= αH > 0, βA = βH ∈ [1, ∞[ } ; (49)

notice that because of Lemma A1 and of the Properties 3 (P15) one gets on the domain ]0, ∞[ the
relation φλ(x) = 0 iff fA(x) = fH(x) iff x = x∗ := αH−αA

βA−βH
∈ ]0, ∞[.

3.7. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,2×]0, 1[

For this parameter constellation, one has φλ(0) = 0 and φ′λ(0) = 0 (cf. Properties 3 (P16),
(P17)). Thus, the only admissible intercept choice satisfying (47) is rU

λ = 0 = pU
λ − αλ

(
i.e., pU

λ =

pU (βA, βH, αA, αH, λ) = αλ = α > 0
)
, and the minimal admissible slope which implies (35) for all

x ∈ N0 is given by sU
λ = φλ(1)−φλ(0)

1−0 = qU
λ − βλ = a

(qU
λ )

1 < 0
(
i.e., qU

λ = qU (βA, βH, αA, αH, λ) =

(α + βA)
λ(α + βH)

1−λ − α > 0
)
. Analogously to the investigation for PSP,1 in the above-mentioned

Section 3.3, one can derive that
(

a
(qU

λ )
n

)
n∈N

is strictly negative, strictly decreasing, and converges to

x
(qU

λ )
0 ∈]− βλ, qU

λ − βλ[ as indicated in Properties 1 (P1). Moreover, in the same manner as for the case
PSP,1 this leads to
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Proposition 7. For all (βA, βH, αA, αH, λ) ∈ PSP,2×]0, 1[ and all initial population sizes X0 ∈ N there holds
with pU

λ = α, qU
λ = (α + βA)

λ(α + βH)
1−λ − α

(a) BU
λ,X0,1 = exp

{(
qU

λ − βλ

)
· X0

}
< 1,

(b) the sequence
(

BU
λ,X0,n

)
n∈N

of upper bounds for Hλ(PA,n||PH,n) given by

BU
λ,X0,n = exp

{
a
(qU

λ )
n · X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}
is strictly decreasing,

(c) lim
n→∞

BU
λ,X0,n = 0 = lim

n→∞
Hλ(PA,n||PH,n) ,

(d) lim
n→∞

1
n

log BU
λ,X0,n = pU

λ · e
x
(qU

λ
)

0 − αλ = α

(
ex

(qU
λ
)

0 − 1

)
< 0 .

(e) the map X0 7→ BU
λ,X0,n is strictly decreasing.

3.8. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3a×]0, 1[

From Properties 3 (P16) one gets φλ(0) < 0, whereas φ′λ(0) can assume any sign, take e.g.,
the parameters (βA, βH, αA, αH, λ) = (1.8, 0.9, 2.7, 0.7, 0.5) for φ′λ(0) < 0, (βA, βH, αA, αH, λ) =

(1.8, 0.9, 2.8, 0.7, 0.5) for φ′λ(0) = 0 and (βA, βH, αA, αH, λ) = (1.8, 0.9, 2.9, 0.7, 0.5) for φ′λ(0) > 0; within
our running-example epidemiological context of Section 2.3, this corresponds to a “nearly dangerous”
infectious-disease-transmission situation (H) (with nearly critical reproduction number βH = 0.9 and
importation mean of αH = 0.7), whereas (A) describes a “dangerous” situation (with supercritical
βA = 1.8 and αA = 2.7, 2.8, 2.9). However, in all three subcases there holds maxx∈N0 φλ(x) ≤
maxx∈[0,∞[ φλ(x) < 0. Thus, there clearly exist parameters pU

λ = pU (βA, βH, αA, αH, λ) , qU
λ =

qU (βA, βH, αA, αH, λ) with pU
λ ∈

[
αλ
Aα1−λ
H , αλ

[
and qU

λ ∈
[
βλ
Aβ1−λ
H , βλ

[
(implying (47)) such that (35)

is satisfied. As explained above, we get the following

Proposition 8. For all (βA, βH, αA, αH, λ) ∈ PSP,3a×]0, 1[ there exist parameters pU
λ , qU

λ which satisfy
pU

λ ∈
[
αλ
Aα1−λ
H , αλ

[
and qU

λ ∈
[
βλ
Aβ1−λ
H , βλ

[
as well as (35) for all x ∈ N0, and for all such pairs (pU

λ , qU
λ )

and all initial population sizes X0 ∈ N there holds

(a) BU
λ,X0,1 = exp

{(
qU

λ − βλ

)
· X0 + pU

λ − αλ

}
< 1,

(b) the sequence
(

BU
λ,X0,n

)
n∈N

of upper bounds for Hλ(PA,n||PH,n) given by

BU
λ,X0,n = exp

{
a
(qU

λ )
n X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}
is strictly decreasing,

(c) lim
n→∞

BU
λ,X0,n = 0 = lim

n→∞
Hλ(PA,n||PH,n) ,

(d) lim
n→∞

1
n

log BU
λ,X0,n = pU

λ · e
x
(qU

λ
)

0 − αλ < 0 ,

(e) the map X0 7→ BU
λ,X0,n is strictly decreasing.

Notice that all parts of this proposition also hold true for parameter pairs (pU
λ , qU

λ ) satisfying (35)
and additionally either pU

λ = αλ, qU
λ < βλ or pU

λ < αλ, qU
λ = βλ.

Let us briefly illuminate the above-mentioned possible parameter choices, where we begin with the
case of φ′λ(0) ≤ 0, which corresponds to λβA (αA/αH)

λ−1 + (1− λ)βH (αA/αH)
λ − βλ ≤ 0 (cf. (P17));

then, the function φλ(·) is strictly negative, strictly decreasing, and–due to (P19)–strictly concave (and
thus, the assumption αH−αA

βA−βH
< 0 is superfluous here). One pragmatic but yet reasonable parameter
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choice is the following: take any intercept pU
λ ∈ [αλ

Aα1−λ
H , αλ] such that (pU

λ − αλ) + 2(φλ(1)− (pU
λ −

αλ)) ≥ φλ(2)
(

i.e., 2 (αA + βA)
λ (αH + βH)

1−λ − pU
λ + αλ ≥ (αA + 2βA)

λ (αH + 2βH)
1−λ

)
and

qU
λ := φλ(1) − (pU

λ − αλ) + βλ = (αA + βA)
λ (αH + βH)

1−λ − pU
λ , which corresponds to a linear

function φU
λ which is (i) nonpositive on N0 and strictly negative on N, and (ii) larger than or

equal to φλ on N0, strictly larger than φλ on N\{1, 2}, and equal to φλ at the point x = 1 (“discrete
tangent or secant line through x = 1”). One can easily see that (due to the restriction (34)) not all
pU

λ ∈ [αλ
Aα1−λ
H , αλ] might qualify for the current purpose. For the particular choice pU

λ = αλ
Aα1−λ
H and

qU
λ = (αA + βA)

λ (αH + βH)
1−λ − αλ

Aα1−λ
H one obtains rU

λ = pU
λ − αλ = b

(pU
λ ,qU

λ )
1 < 0 (cf. Lemma A1)

and sU
λ = qU

λ − βλ = φλ(1)− φλ(0) = a
(qU

λ )
1 < 0 (secant line through φλ(0) and φλ(1)).

For the remaining case φ′λ(0) > 0, which corresponds to λβA (αA/αH)
λ−1 + (1 −

λ)βH (αA/αH)
λ − βλ > 0, the function φλ(·) is strictly negative, strictly concave and hump-shaped

(cf. (P18)). For the derivation of the parameter choices, we employ xmax := argmaxx∈]0,∞[φλ(x) which
is the unique solution of

λβA

[(
fA(x)
fH(x)

)λ−1

− 1

]
+ (1− λ)βH

[(
fA(x)
fH(x)

)λ

− 1

]
= 0 , x ∈]0, ∞[ , (50)

(cf. (P17), (P19)); notice that x = x∗ := αH−αA
βA−βH

∈ ]0, ∞[ formally satisfies the Equation (50) but does not
qualify because of the current restriction x∗ < 0.

Let us first inspect the case φλ(bxmaxc) > φλ(bxmaxc+ 1), where bxc denotes the integer part of x.
Consider the subcase φλ(bxmaxc) + bxmaxc (φλ(bxmaxc)− φλ(bxmaxc+ 1)) ≤ 0, which means that the
secant line through φλ(bxmaxc) and φλ(bxmaxc+ 1) possesses a non-positive intercept. In this situation

it is reasonable to choose as intercept any pU
λ − αλ = b

(pU
λ ,qU

λ )
1 = rU

λ ∈ [φλ(bxmaxc), φλ(bxmaxc) +

bxmaxc (φλ(bxmaxc)− φλ(bxmaxc+ 1))], and as corresponding slope qU
λ − αλ = a

(qU
λ )

1 = sU
λ =

φλ(bxmaxc)−rU
λ

(bxmaxc)−0 ≤ 0. A larger intercept would lead to a linear function φU
λ for which (35) is not

valid at bxmaxc + 1. In the other subcase φλ(bxmaxc) + xmax (φλ(bxmaxc)− φλ(bxmaxc+ 1)) > 0,

one can choose any intercept pU
λ − αλ = b

(pU
λ ,qU

λ )
1 = rU

λ ∈ [φλ(bxmaxc), 0] and as corresponding slope

qU
λ − αλ = a

(qU
λ )

1 = sU
λ =

φλ(bxmaxc)−rU
λ

(bxmaxc)−0 ≤ 0 (notice that the corresponding line φU
λ is on ]bxmaxc, ∞[

strictly larger than the secant line through φλ(bxmaxc) and φλ(bxmaxc+ 1)).
If φλ(bxmaxc) ≤ φλ(bxmaxc + 1), one can proceed as above by substituting the crucial pair of

points (bxmaxc, bxmaxc+ 1) with (bxmaxc+ 1, bxmaxc+ 2) and examining the analogous two subcases.

3.9. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3b×]0, 1[

The only difference to the preceding Section 3.8 is that–due to Properties 3 (P15)–the maximum
value of φλ(·) now achieves 0, at the positive non-integer point xmax = x∗ = αH−αA

βA−βH
∈

]0, ∞[\N (take e.g., (βA, βH, αA, αH, λ) = (1.8, 0.9, 1.1, 3.0, 0.5) as an example, which within our
running-example epidemiological context of Section 2.3 corresponds to a “nearly dangerous”
infectious-disease-transmission situation (H) (with nearly critical reproduction number βH = 0.9
and importation mean of αH = 3), whereas (A) describes a “dangerous” situation (with supercritical
βA = 1.8 and αA = 1.1)); this implies that φλ(x) < 0 for all x on the relevant subdomain N0. Due to
(P16), (P17) and (P19) one gets automatically λβA (αA/αH)

λ−1 + (1− λ)βH (αA/αH)
λ− βλ > 0 for all

λ ∈]0, 1[. Analogously to Section 3.8, there exist parameter pU
λ ∈ [αλ

Aα1−λ
H , αλ] and qU

λ ∈ [βλ
Aβ1−λ
H , βλ]

such that (47) and (35) are satisfied. Thus, all the assertions (a) to (e) of Proposition 8 also hold true for
the current parameter constellations.



Entropy 2020, 22, 874 37 of 121

3.10. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3c×]0, 1[

The only difference to the preceding Section 3.9 is that the maximum value of φλ(·) now achieves
0 at the integer point xmax = x∗ = αH−αA

βA−βH
∈ N (take e.g., (βA, βH, αA, αH, λ) = (1.8, 0.9, 1.2, 3.0, 0.5) as

an example). Accordingly, there do not exist parameters pU
λ , qU

λ , such that (35) and (47) are satisfied

simultaneously. The only parameter pair that ensures exp
{

a
(qU

λ )
n · X0 + ∑n

k=1 b
(pU

λ ,qU
λ )

k

}
≤ 1 for all

n ∈ N and all X0 ∈ N without further investigations, leads to the choices pU
λ = αλ as well as

qU
λ = βλ. Consequently, BU

λ,X0,n ≡ 1, which coincides with the general upper bound (9), but violates
the above-mentioned desired Goal (G1). However, there might exist parameters pU

λ < αλ, qU
λ > βλ or

pU
λ > αλ, qU

λ < βλ, such that at least the parts (c) and (d) of Proposition 8 are satisfied. Nevertheless,
by using a conceptually different method we can prove

Hλ(PA,n||PH,n) < 1 ∀ n ∈ N\{1} as well as the convergence lim
n→∞

Hλ(PA,n||PH,n) = 0 (51)

which will be used for the study of complete asymptotical distinguishability (entire separation) below.
This proof is provided in Appendix A.1.

3.11. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4a×]0, 1[

This setup and the remaining setup (βA, βH, αA, αH, λ) ∈ PSP,4b×]0, 1[ (see the next Section 3.12)
are the only constellations where φλ(·) is strictly negative and strictly increasing, with limx→∞ φλ(x) =
limx→∞ φ′λ(x) = 0, leading to the choices pU

λ = αλ as well as qU
λ = βλ = β under the restriction that

exp
{

a
(qU

λ )
n · X0 + ∑n

k=1 b
(pU

λ ,qU
λ )

k

}
≤ 1 for all n ∈ N and all X0 ∈ N. Consequently, one has BU

λ,X0,n ≡ 1,
which is consistent with the general upper bound (9) but violates the above-mentioned desired Goal
(G1). Unfortunately, the proof method of (51) (cf. Appendix A.1) can’t be carried over to the current
setup. The following proposition states two of the above-mentioned desired assertions which can be
verified by a completely different proof method, which is also given in Appendix A.1.

Proposition 9. For all (βA, βH, αA, αH, λ) ∈ PSP,4a×]0, 1[ there exist parameters pU
λ < αλ, 1 > qU

λ >

βλ = β such that (35) is satisfied for all x ∈ [0, ∞[ and such that for all initial population sizes X0 ∈ N the
parts (c) and (d) of Proposition 8 hold true.

3.12. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4b×]0, 1[

The assertions preceding Proposition 9 remain valid. However, any linear upper bound of the
function φλ(·) on the domain N0 possesses the slope qU

λ − βλ ≥ 0. If qU
λ = βλ, then the intercept is

pU
λ − αλ = 0 leading to BU

λ,X0,n ≡ 1 and thus Goal (G1) is violated. If we use a slope qU
λ − βλ > 0,

then both the sequences
(

a
(qU

λ )
n

)
n∈N

and
(

b
(pU

λ ,qU
λ )

n

)
n∈N

are strictly increasing and diverge to ∞.

This comes from Properties 1 (P3b) and (P7b) since qU
λ > βλ = β ≥ 1. Altogether, this implies that the

corresponding upper bound component B̃
(pU

λ ,qU
λ )

λ,X0,n (cf. (42)) diverges to ∞ as well. This leads to

Proposition 10. For all (βA, βH, αA, αH, λ) ∈ PSP,4b×]0, 1[ and all initial population sizes X0 ∈ N there
do not exist parameters pU

λ ≥ 0, qU
λ ≥ 0 such that (35) is satisfied and such that the parts (c) and (d) of

Proposition 8 hold true.

3.13. Concluding Remarks on Alternative Upper Bounds for all Cases (βA, βH, αA, αH, λ) ∈
(PSP\PSP,1)×]0, 1[

As mentioned earlier on, starting from Section 3.6 we have principally focused on constructing
upper bounds BU

λ,X0,n of the Hellinger integrals, starting from pU
λ , qU

λ which fulfill (35) as well as further
constraints depending on the Goals (G1) and (G2). For the setups in the Sections 3.7–3.9, we have
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proved the existence of special parameter choices pU
λ , qU

λ which were consistent with (G1) and (G2).
Furthermore, for the constellation in the Section 3.11 we have found parameters such that at least
(G2) is satisfied. In contrast, for the setup of Section 3.12 we have not found any choices which are
consistent with (G1) and (G2), leading to the “cut-off bound” BU

λ,X0,n ≡ 1 which gives no improvement
over the generally valid upper bound (9).

In the following, we present some alternative choices of pU
λ , qU

λ which–depending on the parameter
constellation (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[–may or may not lead to upper bounds BU

λ,X0,n
which are consistent with Goal (G1) or with (G2) (and which are maybe weaker or better than resp.
incomparable with the previous upper bounds when dealing with some relaxations of (G1), such as
e.g., Hλ(PA,n||PH,n) < 1 for all but finitely many n ∈ N).

As a first alternative choice for a linear upper bound of φλ(·) (cf. (35)) one could use the
asymptote φ̃λ(·) (cf. Properties 3 (P20)) with the parameters pU

λ := p̃λ = λαA (βA/βH)
λ−1 + (1−

λ)αH (βA/βH)
λ and qU

λ := q̃λ = βλ
Aβ1−λ
H . Another important linear upper bound of φλ(·) is the

tangent line φtan
λ,y(·) on φλ(·) at an arbitrarily fixed point y ∈ [0, ∞[, which amounts to

φtan
λ,y(x) := rtan

λ,y + stan
λ,y · x :=

(
ptan

λ,y − αλ

)
+
(

qtan
λ,y − βλ

)
· x :=

(
φλ(y)− y ·φ′λ(y)

)
+ φ′λ(y) · x , (52)

where φ′λ(·) is given by (P17). Notice that this upper bound is for y ∈]0, ∞[\N “not tight” in the sense
that φtan

λ,y(·) does not hit the function φλ(·) on N0 (where the generation sizes “live”); moreover, φtan
λ,y(x)

might take on strictly positive values for large enough points x which is counter-productive for Goal
(G1). Another alternative choice of a linear upper bound for φλ(·), which in contrast to the tangent
line is “tight” (but not necessarily avoiding the strict positivity), is the secant line φsec

λ,k(·) across its
arguments k and k + 1, given by

φsec
λ,k(x) := rsec

λ,k + ssec
λ,k · x :=

(
psec

λ,k − αλ

)
+
(

qsec
λ,k − βλ

)
· x

:=
[
φλ(k)− k ·

(
φλ(k + 1)− φλ(k)

)]
+
(

φλ(k + 1)− φλ(k)
)
· x . (53)

Another alternative choice is the horizontal line

φhor
λ (x) ≡ max

{
φλ(y), y ∈ N0

}
. (54)

For pU
λ ∈

{
p̃λ , ptan

λ,y , psec
λ,y

}
and qU

λ ∈
{

qtan
λ,y , qsec

λ,y

}
it is possible that in some parameter cases

(βA, βH, αA, αH) either the intercept rU
λ = pU

λ − αλ is strictly larger than zero or the slope sU
λ = qU

λ − βλ

is strictly larger than zero. Thus, it can happen that B̃
(pU

λ ,qU
λ )

λ,X0,n > 1 for some (and even for all) n ∈ N,
such that the corresponding upper bound BU

λ,X0,n for the Hellinger integral Hλ(PA,n||PH,n) amounts to

the cut-off at 1. However, due to Properties 1 (P5) and (P7a), the sequence
(

B̃
(pU

λ ,qU
λ )

λ,X0,n

)
n∈N

may become

smaller than 1 and may finally converge to zero. Due to Properties 2 (P14), this upper bound can even
be tighter (smaller) than those bounds derived from parameters pU

λ , qU
λ fulfilling (47).

As far as our desired Hellinger integral bounds are concerned, in the setup of Section 3.11 —where
limy→∞ φtan

λ,y(·) ≡ 0–for the proof of Proposition 9 in Appendix A.1 we shall employ the mappings
y 7→ φtan

λ,y resp. y 7→ ptan
λ,y resp. y 7→ qtan

λ,y. These will also be used for the proof of the below-mentioned
Theorem 4.

3.14. Intermezzo 1: Application to Asymptotical Distinguishability

The above-mentioned investigations can be applied to the context of Section 2.6 on asymptotical
distinguishability. Indeed, with the help of the Definitions 1 and 2 as well as the equivalence relations
(25) and (26) we obtain the following
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Corollary 1.

(a) For all (βA, βH, αA, αH) ∈ PSP\PSP,4b and all initial population sizes X0 ∈ N, the corresponding
sequences (PA,n)n∈N0 and (PH,n)n∈N0 are entirely separated (completely asymptotically distinguishable).

(b) For all (βA, βH, αA, αH) ∈ PNI with βA ≤ 1 and all initial population sizes X0 ∈ N, the sequence
(PA,n)n∈N0 is contiguous to (PH,n)n∈N0 .

(c) For all (βA, βH, αA, αH) ∈ PNI with βA > 1 and all initial population sizes X0 ∈ N, the sequence
(PA,n)n∈N0 is neither contiguous to nor entirely separated to (PH,n)n∈N0 .

The proof of Corollary 1 will be given in Appendix A.1.

Remark 3.

(a) Assertion (c) of Corollary 1 contrasts the case of Gaussian processes with independent increments where
one gets either entire separation or mutual contiguity (see e.g., Liese & Vajda [1]).

(b) By putting Corollary 1(b) and (c) together, we obtain for different “criticality pairs” in the non-immigration
case PNI the following asymptotical distinguishability types:
(PA,n) / .(PH,n) if βA ≤ 1, βH ≤ 1; (PA,n) / . (PH,n) if βA ≤ 1, βH > 1;
(PA,n) / . (PH,n) if βA > 1, βH ≤ 1; (PA,n) / . (PH,n) and (PA,n)4(PH,n) if βA > 1, βH > 1;
in particular, for PNI the sequences (PA,n)n∈N0 and (PH,n)n∈N0 are not completely asymptotically
inseparable (indistinguishable).

(c) In the light of the above-mentioned characterizations of contiguity resp. entire separation by means of
Hellinger integral limits, the finite-time-horizon results on Hellinger integrals given in the “λ ∈]0, 1[
parts” of Theorem 1, the Sections 3.3–3.13 and also in the below-mentioned Section 6 can loosely be
interpreted as “finite-sample (rather than asymptotical) distinguishability” assertions.

3.15. Intermezzo 2: Application to Decision Making under Uncertainty

3.15.1. Bayesian Decision Making

The above-mentioned investigations can be applied to the context of Section 2.5 on
dichotomous Bayesian decision making on the space of all possible path scenarios (path space) of
Poissonian Galton-Watson processes without/with immigration GW(I) (e.g., in combination with
our running-example epidemiological context of Section 2.3). More detailed, for the minimal mean
decision loss (Bayes risk)Rn defined by (18) we can derive upper (respectively lower) bounds by using
(19) respectively (20) together with the exact values or the upper (respectively lower) bounds of the
Hellinger integrals Hλ(PA,n||PH,n) derived in the “λ ∈]0, 1[ parts” of Theorem 1, the Sections 3.3–3.13
(and also in the below-mentioned Section 6); instead of providing the corresponding outcoming
formulas–which is merely repetitive–we give the illustrative

Example 1. Based on a sample path observation Xn := {X` : ` = 1, ..., n} of a GWI, which is either governed
by a hypothesis law PH or an alternative law PA, we want to make a dichotomous optimal Bayesian decision
described in Section 2.5, namely, decide between an action dH “associated with” PH and an action dA “associated
with” PA, with pregiven loss function (16) involving constants LA > 0, LH > 0 which e.g., arise as bounds
from quantities in worst-case scenarios.

For this, let us exemplarily deal with initial population X0 = 5 as well as parameter setup
(βA, βH, αA, αH) = (1.2, 0.9, 4, 3) ∈ PSP,1; within our running-example epidemiological context of Section 2.3,
this corresponds e.g., to a setup where one is encountered with a novel infectious disease (such as COVID-19)
of non-negligible fatality rate, and (A) reflects a “potentially dangerous” infectious-disease-transmission
situation (with supercritical reproduction number βA = 1.2 and importation mean of αA = 4, for weekly
appearing new incidence-generations) whereas (H) describes a “milder” situation (with subcritical βH = 0.9
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and αH = 3). Moreover, let dH and dA reflect two possible sets of interventions (control measures) in
the course of pandemic risk management, with respective “worst-case type” decision losses LA = 600 and
LH = 300 (e.g., in units of billion Euros or U.S. Dollars). Additionally we assume the prior probabilities
π = Pr(H) = 1 − Pr(A) = 0.5, which results in the prior-loss constants LA = 300 and LH = 150.
In order to obtain bounds for the corresponding minimal mean decision loss (Bayes Risk) Rn defined in (18)
we can employ the general Stummer-Vajda bounds (cf. [15]) (19) and (20) in terms of the Hellinger integral
Hλ(PA,n||PH,n) (with arbitrary λ ∈]0, 1[), and combine this with the appropriate detailed results on the latter
from the preceding subsections. To demonstrate this, let us choose λ = 0.5 (for which H1/2(PA,n||PH,n) can
be interpreted as a multiple of the Bhattacharyya coefficient between the two competing GWI) respectively
λ = 0.9, leading to the parameters pE

0.5 = 3.464, qE
0.5 = 1.039 respectively pE

0.9 = 3.887, qE
0.9 = 1.166

(cf. (33)). Combining (19) and (20) with Theorem 1 (a)– which provides us with the exact recursive values of

Hλ(PA,n||PH,n) in terms of the sequence a
(qE

λ)
n (cf. (36))– we obtain for λ = 0.5 the bounds

Rn ≤ RU
n := 2.121 · 102 · exp

{
5 · a(1.039)

n +
10
3
·

n

∑
k=1

a(1.039)
k

}
,

Rn ≥ RL
n := 100 · exp

{
10 · a(1.039)

n +
20
3
·

n

∑
k=1

a(1.039)
k

}
,

whereas for λ = 0.9 we get

Rn ≤ RU
n := 2.799 · 102 · exp

{
5 · a(1.166)

n +
10
3
·

n

∑
k=1

a(1.166)
k

}
,

Rn ≥ RL
n := 3.902 · exp

{
50 · a(1.166)

n +
100
3
·

n

∑
k=1

a(1.166)
k

}
.

Figure 1 illustrates the lower (orange resp. cyan) and upper (red resp. blue) boundsRL
n resp. RU

n of the Bayes
RiskRn employing λ = 0.5 resp. λ = 0.9 on both a unit scale (left graph) and a logarithmic scale (right graph).
The lightgrey/grey/black curves correspond to the (18)-based empirical evaluation of the Bayes risk sequence(
Rsample

n
)

n=1,...,50 from three independent Monte Carlo simulations of 10000 GWI sample paths (each) up to time
horizon 50.
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Figure 1. Bayes risk bounds (using λ = 0.5 (red/orange) resp. λ = 0.9 (blue/cyan)) and Bayes
risk simulations (lightgrey/grey/black) on a unit (left graph) and logarithmic (right graph) scale in
the parameter setup (βA, βH, αA, αH) = (1.2, 0.9, 4, 3) ∈ PSP,1, with initial population X0 = 5 and
prior-loss constants LA = 300 and LH = 150.
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3.15.2. Neyman-Pearson Testing

By combining (23) with the exact values resp. upper bounds of the Hellinger integrals
Hλ (PA,n||PH,n) from the preceding subsections, we obtain for our context of GW(I) with Poisson
offspring and Poisson immigration (including the non-immigration case) some upper bounds of the
minimal type II error probability Eς (PA,n||PH,n) in the class of the tests for which the type I error
probability is at most ς ∈]0, 1[, which can also be immediately rewritten as lower bounds for the power
1− Eς (PA,n||PH,n) of a most powerful test at level ς. As for the Bayesian context of Section 3.15.1,
instead of providing the–merely repetitive–outcoming formulas for the bounds of Eς (PA,n||PH,n) we
give the illustrative

Example 2. Consider the Figures 2 and 3 which deal with initial population X0 = 5 and the parameter
setup (βA, βH, αA, αH) = (0.3, 1.2, 1, 4) ∈ PSP,1; within our running-example epidemiological context of
Section 2.3, this corresponds to a “potentially dangerous” infectious-disease-transmission situation (H) (with
supercritical reproduction number βH = 1.2 and importation mean of αH = 4), whereas (A) describes a “very
mild” situation (with “low” subcritical βA = 0.3 and αA = 1). Figure 2 shows the lower and upper bounds
of Eς (PA,n||PH,n) with ς = 0.05, evaluated from the Formulas (23) and (24), together with the exact values
of the Hellinger integral Hλ (PA,n||PH,n), cf. Theorem 1 (recall that we are in the setup PSP,1) on both a unit
scale (left graph) and a logarithmic scale (right graph). The orange resp. red resp. purple curves correspond to
the outcoming upper bounds EU

n := EU
n (PA,n||PH,n) (cf. (23)) with parameters λ = 0.3 resp. λ = 0.5 resp.

λ = 0.7. The green resp. cyan resp. blue curves correspond to the lower bounds E L
n := E L

n (PA,n||PH,n) (cf. (24))
with parameters λ = 2 resp. λ = 1.5 resp. λ = 1.1. Notice the different λ-ranges in (23) and (24). In contrast,
Figure 3 compares the lower bound E L

n (for fixed λ = 1.1) with the upper bound EU
n (for fixed λ = 0.5) of the

minimal type II error probability Eς(PA,n||PH,n) for different levels ς = 0.1 (orange for the lower and cyan for
the upper bound), ς = 0.05 (green and magenta) and ς = 0.01 (blue and purple) on both a unit scale (left graph)
and a logarithmic scale (right graph).
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Figure 2. Different lower bounds E L
n
(
using λ ∈ {1.1, 1.5, 2}

)
and upper bounds EU

n
(
using λ ∈

{0.3, 0.5, 0.7}
)

of the minimal type II error probability Eς (PA,n||PH,n) for fixed level ς = 0.05 in the
parameter setup (βA, βH, αA, αH) = (0.3, 1.2, 1, 4) ∈ PSP,1 together with initial population X0 = 5 on
both a unit scale (left graph) and a logarithmic scale (right graph).

3.16. Goals for Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1])

Recall from (49) the setPSP :=
{
(βA, βH, αA, αH) ∈ ]0, ∞[4 : (αA 6= αH) or (βA 6= βH) or both

}
and the “equal-fraction-case” setPSP,1 :=

{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH, αA

βA
= αH

βH

}
,

where for the latter we have derived in Theorem 1(a) and in Proposition 5 the exact recursive values for



Entropy 2020, 22, 874 42 of 121

the time-behaviour of the Hellinger integrals Hλ(PA,1||PH,1) of order λ ∈ R\[0, 1]. Moreover, recall that
for the case (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ we have obtained in the Sections 3.4 and 3.5 some
“optimal” linear lower bounds φL

λ(·) for the strictly concave function φλ(x) := φ(x, βA, βH, αA, αH, λ)

on the domain x ∈ [0, ∞[; due to the monotonicity Properties 2 (P10) to (P12) of the sequences(
a
(qL

λ)
n

)
n∈N

and
(

b
(pL

λ ,qL
λ)

n

)
n∈N

, these bounds have led to the “optimal” recursive lower bound BL
λ,X0,n

of the Hellinger integral Hλ(PA,n||PH,n) in (40) of Theorem 1(b)).
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Figure 3. The lower bound E L
n (using λ = 1.1) and the upper bound EU

n (using λ = 0.5) of the minimal
type II error probability Eς (PA,n||PH,n) for different levels ς ∈ {0.01, 0.05, 0.1} in the parameter setup
(βA, βH, αA, αH) = (0.3, 1.2, 1, 4) ∈ PSP,1 together with initial population X0 = 5 on both a unit scale
(left graph) and a logarithmic scale (right graph).

In contrast, the strict convexity of the function φλ(·) in the case (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×
(R\[0, 1]) implies that we cannot maximize both parameters pL

λ, qL
λ ∈ R simultaneously subject to

the constraint (35). This effect carries over to the lower bounds BL
λ,X0,n of the Hellinger integrals

Hλ(PA,n||PH,n) (cf. (41)); in general, these bounds cannot be maximized simultaneously for all initial
population sizes X0 ∈ N and all observation horizons n ∈ N.

Analogously to (46), one way to obtain “good” recursive lower bounds for Hλ(PA,n||PH,n) from
(41) in Theorem 1 (b) is to solve the optimization problem,

(
pL

λ, qL
λ

)
:= arg max

(pL
λ ,qL

λ)∈R2

{
exp

{
a
(qL

λ)
n · X0 +

n

∑
k=1

b
(pL

λ ,qL
λ)

k

}}
such that (35) is satisfied, (55)

for each fixed initial population size X0 ∈ N and observation horizon n ∈ N. But due to
the same reasons as explained right after (46), the optimization problem (55) seems to be not
straightforward to solve explicitly. In a congeneric way as in the discussion of the upper bounds for
the case λ ∈]0, 1[ above, we now have to look for suitable parameters pL

λ, qL
λ for the lower bound

BL
λ,X0,n ≤ Hλ(PA,n||PH,n) that fulfill (35) and that guarantee certain reasonable criteria and goals;

these are similar to the goals (G1) to (G3) from Section 3.6, and are therefore supplemented by an
additional “ ′ ”:

(G1′) the validity of BL
λ,X0,n > 1 simultaneously for all initial configurations X0 ∈ N, all observation

horizons n ∈ N and all λ ∈ R\[0, 1], which leads to a strict improvement of the general upper
bound Hλ(PA,n||PH,n) > 1 (cf. (11));



Entropy 2020, 22, 874 43 of 121

(G2′) the determination of the long-term-limits limn→∞ Hλ(PA,n||PH,n) respectively limn→∞ BL
λ,X0,n

for all X0 ∈ N and all λ ∈ R\[0, 1]; in particular, one would like to check whether
limn→∞ Hλ(PA,n||PH,n) = ∞;

(G3′) the determination of the time-asymptotical growth rates limn→∞
1
n log

(
Hλ(PA,n||PH,n)

)
resp.

limn→∞
1
n log

(
BL

λ,X0,n
)

for all X0 ∈ N and all λ ∈ R\[0, 1].

In the following, let us briefly discuss how these three goals can be achieved in principle, where we
confine ourselves to parameters pL

λ, qL
λ which–in addition to (35)–fulfill the requirement{

qL
λ ≥ max{0, βλ} ∧ pL

λ > max{0, αλ}
}

∨
{

qL
λ > max{0, βλ} ∧ pL

λ ≥ max{0, αλ}
}

, (56)

where ∧ is the logical “AND” and ∨ the logical “OR” operator. This is sufficient to tackle all three
Goals (G1′) to (G3′). To see this, assume that pL

λ, qL
λ satisfy (35). Let us begin with the two “extremal”

cases in (56), i.e., with (i) qL
λ = max{0, βλ}, pL

λ > max{0, αλ}, respectively (ii) qL
λ > max{0, βλ}, pL

λ =

max{0, αλ}.
Suppose in the first extremal case (i) that βλ ≤ 0. Then, qL

λ = 0 and Properties 1 (P4) implies that

a
(qL

λ)
n = −βλ ≥ 0 and hence b

(pL
λ ,qL

λ)
n = pL

λe−βλ − αλ ≥ pL
λ − αλ > 0 for all n ∈ N. This enters into (41) as

follows: the Hellinger integral lower bound becomes BL
λ,X0,n ≥ B̃

(pL
λ ,qL

λ)
λ,X0,n = exp{−βλ · X0 + (pL

λe−βλ −

αλ) · n} > 1. Furthermore, one clearly has limn→∞ BL
λ,X0,n = ∞ as well as limn→∞

1
n log

(
BL

λ,X0,n

)
=

pL
λe−βλ − αλ > 0. Assume now that βλ > 0. Then, qL

λ = βλ > 0, a
(qL

λ)
n = 0 (cf. (P2)), b

(pL
λ ,qL

λ)
n =

pL
λ − αλ > 0 and thus BL

λ,X0,n = exp{(pL
λ − αλ) · n} > 1 for all n ∈ N. Furthermore, one gets

limn→∞ BL
λ,X0,n = ∞ as well as limn→∞

1
n log

(
BL

λ,X0,n

)
= pL

λ − αλ > 0.

Let us consider the other above-mentioned extremal case (ii). Suppose that qL
λ > max{0, βλ}

together with qL
λ > min{1, eβλ−1} which implies that the sequence

(
a
(qL

λ)
n

)
n∈N

is strictly positive,

strictly increasing and grows to infinity faster than exponentially, cf. (P3b). Hence, BL
λ,X0,n ≥

exp{a(q
L
λ)

n · X0} > 1, limn→∞ BL
λ,X0,n = ∞ as well as limn→∞

1
n log

(
BL

λ,X0,n

)
= ∞. If max{0, βλ} <

qL
λ ≤ min{1, eβλ−1}, then

(
a
(qL

λ)
n

)
n∈N

is strictly positive, strictly increasing and converges to

x(qλ)
0 ∈]0,− log(qL

λ)] (cf. (P3a)). This carries over to the sequence
(

b
(pL

λ ,qL
λ)

n

)
n∈N

: one gets b
(pL

λ ,qL
λ)

1 =

pL
λ − αλ ≥ 0 and b

(pL
λ ,qL

λ)
n > 0 for all n ≥ 2. Furthermore, b

(pL
λ ,qL

λ)
n is strictly increasing and converges

to pL
λ · e

x
(qL

λ
)

0 − αλ > 0, leading to BL
λ,X0,n > 1 for all n ∈ N, to limn→∞ BL

λ,X0,n = ∞ as well as to

limn→∞
1
n log

(
BL

λ,X0,n

)
= pL

λ · e
x
(qL

λ
)

0 − αλ > 0.

It remains to look at the cases where pL
λ, qL

λ satisfy (35), and (56) with two strict inequalities. For
this situation, one gets

•
(

a
(qL

λ)
n

)
n∈N

is strictly positive, strictly increasing and–iff qL
λ ≤ min{1, eβλ−1}–convergent

(
namely

to the smallest positive solution x
(qL

λ)
0 ∈]0,− log(qL

λ)] of (44)
)
, cf. (P3);

•
(

b
(pL

λ ,qL
λ)

n

)
n∈N

is strictly increasing, strictly positive
(
since b

(pL
λ ,qL

λ)
1 = pL

λ − αλ > 0
)

and–iff qL
λ ≤

min{1, eβλ−1}–convergent
(
namely to pL

λex
(qL

λ
)

0 −αλ ∈ [pL
λ − αλ, pL

λ/qL
λ − αλ]

)
, cf (P7).

Hence, under the assumptions (35) and
(

pL
λ > max{0, αλ}

)
∧
(
qL

λ > max{0, βλ}
)

the
corresponding lower bounds BL

λ,X0,n of the Hellinger integral Hλ(PA,n||PH,n) fulfill for all X0 ∈ N

• BL
λ,X0,n > 1 for all n ∈ N,
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• limn→∞ BL
λ,X0,n = ∞,

• limn→∞
1
n log

(
BL

λ,X0,n

)
= pL

λex
(qL

λ
)

0 − αλ > 0 for the case qL
λ ∈

]
max{0, βλ}, min{1, eβλ−1}

]
,

respectively limn→∞
1
n log

(
BL

λ,X0,n

)
= ∞ for the remaining case qL

λ > min{1, eβλ−1}.

Putting these considerations together we conclude that the constraints (35) and (56) are sufficient
to achieve the Goals (G1′) to (G3′). Hence, for fixed parameter constellation (βA, βH, αA, αH, λ), we aim
for finding pL

λ = pL (βA, βH, αA, αH, λ) and qL
λ = qL (βA, βH, αA, αH, λ) which satisfy (35) and (56).

This can be achieved mostly, but not always, as we shall show below. As an auxiliary step for further
investigations, it is useful to examine the set of all λ ∈ R\[0, 1] for which αλ ≤ 0 or βλ ≤ 0 (or both).
By straightforward calculations, we see that

αλ ≤ 0 ⇐⇒ λ


≤ −αH

αA−αH
, if αA > αH,

≥ αH
αH−αA

, if αA < αH,

and βλ ≤ 0 ⇐⇒ λ


≤ −βH

βA−βH
, if βA > βH,

≥ βH
βH−βA

, if βA < βH.

(57)

Furthermore, recall that (35) implies the general bounds pL
λ ≤ αλ

Aα1−λ
H = ϕλ(0) (being equivalent to

the requirement φL
λ(0) = φλ(0) ) and qL

λ ≤ βλ
Aβ1−λ
H = q̃λ (the latter being the maximal slope due to

Properties 3 (P19), (P20)).
Let us now undertake the desired detailed investigations on lower and upper bounds of

the Hellinger integrals Hλ(PA,n||PH,n) of order λ ∈ R\[0, 1], for the various different subclasses
of PSP\PSP,1.

3.17. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,2 × (R\[0, 1])

In such a constellation, where PSP,2 := { (βA, βH, αA, αH) ∈ PSP : αA = αH, βA 6= βH } (cf. (49)),
one gets φλ(0) = 0 (cf. Properties 3 (P16)), φ′λ(0) = 0 (cf. (P17)). Thus, the only choice for the
intercept and the slope of the linear lower bound φL

λ(·) for φλ(·), which satisfies (35) for all x ∈ N
and (potentially) (56), is rL

λ = 0 = pL
λ − αλ (i.e., pL

λ = αλ = α > 0) and sL
λ = φλ(1)−φλ(0)

1−0 = qL
λ − βλ =

a
(qL

λ)
1 > 0 (i.e., qL

λ = (α + βA)
λ(α + βH)

1−λ − α). However, since pL
λ = αλ = α > 0, the restriction (56)

is fulfilled iff qL
λ > 0, which is equivalent to

λ ∈ ISP,2 :=



]
log
(

α
α+βH

)
log
(

α+βA
α+βH

) , 0

[
∪
]
1, ∞

[
, if βA > βH,

]
−∞, 0

[
∪
]

1 ,
log
(

α
α+βH

)
log
(

α+βA
α+βH

)
[

, if βA < βH.

(58)

Suppose that λ ∈ ISP,2. As we have seen above, from Properties 1 (P3a) and (P3b) one can

derive that
(

a
(qL

λ)
n

)
n∈N

is strictly positive, strictly increasing, and converges to x
(qL

λ)
0 ∈]0,− log(qL

λ)] iff

qL
λ ≤ min{1 , eβλ−1}, and otherwise it diverges to ∞. Notice that both cases can occur: consider the

parameter setup (βA, βH, αA, αH) = (1.5, 0.5, 0.5, 0.5) ∈ PSP,2, which leads to ISP,2 =]− 1, 0[∪ ]1, ∞[;
within our running-example epidemiological context of Section 2.3, this corresponds to a “mild”
infectious-disease-transmission situation (H) (with “low” reproduction number βH = 0.5 and
importation mean of αH = 0.5), whereas (A) describes a “dangerous” situation (with supercritical
βA = 1.5 and αA = 0.5). For λ = −0.5 ∈ ISP,2 one obtains qL

λ ≈ 0.207 ≤ min{1 , eβλ−1} ≈ 0.368,
whereas for λ = 2 ∈ ISP,2 one gets qL

λ = 3.5 > min{1 , eβλ−1} = 1. Altogether, this leads to
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Proposition 11. For all (βA, βH, αA, αH, λ) ∈ PSP,2 × ISP,2 and all initial population sizes X0 ∈ N there
holds with pL

λ = αA = αH = α, qL
λ = (α + βA)

λ(α + βH)
1−λ − α

(a) BL
λ,X0,1 = B̃

(pL
λ ,qL

λ)
λ,X0,1 = exp

{(
qL

λ − βλ

)
· X0

}
> 1,

(b) the sequence
(

BL
λ,X0,n

)
n∈N

of lower bounds for Hλ(PA,n||PH,n) given by

BL
λ,X0,n = B̃

(pL
λ ,qL

λ)
λ,X0,n = exp

{
a
(qL

λ)
n · X0 +

n

∑
k=1

b
(pL

λ ,qL
λ)

k

}
is strictly increasing,

(c) lim
n→∞

BL
λ,X0,n = ∞ = lim

n→∞
Hλ(PA,n||PH,n) ,

(d) lim
n→∞

1
n

log BL
λ,X0,n =

 pL
λ · exp

{
x
(qL

λ)
0

}
− α > 0, if qL

λ ≤ min
{

1, eβλ−1} ,

∞, if qL
λ > min

{
1, eβλ−1} ,

(e) the map X0 7→ BL
λ,X0,n = B̃

(pL
λ ,qL

λ)
λ,X0,n is strictly increasing.

Nevertheless, for the remaining constellations (βA, βH, αA, αH, λ) ∈ PSP,2 × R\ (ISP,2 ∪ [0, 1]),
all observation time horizons n ∈ N and all initial population sizes X0 ∈ N one can still prove

1 < Hλ (PA,n||PH,n) and lim
n→∞

Hλ (PA,n||PH,n) = ∞ , (59)

(i.e., the achievement of the Goals (G1′), (G2′)), which is done by a conceptually different method
(without involving pL

λ, qL
λ) in Appendix A.1.

3.18. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3a × (R\[0, 1])

In the current setup, where PSP,3a :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH, αA

βA
6= αH

βH
,

αA−αH
βH−βA

∈ ]−∞, 0[
}

(cf. (49)), we always have either (αA > αH) ∧ (βA > βH) or (αA < αH) ∧ (βA <

βH). Furthermore, from Properties 3 (P16) we obtain φλ(0) > 0. As in the case λ ∈]0, 1[, the derivative
φ′λ(0) can assume any sign on PSP,3a, take e.g., (βA, βH, αA, αH, λ) = (2.2, 4.5, 1, 3, 2) for φ′λ(0) < 0,
(βA, βH, αA, αH, λ) = (2.25, 4.5, 1, 3, 2) for φ′λ(0) = 0 and (βA, βH, αA, αH, λ) = (2.3, 4.5, 1, 3, 2) for
φ′λ(0) > 0 (these parameter constellations reflect “dangerous” (A) versus “highly dangerous” (H)
situations within our running-example epidemiological context of Section 2.3). Nevertheless, in
all three subcases one gets minx∈N0 φλ(x) ≥ minx≥0 φλ(x) > 0. Thus, there exist parameters
pL

λ ∈
]
αλ, αλ

Aα1−λ
H
]

and qL
λ ∈

]
βλ, βλ

Aβ1−λ
H
]

which satisfy (35)
(
in particular, pL

λ − αλ > 0, qL
λ − βλ > 0

)
.

We now have to look for a condition which guarantees that these parameters additionally fulfill (56);
such a condition is clearly that both αλ ≥ 0 and βλ ≥ 0 hold, which is equivalent (cf. (57)) with

λ ∈ I (≥)SP,3a :=


[

max
{
−αH

αA−αH
, −βH

βA−βH

}
, 0
[
∪
]
1, ∞

[
, if (αA > αH) ∧ (βA > βH),

[
−∞, 0

[
∪
]
1, min

{
αH

αH−αA
, βH

βH−βA

} ]
, if (αA < αH) ∧ (βA < βH);

recall that αλ = 0 and βλ = 0 cannot occur simultaneously in the current setup. If αλ ≤ 0 and βλ ≤ 0,
i.e., if

λ ∈ I (<)
SP,3a :=


]
−∞ , min

{
−αH

αA−αH
; −βH

βA−βH

} ]
, if (αA > αH) ∧ (βA > βH),

[
max

{
αH

αH−αA
; βH

βH−βA

}
, ∞
[
, if (αA < αH) ∧ (βA < βH),
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then–due to the strict positivity of the function ϕλ(·) (cf. (31))–there exist parameters pL
λ > 0 =

max{0, αλ} and qL
λ > 0 = max{0, βλ} which satisfy (56) and (34) (where the latter implies (35) and

thus pL
λ ≤ αλ

Aα1−λ
H , qL

λ ≤ βλ
Aβ1−λ
H ). With

ISP,3a := I (≥)SP,3a ∪ I
(<)
SP,3a (60)

and with the discussion below (56), we thus derive the following

Proposition 12. For all (βA, βH, αA, αH, λ) ∈ PSP,3a × ISP,3a there exist parameters pL
λ, qL

λ which satisfy
max{0, αλ} < pL

λ ≤ αλ
Aα1−λ
H , max{0, βλ} < qL

λ ≤ βλ
Aβ1−λ
H as well as (35) for all x ∈ N0, and for all such

pairs (pL
λ, qL

λ) and all initial population sizes X0 ∈ N one gets

(a) BL
λ,X0,1 = B̃

(pL
λ ,qL

λ)
λ,X0,1 = exp

{(
qL

λ − βλ

)
· X0 + pL

λ − αλ

}
> 1,

(b) the sequence
(

BL
λ,X0,n

)
n∈N

of lower bounds for Hλ(PA,n||PH,n) given by

BL
λ,X0,n = B̃

(pL
λ ,qL

λ)
λ,X0,n = exp

{
a
(qL

λ)
n · X0 +

n

∑
k=1

b
(pL

λ ,qL
λ)

k

}
is strictly increasing,

(c) lim
n→∞

BL
λ,X0,n = ∞ = lim

n→∞
Hλ(PA,n||PH,n) ,

(d) lim
n→∞

1
n

log BL
λ,X0,n =

 pL
λ · exp

{
x
(qL

λ)
0

}
− αλ > 0, if qL

λ ≤ min
{

1, eβλ−1} ,

∞, if qL
λ > min

{
1, eβλ−1} ,

(e) the map X0 7→ BL
λ,X0,n = B̃

(pL
λ ,qL

λ)
λ,X0,n is strictly increasing.

Notice that the assertions (a) to (e) of Proposition 12 hold true for parameter pairs (pL
λ, qL

λ) whenever
they satisfy (35) and (56); in particular, we may allow either pL

λ = max{0, αλ} or qL
λ = max{0, βλ}. Let

us furthermore mention that in part (d) both asymptotical behaviours can occur: consider e.g., the
parameter setup (βA, βH, αA, αH) = (0.3, 0.2, 4, 3) ∈ PSP,3a, leading to ]1, ∞[( I (≥)SP,3a ( ISP,3a. For λ =

2 ∈ ISP,3a, the parameters pL
λ := p̃λ := 5.25, qL

λ := q̃λ := 0.45 (corresponding to the asymptote φ̃λ(·), cf.
(P20)) fulfill (35), (56) and additionally qL

λ = 0.45 < min{1, eβλ−1} ≈ 0.549. Analogously, in the setup
(βA, βH, αA, αH, λ) = (3, 2, 4, 3, 2) ∈ PSP,3a × ISP,3a, the choices pL

λ := p̃λ := 5.25, qL
λ := q̃λ := 4.5

satisfy (35), (56) and there holds qL
λ = 4.5 > min{1, eβλ−1} = 1.

For the remaining two cases (αλ ≤ 0) ∧ (βλ > 0) (e.g., (βA, βH, αA, αH, λ) = (6, 5, 3, 2,−3)) and
(αλ > 0) ∧ (βλ ≤ 0) (e.g., (βA, βH, αA, αH, λ) = (3, 2, 6, 5,−3)), one has to proceed differently. Indeed,
for all parameter constellations (βA, βH, αA, αH, λ) ∈ PSP,3a ×R\ (ISP,3a ∪ [0, 1]), all observation time
horizons n ∈ N and all initial population sizes X0 ∈ N one can still prove

1 < Hλ (PA,n||PH,n) , and lim
n→∞

Hλ (PA,n||PH,n) = ∞ , (61)

which is done in Appendix A.1, using a similar method as in the proof of assertion (59).

3.19. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3b × (R\[0, 1])

Within such a constellation, where PSP,3b :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH
, αA−αH

βH−βA
∈ ]0, ∞[\N

}
(cf. (49)), one always has either (αA < αH) ∧ (βA > βH) or (αA >

αH) ∧ (βA < βH). Moreover, from Properties 3 (P15) one can see that φλ(x) = 0 for x = x∗ =
αH−αA
βA−βH

> 0. However, x∗ /∈ N0, which implies φλ(x) > 0 for all x on the relevant subdomain N0.
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Again, we incorporate (57) and consider the set of all λ ∈ R\[0, 1] such that αλ ≥ 0 and βλ ≥ 0 (where
αλ = 0∧ βλ = 0 cannot appear), i.e.,

λ ∈ I (≥)SP,3b :=


[
−βH

βA−βH
, 0
[
∪
]
1 , αH

αH−αA

]
, if (αA < αH) ∧ (βA > βH),

[
−αH

αA−αH
, 0
[
∪
]
1 , βH

βH−βA

]
, if (αA > αH) ∧ (βA < βH).

(62)

As above in Section 3.18, if λ ∈ I (≥)SP,3b then there exist parameters pL
λ ∈

]
αλ, αλ

Aα1−λ
H
]
, qL

λ ∈]
βλ, βλ

Aβ1−λ
H
]

(which thus fulfill (56)) such that (35) is satisfied for all x ∈ N0. Hence, for all λ ∈
ISP,3b := I (≥)SP,3b, all assertions (a) to (e) of Proposition 12 hold true. Notice that for the current setup
PSP,3b one cannot have αλ ≤ 0 and βλ ≤ 0 simultaneously. Furthermore, in each of the two remaining
cases (αλ < 0) ∧ (βλ > 0) respectively (αλ > 0) ∧ (βλ < 0) it can happen that there do not exist
parameters pL

λ, qL
λ > 0 which satisfy both (35) and (56). However, as in the case PSP,3a above, for all

λ /∈ ISP,3b we prove in Appendix A.1 (by a method without pL
λ, qL

λ) that for all observation times n ∈ N
and all initial population sizes X0 ∈ N there holds

1 < Hλ (PA,n||PH,n) and lim
n→∞

Hλ (PA,n||PH,n) = ∞ . (63)

3.20. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,3c × (R\[0, 1])

Since in this subcase one has PSP,3c :=
{
(βA, βH, αA, αH) ∈ PSP : αA 6= αH, βA 6= βH,

αA
βA
6= αH

βH
, αA−αH

βH−βA
∈ N

}
(cf. (49)) and thus φλ(x∗) = 0 for x∗ ∈ N, there do not exist parameters

pL
λ, qL

λ such that (35) and (56) are satisfied. The only parameter pair that ensures exp
{

a
(qL

λ)
n · X0 +

∑n
k=1 b

(pL
λ ,qL

λ)

k

}
≥ 1 for all n ∈ N and all X0 ∈ N within our proposed method, is the choice pL

λ =

αλ, qL
λ = βλ. Consequently, BL

λ,X0,n ≡ 1, which coincides with the general lower bound (11) but violates
the above-mentioned desired Goal (G1′). However, in some constellations there exist nonnegative
parameters pL

λ < αλ, qL
λ > βλ or pL

λ > αλ, qL
λ < βλ, such that at least the parts (c) and (d) of

Proposition 12 are satisfied. As in Section 3.19 above, by using a conceptually different method
(without pL

λ, qL
λ) we prove in Appendix A.1 that for all λ ∈ R\[0, 1], all observation times n ∈ N and

all initial population sizes X0 ∈ N there holds

1 < Hλ (PA,n||PH,n) and lim
n→∞

Hλ (PA,n||PH,n) = ∞ . (64)

3.21. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4a × (R\[0, 1])

In the current setup, wherePSP,4a := { (βA, βH, αA, αH) ∈ PSP : αA 6= αH > 0, βA = βH ∈ ]0, 1[ }
(cf. (49)), the function φλ(·) is strictly positive and strictly decreasing, with limx→∞ φλ(x) =

limx→∞ φ′λ(x) = 0. The only choice of parameters pL
λ, qL

λ which fulfill (35) and

exp
{

a
(qL

λ)
n · X0 + ∑n

k=1 b
(pL

λ ,qL
λ)

k

}
≥ 1 for all n ∈ N and all X0 ∈ N, is the choice pL

λ = αλ as

well as qL
λ = βλ = β•, where β• stands for both (equal) βH and βA. Of course, this leads to BL

λ,X0,n ≡ 1,
which is consistent with the general lower bound (11), but violates the above-mentioned desired Goal
(G1′). Nevertheless, in Appendix A.1 we prove the following

Proposition 13. For all (βA, βH, αA, αH, λ) ∈ PSP,4a × R\[0, 1] there exist parameters pL
λ > αλ (not

necessarily satisfying pL
λ ≥ 0) and 0 < qL

λ < βλ = β• < min{1, eβ•−1} = eβ•−1 such that (35) holds for all
x ∈ [0, ∞[ and such that for all initial population sizes X0 ∈ N the parts (c) and (d) of Proposition 12 hold true.
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3.22. Lower Bounds for the Cases (βA, βH, αA, αH, λ) ∈ PSP,4b × (R\[0, 1])

By recalling PSP,4b := { (βA, βH, αA, αH) ∈ PSP : αA 6= αH > 0, βA = βH ∈ [1, ∞[ } (cf.(49)),
the assertions preceding Proposition 13 remain valid. However, the proof of Proposition 13 in
Appendix A.1 contains details which explain why it cannot be carried over to the current case PSP,4b.
Thus, the generally valid lower bound BL

λ,X0,n ≡ 1 cannot be improved with our methods.

3.23. Concluding Remarks on Alternative Lower Bounds for all Cases
(βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1])

To achieve the Goals (G1′) to (G3′), in the above-mentioned investigations about lower bounds
of the Hellinger integral Hλ(PA,n||PH,n), λ ∈ R\[0, 1], we have mainly focused on parameters pL

λ, qL
λ

which satisfy (35) and additionally (56). Nevertheless, Theorem 1 (b) gives lower bounds BL
λ,X0,n

whenever (35) is fulfilled. However, this lower bound can be the trivial one, BL
λ,X0,n ≡ 1. Let us

remark here that for the parameter constellations (βA, βH, αA, αH, λ) ∈
(
PSP,2 ×R

∖(
[0, 1] ∪ ISP,2

))
∪(

PSP,3a × R
∖(

[0, 1] ∪ ISP,3a
))
∪
(
PSP,3b × R

∖(
[0, 1] ∪ ISP,3b

))
one can prove that there exist pL

λ, qL
λ

which satisfy (35) for all x ∈ N0 as well as the condition (generalizing (56))

pL
λ ≥ αλ , qL

λ ≥ βλ , (where at least one of the inequalities is strict) ,

and that for such pL
λ, qL

λ one gets the validity of Hλ(PA,n||PH,n) ≥ BL
λ,X0,n = B̃

(pL
λ ,qL

λ)
λ,X0,n > 1 for all X0 ∈ N

and all n ∈ N; consequently, Goal (G1′) is achieved. However, in these parameter constellations it
can unpleasantly happen that n 7→ BL

λ,X0,n is oscillating (in contrast to the monotone behaviour in the
Propositions 11 (b), 12 (b)).

As a final general remark, let us mention that the functions φtan
λ,y(·), φsec

λ,k(·), φhor
λ (·), φ̃λ(·) –defined

in (52)–(54) and Properties 3 (P20)–constitute linear lower bounds for φλ(·) on the domain N0 in the case
λ ∈ R\[0, 1]. Their parameters pL

λ ∈
{

ptan
λ,y, psec

λ,y, phor
λ,y , p̃λ

}
and qL

λ ∈
{

qtan
λ,y, qsec

λ,y, qhor
λ,y , q̃λ

}
lead to lower

bounds BL
λ,X0,n of the Hellinger integrals that may or may not be consistent with Goals (G1′) to (G3′),

and which may be possibly better respectively weaker respectively incomparable with the previous
lower bounds when adding some relaxation of (G1′), such as e.g., the validity of Hλ(PA,n||PH,n) > 1
for all but finitely many n ∈ N.

3.24. Upper Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1])

For the cases λ ∈ R\[0, 1], the investigation of upper bounds for the Hellinger integral
Hλ(PA,n||PH,n) is much easier than the above-mentioned derivations of lower bounds. In fact,
we face a situation which is similar to the lower-bounds-studies for the cases λ ∈]0, 1[ : due to
Properties 3 (P19), the function φλ(·) is strictly convex on the nonnegative real line. Furthermore, it is
asymptotically linear, as stated in (P20). The monotonicity Properties 2 (P10) to (P12) imply that for
the tightest upper bound (within our framework) one should use the parameters pU

λ := αλ
Aα1−λ
H > 0

and qU
λ := βλ

Aβ1−λ
H > 0. Lemma A1 states that pU

λ ≥ αλ resp. qU
λ ≥ βλ, with equality iff αA = αH

resp. iff βA = βH. From Properties 1 (P3a) we see that for βA 6= βH the corresponding sequence(
a
(qU

λ )
n

)
n∈N

is convergent to x
(qU

λ )
0 ∈ ]0,− log(qU

λ )] if qU
λ ≤ min{1 , eβλ−1} (i.e., if λ ∈ [λ−, λ+], cf.

Lemma 1 (a)), and otherwise it diverges to ∞ faster than exponentially (cf. (P3b)). If βA = βH (i.e.,

if (βA, βH, αA, αH) ∈ PSP,4 = PSP,4a ∪ PSP,4b), then one gets qU
λ = βλ and a

(qU
λ )

n = 0 = x
(qU

λ )
0 for all

n ∈ N (cf. (P2)). Altogether, this leads to
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Proposition 14. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1) × (R\[0, 1]) and all initial population sizes
X0 ∈ N there holds with pU

λ := αλ
Aα1−λ
H , qU

λ := βλ
Aβ1−λ
H

(a) BU
λ,X0,1 = B̃

(pU
λ ,qU

λ )

λ,X0,1 = exp
{(

βλ
Aβ1−λ
H − βλ

)
· X0 + αλ

Aα1−λ
H − αλ

}
> 1,

(b) the sequence
(

BU
λ,X0,n

)
n∈N

of upper bounds for Hλ(PA,n||PH,n) given by

BU
λ,X0,n = B̃

(pU
λ ,qU

λ )

λ,X0,n = exp

{
a
(qU

λ )
n · X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}
is strictly increasing,

(c) lim
n→∞

BU
λ,X0,n = ∞ ,

(d) lim
n→∞

1
n

log BU
λ,X0,n =

 pU
λ · exp

{
x
(qU

λ )
0

}
− αλ > 0, if λ ∈ [λ−, λ+] \ [0, 1] ,

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ BU
λ,X0,n = B̃

(pU
λ ,qU

λ )

λ,X0,n is strictly increasing.

4. Power Divergences of Non-Kullback-Leibler-Information-Divergence Type

4.1. A First Basic Result

For orders λ ∈ R\{0, 1}, all the results of the previous Section 3 carry correspondingly over from
the Hellinger integrals Hλ(·||·) to the total variation distance V(·||·), by virtue of the relation (cf. (12))

2
(
1− H 1

2
(PA,n||PH,n)

)
≤ V(PA,n||PH,n) ≤ 2

√
1−

(
H 1

2
(PA,n||PH,n)

)2 ,

to the Renyi divergences Rλ(·||·), by virtue of the relation (cf. (7))

0 ≤ Rλ (PA,n||PH,n) =
1

λ(λ− 1)
log Hλ (PA,n||PH,n) , with log 0 := −∞,

as well as to the power divergences Iλ (·||·), by virtue of the relation (cf. (2))

Iλ (PA,n||PH,n) =
1− Hλ(PA,n||PH,n)

λ · (1− λ)
, n ∈ N ;

in the following, we concentrate on the latter. In particular, the above-mentioned carrying-over
procedure leads to bounds on Iλ (PA||PH) which are tighter than the general rudimentary bounds (cf.
(10) and (11))

0 ≤ Iλ (PA,n||PH,n) <
1

λ(1− λ)
, for λ ∈ ]0, 1[ , 0 ≤ Iλ (PA,n||PH,n) ≤ ∞, for λ ∈ R\[0, 1] .

Because power divergences have a very insightful interpretation as “directed distances” between
two probability distributions (e.g., within our running-example epidemiological context), and function
as important tools in statistics, information theory, machine learning, and artificial intelligence, we
present explicitly the outcoming exact values respectively bounds of Iλ (PA||PH) (λ ∈ R\{0, 1},
n ∈ N), in the current and the following subsections. For this, recall the case-dependent parameters
pA = pA

λ = pA (βA, βH, αA, αH, λ) and qA = qA
λ = qA (βA, βH, αA, αH, λ) (A ∈ {E, L, U}). To begin

with, we can deduce from Theorem 1

Theorem 2.
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(a) For all (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1), all initial population sizes X0 ∈ N0, all observation horizons
n ∈ N and all λ ∈ R\{0, 1} one can recursively compute the exact value

Iλ(PA,n||PH,n) =
1

λ(λ− 1)
·
[

exp

{
a
(qE

λ)
n · X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

}
− 1

]
=: V I

λ,X0,n , (65)

where αA
βA

can be equivalently replaced by αH
βH

and qE
λ := βλ

A β1−λ
H . Notice that on PNI the formula (65)

simplifies significantly, since αA = αH = 0.
(b) For general parameters p ∈ R, q 6= 0 recall the general expression (cf. (42))

B̃(p,q)
λ,X0,n := exp

{
a(q)n · X0 +

p
q

n

∑
k=1

a(q)k + n ·
(

p
q

βλ − αλ

)}

as well as
B̃(p,0)

λ,X0,n := exp
{
− βλ · X0 +

(
p · e−βλ − αλ

)
· n
}

.

Then, for all (βA, βH, αA, αH) ∈ PSP\PSP,1, all λ ∈ R\{0, 1}, all coefficients pL
λ, pU

λ , qL
λ, qU

λ ∈ R
which satisfy (35) for all x ∈ N0, all initial population sizes X0 ∈ N and all observation horizons n ∈ N
one gets the following recursive bounds for the power divergences: for λ ∈]0, 1[ there holds

Iλ(PA,n||PH,n)


< 1

λ(1−λ)
·
(

1− BL
λ,X0,n

)
= 1

λ(1−λ)
·
(

1− B̃
(pL

λ ,qL
λ)

λ,X0,n

)
=: BI,U

λ,X0,n ,

≥ 1
λ(1−λ)

·
(

1− BU
λ,X0,n

)
= 1

λ(1−λ)
·
(

1−min
{

B̃
(pU

λ ,qU
λ )

λ,X0,n , 1
})

=: BI,L
λ,X0,n ,

whereas for λ ∈ R\[0, 1] there holds

Iλ(PA,n||PH,n)


< 1

λ(λ−1) ·
(

BU
λ,X0,n − 1

)
= 1

λ(λ−1) ·
(

B̃
(pU

λ ,qU
λ )

λ,X0,n − 1
)

=: BI,U
λ,X0,n ,

≥ 1
λ(λ−1) ·

(
BL

λ,X0,n − 1
)

= 1
λ(λ−1) ·

(
max

{
B̃
(pL

λ ,qL
λ)

λ,X0,n , 1
}
− 1
)

=: BI,L
λ,X0,n .

In order to deduce the subsequent detailed recursive analyses of power divergences, we also
employ the obvious relations

lim
n→∞

1
n

log
(

1
λ(1− λ)

− Iλ(PA,n||PH,n)

)
= lim

n→∞

1
n

[
− log

(
λ(1− λ)

)
+ log

(
Hλ(PA,n||PH,n)

)]
= lim

n→∞

1
n

log
(

Hλ(PA,n||PH,n)
)

, for λ ∈]0, 1[ , (66)

as well as

lim
n→∞

1
n

log
(

Iλ(PA,n||PH,n)
)

= lim
n→∞

1
n

[
− log

(
λ(λ− 1)

)
+ log

(
Hλ(PA,n||PH,n)− 1

)]
= lim

n→∞

1
n

[
log
(

1− 1
Hλ(PA,n||PH,n)

)
+ log

(
Hλ(PA,n||PH,n)

)]
= lim

n→∞

1
n

log
(

Hλ(PA,n||PH,n)
)

,

(67)

for λ ∈ R\[0, 1] (provided that lim infn→∞ Hλ(PA,n||PH,n) > 1).
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4.2. Detailed Analyses of the Exact Recursive Values of Iλ(·||·), i.e., for the Cases
(βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1)× (R\{0, 1})

Corollary 2. For all (βA, βH, αA, αH, λ) ∈ PNI×]0, 1[ and all initial population sizes X0 ∈ N there holds
with qE

λ := βλ
A β1−λ
H

(a) Iλ(PA,1||PH,1) =
1

λ(1− λ)
·
(

1− exp
{ (

βλ
A β1−λ
H − βλ

)
· X0

})
> 0 ,

(b) the sequence (Iλ(PA,n||PH,n))n∈N given by

Iλ(PA,n||PH,n) =
1

λ(1− λ)
·
(

1− exp
{

a
(qE

λ)
n · X0

})
=: V I

λ,X0,n

is strictly increasing,

(c) lim
n→∞

Iλ(PA,n||PH,n) =
1

λ(1− λ)
·
(

1− exp
{

x
(qE

λ)
0 · X0

})
∈
]
0,

1
λ(1− λ)

[
,

(d) lim
n→∞

1
n

log
(

1
λ(1− λ)

− Iλ(PA,n||PH,n)

)
= lim

n→∞

1
n

log Hλ(PA,n||PH,n) = 0 ,

(e) the map X0 7→ V I
λ,X0,n is strictly increasing.

Corollary 3. For all (βA, βH, αA, αH, λ) ∈ PNI × (R\[0, 1]) and all initial population sizes X0 ∈ N there
holds with qE

λ := βλ
A β1−λ
H

(a) Iλ(PA,1||PH,1) =
1

λ(λ− 1)
·
(

exp
{ (

βλ
A β1−λ
H − βλ

)
· X0

}
− 1
)

> 0 ,

(b) the sequence (Iλ(PA,n||PH,n))n∈N given by

Iλ(PA,n||PH,n) =
1

λ(λ− 1)
·
(

exp
{

a
(qE

λ)
n · X0

}
− 1
)

=: V I
λ,X0,n

is strictly increasing,

(c) lim
n→∞

Iλ(PA,n||PH,n) =

 1
λ(λ−1) ·

(
exp

{
x
(qE

λ)
0 · X0

}
− 1
)
> 0, if λ ∈ [λ−, λ+] \ [0, 1] ,

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(d) lim
n→∞

1
n

log Iλ(PA,n||PH,n) =

{
0, if λ ∈ [λ−, λ+] \ [0, 1],
∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ V I
λ,X0,n is strictly increasing.

Corollary 4. For all (βA, βH, αA, αH, λ) ∈ PSP,1×]0, 1[ and all initial population sizes X0 ∈ N there holds
with qE

λ := βλ
A β1−λ
H

(a) Iλ(PA,1||PH,1) =
1

λ(1− λ)
·
(

1− exp
{(

βλ
Aβ1−λ
H − βλ

)
·
(

X0 +
αA
βA

)})
> 0 ,

(b) the sequence (Iλ(PA,n||PH,n))n∈N given by

Iλ(PA,n||PH,n) =
1

λ(1− λ)
·
(

1− exp

{
a
(qE

λ)
n · X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

})
=: V I

λ,X0,n

is strictly increasing,

(c) lim
n→∞

Iλ(PA,n||PH,n) =
1

λ(1− λ)
,

(d) lim
n→∞

1
n

log
(

1
λ(1− λ)

− Iλ(PA,n||PH,n)

)
=

αA
βA
· x(q

E
λ)

0 < 0 ,

(e) the map X0 7→ V I
λ,X0,n is strictly increasing.
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Corollary 5. For all (βA, βH, αA, αH, λ) ∈ PSP,1 × (R\[0, 1]) and all initial population sizes X0 ∈ N there
holds with qE

λ := βλ
A β1−λ
H

(a) Iλ(PA,1||PH,1) =
1

λ(λ− 1)
·
(

exp
{(

βλ
Aβ1−λ
H − βλ

)
·
(

X0 +
αA
βA

)}
− 1
)

> 0,

(b) the sequence (Iλ(PA,n||PH,n))n∈N given by

Iλ(PA,n||PH,n) =
1

λ(λ− 1)
·
(

exp

{
a
(qE

λ)
n · X0 +

αA
βA

n

∑
k=1

a
(qE

λ)

k

}
− 1

)
=: V I

λ,X0,n

is strictly increasing,

(c) lim
n→∞

Iλ(PA,n||PH,n) = ∞,

(d) lim
n→∞

1
n

log Iλ(PA,n||PH,n) =

 αA
βA
· x(q

E
λ)

0 > 0, if λ ∈ [λ−, λ+] \ [0, 1] ,

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ V I
λ,X0,n is strictly increasing.

In the assertions (a), (b), (d) of the Corollaries 4 and 5 the fraction αA/βA can be equivalently
replaced by αH/βH.

Let us now derive the corresponding detailed results for the bounds of the power divergences
for the parameter cases PSP\PSP,1, where the Hellinger integral, and thus Iλ(PA,n||PH,n), cannot be
determined exactly. The extensive discussion on the Hellinger-integral bounds in the Sections 3.4–3.13,
as well as in the Sections 3.16–3.24 can be carried over directly to obtain power-divergence bounds.
In the following, we summarize the outcoming key results, referring a detailed discussion on the
possible choices of pA

λ = pA (βA, βH, αA, αH, λ) and qA
λ = qA (βA, βH, αA, αH, λ) (A ∈ {L, U}) to the

corresponding above-mentioned subsections.

4.3. Lower Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[

Corollary 6. For all (βA, βH, αA, αH, λ) ∈ (PSP,2 ∪ PSP,3a ∪ PSP,3b)×]0, 1[ there exist parameters pU
λ , qU

λ

which satisfy pU
λ ∈

[
αλ
Aα1−λ
H , αλ

]
and qU

λ ∈
[
βλ
Aβ1−λ
H , βλ

[
as well as (35) for all x ∈ N0, and for all such pairs

(pU
λ , qU

λ ) and all initial population sizes X0 ∈ N there holds

(a) BI,L
λ,X0,1 =

1
λ(1− λ)

·
(

1− exp
{ (

qU
λ − βλ

)
· X0 + pU

λ − αλ

})
> 0,

(b) the sequence
(

BI,L
λ,X0,n

)
n∈N

of lower bounds for Iλ(PA,n||PH,n) given by

BI,L
λ,X0,n =

1
λ(1− λ)

·
(

1− exp

{
a
(qU

λ )
n · X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

})
is strictly increasing,

(c) lim
n→∞

BI,L
λ,X0,n = lim

n→∞
Iλ(PA,n||PH,n) =

1
λ(1− λ)

,

(d) lim
n→∞

1
n

log
(

1
λ(1− λ)

− BI,L
λ,X0,n

)
= pU

λ · e
x
(qU

λ
)

0 − αλ < 0 ,

(e) the map X0 7→ BI,L
λ,X0,n is strictly increasing.

Remark 4.

(a) Notice that in the case (βA, βH, αA, αH, λ) ∈ PSP,2× ]0, 1[–where αλ
Aα1−λ
H = αλ = αA = αH = α–we

get the special choice pU
λ = α and qU

λ = (α + βA)
λ(α + βH)

1−λ − α (cf. Section 3.7).
For the constellations (βA, βH, αA, αH, λ) ∈ (PSP,3a ∪ PSP,3b)×]0, 1[ there exist parameters
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pU
λ ∈

[
αλ
Aα1−λ
H , αλ

[
, qU

λ ∈
[
βλ
Aβ1−λ
H , βλ

[
which satisfy (35) for all x ∈ N0.

(b) For the parameter setups (βA, βH, αA, αH, λ) ∈ (PSP,2 ∪ PSP,3a ∪ PSP,3b)×]0, 1[ there might exist
parameter pairs (pU

λ , qU
λ ) satisfying (35) and either pU

λ = αλ or qU
λ = βλ, for which all assertions of

Corollary 6 still hold true.

(c) Following the discussion in Section 3.10 for all (βA, βH, αA, αH, λ) ∈ PSP,3c×]0, 1[ at least part (c) still
holds true.

Corollary 7. For all (βA, βH, αA, αH, λ) ∈ PSP,4a×]0, 1[ there exist parameters pU
λ < αλ, 1 > qU

λ > βλ = β

such that (35) is satisfied for all x ∈ [0, ∞[ and such that for all initial population sizes X0 ∈ N at least the parts
(c) and (d) of Corollary 6 hold true.

As in Section 3.12, for the parameter setup (βA, βH, αA, αH, λ) ∈ PSP,4b×]0, 1[ we cannot
derive a lower bound for the power divergences which improves the generally valid lower bound
Iλ(PA,n||PH,n) ≥ 0 (cf. (10)) by employing our proposed (pU

λ , qU
λ )-method.

4.4. Upper Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[

Since in this setup the upper bounds of the power divergences can be derived from the lower
bounds of the Hellinger integrals, we here appropriately adapt the results of Proposition 6.

Corollary 8. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ and all initial population sizes X0 ∈ N
there holds with pL

λ := αλ
Aα1−λ
H and qL

λ := βλ
Aβ1−λ
H

(a) BI,U
λ,X0,1 =

1
λ(1− λ)

·
(

1− exp
{(

βλ
A β1−λ
H − βλ

)
· X0 + αλ

Aα1−λ
H − αλ

})
> 0,

(b) the sequence of upper bounds
(

BI,U
λ,X0,n

)
n∈N

for Iλ(PA,n||PH,n) given by

BI,U
λ,X0,n =

1
λ(1− λ)

·
(

1− exp

{
a
(qL

λ)
n · X0 +

pL
λ

qL
λ

n

∑
k=1

a
(qL

λ)

k + n ·
(

pL
λ

qL
λ

· βλ − αλ

)})
is strictly increasing,

(c) lim
n→∞

BI,U
λ,X0,n =

1
λ(1− λ)

,

(d) lim
n→∞

1
n

log
(

1
λ(1− λ)

− BI,U
λ,X0,n

)
=

pL
λ

qL
λ

·
(

x
(qL

λ)
0 + βλ

)
− αλ = pL

λ · ex
(qL

λ
)

0 − αλ < 0 ,

(e) the map X0 7→ BI,U
λ,X0,n is strictly increasing.

4.5. Lower Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ)∈ (PSP\PSP,1)×(R\[0,1])

In order to derive detailed results on lower bounds of the power divergences in the case
λ ∈ R\[0, 1], we have to subsume and adapt the Hellinger-integral concerning lower-bounds
investigations from the Sections 3.16–3.23. Recall the λ-sets ISP,2, ISP,3a, ISP,3b (cf. (58), (60), (62)).
For the constellations PSP,2 × ISP,2 we employ the special choice pL

λ = αλ
Aα1−λ
H = αλ = αA = αH = α

together with qL
λ = (α + βA)

λ(α + βH)
1−λ − α > max{0, βλ} (cf. (58)) which satisfy (35) for all

x ∈ N0 and (56), whereas for the constellations (PSP,3a × ISP,3a)∪(PSP,3b × ISP,3b) we have proved the
existence of parameters pL

λ, qL
λ satisfying both (35) for all x ∈ N0 and (56) with two strict inequalities.

Subsuming this, we obtain
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Corollary 9. For all (βA, βH, αA, αH, λ) ∈ (PSP,2 × ISP,2)∪(PSP,3a × ISP,3a)∪(PSP,3b × ISP,3b) there exist
parameters pL

λ, qL
λ which satisfy max{0, αλ} ≤ pL

λ ≤ αλ
Aα1−λ
H , max{0, βλ} < qL

λ ≤ βλ
Aβ1−λ
H as well as (35)

for all x ∈ N0, and for all such pairs (pL
λ, qL

λ) and all initial population sizes X0 ∈ N one gets

(a) BI,L
λ,X0,1 =

1
λ(λ− 1)

·
(

exp
{ (

qL
λ − βλ

)
· X0 + pL

λ − αλ

}
− 1
)

> 0,

(b) the sequence
(

BI,L
λ,X0,n

)
n∈N

of lower bounds for Iλ(PA,n||PH,n) given by

BI,L
λ,X0,n =

1
λ(λ− 1)

·
(

exp

{
a
(qL

λ)
n · X0 +

n

∑
k=1

b
(pL

λ ,qL
λ)

k

}
− 1

)
is strictly increasing,

(c) lim
n→∞

BI,L
λ,X0,n = lim

n→∞
Iλ(PA,n||PH,n) = ∞ ,

(d) lim
n→∞

1
n

log BI,L
λ,X0,n =

 pL
λ · exp

{
x
(qL

λ)
0

}
− αλ > 0, if qL

λ ≤ min
{

1; eβλ−1} ,

∞, if qL
λ > min

{
1; eβλ−1} ,

(e) the map X0 7→ BI,L
λ,X0,n is strictly increasing.

Analogously to the discussions in the Sections 3.17–3.20, for the parameter setups
(
PSP,2 ×

R\
(
ISP,2 ∪ [0, 1]

))
∪
(
PSP,3a × R\

(
ISP,3a ∪ [0, 1]

))
∪
(
PSP,3b × R\

(
ISP,3b ∪ [0, 1]

))
∪
(
PSP,3c ×

R\[0, 1]
)

and for all initial population sizes X0 ∈ N one can still show

0 < Iλ(PA,n||PH,n) , and lim
n→∞

Iλ(PA,n||PH,n) = ∞ .

For the penultimate case we obtain

Corollary 10. For all (βA, βH, αA, αH, λ) ∈ PSP,4a × (R\[0, 1]) there exist parameters pL
λ > αλ (where not

necessarily pL
λ ≥ 0) and 0 < qL

λ < βλ = β• < min{1, eβ•−1} = eβ•−1 such that (35) is satisfied for all
x ∈ [0, ∞[ and such that for all initial population sizes X0 ∈ N at least the parts (c) and (d) of Corollary 9
hold true.

Notice that for the last case (βA, βH, αA, αH, λ) ∈ PSP,4b × R\[0, 1] (where (βA = βH ≥ 1) we
cannot derive lower bounds of the power divergences which improve the generally valid lower bound
Iλ(PA,n||PH,n) ≥ 0 (cf. (11)) by employing our proposed (pU

λ , qU
λ )-method.

4.6. Upper Bounds of Iλ(·||·) for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1])

For these constellations we adapt Proposition 14, which after modulation becomes
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Corollary 11. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1) × (R\[0, 1]) and all initial population sizes
X0 ∈ N there holds with pU

λ := αλ
Aα1−λ
H and qU

λ := βλ
Aβ1−λ
H

(a) BI,U
λ,X0,1 =

1
λ(λ− 1)

·
(

exp
{ (

βλ
Aβ1−λ
H − βλ

)
· X0 + αλ

Aα1−λ
H − αλ

}
− 1
)

> 0,

(b) the sequence
(

BI,U
λ,X0,n

)
n∈N

of upper bounds for Iλ(PA,n||PH,n) given by

BI,U
λ,X0,n =

1
λ(λ− 1)

·
(

exp

{
a
(qU

λ )
n · X0 +

n

∑
k=1

b
(pU

λ ,qU
λ )

k

}
− 1

)
is strictly increasing,

(c) lim
n→∞

BI,U
λ,X0,n = ∞ ,

(d) lim
n→∞

1
n

log BI,U
λ,X0,n =

 pU
λ · exp

{
x
(qU

λ )
0

}
− αλ > 0, if λ ∈ [λ−, λ+] \ [0, 1] ,

∞, if λ ∈ ]−∞, λ−[ ∪ ]λ+, ∞[ ,

(e) the map X0 7→ BI,U
λ,X0,n is strictly increasing.

4.7. Applications to Bayesian Decision Making

As explained in Section 2.5, the power divergences fulfill

Iλ (PA,n||PH,n) =
∫ 1

0
∆BRL̃O

(
pprior
A

)
·
(

1− pprior
A

)λ−2
·
(

pprior
A

)−1−λ
dpprior
A , λ ∈ R, (cf. (21)),

and
Iλ (PA,n||PH,n) = lim

χ→pprior
A

∆BRLOλ,χ

(
pprior
A

)
, λ ∈ ]0, 1[, (cf. (22)),

and thus can be interpreted as (i) weighted-average decision risk reduction (weighted-average statistical
information measure) about the degree of evidence deg concerning the parameter θ that can be attained
by observing the GWI-path Xn until stage n, and as (ii) limit decision risk reduction (limit statistical
information measure). Hence, by combining (21) and (22) with the investigations in the previous
Sections 4.1–4.6, we obtain exact recursive values respectively recursive bounds of the above-mentioned
decision risk reductions. For the sake of brevity, we omit the details here.

5. Kullback-Leibler Information Divergence (Relative Entropy)

5.1. Exact Values Respectively Upper Bounds of I(·||·)

From (2), (3) and (6) in Section 2.4, one can immediately see that the Kullback-Leibler information
divergence (relative entropy) between two competing Galton-Watson processes without/with
immigration can be obtained by the limit

I(PA,n||PH,n) = lim
λ↗1

Iλ (PA,n||PH,n) , (68)

and the reverse Kullback-Leibler information divergence (reverse relative entropy) by I (PH,n||PA,n) =

limλ↘0 Iλ (PA,n||PH,n). Hence, in the following we concentrate only on (68), the reverse case works
analogously. Accordingly, we can use (68) in appropriate combination with the λ∈]0, 1[-parts of the
previous Section 4 (respectively, the corresponding parts of Section 3) in order to obtain detailed
analyses for I (PH,n||PA,n). Let us start with the following assertions on exact values respectively upper
bounds, which will be proved in Appendix A.2:

Theorem 3.
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(a) For all (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1), all initial population sizes X0 ∈ N and all observation
horizons n ∈ N the Kullback-Leibler information divergence (relative entropy) is given by

I(PA,n||PH,n) = IX0,n :=



βA ·
(

log
(

βA
βH

)
−1
)
+βH

1−βA
·
[

X0 − αA
1−βA

]
·
(
1− (βA)

n)
+

αA ·
[

βA ·
(

log
(

βA
βH

)
−1
)
+βH

]
βA(1−βA)

· n , if βA 6= 1,

[βH − log βH − 1] ·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]

, if βA = 1.
(69)

(b) For all (βA, βH, αA, αH) ∈ PSP\PSP,1, all initial population sizes X0 ∈ N and all observation horizons
n ∈ N there holds I(PA,n||PH,n) ≤ EU

X0,n, where

EU
X0,n :=



βA ·
(

log
(

βA
βH

)
−1
)
+βH

1−βA
·
[

X0 − αA
1−βA

]
·
(
1− (βA)

n)
+

[
αA ·

[
βA ·

(
log
(

βA
βH

)
−1
)
+βH

]
βA(1−βA)

+ αA
[
log
(

αAβH
αHβA

)
− βH

βA

]
+ αH

]
· n , if βA 6= 1,

[βH − log βH − 1] ·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]

+
[
αA
[
log
(

αAβH
αH

)
− βH

]
+ αH

]
· n , if βA = 1.

(70)

Remark 5.
(i) Notice that the exact values respectively upper bounds are in closed form (rather than in recursive form).
(ii) The n−behaviour of (the bounds of) the Kullback-Leibler information divergence/relative entropy
I(PA,n||PH,n) in Theorem 3 is influenced by the following facts:

(a) βA ·
(

log
(

βA
βH

)
− 1
)
+ βH ≥ 0 with equality iff βA = βH.

(b) In the case βA 6= 1 of (70), there holds
αA ·

[
βA ·

(
log
(

βA
βH

)
−1
)
+βH

]
βA(1−βA)

+ αA
[
log
(

αAβH
αHβA

)
− βH

βA

]
+ αH ≥ 0,

with equality iff αA = αH and βA = βH.

5.2. Lower Bounds of I(·||·) for the Cases (βA, βH, αA, αH) ∈ (PSP\PSP,1)

Again by using (68) in appropriate combination with the “λ∈]0, 1[-parts” of the previous Section
4 (respectively, the corresponding parts of Section 3), we obtain the following (semi-)closed-form lower
bounds of I (PH,n||PA,n):

Theorem 4. For all (βA, βH, αA, αH) ∈ PSP\PSP,1, all initial population sizes X0 ∈ N and all observation
horizons n ∈ N

I(PA,n||PH,n) ≥ EL
X0,n := sup

k∈N0, y∈[0,∞[

{
EL,tan

y,X0,n , EL,sec
k,X0,n , EL,hor

X0,n

}
∈ [0, ∞[ , (71)
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where for all y ∈ [0, ∞[ we define the – possibly negatively valued– finite bound component

EL,tan
y,X0,n :=



[
βA log

(
αA+βAy
αH+βHy

)
+ βH

(
1− αA+βAy

αH+βHy

)]
· 1−(βA)

n

1−βA
·
[

X0 − αA
1−βA

]
+
[

αA
βA(1−βA)

[
βA log

(
αA+βAy
αH+βHy

)
+ βH

(
1− αA+βAy

αH+βHy

)]
+
(

αH − αA
βH
βA

) (
1− αA+βAy

αH+βHy

) ]
· n , if βA 6= 1,[

log
(

αA+y
αH+βHy

)
+ βH

(
1− αA+y

αH+βHy

)]
·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]

+ (αH − αAβH)
(

1− αA+y
αH+βHy

)
· n , if βA = 1,

(72)

and for all k ∈ N0 the – possibly negatively valued– finite bound component

EL,sec
k,X0,n :=



[
fA(k + 1) log

(
fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

)
+ βH − βA

]
· 1−(βA)

n

1−βA
·
[

X0 − αA
1−βA

]
+
[

αA
βA(1−βA)

(
fA(k + 1) log

(
fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

)
+ βH − βA

)
−
(

fA(k + 1) log
(

fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

))
·
(

k + αA
βA

)
+ fA(k) log

(
fA(k)
fH(k)

)
− αAβH

βA
+ αH

]
· n , if βA 6= 1,[

fA(k + 1) log
(

fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

)
+ βH − 1

]
·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]

−
[ (

fA(k + 1) log
(

fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

))
(k + αA)

− fA(k) log
(

fA(k)
fH(k)

)
+ αAβH − αH

]
· n , if βA = 1.

(73)

Furthermore, on PSP,4 we set EL,hor
X0,n := 0 for all n ∈ N whereas on PSP\(PSP,1 ∪ PSP,4) we define

EL,hor
X0,n :=

[
(αA + βAz∗) ·

[
log
(

αA + βAz∗

αH + βHz∗

)
− 1
]
+ αH + βHz∗

]
· n, , n ∈ N, (74)

with z∗ := arg maxx∈N0

{
(αA + βAx)

[
− log

(
αA+βAx
αH+βHx

)
+ 1
]
− (αH + βHx)

}
.

On PSP\(PSP,1 ∪ PSP,3c) one even gets EL
X0,n > 0 for all X0 ∈ N and all n ∈ N.

For the subcase PSP,3c, one obtains for each fixed n ∈ N and each fixed X0 ∈ N the strict positivity EL
X0,n > 0 if(

∂
∂y EL,tan

y,n

)
(y∗) 6= 0, where y∗ := αA−αH

βH−βA
∈ N and hence

(
∂

∂y
EL,tan

y,X0,n

)
(y∗) (75)

=


− (βA−βH)

3

αAβH−αHβA
· 1−(βA)

n

1−βA
·
[

X0 − αA
1−βA

]
− (βA−βH)

2

βA

(
1 + αA(βA−βH)

(1−βA)(αAβH−αHβA)

)
· n , if βA 6= 1,

− (1−βH)
3

αAβH−αH
·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]
− (1− βH)

2 · n , if βA = 1.

A proof of this theorem is given in in Appendix A.2.

Remark 6. Consider the exemplary parameter setup (βA, βH, αA, αH) = ( 1
3 , 2

3 , 2, 1) ∈ PSP,3c;
within our running-example epidemiological context of Section 2.3, this corresponds to a “semi-mild”
infectious-disease-transmission situation (H) (with subcritical reproduction number βH = 2

3 and importation
mean of αH = 1), whereas (A) describes a “mild” situation (with “low” subcritical βA = 1

3 and αA = 2).

In the case of X0 = 3 there holds
(

∂
∂y EL,tan

y,X0,n

)
(y∗) = 0 for all n ∈ N, whereas for X0 6= 3 one obtains(

∂
∂y EL,tan

y,X0,n

)
(y∗) 6= 0 for all n ∈ N.

It seems that the optimization problem in (71) admits in general only an implicitly representable
solution, and thus we have used the prefix “(semi-)” above. Of course, as a less tight but less involved
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explicit lower bound of the Kullback-Leibler information divergence (relative entropy) I(PA,n||PH,n)

one can use any term of the form max
{

EL,tan
y,X0,n , EL,sec

k,X0,n , EL,hor
X0,n

}
(y ∈ [0, ∞[, k ∈ N0), as well as

the following

Corollary 12. (a) For all (βA, βH, αA, αH) ∈ PSP\PSP,1, all initial population sizes X0 ∈ N and all
observation horizons n ∈ N

I(PA,n||PH,n) ≥ EL
X0,n ≥ ẼL

X0,n := max
{

EL,tan
∞,X0,n , EL,sec

0,X0,n , EL,hor
X0,n

}
∈ [0, ∞[ ,

with EL,hor
X0,n defined by (74), with – possibly negatively valued– finite bound component EL,tan

∞,X0,n :=

limy→∞ EL,tan
y,X0,n, where

EL,tan
∞,X0,n :=



βA ·
(

log
(

βA
βH

)
−1
)
+βH

1−βA
·
[

X0 − αA
1−βA

]
·
(
1− (βA)

n)
+

[
αA ·

[
βA ·

(
log
(

βA
βH

)
−1
)
+βH

]
βA(1−βA)

+ αA
(

1− βH
βA

)
+ αH

(
1− βA

βH

)]
· n , if βA 6= 1,

[βH − log βH − 1] ·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]

+
[
αA (1− βH) + αH

(
1− 1

βH

)]
· n , if βA = 1,

and –possibly negatively valued–finite bound component

EL,sec
0,X0,n =



[
(αA + βA) · log

(
αA+βA
αH+βH

)
− αA · log

(
αA
αH

)
+ βH − βA

]
· 1−(βA)

n

1−βA
·
[

X0 − αA
1−βA

]
+

{
αA

βA(1−βA)

(
(αA + βA) · log

(
αA+βA
αH+βH

)
− αA · log

(
αA
αH

))
− αA

1−βA
(1− βH)

−αA
(

1 + αA
βA

)
· log

(
αH(αA+βA)
αA(αH+βH)

)
+ αH

}
· n , if βA 6= 1,

[
(αA + 1) · log

(
αA+1

αH+βH

)
− αA · log

(
αA
αH

)
+ βH − 1

]
·
[
n · X0 +

αA
2 · n2]

+
{

αA
2

[
(αA + 1) · log

(
αA+1

αH+βH

)
− αA · log

(
αA
αH

)
− βH − 1

]
−αA (1 + αA) · log

(
αH(αA+1)

αA(αH+βH)

)
+ αH

}
· n , if βA = 1.

For the cases PSP,2 ∪ PSP,3a ∪ PSP,3b one gets even ẼL
X0,n > 0 for all X0 ∈ N and all n ∈ N.

5.3. Applications to Bayesian Decision Making

As explained in Section 2.5, the Kullback-Leibler information divergence fulfills

I (PA,n||PH,n) =
∫ 1

0
∆BRL̃O

(
pprior
A

)
·
(

1− pprior
A

)−1
·
(

pprior
A

)−2
dpprior
A , (cf. (21) with λ = 1),

and thus can be interpreted as weighted-average decision risk reduction (weighted-average statistical
information measure) about the degree of evidence deg concerning the parameter θ that can be attained
by observing the GWI-path Xn until stage n. Hence, by combining (21) with the investigations in the
previous Sections 5.1 and 5.2, we obtain exact values respectively bounds of the above-mentioned
decision risk reductions. For the sake of brevity, we omit the details here.
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6. Explicit Closed-Form Bounds of Hellinger Integrals

6.1. Principal Approach

Depending on the parameter constellation (βA, βH, αA, αH, λ) ∈ P × (R\{0, 1}), for the Hellinger
integrals Hλ (PA,n||PH,n) we have derived in Section 3 corresponding lower/upper bounds respectively
exact values–of recursive nature– which can be obtained by choosing appropriate p = pA

λ =

pA (βA, βH, αA, αH, λ) , q = qA
λ = qA (βA, βH, αA, αH, λ) (A ∈ {E, L, U}) and by using those together

with the recursion
(

a(q)n

)
n∈N

defined by (36) as well as the sequence
(

b(p,q)
n

)
n∈N

obtained from(
a(q)n

)
n∈N

by the linear transformation (38). Both sequences are “stepwise fully evaluable” but

generally seem not to admit a closed-form representation in the observation horizons n; consequently,
the time-evolution n 7→ Hλ (PA,n||PH,n)–respectively the time-evolution of the corresponding recursive
bounds– can generally not be seen explicitly. On order to avoid this intransparency (at the expense
of losing some precision) one can approximate (36) by a recursion that allows for a closed-form
representation; by the way, this will also turn out to be useful for investigations concerning diffusion
limits (cf. the next Section 7).

To explain the basic underlying principle, let us first assume some general q ∈]0, βλ[ and λ ∈]0, 1[.
With Properties 1 (P1) we see that the sequence

(
a(q)n

)
n∈N

is strictly negative, strictly decreasing and

converges to x(q)0 ∈]− βλ, q− βλ[. Recall that this sequence is obtained by the recursive application

of the function ξ
(q)
λ (x) := q · ex − βλ, through a(q)1 = ξ

(q)
λ (0) = q − βλ < 0, a(q)n = ξ

(q)
λ

(
a(q)n−1

)
=

qea(q)n−1 − βλ (cf. (36)). As a first step, we want to approximate ξ
(q)
λ (·) by a linear function on the interval[

x(q)0 , 0
]
. Due to convexity (P9), this is done by using the tangent line of ξ

(q)
λ (·) at x(q)0

ξ
(q),T
λ (x) := c(q),T + d(q),T · x := x(q)0

(
1− q · ex(q)0

)
+ q · ex(q)0 · x , (76)

as a linear lower bound, and the secant line of ξ
(q)
λ (·) across its arguments 0 and x(q)0

ξ
(q),S
λ (x) := c(q),S + d(q),S · x := q− βλ +

x(q)0 − (q− βλ)

x(q)0

· x , (77)

as a linear upper bound. With the help of these functions, we can define the linear recursions

a(q),T0 := 0 , a(q),Tn := ξ
(q),T
λ

(
a(q),Tn−1

)
, n ∈ N , (78)

as well as a(q),S0 := 0 , a(q),Sn := ξ
(q),S
λ

(
a(q),Sn−1

)
, n ∈ N . (79)

In the following, we will refer to these sequences as the rudimentary closed-form sequence-bounds.
Clearly, both sequences are strictly negative (on N), strictly decreasing, and one gets the sandwiching

a(q),Tn < a(q)n ≤ a(q),Sn (80)

for all n ∈ N, with equality on the right side iff n = 1 (where a(q)1 = q− βλ < 0); moreover,

lim
n→∞

a(q),Tn = lim
n→∞

a(q),Sn = lim
n→∞

a(q)n = x(q)0 . (81)
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Furthermore, such linear recursions allow for a closed-form representation, namely

a(q),∗n =
c(q),∗

1− d(q),∗
·
(

1−
(

d(q),∗
)n)

= x(q)0 ·
(

1−
(

d(q),∗
)n)

, (82)

where the “ * ” stands for either S or T. Notice that this representation is valid due to d(q),T , d(q),S ∈]0, 1[.
So far, we have considered the case q ∈]0, βλ[. If q = βλ, then one can see from Properties 1 (P2)
that a(q)n ≡ 0, which is also an explicitly given (though trivial) sequence. For the remaining case,
where q > βλ and thus ξ

(q)
λ (0) = a(q)1 = q− βλ > 0), we want to exclude q ≥ min

{
1 , eβλ−1} for the

following reasons. Firstly, if q > min
{

1 , eβλ−1}, then from (P3) we see that the sequence
(

a(q)n

)
n∈N

is

strictly increasing and divergent to ∞, at a rate faster than exponentially (P3b); but a linear recursion is
too weak to approximate such a growth pattern. Secondly, if q = min

{
1 , eβλ−1}, then one necessarily

gets q = eβλ−1 < 1 (since we have required q > βλ, and otherwise one obtains the contradiction
βλ < q = 1 ≤ eβλ−1). This means that the function ξ

(q)
λ (·) now touches the straight line id(·) in

the point − log(q), i.e., ξ
(q)
λ

(
− log(q)

)
= − log(q). Our above-proposed method, namely to use the

tangent line of ξ
(q)
λ (·) at x = x(q)0 = − log(q) as a linear lower bound for ξ

(q)
λ (·), leads then to the

recursion a(q),Tn ≡ 0 (cf. (78)). This is due to the fact that the tangent line ξ
(q),T
λ (·) is in the current case

equivalent with the straight line id(·). Consequently, (81) would not be satisfied.
Notice that in the case βλ < q < min

{
1 , eβλ−1}, the above-introduced functions

ξ
(q),T
λ (·), ξ

(q),S
λ (·) constitute again linear lower and upper bounds for ξ

(q)
λ (·), however, this time

on the interval
[
0, x(q)0

]
. The sequences defined in (78) and (79) still fulfill the assertions (80) and (81),

and additionally allow for the closed-form representation (82). Furthermore, let us mention that these
rudimentary closed-form sequence-bounds can be defined analogously for λ ∈ R\[0, 1] and either
0 < q < βλ, or q = βλ, or max{0, βλ} < q < min{1, eβλ−1}.

In a second step, we want to improve the above-mentioned linear (lower and upper)
approximations of the sequence a(q)n by reducing the faced error within each iteration. To do so,
in both cases of lower and upper approximates we shall employ context-adapted linear inhomogeneous
difference equations of the form

ã0 := 0 ; ãn := ξ̃ (ãn−1) + ρn−1, n ∈ N, (83)

with

ξ̃(x) := c + d · x , x ∈ R , (84)

ρn−1 := K1 ·κn−1 + K2 · νn−1 , n ∈ N, (85)

for some constants c ∈ R, d ∈]0, 1[, K1, K2,κ, ν ∈ R with 0 ≤ ν < κ ≤ d. This will be applied to
c := c(q),S, c := c(q),T , d := d(q),S and d := d(q),T later on. Meanwhile, let us first present some facts and
expressions which are insightful for further formulations and analyses.

Lemma 2. Consider the sequence (ãn)n∈N0
defined in (83) to (85). If 0 ≤ ν < κ < d, then one gets the

closed-form representation

ãn = ãhom
n + c̃n with ãhom

n = c · 1− dn

1− d
and c̃n = K1 ·

dn −κn

d−κ + K2 ·
dn − νn

d− ν
, (86)

which leads for all n ∈ N to

n

∑
k=1

ãk =

(
K1

d−κ +
K2

d− ν
− c

1− d

)
· d · (1− dn)

1− d
− K1 ·κ · (1−κn)

(d−κ)(1−κ) −
K2 · ν · (1− νn)

(d− ν)(1− ν)
+

c
1− d

· n . (87)
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If 0 ≤ ν < κ = d, then one gets the closed-form representation

ãn = ãhom
n + c̃n with ãhom

n = c · 1− dn

1− d
and c̃n = K1 · n · dn−1 + K2 ·

dn − νn

d− ν
, (88)

which leads for all n ∈ N to

n

∑
k=1

ãk =

(
K1

d(1− d)
+

K2
d− ν

− c
1− d

)
· d · (1− dn)

1− d
− K2 · ν · (1− νn)

(d− ν)(1− ν)
+

(
c

1− d
− K1 · dn

1− d

)
· n . (89)

Lemma 2 will be proved in Appendix A.3. Notice that (88) is consistent with taking the limit
κ ↗ d in (86). Furthermore, for the special case K2 = −K1 > 0 one has from (85) for all integers n ≥ 2
the relation ρn−1 < 0 and thus ãn − ãhom

n < 0, leading to

c̃n < 0 and
n

∑
k=1

c̃n < 0 . (90)

Lemma 2 gives explicit expressions for a linear inhomogeneous recursion of the form (83)
possessing the extra term given by (85). Therefrom we derive lower and upper bounds for the
sequence

(
a(q)n

)
n∈N

by employing a(q),Tn resp. a(q),Sn as the homogeneous solution of (83), i.e., by setting

ãhom
n := a(q),Tn resp. ãhom

n := a(q),Sn . Moreover, our concrete approximation-error-reducing “correction
terms” ρn will have different form, depending on whether 0 < q < βλ or q > max{0, βλ}. In both

cases, we express ρn by means of the slopes d(q),T = qex(q)0 resp. d(q),S =
x(q)0 −(q−βλ)

x(q)0

of the tangent line

ξ
(q),T
λ (·) (cf. (76)) resp. the secant line ξ

(q),S
λ (·) (cf. (77)), as well as in terms of the parameters

Γ(q)
< :=

1
2
·
(

x(q)0

)2
· q · ex(q)

0 , for 0 < q < βλ , and Γ(q)
> :=

q
2
·
(

x(q)0

)2
, for q > max{0, βλ} . (91)

In detail, let us first define the lower approximate by

a(q)0 := 0 , a(q)n := ξ
(q),T
λ

(
a(q)n−1

)
+ ρ(q)

n−1
, n ∈ N, (92)

where

ρ(q)
n−1

:=


Γ(q)
< ·

(
d(q),T

)2(n−1)
, if 0 < q < βλ ,

Γ(q)
> ·

(
d(q),S

)2(n−1)
, if max{0, βλ} < q < min{1, eβλ−1} .

(93)

The upper approximate is defined by

a(q)0 := 0 , a(q)n := ξ
(q),S
λ

(
a(q)n−1

)
+ ρ

(q)
n−1 , n ∈ N, (94)

where

ρ
(q)
n−1 :=


− Γ(q)

< ·
(

d(q),T
)n−1

·
[

1−
(

d(q),S
)n−1

]
, if 0 < q < βλ ,

− Γ(q)
> ·

(
d(q),S

)n−1
·
[

1−
(

d(q),T
)n−1

]
, if max{0, βλ} < q < min{1, eβλ−1} .

(95)

In terms of (85), we use for ρ(q)
n

the constants K2 = ν = 0 as well as K1 = Γ(q)
< , κ =

(
d(q),T

)2
for

0 < q < βλ respectively K1 = Γ(q)
> , κ =

(
d(q),S

)2
for max{0, βλ} < q < min{1, eβλ−1}. For ρ

(q)
n we
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shall employ the constants −K1 = K2 = Γ(q)
< , κ = d(q),T , ν = d(q),Sd(q),T for 0 < q < βλ, and −K1 =

K2 = Γ(q)
> , κ = d(q),S, ν = d(q),Sd(q),T for max{0, βλ} < q < min{1, eβλ−1}. Recall from (76) the

constants c(q),T := x(q)0 (1− qex(q)0 ), d(q),T := qex(q)0 and from (77) c(q),S := q− βλ, d(q),S := x(q)0 −(q−βλ)

x(q)0

.

In the following, we will refer to the sequences a(q)n resp. a(q)n as the improved closed-form sequence-bounds.
Putting all ingredients together, we arrive at the

Lemma 3. For all (βA, βH, αA, αH) ∈ P there holds with d(q),T = qex(q)0 and d(q),S =
x(q)0 −(q−βλ)

x(q)0

(a) in the case 0 < q < βλ:

(i)
a(q)n < a(q)n ≤ a(q)n for all n ∈ N,

with equality on the right-hand side iff n = 1, where

a(q)n = x(q)0 ·
(

1−
(

d(q),T
)n)

+ Γ(q)
< ·

(
d(q),T

)n−1

1− d(q),T
·
(

1−
(

d(q),T
)n)

> a(q),Tn , and

a(q)n = x(q)0 ·
(

1−
(

d(q),S
)n)
− Γ(q)

< ·


(

d(q),S
)n
−
(

d(q),T
)n

d(q),S − d(q),T
−
(

d(q),S
)n−1 1−

(
d(q),T

)n

1− d(q),T

≤ a(q),Sn ,

with a(q),Tn and a(q),Sn defined by (78) and (79).

(ii) Both sequences
(

a(q)n

)
n∈N

and
(

a(q)n

)
n∈N

are strictly decreasing.

(iii)
lim

n→∞
a(q)n = lim

n→∞
a(q)n = lim

n→∞
a(q)n = x(q)0 ∈]− βλ, q− βλ[.

(b) in the case max{0, βλ} < q < min
{

1 , eβλ−1}:

(i)
a(q)n < a(q)n ≤ a(q)n , for all n ∈ N,

with equality on the right-hand side iff n = 1, where

a(q)n = x(q)0 ·
(

1−
(

d(q),T
)n)

+ Γ(q)
> ·

(
d(q),T

)n
−
(

d(q),S
)2n

d(q),T −
(
d(q),S

)2 > a(q),Tn and

a(q)n = x(q)0 ·
(

1−
(

d(q),S
)n)

− Γ(q)
> ·

(
d(q),S

)n−1

n −
1−

(
d(q),T

)n

1− d(q),T

 ≤ a(q),Sn ,

with a(q),Tn and a(q),Sn defined by (78) and (79).

(ii) Both sequences
(

a(q)n

)
n∈N

and
(

a(q)n

)
n∈N

are strictly increasing.

(iii)
lim

n→∞
a(q)n = lim

n→∞
a(q)n = lim

n→∞
a(q)n = x(q)0 ∈]q− βλ,− log(q)[.

A detailed proof of Lemma 3 is provided in Appendix A.3. In the following, we employ the
above-mentioned investigations in order to derive the desired closed-form bounds of the Hellinger
integrals Hλ(PA,n||PH,n).
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6.2. Explicit Closed-Form Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1)× (R\{0, 1})

Recall that in this setup, we have obtained the recursive, non-explicit exact values Vλ,X0,n =

Hλ(PA,n||PH,n) given in (39) of Theorem 1, where we used q = qE
λ = qE(βA, βH, λ) = βλ

Aβ1−λ
H ∈]0, βλ[

in the case λ ∈]0, 1[ respectively q = qE
λ = βλ

Aβ1−λ
H > max{0, βλ} in the case λ ∈ R\[0, 1]. For the

latter, Lemma 1 implies that qE
λ < min{1, eβλ−1} iff λ ∈]λ−, λ+[ \[0, 1]. This—together with (39) from

Theorem 1, Lemma 2 and with the quantities d(q),T , d(q),S, Γ(q)
< and Γ(q)

> as defined in (76) and (77) resp.
(91) –leads to

Theorem 5. Let pE
λ := αλ

Aα1−λ
H and qE

λ := βλ
Aβ1−λ
H . For all (βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1) ×(

]λ−, λ+[ \ {0, 1}
)
, all initial population sizes X0 ∈ N and for all observation horizons n ∈ N the following

assertions hold true:

(a) the Hellinger integral can be bounded by the closed-form lower and upper bounds

C
(pE

λ ,qE
λ),T

λ,X0,n ≤ C
(pE

λ ,qE
λ),L

λ,X0,n ≤ Vλ,X0,n = Hλ(PA,n||PH,n) ≤ C
(pE

λ ,qE
λ),U

λ,X0,n ≤ C
(pE

λ ,qE
λ),S

λ,X0,n ,

(b)
lim

n→∞

1
n

log
(
Vλ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pE

λ ,qE
λ),L

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pE

λ ,qE
λ),U

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pE

λ ,qE
λ),T

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pE

λ ,qE
λ),S

λ,X0,n

)
=

αA
βA
· x(q

E
λ)

0 ,

where the involved closed-form lower bounds are defined by

C
(pE

λ ,qE
λ),L

λ,X0,n := C
(pE

λ ,qE
λ),T

λ,X0,n · exp
{

ζ(q
E
λ)

n · X0 +
αA
βA
· ϑ(qE

λ)
n

}
, with (96)

C
(pE

λ ,qE
λ),T

λ,X0,n := exp

{
x
(qE

λ)
0 ·

[
X0 −

αA
βA
· d(q

E
λ),T

1− d(q
E
λ),T

]
·
(

1−
(

d(q
E
λ),T
)n)

+
αA
βA

x
(qE

λ)
0 · n

}
,

and the closed-form upper bounds are defined by

C
(pE

λ ,qE
λ),U

λ,X0,n := C
(pE

λ ,qE
λ),S

λ,X0,n · exp
{
− ζ

(qE
λ)

n · X0 −
αA
βA
· ϑ(qE

λ)
n

}
, with (97)

C
(pE

λ ,qE
λ),S

λ,X0,n := exp

{
x
(qE

λ)
0 ·

[
X0 −

αA
βA
· d(q

E
λ),S

1− d(q
E
λ),S

]
·
(

1−
(

d(q
E
λ),S
)n)

+
αA
βA

x
(qE

λ)
0 · n

}
,

where in the case λ ∈]0, 1[

ζ(q
E
λ)

n := Γ
(qE

λ)
< ·

(
d(q

E
λ),T
)n−1

1− d(q
E
λ),T

·
(

1−
(

d(q
E
λ),T
)n)

> 0 , (98)

ϑ
(qE

λ)
n := Γ

(qE
λ)

< ·
1−

(
d(q

E
λ),T
)n

(
1− d(q

E
λ),T
)2 ·

1−
d(q

E
λ),T

(
1 +

(
d(q

E
λ),T
)n)

1 + d(q
E
λ),T

 > 0 , (99)

ζ
(qE

λ)
n := Γ

(qE
λ)

< ·


(

d(q
E
λ),S
)n
−
(

d(q
E
λ),T
)n

d(q
E
λ),S − d(q

E
λ),T

−
(

d(q
E
λ),S
)n−1

·
1−

(
d(q

E
λ),T
)n

1− d(q
E
λ),T

 > 0 , (100)

ϑ
(qE

λ)
n := Γ

(qE
λ)

< · d(q
E
λ),T

1− d(q
E
λ),T
·

1−
(

d(q
E
λ),Sd(q

E
λ),T
)n

1− d(q
E
λ),Sd(q

E
λ),T

−

(
d(q

E
λ),S
)n
−
(

d(q
E
λ),T
)n

d(q
E
λ),S − d(q

E
λ),T

 > 0 , (101)
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and where in the case λ ∈ ]λ−, λ+[ \[0, 1]

ζ(q
E
λ)

n := Γ
(qE

λ)
> ·

(
d(q

E
λ),T
)n
−
(

d(q
E
λ),S
)2n

d(q
E
λ),T −

(
d(q

E
λ),S
)2 > 0 , (102)

ϑ
(qE

λ)
n :=

Γ
(qE

λ)
>

d(q
E
λ),T−

(
d(q

E
λ),S
)2

d(q
E
λ),T

(
1−

(
d(q

E
λ),T
)n)

1− d(q
E
λ),T

−

(
d(q

E
λ),S
)2
(

1−
(

d(q
E
λ),S
)2n
)

1−
(

d(q
E
λ),S
)2


> 0 , (103)

ζ
(qE

λ)
n := Γ

(qE
λ)

> ·
(

d(q
E
λ),S
)n−1

·

n −
1−

(
d(q

E
λ),T
)n

1− d(q
E
λ),T

 > 0 , (104)

ϑ
(qE

λ)
n := Γ

(qE
λ)

> ·
[

d(q
E
λ),S − d(q

E
λ),T(

1− d(q
E
λ),S
)2 (

1− d(q
E
λ),T
) · (1−

(
d(q

E
λ),S
)n)

+
d(q

E
λ),T

(
1−

(
d(q

E
λ),Sd(q

E
λ),T
)n)(

1− d(q
E
λ),T
) (

1− d(q
E
λ),Sd(q

E
λ),T
) −

(
d(q

E
λ),S
)n

1− d(q
E
λ),S
· n
]

> 0 . (105)

Notice that αA
βA

can be equivalently be replaced by αH
βH

in (96) and in (97).

A proof of Theorem 5 is given in Appendix A.3.

6.3. Explicit Closed-Form Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[

To derive (explicit) closed-form lower bounds of the (nonexplicit) recursive lower bounds BL
λ,X0,n

for the Hellinger integral Hλ(PA,n||PH,n) respectively closed-form upper bounds of the recursive
upper bounds BU

λ,X0,n for all parameters cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1) × (R\{0, 1}), we
combine part (b) of Theorem 1, Lemma 2, Lemma 3 together with appropriate parameters pL

λ =

pL (βA, βH, αA, αH, λ) , pU
λ = pU (βA, βH, αA, αH, λ) ≥ 0 and qL

λ = qL (βA, βH, αA, αH, λ), qU
λ =

qU (βA, βH, αA, αH, λ) > 0 satisfying (35). Notice that the representations of the lower and upper
closed-form sequence-bounds depend on whether 0 < qA

λ < βλ, 0 < qA
λ = βλ or max{0, βλ} < qA

λ <

min{1, eβλ−1} (A ∈ {L, U}).
Let us start with closed-form lower bounds for the case λ ∈]0, 1[; recall that the choice pL

λ =

αλ
Aα1−λ
H , qL

λ = βλ
Aβ1−λ
H led to the optimal recursive lower bounds BL

λ,X0,n of the Hellinger integral (cf.
Theorem 1(b) and Section 3.5). Correspondingly, we can derive

Theorem 6. Let pL
λ = αλ

Aα1−λ
H and qL

λ = βλ
Aβ1−λ
H . Then, the following assertions hold true:
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(a) For all (βA, βH, αA, αH, λ) ∈
(
PSP,2 ∪PSP,3a ∪PSP,3b ∪PSP,3c

)
×]0, 1[ (for which particularly 0 < qL

λ <

βλ, βA 6= βH), all initial population sizes X0 ∈ N and all observation horizons n ∈ N there holds

C
(pL

λ ,qL
λ),T

λ,X0,n ≤ C
(pL

λ ,qL
λ),L

λ,X0,n ≤ BL
λ,X0,n < 1 ,

where C
(pL

λ ,qL
λ),L

λ,X0,n := C
(pL

λ ,qL
λ),T

λ,X0,n · exp

{
ζ(q

L
λ)

n · X0 +
pL

λ

qL
λ

· ϑ(qL
λ)

n

}
(106)

with C
(pL

λ ,qL
λ),T

λ,X0,n := exp

{
x
(qL

λ)
0 ·

[
X0 −

pL
λ

qL
λ

· d(q
L
λ),T

1− d(q
L
λ),T

]
·
(

1−
(

d(q
L
λ),T
)n)

+

(
pL

λ

qL
λ

·
(

βλ + x
(qL

λ)
0

)
− αλ

)
· n
}

,

and with ζ(q
L
λ)

n := Γ
(qL

λ)
< ·

(
d(q

L
λ),T
)n−1

1− d(q
L
λ),T

·
(

1−
(

d(q
L
λ),T
)n)

> 0 , (107)

ϑ
(qL

λ)
n := Γ

(qL
λ)

< ·
1−

(
d(q

L
λ),T
)n

(
1− d(q

L
λ),T
)2 ·

1−
d(q

L
λ),T

(
1 +

(
d(q

L
λ),T
)n)

1 + d(q
L
λ),T

 > 0 . (108)

(b) For all (βA, βH, αA, αH, λ) ∈ (PSP,4a ∪ PSP,4b)×]0, 1[ (for which particularly 0 < qL
λ = βλ, βA = βH),

all initial population sizes X0 ∈ N and all observation horizons n ∈ N there holds

C
(pL

λ ,qL
λ),L

λ,X0,n := C
(pL

λ ,qL
λ),T

λ,X0,n := BL
λ,X0,n = exp

{ (
pL

λ − αλ

)
· n
}

< 1 .

(c) For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[ and all initial population sizes X0 ∈ N one gets

lim
n→∞

1
n

log
(

C
(pL

λ ,qL
λ),T

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pL

λ ,qL
λ),L

λ,X0,n

)
= lim

n→∞

1
n

log
(

BL
λ,X0,n

)
=

pL
λ

qL
λ

·
(

βλ + x
(qL

λ)
0

)
− αλ < 0 ,

where in the case βA = βH there holds qL
λ = βλ and x

(qL
λ)

0 = 0.

The proof will be provided in Appendix A.3.
In order to deduce closed-form upper bounds for the case λ ∈]0, 1[, we first recall from the

Sections 3.6–3.13, that we have to employ suitable parameters pU
λ = pU (βA, βH, αA, αH, λ) , qU

λ =

qU (βA, βH, αA, αH, λ) satisfying (35). Notice that we automatically obtain pU
λ ≥ pL

λ = αλ
Aα1−λ
H > 0.

Correspondingly, we obtain

Theorem 7. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)×]0, 1[, all coefficients pU
λ , qU

λ which satisfy (35) for
all x ∈ N0 and additionally either 0 < qU

λ ≤ βλ or βλ < qU
λ < min{1, eβλ−1}, all initial population sizes

X0 ∈ N and all observation horizons n ∈ N the following assertions hold true:

C
(pU

λ ,qU
λ ),S

λ,X0,n ≥ C
(pU

λ ,qU
λ ),U

λ,X0,n ≥ B̃
(pU

λ ,qU
λ )

λ,X0,n ≥ BU
λ,X0,n , where (109)
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(a) in the case 0 < qU
λ < βλ one has

C
(pU

λ ,qU
λ ),U

λ,X0,n := C
(pU

λ ,qU
λ ),S

λ,X0,n · exp

{
− ζ

(qU
λ )

n · X0 −
pU

λ

qU
λ

· ϑ(qU
λ )

n

}
(110)

with C
(pU

λ ,qU
λ ),S

λ,X0,n := exp

{
x
(qU

λ )
0 ·

[
X0 −

pU
λ

qU
λ

· d(q
U
λ ),S

1− d(q
U
λ ),S

]
·
(

1−
(

d(q
U
λ ),S
)n)

+

(
pU

λ

qU
λ

·
(

βλ + x
(qU

λ )
0

)
− αλ

)
· n
}

,

ζ
(qU

λ )
n := Γ

(qU
λ )

< ·


(

d(q
U
λ ),S
)n
−
(

d(q
U
λ ),T

)n

d(q
U
λ ),S − d(q

U
λ ),T

−
(

d(q
U
λ ),S
)n−1

·
1−

(
d(q

U
λ ),T

)n

1− d(q
U
λ ),T

 > 0 , (111)

ϑ
(qU

λ )
n := Γ

(qU
λ )

< · d(q
U
λ ),T

1− d(q
U
λ ),T
·

1−
(

d(q
U
λ ),Sd(q

U
λ ),T

)n

1− d(q
U
λ ),Sd(q

U
λ ),T

−

(
d(q

U
λ ),S
)n
−
(

d(q
U
λ ),T

)n

d(q
U
λ ),S − d(q

U
λ ),T

 > 0 ; (112)

furthermore, whenever pU
λ , qU

λ satisfy additionally (47)
(
such parameters exist particularly in the setups

PSP,2 ∪ PSP,3a ∪ PSP,3b, cf. Sections 3.7–3.9
)
, then

1 > C
(pU

λ ,qU
λ ),S

λ,X0,n and B̃
(pU

λ ,qU
λ )

λ,X0,n = BU
λ,X0,n ∀ n ∈ N ;

(b) in the case 0 < qU
λ = βλ one has

C
(pU

λ ,qU
λ ),U

λ,X0,n := C
(pU

λ ,qU
λ ),S

λ,X0,n := B̃
(pU

λ ,qU
λ )

λ,X0,n = exp
{ (

pU
λ − αλ

)
· n
}

;

(c) in the case βλ < qU
λ < min

{
1 , eβλ−1} the formulas (109) and (110) remain valid, but with

ζ
(qU

λ )
n := Γ

(qU
λ )

> ·
(

d(q
U
λ ),S
)n−1

·

n −
1−

(
d(q

U
λ ),T

)n

1− d(q
U
λ ),T

 > 0 , (113)

ϑ
(qU

λ )
n := Γ

(qU
λ )

> ·
[

d(q
U
λ ),S − d(q

U
λ ),T(

1− d(q
U
λ ),S
)2 (

1− d(q
U
λ ),T

) · (1−
(

d(q
U
λ ),S
)n)

+
d(q

U
λ ),T

(
1−

(
d(q

U
λ ),Sd(q

U
λ ),T

)n)(
1− d(q

U
λ ),T

) (
1− d(q

U
λ ),Sd(q

U
λ ),T

) −
(

d(q
U
λ ),S
)n

1− d(q
U
λ ),S
· n
]

> 0 ; (114)

(d) for all cases (a) to (c) one gets

lim
n→∞

1
n

log
(

C
(pU

λ ,qU
λ ),S

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pU

λ ,qU
λ ),U

λ,X0,n

)
= lim

n→∞

1
n

log
(

B̃
(pU

λ ,qU
λ )

λ,X0,n

)
=

pU
λ

qU
λ

·
(

βλ + x
(qU

λ )
0

)
− αλ ,

where in the case qU
λ = βλ there holds x

(qU
λ )

0 = 0.
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This Theorem 7 will be proved in Appendix A.3. Notice that for an inadequate choice of pU
λ , qU

λ it

may hold that pU
λ

qU
λ

(βλ + x
(qU

λ )
0 )− αλ > 0 in part (d) of Theorem 7.

6.4. Explicit Closed-Form Bounds for the Cases (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× (R\[0, 1])

For λ ∈ R\[0, 1], let us now construct closed-form lower bounds of the recursive lower bound

components B̃
(pL

λ ,qL
λ)

λ,X0,n , for suitable parameters pL
λ ≥ 0 and either 0 < qL

λ ≤ βλ or max{0, βλ} < qL
λ <

min{1, eβλ−1} satisfying (35).

Theorem 8. For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1) × (R\[0, 1]) , all coefficients pL
λ ≥ 0, qL

λ > 0
which satisfy (35) for all x ∈ N0 and either 0 < qL

λ ≤ βλ or max{0, βλ} < qL
λ < min{1, eβλ−1}, all initial

population sizes X0 ∈ N and all observation horizons n ∈ N the following assertions hold true:

C
(pL

λ ,qL
λ),T

λ,X0,n ≤ C
(pL

λ ,qL
λ),L

λ,X0,n ≤ B̃
(pL

λ ,qL
λ)

λ,X0,n ≤ BL
λ,X0,n , where (115)

(a) in the case 0 < qL
λ < βλ one has

C
(pL

λ ,qL
λ),L

λ,X0,n := C
(pL

λ ,qL
λ),T

λ,X0,n · exp

{
ζ(q

L
λ)

n · X0 +
pL

λ

qL
λ

· ϑ(qL
λ)

n

}
, (116)

with C
(pL

λ ,qL
λ),T

λ,X0,n := exp

{
x
(qL

λ)
0 ·

[
X0 −

pL
λ

qL
λ

· d(q
L
λ),T

1− d(q
L
λ),T

]
·
(

1−
(

d(q
L
λ),T
)n)

+

(
pL

λ

qL
λ

·
(

βλ + x
(qL

λ)
0

)
− αλ

)
· n
}

ζ(q
L
λ)

n := Γ
(qL

λ)
< ·

(
d(q

L
λ),T
)n−1

1− d(q
L
λ),T

·
(

1−
(

d(q
L
λ),T
)n)

> 0 , (117)

ϑ
(qL

λ)
n := Γ

(qL
λ)

< ·
1−

(
d(q

L
λ),T
)n

(
1− d(q

L
λ),T
)2 ·

1−
d(q

L
λ),T

(
1 +

(
d(q

L
λ),T
)n)

1 + d(q
L
λ),T

 > 0 ; (118)

furthermore, whenever pL
λ, qL

λ satisfy additionally (56)
(
such parameters exist particularly in the setups

PSP,2 ∪ PSP,3a ∪ PSP,3b, cf. Sections 3.17–3.19), then

1 < C
(pL

λ ,qL
λ),T

λ,X0,n and B̃
(pL

λ ,qL
λ)

λ,X0,n = BL
λ,X0,n ∀ n ∈ N ;

(b) in the case 0 < qL
λ = βλ one has

C
(pL

λ ,qL
λ),L

λ,X0,n := C
(pL

λ ,qL
λ),T

λ,X0,n = B̃
(pL

λ ,qL
λ)

λ,X0,n = exp
{ (

pL
λ − αλ

)
· n
}

;

(c) in the case max{0 , βλ} < qL
λ < min

{
1 , eβλ−1} the formulas (115) and (116) remain valid, but with

ζ(q
L
λ)

n := Γ
(qL

λ)
> ·

(
d(q

L
λ),T
)n
−
(

d(q
L
λ),S
)2n

d(q
L
λ),T −

(
d(q

L
λ),S
)2 > 0 , (119)

ϑ
(qL

λ)
n :=

Γ
(qL

λ)
>

d(q
L
λ),T −

(
d(q

L
λ),S
)2 ·

 d(q
L
λ),T ·

(
1−

(
d(q

L
λ),T
)n)

1− d(q
L
λ),T

−

(
d(q

L
λ),S
)2
·
(

1−
(

d(q
L
λ),S
)2n
)

1−
(

d(q
L
λ),S
)2

 > 0 ;

(120)
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(d) for all cases (a) to (c) one gets

lim
n→∞

1
n

log
(

C
(pL

λ ,qL
λ),T

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pL

λ ,qL
λ),L

λ,X0,n

)
= lim

n→∞

1
n

log
(

B̃
(pL

λ ,qL
λ)

λ,X0,n

)
=

pL
λ

qL
λ

·
(

βλ + x
(qL

λ)
0

)
− αλ ,

where in the case qL
λ = βλ there holds x

(qL
λ)

0 = 0.

For the proof of Theorem 8, see Appendix A.3. Notice that for an inadequate choice of pL
λ, qL

λ it

may hold that pL
λ

qL
λ

(βλ + x
(qU

λ )
0 )− αλ < 0 in the last assertion of Theorem 8.

To derive closed-form upper bounds of the recursive upper bounds BU
λ,X0,n of the Hellinger

integral in the case λ ∈ R\[0, 1] , let us first recall from Section 3.24 that we have to use the parameters
pU

λ = αλ
Aα1−λ
H > 0 and qU

λ = βλ
Aβ1−λ
H > 0. Furthermore, in the case βA 6= βH we obtain from Lemma 1

(setting qλ = qU
λ ) the assertion that max{0, βλ} < qU

λ < min{1, eβλ−1} iff λ ∈]λ−, λ+[ \ [0, 1]
(
implying

that the sequence
(
a
(qU

λ )
n

)
n∈N converges

)
. In the case βA = βH on gets qU

λ = βλ
Aβ1−λ
H = βA = βH = βλ

and therefore (cf. (P2)) a
(qU

λ )
n = 0 for all n ∈ N and for all λ ∈ R\[0, 1]. Correspondingly, we deduce

Theorem 9. Let pU
λ = αλ

Aα1−λ
H and qU

λ = βλ
Aβ1−λ
H . Then, the following assertions hold true:

(a) For all (βA, βH, αA, αH, λ) ∈ (PSP,2 ∪ PSP,3a ∪ PSP,3b ∪ PSP,3c)× ( ]λ−, λ+[ \[0, 1] ) (in particular for
βA 6= βH), all initial population sizes X0 ∈ N and all observation horizons n ∈ N there holds

∞ > C
(pU

λ ,qU
λ ),S

λ,X0,n ≥ C
(pU

λ ,qU
λ ),U

λ,X0,n ≥ BU
λ,X0,n > 1 ,

where C
(pU

λ ,qU
λ ),U

λ,X0,n := C
(pU

λ ,qU
λ ),S

λ,X0,n · exp

{
− ζ

(qU
λ )

n · X0 −
pU

λ

qU
λ

· ϑ(qU
λ )

n

}
(121)

with C
(pU

λ ,qU
λ ),S

λ,X0,n := exp

{
x
(qU

λ )
0 ·

[
X0 −

pU
λ

qU
λ

· d(q
U
λ ),T

1− d(q
U
λ ),T

]
·
(

1−
(

d(q
U
λ ),T

)n)
+

(
pU

λ

qU
λ

·
(

βλ + x
(qU

λ )
0

)
− αλ

)
· n
}

,

ζ
(qU

λ )
n := Γ

(qU
λ )

> ·
(

d(q
U
λ ),S
)n−1

·

n −
1−

(
d(q

U
λ ),T

)n

1− d(q
U
λ ),T

 > 0 , (122)

ϑ
(qU

λ )
n := Γ

(qU
λ )

> ·
[

d(q
U
λ ),S − d(q

U
λ ),T(

1− d(q
U
λ ),S
)2 (

1− d(q
U
λ ),T

) · (1−
(

d(q
U
λ ),S
)n)

+
d(q

U
λ ),T

(
1−

(
d(q

U
λ ),Sd(q

U
λ ),T

)n)(
1− d(q

U
λ ),T

) (
1− d(q

U
λ ),Sd(q

U
λ ),T

) −
(

d(q
U
λ ),S
)n

1− d(q
U
λ ),S
· n
]

> 0 . (123)

(b) For all (βA, βH, αA, αH, λ) ∈ (PSP,4a ∪ PSP,4b) × (R\[0, 1] ) (for which particularly 0 < qU
λ = βλ,

βA = βH), all initial population sizes X0 ∈ N and all observation horizons n ∈ N there holds

C
(pU

λ ,qU
λ ),U

λ,X0,n := C
(pU

λ ,qU
λ ),S

λ,X0,n := BU
λ,X0,n = exp

{ (
pU

λ − αλ

)
· n
}

> 1 .
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(c) For all (βA, βH, αA, αH, λ) ∈ (PSP\PSP,1)× ( ]λ−, λ+[ \[0, 1] ) and all initial population sizes X0 ∈ N
one gets

lim
n→∞

1
n

log
(

C
(pU

λ ,qU
λ ),S

λ,X0,n

)
= lim

n→∞

1
n

log
(

C
(pU

λ ,qU
λ ),U

λ,X0,n

)
= lim

n→∞

1
n

log
(

BU
λ,X0,n

)
=

pU
λ

qU
λ

·
(

βλ + x
(qU

λ )
0

)
− αλ > 0 ,

where in the case βA = βH there holds qU
λ = βλ and x

(qU
λ )

0 = 0.

A proof of Theorem 9 is provided in Appendix A.3.

Remark 7. Substituting a(q)n by a(q),Tn resp. a(q),Sn (cf. (78) resp. (79)) in B̃(p,q)
λ,X0,n from (42) leads to the

“rudimentary” closed-form bounds C(p,q),T
λ,X0,n resp. C(p,q),S

λ,X0,n , whereas substituting a(q)n by a(q)n resp. a(q)n (cf. (92)

resp. (94)) in B̃(p,q)
λ,X0,n from (42) leads to the “improved” closed-form bounds C(p,q),L

λ,X0,n resp. C(p,q),U
λ,X0,n in all the

Theorems 5–9.

6.5. Totally Explicit Closed-Form Bounds

The above-mentioned results give closed-form lower bounds C(p,q),L
λ,X0,n , C(p,q),T

λ,X0,n resp. closed-form

upper bounds C(p,q),U
λ,X0,n , C(p,q),S

λ,X0,n of the Hellinger integrals Hλ(PA,n||PH,n) for case-dependent choices

of p, q. However, these bounds still involve the fixed point x(q)0 which in general has to be
calculated implicitly. In order to get “totally” explicit but “slightly” less tight closed-form bounds of
Hλ(PA,n||PH,n), one can proceed as follows:

1. in all the closed-form lower bound formulas of the Theorems 5, 6 and 8–including the definitions
(76), (77) and (91)–replace the implicit x(q)0 by a close explicitly known point x(q)0 < x(q)0 ;

2. in all closed-form upper bound formulas of the Theorems 5, 7 and 9–including (76), (77) and
(91)–replace x(q)0 by a close explicitly known point x(q)0 > x(q)0 .

For instance, one can use the following choices which will be also employed as an auxiliary tool
for the diffusion-limit-concerning proof of Lemma A6 in Appendix A.4:

x(q)0 :=


q−1 · e−x(q)

0 ·
[
(1− q)−

√
(1− q)2 − 2 · q · ex(q)

0 · (q− βλ)

]
, if q ∈]0, βλ[ ,

q−1 ·
[
(1− q)−

√
(1− q)2 − 2 · q · (q− βλ)

]
, if max{0, βλ} < q < min{1, eβλ−1},

(124)

where x(q)0 :=

{
max

{
−βλ , q−βλ

1−q

}
, if q ∈]0, 1[ ,

−βλ, if q ≥ 1,
(125)

x(q)0 :=



q−1 ·
[
(1− q)−

√
(1− q)2 − 2 · q · (q− βλ)

]
, if q ∈]0, βλ[ ,

(1− q)−
√
(1− q)2 − 2 · (q− βλ), if max{0, βλ} < q < min{1, eβλ−1}

and (1− q)2 − 2 · q · (q− βλ) ≥ 0,

x(q)0 := − log(q) if max{0, βλ} < q < min{1, eβλ−1}
and (1− q)2 − 2 · q · (q− βλ) < 0.

(126)
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Behind this choice “lies” the idea that–in contrast to the solution x(q)0 of ξ
(q)
λ (x) := qex − βλ =

x–the point x(q)0 is a solution of (the obviously explicitly solvable) Q(q)
λ (x) := a(q)λ x2 + b(q)λ x + c(q)λ = x

in both cases 0 < q < βλ and max{0, βλ} < q < min{1, eβλ−1}, whereas the point x(q)0 is a solution

of Q(q)
λ (x) := a(q)λ x2 + b

(q)
λ x + c(q)λ = x in the case 0 < q < βλ and in the case max{0, βλ} < q <

min{1, eβλ−1} together with (1− q)2 − 2 · q · (q− βλ) ≥ 0. Thereby, Q(q)
λ (·) and Q(q)

λ (·) are the lower

resp. upper quadratic approximates of ξ
(q)
λ (·) satisfying the following constraints:

• for q ∈]0, βλ[ (mostly but not only for λ ∈]0, 1[) (lower bound):

Q(q)
λ (0) = ξ

(q)
λ (0) = q− βλ, Q(q) ′

λ (0) = ξ
(q) ′
λ (0) = q, Q(q) ′′

λ (x) = ξ
(q) ′′
λ (y) = qey, x ∈ R,

for some explicitly known approximate y < x(q)0
(
leading to the (tighter) explicit lower approximate

x(q)0 ∈]y, x(q)0 [
)
; here, we choose

y := x(q)0 :=

{
max

{
−βλ , q−βλ

1−q

}
, if q < 1,

−βλ, if q ≥ 1;

• for q ∈]0, βλ[ (mostly but not only for λ ∈]0, 1[) (upper bound):

Q(q)
λ (0) = ξ

(q)
λ (0) = q− βλ, Q(q) ′

λ (0) = ξ
(q) ′
λ (0) = q, Q(q) ′′

λ (x) = ξ
(q) ′′
λ (0) = q, x ∈ R;

• for max{0, βλ} < q < min{1, eβλ−1} (mostly but not only for λ ∈ R\[0, 1]) (lower bound):

Q(q)
λ (0) = ξ

(q)
λ (0) = q− βλ, Q(q) ′

λ (0) = ξ
(q) ′
λ (0) = q, Q(q) ′′

λ (x) = ξ
(q) ′′
λ (0) = q, x ∈ R;

• for max{0, βλ} < q < min{1, eβλ−1} in combination with (1− q)2− 2 · q · (q− βλ) ≥ 0 (mostly but
not only for λ ∈ R\[0, 1]) (upper bound):

Q(q)
λ (0) = ξ

(q)
λ (0) = q− βλ, Q(q) ′

λ (0) = ξ
(q) ′
λ (0) = q, Q(q) ′′

λ (x) = ξ
(q) ′′
λ (− log(q)) = 1, x ∈ R.

If max{0, βλ} < q < min{1, eβλ−1} and (1− q)2 − 2 · q · (q− βλ) < 0, then a real-valued solution

Q(q)
λ (x) = x does not exist and we set x(q)0 := x(q)0 := − log(q), with ξ

(q) ′
λ

(
x(q)0

)
= 1. The above

considerations lead to corresponding unique choices of constants a(q)λ , b(q)λ , c(q)λ , a(q)λ , b
(q)
λ , c(q)λ

culminating in

Q(q)
λ (x) :=


q
2 · e

x(q)0 · x2 + q · x + q− βλ, if 0 < q < βλ ,

q
2 · x2 + q · x + q− βλ, if max{0, βλ} < q < min{1, eβλ−1} ,

(127)

Q(q)
λ (x) :=


q
2 · x2 + q · x + q− βλ, if 0 < q < βλ ,

1
2 · x2 + q · x + q− βλ, if max{0, βλ} < q < min{1, eβλ−1} .

(128)

6.6. Closed-Form Bounds for Power Divergences of Non-Kullback-Leibler-Information-Divergence Type

Analogously to Section 4 (see especially Section 4.1), for orders λ ∈ R\{0, 1} all the results of
the previous Sections 6.1–6.5 carry correspondingly over from closed-form bounds of the Hellinger
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integrals Hλ(·||·) to closed-form bounds of the total variation distance V(·||·), by virtue of the relation
(cf. (12))

2
(
1− H 1

2
(PA,n||PH,n)

)
≤ V(PA,n||PH,n) ≤ 2

√
1−

(
H 1

2
(PA,n||PH,n)

)2 ,

to closed-form bounds of the Renyi divergences Rλ(·||·), by virtue of the relation (cf. (7))

0 ≤ Rλ (PA,n||PH,n) =
1

λ(λ− 1)
log Hλ (PA,n||PH,n) , with log 0 := −∞,

as well as to closed-form bounds of the power divergences Iλ (·||·), by virtue of the relation (cf. (2))

Iλ (PA,n||PH,n) =
1− Hλ(PA,n||PH,n)

λ · (1− λ)
, n ∈ N .

For the sake of brevity, the–merely repetitive–exact details are omitted.

6.7. Applications to Decision Making

The above-mentioned investigations of the Sections 6.1 to 6.6 can be applied to the context of
Section 2.5 on dichotomous decision making on the space of all possible path scenarios (path space) of
Poissonian Galton-Watson processes without (with) immigration GW(I) (e.g., in combination with our
running-example epidemiological context of Section 2.3). More detailed, for the minimal mean decision
loss (Bayes risk) Rn defined by (18) we can derive explicit closed-form upper (respectively lower)
bounds by using (19) respectively (20) together with the results of the Sections 6.1–6.5 concerning
Hellinger integrals of order λ ∈ ]0, 1[; we can proceed analogously in the Neyman-Pearson context in
order to deduce closed-form bounds of type II error probabilities, by means of (23) and (24). Moreover,
in an analogous way we can employ the investigations of Section 6.6 on power divergences in order to
obtain closed-form bounds of (i) the corresponding (cf. (21)) weighted-average decision risk reduction
(weighted-average statistical information measure) about the degree of evidence deg concerning the
parameter θ that can be attained by observing the GW(I)-path Xn until stage n, as well as (ii) the
corresponding (cf. (22)) limit decision risk reduction (limit statistical information measure). For the
sake of brevity, the–merely repetitive–exact details are omitted.

7. Hellinger Integrals and Power Divergences of Galton-Watson Type Diffusion Approximations

7.1. Branching-Type Diffusion Approximations

One can show that a properly rescaled Galton-Watson process without (respectively with)
immigration GW(I) converges weakly to a diffusion process X̃ :=

{
X̃s , s ∈ [0, ∞[

}
which is the

unique, strong, nonnegative – and in case of η

σ2 ≥ 1
2 strictly positive– solution of the stochastic

differential equation (SDE) of the form

dX̃s =
(

η − κ X̃s

)
ds + σ

√
X̃s dWs, s ∈ [0, ∞[, X̃0 ∈]0, ∞[ given, (129)

where η ∈ [0, ∞[, κ ∈ [0, ∞[, σ ∈]0, ∞[ are constants and
{

Ws , s ∈ [0, ∞[
}

denotes a standard
Brownian motion with respect to the underlying probability measure P; see e.g., Feller [130], Jirina [131],
Lamperti [132,133], Lindvall [134,135], Grimvall [136], Jagers [56], Borovkov [137], Ethier & Kurtz [138],
Durrett [139] for the non-immigration case corresponding to η = 0, κ ≥ 0, Kawazu & Watanabe [140],
Wei & Winnicki [141], Winnicki [64] for the immigration case corresponding to η 6= 0, κ = 0, as well as
Sriram [142] for the general case η ∈ [0, ∞[, κ ∈ R. Feller-type branching processes of the form (129),
which are special cases of continuous state branching processes with immigration (see e.g., Kawazu
& Watanabe [140], Li [143], as well as Dawson & Li [144] for imbeddings to affine processes) play
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for instance an important role in the modelling of the term structure of interest rates, cf. the seminal
Cox-Ingersoll-Ross CIR model [145] and the vast follow-up literature thereof. Furthermore, (129) is
also prominently used as (a special case of) Cox & Ross’s [146] constant elasticity of variance CEV asset
price process, as (part of) Heston’s [147] stochastic asset-volatility framework, as a model of neuron
activity (see e.g., Lansky & Lanska [148], Giorno et al. [149], Lanska et al. [150], Lansky et al [151],
Ditlevsen & Lansky [152], Höpfner [153], Lansky & Ditlevsen [154]), as a time-dynamic description of
the nitrous oxide emission rate from the soil surface (see e.g., Pedersen [155]), as well as a model for
the individual hazard rate in a survival analysis context (see e.g., Aalen & Gjessing [156]).

Along these lines of branching-type diffusion limits, it makes sense to consider the solutions of
two SDEs (129) with different fixed parameter sets (η, κA, σ) and (η, κH, σ), determine for each of them
a corresponding approximating GW(I), investigate the Hellinger integral between the laws of these
two GW(I), and finally calculate the limit of the Hellinger integral (bounds) as the GW(I) approach
their SDE solutions. Notice that for technicality reasons (which will be explained below), the constants
η and σ ought to be independent of A,H in our current context.

In order to make the above-mentioned limit procedure rigorous, it is reasonable to work with
appropriate approximations such that in each convergence step m one faces the setup PNI ∪ PSP,1 (i.e.,
the non-immigration or the equal-fraction case), where the corresponding Hellinger integral can be
calculated exactly in a recursive way, as stated in Theorem 1. Let us explain the details in the following.

Consider a sequence of GW(I)
(

X(m)
)

m∈N
with probability laws P(m)

• on a measurable space

(Ω,F ), where as above the subscript • stands for either the hypothesis H or the alternative A.
Analogously to (1), we use for each fixed step m ∈ N the representation X(m) :=

{
X(m)
` , ` ∈ N

}
with

X(m)
` :=

X(m)
`−1

∑
j=1

Y(m)
`−1,j + Ỹ(m)

` , ` ∈ N, X(m)
0 ∈ N given, (130)

where under the law P(m)
•

• the collection Y(m) :=
{

Y(m)
i,j , i ∈ N0, j ∈ N

}
consists of i.i.d. random variables which are Poisson

distributed with parameter β
(m)
• > 0,

• the collection Ỹ(m) :=
{

Ỹ(m)
i , i ∈ N

}
consists of i.i.d. random variables which are Poisson

distributed with parameter α
(m)
• ≥ 0,

• Y(m) and Ỹ(m) are independent.

From arbitrary drift-parameters η ∈ [0, ∞[, κ• ∈ [0, ∞[, and diffusion-term-parameter σ > 0,
we construct the offspring-distribution-parameter and the immigration-distribution parameter of the
sequence

(
X(m)
`

)
`∈N

by

β
(m)
• := 1− κ•

σ2m
and α

(m)
• := β

(m)
• ·

η

σ2 . (131)

Here and henceforth, we always assume that the approximation step m is large enough to ensure
that β

(m)
• ∈]0, 1] and at least one of β

(m)
A , β

(m)
H is strictly less than 1; this will be abbreviated by m ∈ N.

Let us point out that – as mentioned above–our choice entails the best-to-handle setup PNI ∪ PSP,1

(which does not happen if instead of η one uses η• with ηA 6= ηH). Based on the GW(I) X(m), let us
construct the continuous-time branching process X̃(m) :=

{
X̃(m)

s , s ∈ [0, ∞[
}

by

X̃(m)
s :=

1
m

X(m)

bσ2msc , (132)
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living on the state space E(m) := 1
mN0. Notice that X̃(m) is constant on each time-interval

[
k

σ2m , k+1
σ2m

[
and takes at s = k

σ2m the value 1
m X(m)

k of the k-th GW(I) generation size, divided by m, i.e., it “jumps”

with the jump-size 1
m

(
X(m)

k − X(m)
k−1

)
which is equal to the 1

m -fold difference to the previous generation
size. From (132) one can immediately see the necessity of having σ to be independent of A, H
because for the required law-equivalence in (the corresponding version of) (13) both models at stake
have to “live” on the same time-scale τ

(m)
s :=

⌊
σ2ms

⌋
. For this setup, one obtains the following

convergenc result:

Theorem 10. Let η ∈ [0, ∞[, κ• ∈ [0, ∞[, σ ∈]0, ∞[ and X̃(m) be as defined in (130) to (132). Furthermore,
let us suppose that limm→∞

1
m X(m)

0 = X̃0 > 0 and denote by D([0, ∞[, [0, ∞[) the space of right-continuous

functions f : [0, ∞[ 7→ [0, ∞[ with left limits. Then the sequence of processes
(

X̃(m)
)

m∈N
convergences in

distribution in D([0, ∞[, [0, ∞[) to a diffusion process X̃ which is the unique strong, nonnegative–and in case of
η

σ2 ≥ 1
2 strictly positive–solution of the SDE

dX̃s =
(
η − κ• X̃s

)
ds + σ

√
X̃s dW•s , s ∈ [0, ∞[, X̃0 ∈]0, ∞[ given, (133)

where
{

W•s , s ∈ [0, ∞[
}

denotes a standard Brownian motion with respect to the limit probability measure P̃•.

Remark 8. Notice that the condition η

σ2 ≥ 1
2 can be interpreted in our approximation setup (131) as α

(m)
• ≥

β
(m)
• /2, which quantifies the intuitively reasonable indication that if the probability P•[Ỹ

(m)
` = 0] = e−α

(m)
•

of having no immigration is small enough relative to the probability P•[Y
(m)
`−1,k = 0] = e−β

(m)
• of having no

offspring (m ∈ N), then the limiting diffusion X̃ never hits zero almost surely.

The corresponding proof of Theorem 10–which is outlined in Appendix A.4–is an adaption of
the proof of Theorem 9.1.3 in Ethier & Kurtz [138] which deals with drift-parameters η = 0, κ• = 0
in the SDE (133) whose solution is approached on a σ−independent time scale by a sequence of
(critical) Galton-Watson processes without immigration but with general offspring distribution with
mean 1 and variance σ. Notice that due to (131) the latter is inconsistent with our Poissonian setup,
but this is compensated by our chosen σ−dependent time scale. Other limit investigations for (133)
involving offspring/immigration distributions and parametrizations which are also incompatible to
ours, are e.g., treated in Sriram [142].

As illustration of our proposed approach, let us give the following

Example 3. Consider the parameter setup (η, κ•, σ) = (5, 2, 0.4) and initial generation size X̃0 = 3. Figure 4
shows the diffusion-approximation X̃(m)

s (blue) of the corresponding solution X̃s of the SDE (133) up to the time
horizon T = 10, for the approximation steps m ∈ {13, 50, 200, 1000}. Notice that in this setup there holds
N = {k ∈ N : k ≥ 13} (recall that N is the subset of the positive integers such that β

(m)
• = 1− κ•

σ2·m > 0).
The “long-term mean” of the limit process X̃s is η

κ•
= 2.5 and is indicated as red line. The “long-term mean” of

the approximations X̃(m)
s is equal to α

(m)
•

1−β
(m)
•

= η
κ•
− η

σ2·m = 2.5− 31.25/m and is displayed as green line.
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Figure 4. Simulation of the process X̃(m)
s for the approximation steps m ∈ {13, 50, 200, 1000} in the

parameter setup (η, κ•, σ) = (5, 2, 0.4) and with initial starting value X̃0 = 3.

7.2. Bounds of Hellinger Integrals for Diffusion Approximations

For each approximation step m and each observation horizon t ∈ [0, ∞[, let us now investigate the

behaviour of the Hellinger integrals Hλ

(
P(m),CDA
A,t

∣∣∣∣∣∣P(m),CDA
H,t

)
, where P(m),CDA

•,t denotes the canonical

law (underH resp. A) of the continuous-time diffusion approximation X̃(m) (cf. (132)), restricted to [0, t].

It is easy to see that Hλ

(
P(m),CDA
A,t

∣∣∣∣∣∣P(m),CDA
H,t

)
coincides with Hλ

(
P(m)

A,bσ2mtc
∣∣∣∣∣∣P(m)

H,bσ2mtc

)
of the law

restrictions of the GW(I) generations sizes
(

X(m)
`

)
`∈{0,...,bσ2mtc}

, where bσ
2mtc

σ2m can be interpreted as

the last “jump-time” of X̃(m) before t. These Hellinger integrals obey the results of

• the Propositions 2 and 3 (for η = 0) respectively the Propositions 4 and 5 (for η ∈]0, ∞[), as far as
recursively computable exact values are concerned,

• Theorem 5 as far as closed-form bounds are concerned; recall that the current setup is of type
PNI ∪ PSP,1, and thus we can use the simplifications proposed in the Remark 7(a).

In order to obtain the desired Hellinger integral limits limm→∞ Hλ

(
P(m)

A,bσ2mtc
∣∣∣∣∣∣P(m)

H,bσ2mtc

)
, one

faces several technical problems which will be described in the following. To begin with, for fixed
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m ∈ N we apply the Propositions 2(b), 3(b), 4(b), 5(b) to the current setup (β
(m)
A , β

(m)
H , α

(m)
A , α

(m)
H ) ∈

PNI ∪ PSP,1 with

β
(m)
• := β•(m, κ•, σ2) := 1− κ•

σ2m
and α

(m)
• := α•(m, κ•, σ2, η) := β

(m)
• ·

η

σ2 (cf. (131)).

Notice that η = 0 corresponds to the no-immigration (NI) case and that α
(m)
•

β
(m)
•

= η

σ2 . Accordingly,

we set α
(m)
λ := λ · α(m)

A + (1− λ) · α(m)
H , β

(m)
λ := λ · β(m)

A + (1− λ) · β(m)
H . By using

q(m)
λ := q(m, κ•, σ2, λ) :=

(
β
(m)
A

)λ (
β
(m)
H

)1−λ
, λ ∈ R\{0, 1}, (134)

as well as the connected sequence
(

a(m)
n

)
n∈N

:=
(

a
(q(m)

λ )
n

)
n∈N

we arrive at the

Corollary 13. For all
(

β
(m)
A , β

(m)
H , α

(m)
A , α

(m)
H , λ

)
∈ (PNI ∪ PSP,1) × (R\{0, 1}) and all population sizes

X(m)
0 ∈ N there holds

h(m)
λ := Hλ

(
P(m)

A,bσ2mtc
∣∣∣∣∣∣P(m)

H,bσ2mtc

)
= exp

a
(q(m)

λ )

bσ2mtc · X
(m)
0 +

η

σ2

bσ2mtc
∑
k=1

a
(q(m)

λ )

k

 (135)

with η = 0 in the NI case.

In the following, we employ the SDE-parameter constellations (which are consistent with (131) in
combination with our requirement to work here only on (PNI ∪ PSP,1))

P̃NI :=
{
(κA, κH, η), η = 0, κA ∈ [0, ∞[ , κH ∈ [0, ∞[ , κA 6= κH

}
, (136)

P̃SP,1 :=
{
(κA, κH, η), η > 0, κA ∈ [0, ∞[ , κH ∈ [0, ∞[ , κA 6= κH

}
. (137)

Due to the–not in closed-form representable–recursive nature of the sequences
(

a(q)n

)
n∈N

defined

by (36), the calculation of limm→∞ h(m)
λ in (135) seems to be not (straightforwardly) tractable; after

all, one “has to move along” a sequence of recursions (roughly speaking) since
⌊
σ2mt

⌋
→ ∞ as m

tends to infinity. One way to “circumvent” such technical problems is to compute instead of the
limit limm→∞ h(m)

λ of the (exact values of the) Hellinger integrals h(m)
λ , the limits of the corresponding

(explicit) closed-form lower resp. upper bounds adapted from Theorem 5. In order to achieve

this, one first needs a preparatory step, due to the fact that the sequence
(

a
(q(m)

λ )

bσ2mtc

)
m∈N

(and hence

its bounds leading to closed-form expressions) does not necessarily converge for all λ ∈ R\[0, 1];
roughly, this can be conjectured from the Propositions 3(c) and 5(c) in combination with

⌊
σ2mt

⌋
→

∞. Correspondingly, for our “sequence-of-recursions” context equipped with the diffusion-limit’s
drift-parameter constellations (κA, κH, η) we have to derive a “convergence interval” [λ̃−, λ̃+]\[0, 1]
which replaces the single-recursion-concerning [λ−, λ+]\[0, 1] (cf. Lemma 1). This amounts to

Proposition 15. For all (κA, κH, η) ∈ P̃NI ∪ P̃SP,1 define

0 > λ̃− :=

 − ∞, if κA < κH ,

− κ2
H

κ2
A−κ2

H
, if κA > κH ,

and 1 < λ̃+ :=


κ2
H

κ2
H−κ2

A
, if κA < κH ,

∞, if κA > κH .
(138)
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Then, for all (κA, κH, η, λ) ∈ (P̃NI ∪ P̃SP,1) × ]λ̃−, λ̃+[ \ [0, 1] there holds for all sufficiently large m ∈ N

q(m)
λ :=

(
1− κA

σ2m

)λ (
1− κH

σ2m

)1−λ
< min

{
1 , eβ

(m)
λ −1

}
, (139)

and thus the sequence
(

a
(q(m)

λ )
n

)
n∈N

converges to the fixed point x(m)
0 ∈

]
0,− log

(
q(m)

λ

) [
.

This will be proved in Appendix A.4.
We are now in the position to determine bounds of the Hellinger integral limits

limm→∞ Hλ

(
P(m)

A,bσ2mtc
∣∣∣∣∣∣P(m)

H,bσ2mtc

)
in form of m-limits of appropriate versions of closed-form bounds

from Section 6. For the sake of brevity, let us henceforth use the abbreviations x(m)
0 := x

(q(m)
λ )

0 , Γ(m)
< :=

Γ
(q(m)

λ )
< =

q(m)
λ
2 · e

x(m)
0 ·

(
x(m)

0

)2
, Γ(m)

> := Γ
(q(m)

λ )
> =

q(m)
λ
2 ·

(
x(m)

0

)2
, d(m),S := d(q

(m)
λ ),S =

x(m)
0 −(q(m)

λ −β
(m)
λ )

x(m)
0

and d(m),T := d(q
(m)
λ ),T = q(m)

λ · ex(m)
0 . By the above considerations, the Theorem 5 (together with

Remark 7(a)) adapts to the current setup as follows:

Corollary 14. (a) For all (κA, κH, η, λ) ∈ (P̃NI ∪ P̃SP,1)×]0, 1[, all t ∈ [0, ∞[, all approximation steps
m ∈ N and all initial population sizes X(m)

0 ∈ N the Hellinger integral can be bounded by

C(m),L
λ,X(m)

0 ,t
:= exp

{
x(m)

0 ·
[

X(m)
0 − η

σ2
d(m),T

1− d(m),T

](
1−

(
d(m),T

)bσ2mtc)
+ x(m)

0
η

σ2 ·
⌊

σ2mt
⌋

+ ζ
(m)
bσ2mtc · X

(m)
0 +

η

σ2 · ϑ
(m)
bσ2mtc

}
(140)

≤ Hλ

(
P(m)
A,bσ2mtc

∣∣∣∣∣∣P(m)
H,bσ2mtc

)
≤ exp

{
x(m)

0 ·
[

X(m)
0 − η

σ2
d(m),S

1− d(m),S

](
1−

(
d(m),S

)bσ2mtc)
+ x(m)

0
η

σ2 ·
⌊

σ2mt
⌋

− ζ
(m)
bσ2mtc · X

(m)
0 − η

σ2 · ϑ
(m)
bσ2mtc

}
=: C(m),U

λ,X(m)
0 ,t

, (141)

where we define analogously to (98) to (101)

ζ(m)
n := Γ(m)

< ·

(
d(m),T

)n−1

1− d(m),T
·
(

1−
(

d(m),T
)n)

> 0 , (142)

ϑ
(m)
n := Γ(m)

< ·
1−

(
d(m),T

)n

(
1− d(m),T

)2 ·

1−
d(m),T

(
1 +

(
d(m),T

)n)
1 + d(m),T

 > 0 , (143)

ζ
(m)
n := Γ(m)

< ·


(

d(m),S
)n
−
(

d(m),T
)n

d(m),S − d(m),T
−
(

d(m),S
)n−1

·
1−

(
d(m),T

)n

1− d(m),T

 > 0 , (144)

ϑ
(m)
n := Γ(m)

< · d(m),T

1− d(m),T
·

1−
(

d(m),Sd(m),T
)n

1− d(m),Sd(m),T
−

(
d(m),S

)n
−
(

d(m),T
)n

d(m),S − d(m),T

 > 0 . (145)

Notice that (140) and (141) simplify significantly for (κA, κH, η, λ) ∈ P̃NI×]0, 1[ for which η = 0 holds.
(b) For all (κA, κH, η, λ) ∈ (P̃NI ∪ P̃SP,1) ×

]
λ̃−, λ̃+

[
\ [0, 1] and all initial population sizes X(m)

0 ∈ N the
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Hellinger integral bounds (140) and (141) are valid for all sufficiently large m ∈ N, where the expressions (142)
to (145) have to be replaced by

ζ(m)
n := Γ(m)

> ·

(
d(m),T

)n
−
(

d(m),S
)2n

d(m),T −
(

d(m),S
)2 > 0 , (146)

ϑ
(m)
n :=

Γ(m)
>

d(m),T −
(

d(m),S
)2 ·

 d(m),T ·
(

1−
(

d(m),T
)n)

1− d(m),T
−

(
d(m),S

)2
·
(

1−
(

d(m),S
)2n
)

1−
(

d(m),S
)2

 > 0 ,

ζ
(m)
n := Γ(m)

> ·
(

d(m),S
)n−1

·

n −
1−

(
d(m),T

)n

1− d(m),T

 > 0 , (147)

ϑ
(m)
n := Γ(m)

> ·
[

d(m),S − d(m),T(
1− d(m),S

)2 (1− d(m),T
) · (1−

(
d(m),S

)n)
(148)

+
d(m),T

(
1−

(
d(m),Sd(m),T

)n)
(
1− d(m),T

) (
1− d(m),Sd(m),T

) −
(

d(m),S
)n

1− d(m),S
· n
]

. (149)

Let us finally present the desired assertions on the limits of the bounds given in Corollary 14 as
the approximation step m tends to infinity, by employing for λ ∈

]
λ̃−, λ̃+

[
! [0, 1] the quantities

κλ := λκA + (1− λ)κH as well as Λλ :=
√

λκ2
A + (1− λ)κ2

H , (150)

for which the following relations hold:

Λλ > κλ > 0, for λ ∈
]
0, 1
[
, (151)

0 < Λλ < κλ, for λ ∈
]
λ̃−, λ̃+

[∖
[0, 1] . (152)

Theorem 11. Let the initial SDE-value X̃0 ∈]0, ∞[ be arbitrary but fixed, and suppose that
limm→∞

1
m X(m)

0 = X̃0. Then, for all (κA, κH, η, λ) ∈ (P̃NI ∪ P̃SP,1) ×
]
λ̃− , λ̃+

[
\ {0, 1} and all t ∈ [0, ∞[

the Hellinger integral limit can be bounded by

DL
λ,X̃0,t := exp

{
− Λλ − κλ

σ2

[
X̃0 −

η

Λλ

] (
1− e−Λλ ·t

)
− η

σ2 (Λλ − κλ) · t

+ L(1)
λ (t) · X̃0 +

η

σ2 · L
(2)
λ (t)

}
(153)

≤ lim
m→∞

Hλ

(
P(m)

A,bσ2mtc
∣∣∣∣∣∣P(m)

H,bσ2mtc

)
≤ exp

{
− Λλ − κλ

σ2

[
X̃0 −

η
1
2 (Λλ + κλ)

] (
1− e−

1
2 (Λλ+κλ)·t

)
− η

σ2 (Λλ − κλ) · t

− U(1)
λ (t) · X̃0 −

η

σ2 ·U
(2)
λ (t)

}
=: DU

λ,X̃0,t
, (154)
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where for the (sub)case of all λ ∈]0, 1[ and all t ≥ 0

L(1)
λ (t) :=

(Λλ − κλ)
2

2σ2 ·Λλ
· e−Λλ ·t ·

(
1− e−Λλ ·t

)
, (155)

L(2)
λ (t) :=

1
4
·
(

Λλ − κλ

Λλ

)2
·
(

1− e−Λλ ·t
)2

, (156)

U(1)
λ (t) :=

(Λλ − κλ)
2

σ2 ·
[

e−
1
2 (Λλ+κλ)·t − e−Λλ ·t

Λλ − κλ
−

e−
1
2 (Λλ+κλ)·t

(
1− e−Λλ ·t

)
2 ·Λλ

]
, (157)

U(2)
λ (t) :=

(Λλ − κλ)
2

Λλ
·
[

1− e−
1
2 (3Λλ+κλ)·t

3Λλ + κλ
+

e−Λλ ·t − e−
1
2 (Λλ+κλ)·t

Λλ − κλ

]
, (158)

and for the remaining (sub)case of all λ ∈
]
λ̃−, λ̃+

[ ∖
[0, 1] and all t ≥ 0

L(1)
λ (t) :=

(Λλ − κλ)
2

2σ2 · κλ
· e−Λλ ·t ·

(
1− e−κλ ·t) , (159)

L(2)
λ (t) :=

(Λλ − κλ)
2

2 · κλ
·
[

1− e−Λλ ·t

Λλ
− 1− e−(Λλ+κλ)·t

Λλ + κλ

]
, (160)

U(1)
λ (t) :=

(Λλ − κλ)
2

2 · σ2 · e−
1
2 (Λλ+κλ)·t ·

[
t − 1− e−Λλ ·t

Λλ

]
, (161)

U(2)
λ (t) := (Λλ − κλ)

2 ·
[
(Λλ − κλ)

(
1− e−

1
2 (Λλ+κλ)·t

)
Λλ · (Λλ + κλ)

2 +
1− e−

1
2 (3Λλ+κλ)·t

Λλ · (3Λλ + κλ)
− e−

1
2 (Λλ+κλ)·t

Λλ + κλ
· t
]

.

(162)

Notice that the components L(i)
λ (t) and U(i)

λ (t)
(
for i = 1, 2 and in both cases λ ∈]0, 1[ and λ ∈]

λ̃−, λ̃+
[ ∖

[0, 1]
)

are strictly positive for t > 0 and do not depend on the parameter η. Furthermore, the bounds
DL

λ,X̃0,t
and DU

λ,X̃0,t
simplify significantly in the case (κA, κH, η) ∈ P̃NI , for which η = 0 holds.

This will be proved in Appendix A.4. For the time-asymptotics, we obtain the

Corollary 15. Let the initial SDE-value X̃0 ∈]0, ∞[ be arbitrary but fixed, and suppose that
limm→∞

1
m X(m)

0 = X̃0. Then:

(a) For all (κA, κH, η, λ) ∈ P̃NI ×
]
λ̃−, λ̃+

[
\{0, 1} the Hellinger integral limit converges to

lim
t→∞

lim
m→∞

log
(

Hλ

(
P(m)
A,bσ2mtc

∣∣∣∣∣∣P(m)
H,bσ2mtc

))
= − X̃0

σ2 ·
(

Λλ − κλ

) 
< 0, for λ ∈]0, 1[ ,

> 0, for λ ∈
]
λ̃−, λ̃+

[ ∖
[0, 1] .

(b) For all (κA, κH, η, λ) ∈ P̃SP,1 ×
]
λ̃−, λ̃+

[
\{0, 1} the Hellinger integral limit possesses the asymptotical

behaviour

lim
t→∞

1
t

log
(

lim
m→∞

Hλ

(
P(m)
A,bσ2mtc

∣∣∣∣∣∣P(m)
H,bσ2mtc

))
= − η

σ2 ·
(

Λλ − κλ

) 
< 0, for λ ∈]0, 1[ ,

> 0, for λ ∈
]
λ̃−, λ̃+

[ ∖
[0, 1] .

The assertions of Corollary 15 follow immediately by inspecting the expressions in the exponential
of (153) and (154) in combination with (155) to (162).
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7.3. Bounds of Power Divergences for Diffusion Approximations

Analogously to Section 4 (see especially Section 4.1), for orders λ ∈ R\{0, 1} all the
results of the previous Section 7.2 carry correspondingly over from (limits of) bounds of the

Hellinger integrals Hλ

(
P(m)

A,bσ2mtc
∣∣∣∣∣∣P(m)

H,bσ2mtc

)
to (limits of) bounds of the total variation distance

V
(

P(m)

A,bσ2mtc
∣∣∣∣∣∣P(m)

H,bσ2mtc

)
(by virtue of (12)), to (limits of) bounds of the Renyi divergences

Rλ

(
P(m)

A,bσ2mtc
∣∣∣∣∣∣P(m)

H,bσ2mtc

)
(by virtue of (7)) as well as to (limits of) bounds of the power divergences

Iλ

(
P(m)

A,bσ2mtc
∣∣∣∣∣∣P(m)

H,bσ2mtc

)
(by virtue of (2)). For the sake of brevity, the–merely repetitive–exact

details are omitted. Moreover, by combining the outcoming results on the above-mentioned power
divergences with parts of the Bayesian-decision-making context of Section 2.5, we obtain corresponding
assertions on (i) the (cf. (21)) weighted-average decision risk reduction (weighted-average statistical
information measure) about the degree of evidence deg concerning the parameter θ that can be attained
by observing the GWI-path Xn until stage n, as well as (ii) the (cf. (22)) limit decision risk reduction
(limit statistical information measure).

In the following, let us concentrate on the derivation of the Kullback-Leibler information
divergence KL (relative entropy) within the current diffusion-limit framework. Notice that altogether
we face two limit procedures simultaneously: by the first limit limλ↑1 Iλ

(
P(m)

A,bσ2mtc||P
(m)

H,bσ2mtc
)

we

obtain the KL I
(

P(m)

A,bσ2mtc||P
(m)

H,bσ2mtc
)

for every fixed approximation step m ∈ N; on the other

hand, for each fixed λ ∈]0, 1[, the second limit limm→∞ Iλ

(
P(m)

A,bσ2mtc||P
(m)

H,bσ2mtc
)

describes the limit

of the power divergence – as the sequence of rescaled and continuously interpolated GW(I)’s((
X̃(m)

s
)

s∈[0,∞[

)
m∈N

(
equipped with probability law P(m)

A,bσ2mtc resp. P(m)

H,bσ2mtc up to time
⌊
σ2mt

⌋)
converges weakly to the continuous-time CIR-type diffusion process

(
X̃s
)

s∈[0,∞[
(with probability law

P̃A,t resp. P̃H,t up to time t). In Appendix A.4 we shall prove that these two limits can be interchanged:

Theorem 12. Let the initial SDE-value X̃0 ∈]0, ∞[ be arbitrary but fixed, and suppose that
limm→∞

1
m X(m)

0 = X̃0. Then, for all (κA, κH, η) ∈ P̃NI ∪ P̃SP,1 and all t ∈ [0, ∞[ , one gets the
Kullback-Leibler information divergence (relative entropy) convergences

lim
m→∞

I
(

P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc

)
= lim

m→∞
lim
λ↗1

Iλ

(
P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc

)

=


(κA−κH)

2

2σ2·κA
·
[(

X̃0 − η
κA

)
·
(
1− e−κA ·t

)
+ η · t

]
, if κA > 0,

κ2
H

2σ2 ·
[

η
2 · t2 + X̃0 · t

]
, if κA = 0,

= lim
λ↗1

lim
m→∞

Iλ

(
P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc

)
. (163)

This immediately leads to the following
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Corollary 16. Let the initial SDE-value X̃0 ∈]0, ∞[ be arbitrary but fixed, and suppose that
limm→∞

1
m X(m)

0 = X̃0. Then, the KL limit (163) possesses the following time-asymptotical behaviour:
(a) For all (κA, κH, η) ∈ P̃NI (i.e., η = 0) one gets

(i) in the case κA > 0 lim
t→∞

lim
m→∞

I
(

P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc

)
=

X̃0 · (κA − κH)
2

2σ2 · κA
,

(ii) in the case κA = 0 lim
t→∞

lim
m→∞

1
t
· I
(

P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc

)
=

X̃0 · κ2
H

4σ2 .

(b) For all (κA, κH, η) ∈ P̃SP,1 (i.e., η > 0) one gets

(i) in the case κA > 0 lim
t→∞

lim
m→∞

1
t
· I
(

P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc

)
=

η · (κA − κH)
2

2σ2 · κA
,

(ii) in the case κA = 0 lim
t→∞

lim
m→∞

1
t2 · I

(
P(m)

A,bσ2mtc
∣∣∣∣P(m)

H,bσ2mtc

)
=

η · κ2
H

4σ2 .

Remark 9. In Appendix A.4 we shall see that the proof of the last (limit-interchange concerning) equality
in (163) relies heavily on the use of the extra terms L(1)

λ (t), L(2)
λ (t), U(1)

λ (t), U(2)
λ (t) in (153) and (154). Recall

that these terms ultimately stem from (manipulations of) the corresponding parts of the “improved closed-form
bounds” in Theorem 5, which were derived by using the linear inhomogeneous difference equations a(q)n resp.
a(q)n (cf. (92) resp. (94)) instead of the linear homogeneous difference equations a(q),Tn resp. a(q),Sn (cf. (78)
resp. (79)) as explicit approximates of the sequence a(q)n . Not only this fact shows the importance of this more
tedious approach.

Interesting comparisons of the above-mentioned results in Sections 7.2 and 7.3 with corresponding
information measures of the solutions of the SDE (129) themselves (rather their branching
approximations), can be found in Kammerer [157].

7.4. Applications to Decision Making

Analogously to Section 6.7, the above-mentioned investigations of the Sections 7.1–7.3 can be
applied to the context of Section 2.5 on dichotomous decision making about GW(I)-type diffusion
approximations of solutions of the stochastic differential Equation (129). For the sake of brevity,
the–merely repetitive–exact details are omitted.
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Appendix A. Proofs and Auxiliary Lemmas

Appendix A.1. Proofs and Auxiliary Lemmas for Section 3

Lemma A1. For all real numbers x, y, z > 0 and all λ ∈ R one has

xλy1−λ −
(

λ x zλ−1 + (1− λ) y zλ
) 

≤ 0, for λ ∈]0, 1[ ,
= 0, for λ ∈ {0, 1} ,
≥ 0, for λ ∈ R\[0, 1] ,

with equality in the cases λ ∈ R\{0, 1} iff x
y = z.

Proof of Lemma A1. For fixed x̃ := xzλ−1 > 0, ỹ := yzλ > 0 with x̃ 6= ỹ we inspect the
function g on R defined by g(λ) := x̃λỹ1−λ − (λx̃ + (1 − λ)ỹ) which satisfies g(0) = g(1) = 0,
g′(0) = ỹ log(x̃/ỹ)− (x̃− ỹ) < ỹ((x̃/ỹ)− 1)− (x̃− ỹ) = 0 and which is strictly convex. Thus, the
assertion follows immediately by taking into account the obvious case x̃ = ỹ.

Proof of Properties 1. Property (P9) is trivially valid. To show (P1) we assume 0 < q < βλ, which
implies a(q)1 = ξ

(q)
λ (0) = q− βλ < 0. By induction, (an)n∈N is strictly negative and strictly decreasing.

As stated in (P9), the function ξ
(q)
λ is strictly increasing, strictly convex and converges to −βλ for

x → −∞. Thus, it hits the straight line id(x) = x once and only once on the negative real line at
x(q)0 ∈]− βλ, 0[ (cf. (44)). This implies that the sequence

(
a(q)n

)
n∈N

converges to x(q)0 ∈]− βλ, q− βλ[.

Property (P2) follows immediately. In order to prove (P3), let us fix q > max{0, βλ}, implying
a(q)1 = ξ

(q)
λ (0) = q− βλ > 0; notice that in this setup, the special choice q = 1 implies min{1, eβλ−1} =

eβλ−1 < q. By induction,
(

a(q)n

)
n∈N

is strictly positive and strictly increasing. Since limx→∞ ξ
(q)
λ (x) =

∞, the function ξ
(q)
λ does not necessarily hit the straight line id(x) = x on the positive real line. In fact,

due to strict convexity (cf. (P9)), this is excluded if ξ
(q)′
λ (0) = q ≥ 1. Suppose that q < 1. To prove that

there exists a positive solution of the equation ξ
(q)
λ (x) = x it is sufficient to show that the unique global

minimum of the strict convex function h(q)λ (x) := ξ
(q)
λ (x)− x is taken at some point x0 ∈]0, ∞[ and

that h(q)λ (x0) ≤ 0. It holds h(q)′λ (x) = q · ex − 1, and therefore h(q)′λ (x) = 0 iff x = x0 = − log q. We have

h(q)λ (− log q) = 1− βλ + log q, which is less or equal to zero iff q ≤ eβλ−1. It remains to show that for

q > βλ and q > min
{

1 , eβλ−1} the sequence
(

a(q)n

)
n∈N

grows faster than exponentially, i.e., there do

not exist constants c1, c2 ∈ R such that a(q)n ≤ ec1+c2n for all n ∈ N. We already know that (in the
current case) a(q)n

n→∞−→ ∞. Notice that it is sufficient to verify lim supn→∞

(
log(a(q)n+1)− log(a(q)n )

)
= ∞.

For the case βλ ≥ 0 the latter is obtained by

log
(

a(q)n+1

)
− log

(
a(q)n

)
= log

(
(q− βλ)ea(q)n + βλ(ea(q)n − 1)

)
− log

(
qea(q)n−1 − βλ

)
≥

(
log(q− βλ)− log(q)

)
+

(
qea(q)n−1 − βλ − a(q)n−1

)
a(q)n−1→∞
−→ ∞ .

An analogous consideration works out for the case βλ < 0. Property (P4) is trivial, and (P5) to (P8) are
direct implications of the already proven properties (P1) to (P4).
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Proof of Lemma 1. (a) Let βA > 0, βH > 0 with βA 6= βH, λ ∈ R\]0, 1[, βλ := λβA + (1− λ)βH and
qλ := βλ

Aβ1−λ
H > max{0, βλ} (cf. Lemma A1). Below, we follow the lines of Linkov & Lunyova [53],

appropriately adapted to our context. We have to find those λ ∈ R\]0, 1[ for which the following two
conditions hold:

(i) qλ ≤ 1, i.e., ξ
(qλ) ′
λ (0) ≤ 1,

(ii) qλ ≤ eβλ−1 (cf.(P3a)), which is equivalent with the existence of a–positive, if (i) is satisfied,–solution
of the equation ξ

(qλ)
λ (x) = x.

Notice that the case qλ = 1, λ ∈ R\[0, 1], cannot appear in (i), provided that (ii) holds (since due to
Lemma A1 eβλ−1 < eqλ−1 = 1). For (i), it is easy to check that we have to require

λ


<

log(βH)
log(βH/βA)

, if βA > βH,

>
log(βH)

log(βH/βA)
, if βA < βH.

(A1)

To proceed, straightforward analysis leads to − log(qλ) = arg minx∈R
{

ξ
(qλ)
λ (x)− x

}
. To check (ii),

we first notice that qλ ≤ eβλ−1 iff ξ
(qλ)
λ (x)− x ≤ 0 for some x ∈ R. Hence, we calculate

ξ
(qλ)
λ

(
− log(qλ)

)
+ log(qλ) ≤ 0 ⇐⇒ 1− λ(βA − βH)− βH + λ log

(
βA
βH

)
+ log(βH) ≤ 0

⇐⇒ λ ·
[

βH

(
1− βA

βH

)
+ log

(
βA
βH

)]
≤ βH − 1− log (βH) . (A2)

In order to isolate λ in (A2), one has to find out for which (βA, βH) the term in the square bracket
is positive resp. zero resp. negative. To achieve this, we aim for the substitutions x := βA/βH, β = βH
and thus study first the auxiliary function hβ(x) := log(x)− β(x− 1), x > 0, with fixed parameters
β > 0. Straightforwardly, we obtain h′β(x) = x−1 − β and h′′β(x) = −x−2. Thus, the function hβ(·) is

strictly concave and attains a maximum at x = β−1. Since additionally hβ(1) = 0 and h′β(1) = 1− β,
there exists a second solution z(β) 6= 1 of the equation hβ(x) = 0 iff β 6= 1. Thus, one gets

• for β = 1: for all x > 0 there holds hβ(x) ≤ 0, with equality iff x = β−1,
• for β < 1: hβ(x) ≥ 0 iff x ∈ [1, z(β)], with equality iff x ∈ {1, z(β)} (notice that z(β) > 1),
• for β > 1: hβ(x) ≥ 0 iff x ∈ [z(β), 1], with equality iff x ∈ {z(β), 1} (notice that z(β) < 1).

Suppose that λ < 0.
Case 1: If βH = 1, then condition (ii) is not satisfied whenever βA 6= βH, since the right side of (A2) is
equal to zero and the left side is strictly greater than zero. Hence, λ− = 0.
Case 2: Let βH > 1. If βA < βH, then condition (i) is not satisfied and hence λ− = 0. If βA >

βH, then condition (i) is satisfied iff λ < ˘̆λ := ˘̆λ(βA, βH) := log(βH)
log(βH/βA)

< 0. On the other hand,

incorporating the discussion of the function hβ(·), we see that hβH

(
βA
βH

)
< 0. Thus, (A2) implies that

condition (ii) is satisfied when λ ≥ λ̆ := λ̆(βA, βH) := βH−1−log(βH)

βH−βA+log
(

βA
βH

) . We claim that ˘̆λ < λ̆ and

conclude that the conditions (i) and (ii) are not fulfilled jointly, which leads to λ− = 0. To see this,
we notice that due to 1 < βH < βA we get log(βA)/(βA − 1) < log(βH)/(βH − 1) and thus
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log(βA)(βH − 1) < log(βH)(βA − 1)

⇐⇒ βH log(βH)− βA log(βH) < βH log(βH)− βH log(βA)− log(βH) + log(βA)

⇐⇒ log(βH)(βH − βA) + log(βH) log
(

βA
βH

)
< log

(
βH
βA

)
(βH − 1) + log(βH) log

(
βA
βH

)
⇐⇒ log(βH)

log
(

βH
βA

) <
βH − 1− log(βH)

βH − βA + log
(

βA
βH

) ⇐⇒ ˘̆λ < λ̆ . (A3)

Case 3: Let βH < 1. For this, one gets hβH

(
βA
βH

)
≥ 0 for βA ∈]βH, βHz(βH)]. Hence, condition

(ii) is satisfied if either βA ∈]βH, βHz(βH)], or βA /∈]βH, βHz(βH)] and λ ≥ λ̆. If βA > βHz(βH),
then condition (i) is trivially satisfied for all λ < 0. In the case βA < βH, condition (i) is satisfied
whenever λ > ˘̆λ. Notice that since 0 < βA < βH < 1, an analogous consideration as in (A3) leads
to ˘̆λ < λ̆. This implies that λ− = λ̆. The last case βA ∈]βH, βHz(βH)] is easy to handle: since

log(βH)
log(βH/βA)

> 0 as well as zβH

(
βA
βH

)
> 0, both conditions (i) and (ii) hold trivially.

The representation of λ+ follows straightforwardly from the λ−-result and the skew symmetry
(8), by employing 1− λ̆(βH, βA) = λ̆(βA, βH). Alternatively, one can proceed analogously to the
λ−-case.
Part (b) is much easier to prove: if β• := βA = βH > 0, then for all λ ∈ R\[0, 1] one gets qλ =

βλ
Aβ1−λ
H = β• as well as βλ = β•. Hence, Properties 1 (P2) implies that a(qλ)

n ≡ 0 and thus it is
convergent, independently of the choice λ ∈ R\[0, 1].

Proof of Formula (51). For the parameter constellation in Section 3.10, we employ as upper bound for
φλ(x) (x ∈ N0) the function

φλ(x) :=

{
φλ(0), if x = 0,
0, if x > 0.

Notice that this method is rather crude, and gives in the other cases treated in the Sections 3.7–3.9
worse bounds than those derived there. Since λ ∈]0, 1[ and αA 6= αH, one has φλ(0) < 0. In order
to derive an upper bound of the Hellinger integral, we first set ε := 1− eφλ(0) ∈]0, 1[. Hence, for all
n ∈ N\{1} we obtain the auxiliary expression

∞

∑
xn−1=0

[ϕλ(xn−2)]
xn−1

xn−1!
· exp

{
φλ(xn−1)

}
≤

∞

∑
xn−1=0

[
ϕλ(xn−2)

]xn−1

xn−1!
· exp

{
φλ(xn−1)

}
= exp

{
ϕλ(xn−2)

}
− ε = exp

{
ϕλ(xn−2)

}
·
[
1− ε · exp

{
− ϕλ(xn−2)

}]
.

Moreover, since βA 6= βH, one gets limx→∞ φλ(x) = −∞ (cf. Properties 3 (P20) and Lemma A1).
This–together with the nonnegativity of ϕλ(·)–implies

sup
x∈N0

{
exp

{
φλ(x)

}
·
[
1− ε · exp

{
− ϕλ(x)

}]}
=: δ ∈]0, 1[ .
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Incorporating these considerations as well as the formulas (27) to (32), we get for n = 1 the relation
Hλ (PA,n||PH,n) = exp{φλ(x0)} ≤ 1

(
with equality iff x0 = x∗ = αA−αH

βH−βA

)
, and–as a continuation of

formula (29)– for all n ∈ N\{1}
(
recall that ~x := (x0, x1, . . .) ∈ Ω

)
Hλ (PA,n||PH,n) =

∞

∑
x1=0
· · ·

∞

∑
xn=0

n

∏
k=1

Z(λ)
n,k (~x)

=
∞

∑
x1=0
· · ·

∞

∑
xn−1=0

n−1

∏
k=1

Z(λ)
n,k (~x)

· exp
{
( fA(xn−1))

λ ( fH(xn−1))
(1−λ) − (λ fA(xn−1) + (1− λ) fH(xn−1))

}
=

∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x) · exp {− fλ(xn−2)}

∞

∑
xn−1=0

[ϕλ(xn−2)]
xn−1

xn−1!
· exp{φλ(xn−1)}

≤
∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x) · exp

{
φλ(xn−2)

}
·
[
1− ε · exp

{
− ϕλ(xn−2)

}]
≤ δ ·

∞

∑
x1=0
· · ·

∞

∑
xn−2=0

n−2

∏
k=1

Z(λ)
n,k (~x) ≤ · · · ≤ δ

bn/2c . (A4)

Hence, Hλ (PA,n||PH,n) < 1 for (at least) all n ∈ N\{1}, and limn→∞ Hλ (PA,n||PH,n) = 0.

Notice that the above proof method of formula (51) does not work for the parameter setup in

Section 3.11, because there one gets δ = supx∈N0

{
exp

{
φλ(x)

}
·
[
1− ε · exp

{
− ϕλ(x)

}]}
= 1.

Proof of Proposition 9. In the setup (βA, βH, αA, αH, λ) ∈ PSP,4a×]0, 1[ we require β• := βA = βH <

1. As a linear upper bound for φλ(·), we employ the tangent line at y ≥ 0 (cf. (52))

φtan
λ,y(x) := (py − αλ) +

(
qy − β•

)
· x := (ptan

λ,y − αλ) + (qtan
λ,y − βλ) · x :=

(
φλ(y)− y · φ′λ(y)

)
+ φ′λ(y) · x . (A5)

Since in the current setup PSP,4a the function φλ(·) is strictly increasing, the slope φ′λ(y) of the
tangent line at y is positive. Thus we have qy > βλ and Properties 1 (P3) implies that the sequence(

a
(qy)
n

)
n∈N

is strictly increasing and converges to x
(qy)
0 ∈]0,− log(qy)] iff qy ≤ min{1, eβ•−1} = eβ•−1 <

1 (cf. (P3a)), where x
(qy)
0 is the smallest solution of the equation ξ

(qy)
λ (x) = qy · ex − β• = x. Since qy ↘

β• for y → ∞ (cf. Properties 3 (P18)) and additionally eβ•−1 > β•, there exists a large enough y ≥ 0

such that the sequence
(

a
(qy)
n

)
n∈N

converges. If this y is also large enough to additionally guarantee

h(y) < 0 for

h(y) := lim
n→∞

1
n

log
(

B̃
(py ,qy)
λ,X0,n

)
= py · ex

(qy)
0 − αλ ,

then one can conclude that limn→∞ Hλ(PA,n||PH,n) = 0. As a first step, for verifying h(y) < 0 we look

for an upper bound x
(qy)
0 for the fixed point x

(qy)
0 where the latter exists for y ≥ y1 (say). Notice that

Q
(qy)
λ (x) :=

1
2

x2 + qyx + qy − β• ≥ qy · ex − β• = ξ
(qy)
λ (x) , (A6)

since Q
(qy)
λ (0) = ξ

(qy)
λ (0), Q

(qy) ′
λ (0) = ξ

(qy) ′
λ (0) and Q

(qy) ′′
λ (x) ≥ ξ

(qy) ′′
λ (x) for x ∈ [0,− log(qy)].

For sufficiently large y ≥ y2 ≥ y1 (say), we easily obtain the smaller solution of Q
(qy)
λ (x) = x as

x(qy)
0 = (1− qy)−

√
(1− qy)2 − 2(qy − β•) = (1− φ′λ(y)− β•)−

√
(1− φ′λ(y)− β•)2 − 2φ′λ(y) ≥ x(qy)

0 (A7)
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where the expression in the root is positive since qy ↘ β• for y→ ∞. We now have

h(y) = py · ex
(qy)
0 − αλ ≤ py · ex

(qy)
0 − αλ =: h(y) , ∀ y ≥ y2 . (A8)

Hence, it suffices to show that h(y) < 0 for some y ≥ y2. We recall from Properties 3 (P15), (P17) and
(P19) that

φλ(y) =
(
αA + β• · y

)λ(
αH + β• · y

)1−λ − λ (αA + β• · y)− (1− λ) (αH + β• · y) < 0,

φ′λ(y) = λ · β• ·
(

αA + β• · y
αH + β• · y

)λ−1
+ (1− λ) · β• ·

(
αA + β• · y
αH + β• · y

)λ

− β• > 0 and that

φ′′λ(y) = −
(

αA + β• · y
αH + β• · y

)λ

· λ(1− λ) · β2
• · (αA − αH)

2

(αA + β• · y)2(αH + β• · y)
< 0 , (A9)

which immediately implies limy→∞ φλ(y) = limy→∞ φ′λ(y) = limy→∞ φ′′λ(y) = 0 and with
l’Hospital’s rule

lim
y→∞

y · φλ(y) = lim
y→∞
−y2 · φ′λ(y) = lim

y→∞

y3

2
· φ′′λ(y) (A10)

= − 1
2

lim
y→∞

(
αA + β• · y
αH + β• · y

)λ

· λ(1− λ) · β2
• · (αA − αH)

2

(αA/y + β•)2(αH/y + β•)
= − 1

2
λ(1− λ) · (αA − αH)

2

β•
.

The formulas (A5), (A7) and (A9) imply the limits limy→∞ py = αλ, limy→∞ qy = β•, limy→∞ x
(qy)
0 = 0.

Notice that py < αλ holds trivially for all y ≥ 0 since the intercept (py−αλ) of the tangent line φtan
λ,y(·)

is negative. Incorporating (A8) we therefore obtain limy→∞ h(y) ≤ limy→∞ h(y) = 0. As mentioned
before, for the proof it is sufficient to show that h(y) < 0 for some y ≥ y2. This holds true if
limy→∞ y · h(y) < 0. To verify this, notice first that from (A5), (A7) and (A8) we get

h
′
(y) = −py · ex

(qy)
0 · φ′′λ(y) ·

1−
2− φ′λ(y)− β•√

(1− qy)2 − 2(qy − β•)

 − y · φ′′λ(y) · ex
(qy)
0

y→∞−→ 0. (A11)

Finally we obtain with (A10)

lim
y→∞

y · h(y) = − lim
y→∞

y2 · h′(y)

= lim
y→∞

py · ex
(qy)
0 · y2 · φ′′λ(y) ·

1−
2− φ′λ(y)− β•√

(1− qy)2 − 2(qy − β•)

 + y3 · φ′′λ(y) · ex
(qy)
0

= 0 − λ(1− λ) · (αA − αH)
2

β•
< 0 .

Proof of Corollary 1. Part (a) follows directly from Proposition 1 (a),(b) and the limit
limn→∞ Hλ(PA,n||PH,n) = 0 in the respective part (c) of the Propositions 7, 8, 9 as well as from (51).
To prove part (b), according to (26) we have to verify lim infλ↗1 {lim infn→∞ Hλ (PA,n||PH,n)} = 1.

From part (c) of Proposition 2 we see that this is satisfied iff limλ↑1 x
(qE

λ)
0 = 0. Recall that for fixed

λ ∈]0, 1[ we have βλ = λβA+ (1− λ)βH > 0, qE
λ = βλ

Aβ1−λ
H < βλ (cf. Lemma A1) and from Properties

1 (P1) the unique negative solution x
(qE

λ)
0 ∈] − βλ, qE

λ − βλ[ of ξ
(qE

λ)
λ (x) = qE

λex − βλ = x (cf. (44)).

Due to the continuity and boundedness of the map λ 7→ x
(qE

λ)
0 (for λ ∈ [0, 1]) one gets that limλ↗1 x

(qE
λ)

0
exists and is the smallest nonpositive solution of βAex − βA = x. From this, the part (b) as well as
the non-contiguity in part (c) follow immediately. The other part of (c) is a direct consequence of
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Proposition 1 (a),(b) and Proposition 2 (c).

Proof of Formula (59) . One can proceed similarly to the proof of formula (51) above. Recall
Hλ(PA,1||PH,1) = exp{φλ(X0)} > 1 for X0 ∈ N

(
cf. (28), Lemma A1 and fA(X0) 6= fH(X0) for

all X0 ∈ N
)
. For (βA, βH, αA, αH, λ) ∈ PSP,2 × (R\[0, 1]) one gets φλ(0) = 0, φλ(1) > 0, and we define

for x ≥ 0

φλ(x) :=

{
φλ(1) , if x = 1,
0, if x 6= 1.

By means of the choice ε := ϕλ(1) ·
(

eφλ(1) − 1
)
> 0, we obtain for all n ∈ N\{1}

∞

∑
xn−1=0

[ϕλ(xn−2)]
xn−1

xn−1!
· exp

{
φλ(xn−1)

}
≥

∞

∑
xn−1=0

[
ϕλ(xn−2)

]xn−1

xn−1!
· exp

{
φλ(xn−1)

}
= exp

{
ϕλ(xn−2)

}
+ ε = exp

{
ϕλ(xn−2)

}
·
[
1 + ε · exp

{
− ϕλ(xn−2)

}]
.

Incorporating

inf
x∈N0

{
exp

{
φλ(x)

}
·
[
1 + ε · exp

{
− ϕλ(x)

}]}
=: δ > 1 ,

one can show analogously to (A4) that

Hλ (PA,n||PH,n) ≥ · · · ≥ δbn/2c n→∞−→ ∞.

Proof of the Formulas (61), (63) and (64). In the following, we slightly adapt the above-mentioned
proof of formula (59). Let us define

φλ(x) :=

{
φλ(0) , if x = 0,
0, if x > 0.

In all respective subcases one clearly has φλ(0) = φλ(0) > 0. With ε := eφλ(0) − 1 > 0 we obtain for all
n ∈ N\{1}

∞

∑
xn−1=0

[ϕλ(xn−2)]
xn−1

xn−1!
· exp

{
φλ(xn−1)

}
≥

∞

∑
xn−1=0

[
ϕλ(xn−2)

]xn−1

xn−1!
· exp

{
φλ(xn−1)

}
= exp

{
ϕλ(xn−2)

}
+ ε = exp

{
ϕλ(xn−2)

}
·
[
1 + ε · exp

{
− ϕλ(xn−2)

}]
.

By employing

inf
x∈N0

{
exp

{
φλ(x)

}
·
[
1 + ε · exp

{
− ϕλ(x)

}]}
=: δ > 1 , (A12)

one can show analogously to (A4) that

Hλ (PA,n||PH,n) ≥ · · · ≥ δbn/2c n→∞−→ ∞.

Notice that this method does not work for the parameter cases PSP,4a ∪ PSP,4b, since there the infimum
in (A12) is equal to one.
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Proof of Proposition 13. In the setup (βA, βH, αA, αH, λ) ∈ PSP,4a× (R\[0, 1]) we require β• := βA =

βH < 1. As in the proof of Proposition 9, we stick to the tangent line φtan
λ,y(·) at y ≥ 0 (cf. (52)) as a

linear lower bound for φλ(·), i.e., we use the function

φtan
λ,y(x) :=

(
py − αλ

)
+
(
qy − β•

)
· x :=

(
ptan

λ,y − αλ

)
+
(

qtan
λ,y − βλ

)
· x :=

(
φλ(y)− y · φ′λ(y)

)
+ φ′λ(y) · x . (A13)

As already mentioned in Section 3.21, on PSP,4a the function φλ(·) is strictly decreasing and converges
to 0. Thus, for all y ≥ 0 the slope φ′λ(y) of the tangent line at y is negative, which implies that
qy < βλ = β•. For λ ∈ R\[0, 1] there clearly may hold qy < 0 for some y ∈ R. However, there exists a
sufficiently large y1 > 0 such that qy > 0 for all y > y1, since limy→∞ φ′λ(y) = 0 and hence qy ↗ β• > 0

for y→ ∞. Thus, let us suppose that y > y1. Then, the sequence
(

a
(qy)
n

)
n∈N

is strictly negative, strictly

decreasing and converges to x
(qy)
0 ∈]− β•, qy − β•[ (cf. Properties 1 (P1)). If there is some y ≥ y1 such

that h(y) > 0 with

h(y) := lim
n→∞

1
n

log
(

B̃
(py ,qy)
λ,X0,n

)
= py · ex

(qy)
0 − αλ ,

then one can conclude that limn→∞ Hλ(PA,n||PH,n) = ∞. Let us at first consider the case αλ ≥ 0.
By employing py ↘ αλ for y → ∞, one gets py > 0 for all y ≥ 0. Analogously to the proof of

Proposition 9, we now look for a lower bound x
(qy)
0 of the fixed point x

(qy)
0 . Notice that x

(qy)
0 >

−β• implies

Q
(qy)
λ (x) :=

e−β•

2
· qy · x2 + qy · x + qy − β• ≤ qy · ex − β• = ξ

(qy)
λ (x) , (A14)

since Q
(qy)
λ (0) = ξ

(qy)
λ (0) < 0, Q

(qy) ′
λ (0) = ξ

(qy) ′
λ (0) > 0 and 0 < Q

(qy) ′′
λ (x) < ξ

(qy) ′′
λ (x) for

x ∈]− β•, 0]. Thus, the negative solution x
(qy)
0 of the equation Q

(qy)
λ (x) = x (which definitely exists)

implies that there holds x
(qy)
0 ≤ x

(qy)
0 . We easily obtain

x(qy)
0 =

eβ•

qy

[
(1− qy) −

√
(1− qy)2 − 2e−β•qy(qy − β•)

]
=

eβ•

φ′λ(y) + β•

[
(1− φ′λ(y)− β•) −

√
(1− φ′λ(y)− β•)2 − 2 · e−β•qy · φ′λ(y)

]
< 0. (A15)

Since
h(y) = py · ex

(qy)
0 − αλ ≥ py · ex

(qy)
0 − αλ =: h(y) , (A16)

it is sufficient to show h(y) > 0 for some y > y1. We recall from Properties 3 (P15), (P17) and (P19) that

φλ(y) =
(
αA + β• · y

)λ(
αH + β• · y

)1−λ − λ (αA + β• · y)− (1− λ) (αH + β• · y) > 0,

φ′λ(y) = λ · β• ·
(

αA + β• · y
αH + β• · y

)λ−1
+ (1− λ) · β• ·

(
αA + β• · y
αH + β• · y

)λ

− β• < 0 and

φ′′λ(y) = −
(

αA + β• · y
αH + β• · y

)λ

· λ(1− λ) · β2
• · (αA − αH)

2

(αA + β• · y)2(αH + β• · y)
> 0, (A17)

which immediately implies limy→∞ φλ(y) = limy→∞ φ′λ(y) = limy→∞ φ′′λ(y) = 0, and by means of
l’Hospital’s rule

lim
y→∞

y · φλ(y) = lim
y→∞
−y2 · φ′λ(y) = lim

y→∞

y3

2
· φ′′λ(y) (A18)

= −1
2

lim
y→∞

(
αA + β• · y
αH + β• · y

)λ

· λ(1− λ) · β2
• · (αA − αH)

2

(αA/y + β•)2(αH/y + β•)
= −1

2
λ(1− λ) · (αA − αH)

2

β•
.
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The Formulas (A13), (A15), (A17) imply the limits limy→∞ py = αλ, limy→∞ qy = β• and

limy→∞ x
(qy)
0 = 0 iff β• ≤ 1. The latter is due to the fact that for β• > 1 one gets with

(A15) limy→∞ x
(qy)
0 = eβ•

β•

[
(1 − β•) −

√
(1− β•)2

]
= eβ•

β•

[
2 − 2β•

]
6= 0. In the following, let us

assume β• < 1 (the reason why we exclude the case β• = 1 is explained below). One gets
limy→∞ h(y) ≥ limy→∞ h(y) = 0. Since we have to prove that h(y) > 0 for some y > y1, it is
sufficient to show that limy→∞ y · h(y) > 0. To verify the latter, we first derive with l’Hospital’s rule
and with (A17), (A18)

lim
y→∞

y ·
(

1− ex
(qy )
0

)
= lim

y→∞
y2 · ex

(qy )
0 ·

(
∂

∂y
x(qy)

0

)
= lim

y→∞

{
y2 ·

−eβ• · φ′′λ(y)(
φ′λ(y) + β•

)2 ·
[
(1− qy) −

√
(1− qy)2 − 2e−β•qy(qy − β•)

]

+
eβ•

qy
·

−y2 · φ′′λ(y)−
−2y2φ′′λ(y)(1− qy)− 2y2φ′′λ(y)e

−β•qy − 2y2φ′′λ(y)e
−β•φ′λ(y)

2 ·
√
(1− qy)2 − 2e−β•qy(qy − β•)

}

= 0 . (A19)

Notice that without further examination this limit would not necessarily hold for β• = 1, since then
the denominator in (A19) converges to zero. With (A13), (A16), (A18) and (A19) we finally obtain

lim
y→∞

y · h(y) = lim
y→∞

{(
y · φλ(y)− y2 · φ′λ(y)

)
· ex

(qy)
0 − y ·

(
1− ex

(qy)
0

)
αλ

}
= −λ(1− λ)

(αA − αH)
2

β•
> 0 . (A20)

Let us now consider the case αλ < 0. The proof works out almost completely analogous to the case
αλ ≥ 0. We indicate the main differences. Since py ↘ αλ < 0 and qy ↗ β• ∈]0, 1[ for y→ ∞, there is a
sufficiently large y2 > y1, such that py < 0 and qy > 0. Thus,

Q
(qy)
λ (x) :=

qy

2
· x2 + qy · x + qy − β• ≥ ξ

(qy)
λ (x) = qyex − β• for x ∈]−∞, 0].

The corresponding (existing) smaller solution of Q
(qy)
λ (x) = x is

x
(qy)
0 =

1
qy

[
(1− qy) −

√
(1− qy)2 − 2qy(qy − β•)

]
,

having the same form as the solution (A15) with e−β• substituted by 1. Notice that there clearly holds

x
(qy)
0 < x

(qy)
0 < 0. However, since py < 0, we now get h(y) = py · ex

(qy)
0 − αλ ≥ py · ex

(qy)
0 − αλ =: h(y),

as in (A16). Since all calculations (A17) to (A20) remain valid (with e−β• substituted by 1), this proof
is finished.

Appendix A.2. Proofs and Auxiliary Lemmas for Section 5

We start with two lemmas which will be useful for the proof of Theorem 3. They deal with the
sequence

(
a(qλ)

n

)
n∈N

from (36).

Lemma A2. For arbitrarily fixed parameter constellation (βA, βH, αA, αH, λ) ∈ P×]0, 1[, suppose that
qλ > 0 and limλ↗1 qλ = βA holds. Then one gets the limit

∀ n ∈ N : lim
λ↗1

a(qλ)
n = 0. (A21)
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Proof. This can be easily seen by induction: for n = 1 there clearly holds

lim
λ↗1

a(qλ)
1 = lim

λ↗1
(qλ − βλ) = βA − βA = 0 .

Assume now that limλ↗1 a(qλ)
k = 0 holds for all k ∈ N, k ≤ n− 1, then

lim
λ↗1

a(qλ)
n = lim

λ↗1
(qλ · ea

(qλ)
n−1 − βλ) = βA · 1− βA = 0 .

Lemma A3. In addition to the assumptions of Lemma A2, suppose that λ 7→ qλ is continuously differentiable
on ]0, 1[ and that the limit l := limλ↗1

∂ qλ
∂λ is finite. Then, for all n ∈ N one obtains

lim
λ↗1

∂ a(qλ)
n

∂λ
= un :=


l+βH−βA

1−βA
·
(
1− (βA)

n) , if βA 6= 1,

n · (l + βH − 1) , if βA = 1,
(A22)

which is the unique solution of the linear recursion equation

un = l + βH − βA + βA · un−1 , u0 = 0 . (A23)

Furthermore, for all n ∈ N there holds

n

∑
k=1

lim
λ↗1

∂ a(qλ)
k

∂λ
=

n

∑
k=1

uk =


l+βH−βA

1−βA
·
[
n− βA

1−βA

(
1− (βA)

n)] , if βA 6= 1,

n·(n+1)
2 · (l + βH − 1) , if βA = 1.

Proof. Clearly, un defined by (A22) is the unique solution of (A23). We prove by induction that

limλ↗1
∂ a

(qλ)
n

∂λ = un holds. For n = 1 one gets

lim
λ↗1

∂ a(qλ)
1

∂λ
= lim

λ↗1

∂ (qλ − βλ)

∂λ
= l − (βA − βH) = u1.

Suppose now that (A22) holds for all k ∈ N, k ≤ n− 1. Then, by incorporating (A21) we obtain

lim
λ↗1

∂ a(qλ)
n

∂λ
= lim

λ↗1

∂

∂λ

(
qλ · ea

(qλ)
n−1 − βλ

)
= lim

λ↗1
ea

(qλ)
n−1 ·

∂ qλ

∂λ
+ qλ

∂ a(qλ)
n−1

∂λ

− (βA − βH)

= l − (βA − βH) + βA · un−1 = un.

The remaining assertions follow immediately.

We are now ready to give the

Proof of Theorem 3. (a) Recall that for the setup (βA, βH, αA, αH) ∈ (PNI ∪ PSP,1) we chose the
intercept as pλ := pE

λ := αλ
Aα1−λ
H and the slope as qλ := qE

λ := βλ
Aβ1−λ
H , which in (39) lead to the exact
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value Vλ,X0,n of the Hellinger integral. Because of pλ
qλ

βλ − αλ = 0 as well as limλ↗1 qλ = βA, we obtain
by using (38) and Lemma A2 for all X0 ∈ N and for all n ∈ N

lim
λ↗1

Vλ,X0,n := lim
λ↗1

exp

{
a(qλ)

n · X0 +
n

∑
k=1

b(pλ ,qλ)
k

}
= lim

λ↗1
exp

{
a(qλ)

n · X0 +
αA
βA

n

∑
k=1

a(qλ)
k

}
= 1,

which leads by (68) to

I(PA,n||PH,n) = lim
λ↗1

1− Hλ(PA,n||PH,n)

λ · (1− λ)
= lim

λ↗1

1−Vλ,X0,n

λ · (1− λ)

= lim
λ↗1

−Vλ,X0,n

1− 2λ
· ∂

∂λ

[
a(qλ)

n · X0 +
pλ

qλ

n

∑
k=1

a(qλ)
k

]

= lim
λ↗1

∂ a(qλ)
n

∂λ
· X0 +

(
∂

∂λ

pλ

qλ

)
·

n

∑
k=1

a(qλ)
k +

pλ

qλ
·

n

∑
k=1

∂ a(qλ)
k

∂λ

 . (A24)

For further analysis, we use the obvious derivatives

∂ pλ

∂λ
= pλ log

(
αA
αH

)
,

∂

∂λ

pλ

qλ
=

pλ

qλ
log
(

αAβH
αHβA

)
,

∂ qλ

∂λ
= qλ log

(
βA
βH

)
, (A25)

where the subcase (βA, βH, αA, αH) ∈ PNI (with pλ ≡ 0) is consistently covered. From (A25) and
Lemma A3 we deduce

lim
λ↗1

∂ a(qλ)
n

∂λ
· X0 =


(

βA log
(

βA
βH

)
− (βA − βH)

)
· 1−(βA)

n

1−βA
· X0, if βA 6= 1,

n ·
(

βA log
(

βA
βH

)
− (βA − βH)

)
· X0, if βA = 1,

and by means of (A21)

∀ n ∈ N : lim
λ↗1

[(
∂

∂λ

pλ

qλ

)
·

n

∑
k=1

a(qλ)
k

]
= 0.

For the last expression in (A24) we again apply Lemma A3 to end up with

lim
λ↗1

pλ

qλ
·

n

∑
k=1

∂

∂λ
a(qλ)

k =


αA ·

[
βA log

(
βA
βH

)
−(βA−βH)

]
βA(1−βA)

·
[
n− βA

1−βA

(
1− (βA)

n)] , if βA 6= 1,

n · (n + 1) αA
2βA
·
[

βA log
(

βA
βH

)
− (βA − βH)

]
, if βA = 1,

(A26)

which finishes the proof of part (a). To show part (b), for the corresponding setup (βA, βH, αA, αH)
∈ PSP\PSP,1 let us first choose – according to (45) in Section 3.4—the intercept as pλ := pL

λ := αλ
Aα1−λ
H

and the slope as qλ := qL
λ := βλ

Aβ1−λ
H , which in part (b) of Proposition 6 lead to the lower bounds BL

λ,X0,n
of the Hellinger integral. This is formally the same choice as in part (a) satisfying limλ↗1 pλ = αA,
limλ↗1 qλ = βA but in contrast to (a) we now have pλ

qλ
βλ − αλ 6= 0 but nevertheless

lim
λ↗1

pλ

qλ
βλ − αλ = 0.

From this, (38), part (b) of Proposition 6 and Lemma A2 we obtain

lim
λ↗1

BL
λ,X0,n = lim

λ↗1
exp

{
a(qλ)

n · X0 +
pλ

qλ

n

∑
k=1

a(qλ)
k + n ·

(
pλ

qλ
βλ − αλ

)}
= 1 (A27)
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and hence

I(PA,n||PH,n) ≤ lim
λ↗1

1− BL
λ,X0,n

λ · (1− λ)
= lim

λ↗1

−BL
λ,X0,n

1− 2λ
· ∂

∂λ

[
a(qλ)

n X0 +
pλ

qλ

n

∑
k=1

a(qλ)
k + n

(
pλ

qλ
βλ − αλ

)]

= lim
λ↗1

 ∂ a(qλ)
n

∂λ
X0 +

(
∂

∂λ

pλ

qλ

) n

∑
k=1

a(qλ)
k +

pλ

qλ

n

∑
k=1

∂ a(qλ)
k

∂λ
+ n

∂

∂λ

(
pλ

qλ
βλ − αλ

). (A28)

In the current setup, the first three expressions in (A28) can be evaluated in exactly the same way as
in (A25) to (A26), and for the last expression one has the limit

∂

∂λ

(
pλ

qλ
βλ − αλ

)
=

pλ

qλ
log
(

αAβH
αHβA

)
· βλ +

pλ

qλ
· (βA − βH) − (αA − αH)

λ↗1−→ αA

[
log
(

αAβH
αHβA

)
− βH

βA

]
+ αH ,

which finishes the proof of part (b).

Proof of Theorem 4. Let us fix (βA, βH, αA, αH) ∈ PSP\PSP,1, X0 ∈ N, n ∈ N and y ∈ [0, ∞[. The lower bound
EL,tan

y,X0,n of the Kullback-Leibler information divergence (relative entropy) is derived by using φU
λ ≡ φtan

λ,y
(cf. (52)), which corresponds to the tangent line of φλ at y, as a linear upper bound for φλ (λ ∈]0, 1[). More
precisely, one gets φU

λ (x) := (pU
λ − αλ) + (qU

λ − βλ) x (x ∈ [0, ∞[) with pλ := pλ(y) := φλ(y)− yφ′λ(y) + αλ

and qλ := qλ(y) := φ′λ(y) + βλ, implying qλ > 0 because of Properties 3 (P17). Analogously to (A27) and
(A28), we obtain from (38) and (40) the convergence limλ↗1 BU

λ,X0,n = 1 and thus

I(PA,n||PH,n) ≥ lim
λ↗1

 ∂ a(qλ)
n

∂λ
X0 +

(
∂

∂λ

pλ

qλ

) n

∑
k=1

a(qλ)
k +

pλ

qλ

n

∑
k=1

∂ a(qλ)
k

∂λ
+ n

∂

∂λ

(
pλ

qλ
βλ − αλ

) . (A29)

As before, we compute the involved derivatives. From (30) to (32) as well as (P17) we get

∂pλ

∂λ
=

(
fA(y)
fH(y)

)λ

fH(y) log
(

fA(y)
fH(y)

)
− βAy

(
fA(y)
fH(y)

)λ−1
− λβAy

(
fA(y)
fH(y)

)λ−1
log
(

fA(y)
fH(y)

)
+ βHy

(
fA(y)
fH(y)

)λ

− (1− λ)βHy
(

fA(y)
fH(y)

)λ

log
(

fA(y)
fH(y)

)
λ↗1−→ αA log

(
fA(y)
fH(y)

)
+

y · (αAβH − αHβA)
fH(y)

, (A30)

and
∂qλ

∂λ
= βA

(
fA(y)
fH(y)

)λ−1
+ λβA

(
fA(y)
fH(y)

)λ−1
log
(

fA(y)
fH(y)

)
− βH

(
fA(y)
fH(y)

)λ

+ (1− λ)βH

(
fA(y)
fH(y)

)λ

log
(

fA(y)
fH(y)

)
λ↗1−→ βA

(
1 + log

(
fA(y)
fH(y)

))
− βH

fA(y)
fH(y)

=: l. (A31)

Combining these two limits we get

∂

∂λ

(
pλ

qλ
βλ − αλ

)
=

qλ

(
∂pλ

∂λ

)
− pλ

(
∂qλ

∂λ

)
(qλ)2 · βλ +

pλ

qλ
· (βA − βH)− (αA − αH)

λ↗1−→
[

y · (αAβH − αHβA)
fH(y)

− αA

(
1− βH fA(y)

βA fH(y)

)]
+ αH −

αAβH
βA

.

=

(
αH − αA

βH
βA

)(
1− fA(y)

fH(y)

)
. (A32)
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The above calculation also implies that limλ↗1

(
∂

∂λ
pλ

qλ

)
is finite and thus limλ↗1

(
∂

∂λ
pλ

qλ

)
∑n

k=1 a(qλ)
k = 0

by means of Lemma A2. The proof of I(PA,n||PH,n) ≥ EL,tan
y,X0,n is finished by using Lemma A3 with l

defined in (A31) and by plugging the limits (A30) to (A32) in (A29).
To derive the lower bound EL,sec

k,X0,n (cf. (73)) for fixed k ∈ N0, we use as a linear upper bound φU
λ for

φλ(·) (λ ∈]0, 1[) the secant line φsec
λ,k (cf. (53)) of φλ across its arguments k and k + 1, corresponding to the

choices pλ := psec
λ,k = (k + 1) · φλ(k)− k · φλ(k + 1) + αλ and qλ := qsec

λ,k := φλ(k + 1)− φλ(k) + βλ, implying
qλ > 0 because of Properties 3 (P18). As a side remark, notice that this φU

λ (x) may become positive for
some x ∈ [0, ∞[ (which is not always consistent with Goal (G1) for fixed λ, but leads to a tractable limit
bound as λ tends to 1). Analogously to (A27) and (A28) we get again limλ↗1 BU

λ,X0,n = 1, which leads to
the lower bound given in (A29) with appropriately plugged-in quantities. As in the above proof of the
lower bound EL,tan

y,X0,n, the inequality I(PA,n||PH,n) ≥ EL,sec
k,X0,n follows straightforwardly from Lemma A2,

Lemma A3 and the three limits

∂pλ

∂λ
=

(
fA(k)
fH(k)

)λ

fH(k) · (k+1) log
(

fA(k)
fH(k)

)
−
(

fA(k+1)
fH(k+1)

)λ

fH(k+1) · k log
(

fA(k+1)
fH(k+1)

)
λ↗1−→ fA(k)(k+1) log

(
fA(k)
fH(k)

)
− fA(k+1)k log

(
fA(k+1)
fH(k+1)

)
,

∂qλ

∂λ
=

(
fA(k+1)
fH(k+1)

)λ

fH(k+1) log
(

fA(k+1)
fH(k+1)

)
−
(

fA(k)
fH(k)

)λ

fH(k) log
(

fA(k)
fH(k)

)
λ↗1−→ fA(k+1) log

(
fA(k+1)
fH(k+1)

)
− fA(k) log

(
fA(k)
fH(k)

)
=: l , and

∂

∂λ

(
pλ

qλ
βλ − αλ

)
=

qλ

(
∂pλ

∂λ

)
− pλ

(
∂qλ

∂λ

)
(qλ)2 · βλ +

pλ

qλ
· (βA − βH)− (αA − αH)

λ↗1−→ fA(k) log
(

fA(k)
fH(k)

)(
k+1 +

αA
βA

)
− fA(k+1) log

(
fA(k+1)
fH(k+1)

)(
k +

αA
βA

)
− αAβH

βA
+ αH.

To construct the third lower bound EL,hor
X0,n (cf. (74)), we start by using the horizontal line φhor

λ (·) (cf. (54))
as an upper bound of φλ. For each fixed λ ∈]0, 1[, it is defined by the intercept supx∈N0

φλ(x). On PSP,3a ∪
PSP,3b, this supremum is achieved at the finite integer point z∗λ := arg maxx∈N0 φλ(x) (since limx→∞ φλ(x) =
−∞) and there holds φλ(z∗λ) < 0 which leads with the parameters qλ = βλ, pλ = φλ(z∗λ) + αλ to the
Hellinger integral upper bound BU

λ,X0,n = exp
{

φλ(z∗λ) · n
}
< 1 (cf. Remark 1 (b)). We strive for computing

the limit limλ↗1
1−BU

λ,X0,n

λ(1−λ)
, which is not straightforward to solve since in general it seems to be intractable

to express z∗λ explicitly in terms of λ. To circumvent this problem, we notice that it is sufficient to
determine z∗λ in a small ε−environment ]1− ε, 1[. To accomplish this, we incorporate limλ↗1 φλ(x) = 0
for all x ∈ [0, ∞[ and calculate by using l’Hospital’s rule

lim
λ↗1

φλ(x)
1− λ

= (αA + βAx)
[
− log

(
αA + βAx
αH + βHx

)
+ 1
]
− (αH + βHx).

Accordingly, let us define z∗ := arg maxx∈N0

{
(αA + βAx)

[
− log

(
αA+βAx
αH+βHx

)
+ 1
]
− (αH + βHx)

}
(note that

the maximum exists since limx→∞

{
(αA + βAx)

[
− log

(
αA+βAx
αH+βHx

)
+ 1
]
− (αH + βHx)

}
= −∞). Due to

continuity of the function (λ, x) 7→ φλ(x)
1−λ , there exists an ε > 0 such that for all λ ∈]1 − ε, 1[ there

holds z∗λ = z∗. Applying these considerations, we get with l’Hospital’s rule

I(PA,n||PH,n) ≥ lim
λ↗1

1− exp {φλ(z∗) · n}
λ(1− λ)

=

[
fA(z∗) ·

[
log
(

fA(z∗)
fH(z∗)

)
− 1
]
+ fH(z∗)

]
· n ≥ 0. (A33)

In fact, for the current parameter constellation PSP,3a ∪ PSP,3b we have φλ(x) < 0 for all λ ∈]0, 1[ and all
x ∈ N0 which implies fA(z∗) 6= fH(z∗) by Lemma A1; thus, we even get EL,hor

X0,n > 0 for all n ∈ N by virtue

of the inequality − log
(

fH(z∗)
fA(z∗)

)
> − fH(z∗)

fA(z∗)
+ 1.
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For the case PSP,2, the above-mentioned procedure leads to z∗λ = 0 = z∗ (λ ∈]0, 1[) which implies

φλ(z∗λ) = 0, BU
λ,X0,n ≡ 1 and thus the trivial lower bound EL,hor

X0,n = limλ↗1
1−BU

λ,X0,n

λ(1−λ)
= 0 follows for all n ∈ N.

In contrast, for the case PSP,3c one gets z∗λ = αA−αH
βH−βA

= z∗ (λ ∈]0, 1[) which nevertheless also implies

φλ(z∗λ) = 0 and hence EL,hor
X0,n ≡ 0. On PSP,4, we have supx∈N0

φλ(x) = limx→∞ φλ(x) = 0 and hence we set
EL,hor

X0,n ≡ 0.
To show the strict positivity EL

X0,n > 0 in the parameter case PSP,2, we inspect the bound EL,sec
0,X0,n.

With α := α• := αA = αH (the bullet will be omitted in this proof) and the auxiliary variable x := βH
βA

> 0,
the definition (73) respectively its special case (76) rewrites for all n ∈ N as

EL,sec
0,X0,n := EL,sec

0,X0,n(x) :=



[
−(α + βA) · log

(
α+βAx
α+βA

)
+ βA(x− 1)

]
· 1−(βA)

n

1−βA
·
[

X0 − α
1−βA

]
+
[

α
βA(1−βA)

(
−(α + βA) · log

(
α+βAx
α+βA

)
+ βA(x− 1)

)
+ α

βA
(α + βA) · log

(
α+βAx
α+βA

)
− α(x− 1)

]
· n , if βA 6= 1,[

−(α + 1) · log
(

α+x
α+1

)
+ x− 1

]
·
[

α
2 · n2 +

(
X0 +

α
2
)
· n
]

+
[
(α + 1) · log

(
α+x
α+1

)
− x + 1

]
· α · n , if βA = 1.

(A34)

To prove that EL,sec
0,X0,n > 0 for all X0 ∈ N and all n ∈ N it suffices to show that EL,sec

0,X0,n(1) =
(

∂
∂x EL,sec

0,X0,n

)
(1) = 0

and
(

∂2

∂x2 EL,sec
0,X0,n

)
(x) > 0 for all x ∈]0, ∞[\{1}. The assertion EL,sec

0,X0,n(1) = 0 is trivial from (A34). Moreover,
we obtain

(
∂

∂x
EL,sec

0,X0,n

)
(x) =


βA ·

[
1− α+βA

α+βAx

]
· 1−(βA)

n

1−βA
·
[

X0 − α
1−βA

]
+ α ·

(
1− α+βA

α+βAx

)
· βA

1−βA
· n , if βA 6= 1,[

1− α+1
α+x

]
·
[

α
2 · n2 +

(
X0 − α

2
)
· n
]

, if βA = 1,

which immediately yields
(

∂
∂x EL,sec

0,X0,n

)
(1) = 0. For the second derivative we get

(
∂2

∂x2 EL,sec
0,X0,n

)
(x) =



(α+βA)·β2
A

(α+βAx)2 ·
1−(βA)

n

1−βA
·
[

X0 − α
1−βA

]
+ α

α+βA
(α+βAx)2 ·

β2
A

1−βA
· n > 0, if βA 6= 1,

α+1
(α+x)2 ·

[
α
2 · n2 +

(
X0 − α

2
)
· n
]
> 0, if βA = 1,

(A35)

where the strict positivity of EL,sec
0,X0,n in the case βA 6= 1 follows immediately by replacing X0 with 0 and

by using the obvious relation 1
1−βA

·
[
n− 1−βn

A
1−βA

]
= 1

1−βA
∑n−1

k=0

(
1− βk

A

)
> 0. The strict positivity in the

case βA = 1 is trivial by inspection.
For the constellation PSP,4 with parameters β := β• := βA = βH, αA 6= αH, the strict positivity of

EL
X0,n > 0 follows by showing that EL,tan

y,X0,n converges from above to zero as y tends to infinity. This is
done by proving limy→∞ y · EL,tan

y,X0,n ∈]0, ∞[. To see this, let us first observe that by l’Hospital’s rule we get

lim
y→∞

y · log
(

αA + βy
αH + βy

)
=

αA − αH
β

as well as lim
y→∞

y ·
(

1− αA + βy
αH + βy

)
= −αA − αH

β
.

From this and (72), we obtain limy→∞ y · EL,tan
y,X0,n = (αA−αH)

2

β · n > 0 in both cases β 6= 1 and β = 1.
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Finally, for the parameter case PSP,3c we consider the bound EL,tan
y∗ ,X0,n, with y∗ = αA−αH

βH−βA
. Since

αA + βAy∗ = αH + βHy∗ , it is easy to see that EL,tan
y∗ ,X0,n = 0 for all n ∈ N. However, the condition(

∂
∂y EL,tan

y,X0,n

)
(y∗) 6= 0 implies that supy≥0 EL,tan

y,X0,n > 0. The explicit form (75) of this condition follows from

(
∂

∂y
EL,tan

y,X0,n

)
(y) =



(αAβH−αHβA)
2

fA(y)( fH(y))
2 ·

1−(βA)
n

1−βA
·
[

X0 − αA
1−βA

]
+

αAβH−αHβA

( fH(y))
2 ·

[
αA

βA(1−βA) fA(y)
− αAβH−αHβA

βA

]
· n , if βA 6= 1,

(αAβH−αH)
2

fA(y)( fH(y))
2 ·
[ αA

2 · n2 +
(
X0 +

αA
2
)
· n
]
− (αAβH−αH)

2

( fH(y))
2 · n , if βA = 1,

y ≥ 0, by using the particular choice y = y∗ together with fA(y∗) = fH(y∗) = −
αAβH−αHβA

βA−βH
.

Appendix A.3. Proofs and Auxiliary Lemmas for Section 6

Proof of Lemma 2. A closed-form representation of a sequence (ãn)n∈N0
defined in (83) to (85) is given

by the formula

ãn =
n−1

∑
k=0

(c + ρk) dn−1−k. (A36)

This can be seen by induction: from (83) we obtain with ã0 = 0 for the first element ã1 = c + ρ0 =

∑0
k=0(c + ρk)d−k. Supposing that (A36) holds for the n-th element, the induction step is

ãn+1 = c + d · ãn + ρn = c + d ·
n−1

∑
k=0

(c + ρk) dn−1−k + ρn =
n

∑
k=0

(c + ρk) dn−k .

In order to obtain the explicit representation of ãn, we consider first the case 0 ≤ ν < κ < d and
ρn = K1 ·κn + K2 · νn, which leads to

ãn = dn−1
n−1

∑
k=0

(
c · d−k + K1 ·

(κ
d

)k
+ K2 ·

( ν

d

)k
)

= dn−1 ·
[

c · 1− d−n

1− d−1 + K1 ·
1−

(κ
d
)n

1− κ
d

+ K2 ·
1−

(
ν
d
)n

1− ν
d

]

=
c

1− d
(1− dn) + K1 ·

dn −κn

d−κ + K2 ·
dn − νn

d− ν
. (A37)

Hence, for the corresponding sum we get

n

∑
k=1

ãk =
n

∑
k=1

[
c

1− d
+

(
K1

d−κ +
K2

d− ν
− c

1− d

)
· dk − K1

d−κ ·κ
k − K2

d− ν
· νk
]

=
c

1− d
· n +

(
K1

d−κ +
K2

d− ν
− c

1− d

)
· d · (1− dn)

1− d
− K1 ·κ · (1−κn)

(d−κ)(1−κ) −
K2 · ν · (1− νn)

(d− ν)(1− ν)
.

(A38)

Consider now the case 0 ≤ ν < κ = d. Then some expressions in (A37) and (A38) have a zero
denominator. In this case, the evaluation of (A36) becomes

ãn = dn−1
n−1

∑
k=0

(
c · d−k + K1 + K2 ·

( ν

d

)k
)
= dn−1 ·

[
c · 1− d−n

1− d−1 + K1 · n + K2 ·
1−

(
ν
d
)n

1− ν
d

]

=
c

1− d
(1− dn) + K1 · n · dn−1 + K2 ·

dn − νn

d− ν
. (A39)



Entropy 2020, 22, 874 95 of 121

Before we calculate the corresponding sum ∑n
k=1 ãk, we notice that

n

∑
k=1

k · dk−1 =
n

∑
k=1

∂

∂d
dk =

∂

∂d

n

∑
k=1

dk =
∂

∂d

(
d · (1− dn)

1− d

)
=

1− n · dn(1− d)− dn

(1− d)2 .

Using this fact, we obtain

n

∑
k=1

ãk =
n

∑
k=1

[
c

1− d
(1− dk) + K1 · k · dk−1 + K2 ·

dk − νk

d− ν

]

=
c

1− d
· n +

n

∑
k=1

(
K2

d− ν
− c

1− d

)
dk + K1

n

∑
k=1

k · dk−1 − K2
d− ν

n

∑
k=1

νk

=

(
K2

d− ν
− c

1− d

)
d · (1− dn)

1− d
+ K1 ·

1− n · dn(1− d)− dn

(1− d)2 − K2 · ν(1− νn)

(d− ν)(1− ν)
+

c
1− d

· n

=

(
K1

d(1− d)
+

K2
d− ν

− c
1− d

)
d · (1− dn)

1− d
− K2 · ν(1− νn)

(d− ν)(1− ν)
+

(
c

1− d
− K1 · dn

1− d

)
· n.

Proof of Lemma 3. (a) In this case we have 0 < q < βλ. To prove part (i), we consider the function ξ
(q)
λ (·)

on [x(q)0 , 0], the range of the sequence
(

a(q)n

)
n∈N

(recall Properties 1 (P1)). For tackling the left-hand

inequality in (i), we compare ξ
(q)
λ (x) = q · ex − βλ with the quadratic function

Υ(q)
λ (x) :=

q
2

ex(q)
0 · x2 + qex(q)

0

(
1− x(q)0

)
· x + x(q)0

(
1− qex(q)

0 +
q
2

ex(q)
0 x(q)0

)
. (A40)

Clearly, one has the relations Υ(q)
λ (x(q)0 ) = x(q)0 = ξ

(q)
λ (x(q)0 ), Υ(q) ′

λ (x(q)0 ) = q · ex(q)
0 = ξ

(q) ′
λ (x(q)0 ),

and Υ(q) ′′
λ (x) < ξ

(q) ′′
λ (x) for all x ∈]x(q)0 , 0]. Hence, Υ(q)

λ (·) is on ]x(q)0 , 0] a strict lower functional bound
of ξ

(q)
λ (·). We are now ready to prove the left-hand inequality in (i) by induction. For n = 1, we easily

see that a(q)1 < a(q)1 iff x(q)0

(
1− qex(q)

0 +
q
2 ex(q)

0 x(q)0

)
< q− βλ iff Υ(q)

λ (0) < ξ
(q)
λ (0), and the latter is obviously

true. Let us assume that a(q)n ≤ a(q)n holds. From this, (93), (78) and (80) we obtain

0 < ρ(q)
n

=
q
2

ex(q)
0

(
x(q)0 ·

(
q · ex(q)

0

)n )2

=
q
2

ex(q)
0

(
a(q),Tn − x(q)0

)2

<
q
2

ex(q)
0

(
a(q)n − x(q)0

)2
= Υ(q)

λ

(
a(q)n

)
− d(q),T · a(q)n − x(q)0 ·

(
1− d(q),T

)
< ξ

(q)
λ

(
a(q)n

)
− d(q),T · a(q)n − x(q)0 ·

(
1− d(q),T

)
< a(q)n+1 − d(q),T · a(q)n − x(q)0 ·

(
1− d(q),T

)
= a(q)n+1 − ξ

(q),T
λ (a(q)n ) .

Thus, there holds a(q)n+1 < a(q)n+1. For the right-hand inequality in (i), we proceed analogously:

Υ(q)
λ (x) :=

q
2

ex(q)
0 · x2 +

1− q
2

ex(q)
0 x(q)0 −

q− βλ

x(q)0

 · x + q− βλ (A41)

satisfies Υ(q)
λ (x(q)0 ) = x(q)0 = ξ

(q)
λ (x(q)0 ), Υ(q)

λ (0) = q − βλ = ξ
(q)
λ (0) as well as Υ(q) ′′

λ (x) < ξ
(q) ′′
λ (x) for all

x ∈]x(q)0 , 0]. Hence, Υ(q)
λ (·) is on ]x(q)0 , 0] a strict upper functional bound of ξ

(q)
λ (·). Let us first observe the
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obvious relation a(q)1 = q− βλ = a(q)1 < 0, and assume that a(q)n ≥ a(q)n (n ∈ N) holds. From this, (95), (79),
and (80) we obtain the desired inequality a(q)n+1 > a(q)n+1 by

0 > ρ
(q)
n = −Γ(q)

<

(
d(q),T

)n
· a(q),Sn

x(q)0

=
q
2

ex(q)
0

(
a(q),Tn − x(q)0

)
· a(q),Sn

≥ q
2

ex(q)
0

(
a(q)n − x(q)0

)
· a(q)n = Υ(q)

λ

(
a(q)n

)
− d(q),S · a(q)n − (q− βλ)

> ξ
(q)
λ

(
a(q)n

)
− d(q),S · a(q)n − (q− βλ) ≥ a(q)n+1 − d(q),S · a(q)n − (q− βλ) = a(q)n+1 − ξ

(q),S
λ (a(q)n ) .

The explicit representations of the sequences
(

a(q)n

)
n∈N

,
(

a(q)n

)
n∈N

and
(

a(q)n

)
n∈N

follow from (86) by
incorporating the appropriate constants mentioned in the prelude of Lemma 3. With (83) to (85) and
(86) we immediately achieve a(q)n > a(q),Tn for all n ∈ N. Analogously, for all n ≥ 2, we get ρn−1 < 0, which
implies that a(q)n < a(q),Sn for all n ≥ 2. For n = 1 one obtains ρ0 = 0 as well as a(q)1 = a(q),S1 = a(q)1 = q− βλ.

For the second part (ii), we employ the representation (A36) which leads to

a(q)n =
n−1

∑
k=0

(
d(q),T

)n−1−k
·
(

ρ
(q)
k + x(q)0 · (1− d(q),T)

)
as well as a(q)n =

n−1

∑
k=0

(
d(q),S

)n−1−k
·
(

ρ
(q)
k + (q− βλ)

)
.

The strict decreasingness of both sequences follows from

ρ
(q)
k + x(q)0 (1− d(q),T) =

qex(q)
0

2

(
x(q)0

)2 (
d(q),T

)2n
+ x(q)0

(
1− d(q),T

)
≤ Υ(q)

λ (0) < ξ
(q)
λ (0) = q− βλ < 0

and from the fact that ρ
(q)
k ≤ 0 for all k ∈ N0 and q < βλ. Part (iii) follows directly from (i), since

d(q),T , d(q),S ∈]0, 1[.
Let us now prove part (b), where max{0, βλ} < q < min

{
1 , eβλ−1

}
is assumed. To tackle part (i),

we compare ξ
(q)
λ (x) = q · ex − βλ with the quadratic function

υ
(q)
λ (x) :=

q
2
· x2 + q ·

(
ex(q)

0 − x(q)0

)
· x + x(q)0

(
1− qex(q)

0 +
q
2

x(q)0

)
> 0 (A42)

on the interval [0, x(q)0 ]. Clearly, we have υ
(q)
λ

(
x(q)0

)
= ξ

(q)
λ (x(q)0 ) = x(q)0 , υ

(q) ′
λ (x(q)0 ) = ξ

(q) ′
λ (x(q)0 ) = qex(q)

0

and 0 < υ
(q) ′′
λ (x) < ξ

(q) ′′
λ (x) for all x ∈]0, x(q)0 ]. Thus, υ

(q)
λ (·) constitutes a positive functional lower bound

for ξ
(q)
λ (·) on [0, x(q)0 ]. Let us now prove the left-hand inequality of (i) by induction: for n = 1 we

get a(q)1 = υ
(q)
λ (0) < ξ

(q)
λ (0) = a(q)1 . Moreover, by assuming a(q)n ≤ a(q)n for n ∈ N, we obtain with the

above-mentioned considerations and (93), (80) and (82)

0 < ρ(q)
n

= Γ(q)
>

(
d(q),S

)2n
=

q
2
·
(

a(q),Sn − x(q)0

)2
<

q
2
·
(

a(q)n − x(q)0

)2

=
q
2

(
a(q)n

)2
+ q ·

(
ex(q)

0 − x(q)0

)
· a(q)n + x(q)0 ·

(
1− qex(q)

0 +
q
2

x(q)0

)
− d(q),T a(q)n − c(q),T

= υ
(q)
λ (a(q)n )− d(q),T a(q)n − c(q),T < ξ

(q)
λ (a(q)n )− d(q),T a(q)n − c(q),T

< a(q)n+1 − d(q),T a(q)n − c(q),T = a(q)n+1 − ξ
(q),T
λ (a(q)n ) .

Hence, a(q)n+1 < a(q)n+1. For the right-hand inequality in part (i), we define the quadratic function
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υ
(q)
λ (x) :=

q
2
· x2 +

1− q
2

x(q)0 −
q− βλ

x(q)0

 · x + q− βλ , (A43)

which is a functional upper bound for ξ
(q)
λ (·) on the interval [0, x(q)0 ] since there holds υ

(q)
λ (0) = ξ

(q)
λ (0) =

q− βλ, υ
(q)
λ (x(q)0 ) = ξ

(q)
λ (x(q)0 ) = x(q)0 and additionally υ

(q) ′′
λ (x) = q < qex = ξ

(q) ′′
λ (x) on ]0, x(q)0 [. Obviously,

a(q)1 = q− βλ = a(q)1 . By assuming a(q)n ≥ a(q)n for n ∈ N, we obtain with (80), (82) and (95)

0 > ρ
(q)
n = − Γ(q)

> ·
(

d(q),S
)n
·
(

1−
(

d(q),T
)n)

= − q
2
·
(

x0 − a(q),Sn

)
· a(q),Tn

> − q
2
·
(

x0 − a(q)n

)
· a(q)n = υ

(q)
λ (a(q)n )−

x(q)0 − (q− βλ)

x(q)0

· a(q)n − (q− βλ)

> ξ
(q)
λ (a(q)n )− d(q),Sa(q)n − c(q),S > ξ

(q)
λ (a(q)n )− d(q),Sa(q),Sn − c(q),S = a(q)n+1 − ξ

(q),S
λ (a(q)n ) , (A44)

which implies a(q)n+1 > a(q)n+1. The explicit representations of the sequences
(

a(q)n

)
n∈N

and
(

a(q)n

)
n∈N

follow
from (86) by employing the appropriate constants mentioned in the prelude of Lemma 3. By means
of (83) to (85) and (86), we directly get a(q)n > a(q),Tn for all n ∈ N, whereas a(q)n < a(q),Sn holds only for all
n ≥ 2, since ρ0 = 0 implies that a(q)1 = a(q),S1 = a(q)1 = q− βλ.

The second part (ii) can be proved in the same way as part (ii) of (a), by employing the
representation (A36). For the lower bound one has

a(q)n =
n−1

∑
k=0

(
d(q),T

)n−1−k
·
[
c(q),T + ρ

(q)
k

]
, with c(q),T > 0 and ρ

(q)
k > 0.

For the upper bound we get

a(q)n =
n−1

∑
k=0

(
d(q),S

)n−1−k
·
[
c(q),S + ρ

(q)
k

]
,

hence it is enough to show c(q),S + ρ
(q)
n > 0 for all n ∈ N0. Considering the first two lines of calculation

(A44) and incorporating c(q),S = q− βλ, this can be seen from

c(q),S + ρ
(q)
n > υ

(q)
λ (a(q)n )−

x(q)0 − (q− βλ)

x(q)0

· a(q)n = υ
(q)
λ (a(q)n )− d(q),S · a(q)n > 0 ,

because on [0, x(q)0 ] there holds d(q),S · x < x < υ
(q)
λ (x). The last part (iii) can be easily deduced from (i)

together with limn→∞ n ·
(

d(q),S
)n−1

= 0.

The proofs of all Theorems 5–9 are mainly based on the following

Lemma A4. Recall the quantity B̃(p,q)
λ,X0,n from (42) for general p ≥ 0, q > 0 (notice that we do not consider parameters

p < 0, q ≤ 0 in Section 6) as well as the constants d(q),T , d(q),S and Γ(q)
< , Γ(q)

> defined in (76), (77) and (91). For all
(βA, βH, αA, αH, λ) ∈ P ×R\{0, 1}, all initial population sizes X0 ∈ N and all observation horizons n ∈ N there holds
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(a) in the case p ≥ 0 and 0 < q < βλ

B̃(p,q)
λ,X0,n ≥ exp

{
x(q)0 ·

[
X0 −

p
q
· d(q),T

1− d(q),T

]
·
(

1−
(

d(q),T
)n)

+

(
p
q
·
(

βλ + x(q)0

)
− αλ

)
· n

+ ζ(q)n · X0 +
p
q
· ϑ(q)

n

}
=: C(p,q),L

λ,X0,n , (A45)

B̃(p,q)
λ,X0,n ≤ exp

{
x(q)0 ·

[
X0 −

p
q
· d(q),S

1− d(q),S

]
·
(

1−
(

d(q),S
)n)

+

(
p
q
·
(

βλ + x(q)0

)
− αλ

)
· n

− ζ
(q)
n · X0 −

p
q
· ϑ(q)

n

}
=: C(p,q),U

λ,X0,n , (A46)

where ζ(q)n := Γ(q)
< ·

(
d(q),T

)n−1

1− d(q),T
·
(

1−
(

d(q),T
)n)

> 0 , (A47)

ϑ
(q)
n := Γ(q)

< ·
1−

(
d(q),T

)n

(
1− d(q),T

)2 ·

1−
d(q),T

(
1 +

(
d(q),T

)n)
1 + d(q),T

 > 0 , (A48)

ζ
(q)
n := Γ(q)

< ·


(

d(q),S
)n
−
(

d(q),T
)n

d(q),S − d(q),T
−
(

d(q),S
)n−1

·
1−

(
d(q),T

)n

1− d(q),T

 > 0 , (A49)

ϑ
(q)
n := Γ(q)

< ·
d(q),T

1− d(q),T
·

1−
(

d(q),Sd(q),T
)n

1− d(q),Sd(q),T
−

(
d(q),S

)n
−
(

d(q),T
)n

d(q),S − d(q),T

 > 0 . (A50)

(b) in the case p ≥ 0 and 0 < q = βλ

B̃(p,q)
λ,X0,n = exp

{(
p
q
·
(

βλ + x(q)0

)
− αλ

)
· n
}

= exp
{
(p− αλ) · n

}
.

(c) in the case p ≥ 0 and max{0 , βλ} < q < min
{

1 , eβλ−1
}

the bounds C(p,q),L
λ,X0,n and C(p,q),U

λ,X0,n from (96) and (97)
remain valid, but with

ζ(q)n := Γ(q)
> ·

(
d(q),T

)n
−
(

d(q),S
)2n

d(q),T −
(
d(q),S

)2 > 0 , (A51)

ϑ
(q)
n :=

Γ(q)
>

d(q),T −
(
d(q),S

)2 ·

 d(q),T ·
(

1−
(

d(q),T
)n)

1− d(q),T
−

(
d(q),S

)2
·
(

1−
(

d(q),S
)2n
)

1−
(
d(q),S

)2

 > 0 ,

(A52)

ζ
(q)
n := Γ(q)

> ·
(

d(q),S
)n−1

·

n −
1−

(
d(q),T

)n

1− d(q),T

 > 0 , (A53)

ϑ
(q)
n := Γ(q)

> ·
[

d(q),S − d(q),T(
1− d(q),S

)2 (
1− d(q),T

) · (1−
(

d(q),S
)n)

+
d(q),T

(
1−

(
d(q),Sd(q),T

)n)
(
1− d(q),T

) (
1− d(q),Sd(q),T

) −
(

d(q),S
)n

1− d(q),S
· n
]

. (A54)

(d) for the special choices p := pE
λ := αλ

Aα1−λ
H > 0, q := qE

λ := βλ
Aβ1−λ
H > 0 in the parameter setup

(βA, βH, αA, αH, λ) ∈ (PNI ∪ PSP,1)× ]λ−, λ+[ \{0, 1} we obtain

lim
n→∞

1
n

log
(
Vλ,X0,n

)
= lim

n→∞

1
n

log
(

C(pE
λ ,qE

λ),L
λ,X0,n

)
= lim

n→∞

1
n

log
(

C(pE
λ ,qE

λ),U
λ,X0,n

)
=

αA
βA
· x(q

E
λ)

0 .
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(e) for all general p ≥ 0 with either 0 < q < βλ or max{0, βλ} < q < min
{

1 , eβλ−1
}

we get

lim
n→∞

1
n

log
(

B̃(p,q)
λ,X0,n

)
= lim

n→∞

1
n

log
(

C(p,q),L
λ,X0,n

)
= lim

n→∞

1
n

log
(

C(p,q),U
λ,X0,n

)
=

p
q
·
(

βλ + x(q)0

)
− αλ .

Proof of Lemma A4. The closed-form bounds C(p,q),L
λ,X0,n and C(p,q),U

λ,X0,n are obtained by substituting in the

representation (42) (for B̃(p,q)
λ,X0,n, cf. Theorem 1) the recursive sequence member a(q)n by the explicit

sequence member a(q)n respectively a(q)n . From the definitions of these sequences (92) to (95) and
from (83) to (85) one can see that we basically have to evaluate the term

exp

{(
ãhom

n + c̃n

)
· X0 +

p
q
·

n

∑
k=1

(
ãhom

k + c̃k

)
+

(
p
q
· βλ − αλ

)
· n
}

, (A55)

where ãhom
n + c̃n = ãn is either interpreted as the lower approximate a(q)n or as the upper approximate

a(q)n . After rearranging and incorporating that c(q),S
1−d(q),S = c(q),T

1−d(q),T = x(q)0 in both approximate cases, we
obtain with the help of (86), (87) for the expression (A55) in the case 0 ≤ ν < κ < d

exp

{
x(q)0 · (1− dn) ·

[
X0 −

p
q
· d

1− d

]
+

(
p
q
·
(

βλ + x(q)0

)
− αλ

)
· n

+

[
K1 ·

dn −κn

d−κ + K2 ·
dn − νn

d− ν

]
· X0

+
p
q
·
[(

K1
d−κ +

K2
d− ν

)
· d · (1− dn)

1− d
− K1 ·κ · (1−κn)

(d−κ)(1−κ) −
K2 · ν · (1− νn)

(d− ν)(1− ν)

]}
. (A56)

In the other case 0 ≤ ν < κ = d, the application of (88), (89) turns (A55) into

exp

{
x(q)0 · (1− dn) ·

[
X0 −

p
q
· d

1− d

]
+

(
p
q
·
(

βλ + x(q)0

)
− αλ

)
· n

+

[
K1 · n · dn−1 + K2 ·

dn − νn

d− ν

]
· X0

+
p
q
·
[(

K1
d(1− d)

+
K2

d− ν

)
· d · (1− dn)

1− d
− K2 · ν · (1− νn)

(d− ν)(1− ν)
− K1 · dn

1− d
· n
]}

. (A57)

After these preparatory considerations let us now begin with elaboration of the details.

(a) Let 0 < q < βλ. We obtain a closed-form lower bound for B̃(p,q)
λ,X0,n by employing the parameters

c =̂ c(q),T, d =̂ d(q),T, K2 = ν = 0, K1 = Γ(q)
< , and κ =

(
d(q),T

)2
, cf. (93) in combination with (85).

Since κ < d(q),T, we have to plug in these parameters into (A56). The representations of ζ(q)n and ϑ
(q)
n

in (A47) and (A48) follow immediately. For a closed-form upper bound, we employ the parameters
c =̂ c(q),S, d =̂ d(q),S, −K1 = K2 = Γ(q)

< , κ = d(q),T and ν = d(q),Sd(q),T (in particular, κ < d(q),S implying that
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we have to use (A56)). From this, (A49) can be deduced directly; the representation (A50) comes from
the expressions in the squared brackets in the last line of (A56) and from

−
(

Γ(q)
<

d(q),S − d(q),T
− Γ(q)

<

d(q),S − d(q),Sd(q),T

)
·

d(q),S ·
(

1−
(

d(q),S
)n)

1− d(q),S
+

Γ(q)
< · d(q),T ·

(
1−

(
d(q),T

)n)(
d(q),S − d(q),T

) (
1− d(q),T

)
−

Γ(q)
< · d(q),Sd(q),T ·

(
1−

(
d(q),Sd(q),T

)n)(
d(q),S − d(q),Sd(q),T

) (
1− d(q),Sd(q),T

)
= −

Γ(q)
< · d(q),T

(
1− d(q),S

)
d(q),S

(
d(q),S − d(q),T

) (
1− d(q),T

) · d(q),S ·
(

1−
(

d(q),S
)n)

1− d(q),S
+

Γ(q)
< · d(q),T ·

(
1−

(
d(q),T

)n)(
d(q),S − d(q),T

) (
1− d(q),T

)
−

Γ(q)
< · d(q),T ·

(
1−

(
d(q),Sd(q),T

)n)(
1− d(q),T

) (
1− d(q),Sd(q),T

)
= − Γ(q)

< · d(q),T

1− d(q),T
·

1−
(

d(q),Sd(q),T
)n

1− d(q),Sd(q),T
+

1−
(

d(q),S
)n

d(q),S − d(q),T
−

1−
(

d(q),T
)n

d(q),S − d(q),T


= − Γ(q)

< · d(q),T

1− d(q),T
·

1−
(

d(q),Sd(q),T
)n

1− d(q),Sd(q),T
−

(
d(q),S

)n
−
(

d(q),T
)n

d(q),S − d(q),T

 = −ϑ
(q)
n .

Part (b) has already been mentioned in Remark 1 (b) and is due to the fact that for 0 < q = βλ,
the sequence

(
a(q)n

)
n∈N

is itself explicitly representable by a(q)n = 0 for all n ∈ N (cf. Properties 1 (P2)).
Plugging this into (42) gives the desired result.

(c) Let us now consider max{0, βλ} < q < min{1, eβλ−1}. For a closed-form lower bound for B̃(p,q)
λ,X0,n we

have to employ the parameters c =̂ c(q),T, d =̂ d(q),T, K2 = ν = 0, K1 = Γ(q)
> and κ =

(
d(q),S

)2
, cf. (93) in

combination with (85). The representations of ζ(q)n and ϑ
(q)
n in (A51) and (A52) follow immediately from

(A56). For a closed-form upper bound, we use the parameters c =̂ c(q),S, d =̂ d(q),S, −K1 = K2 = Γ(q)
> ,

κ = d(q),S and ν = d(q),Sd(q),T . Notice that in this case we stick to the representation (A57). The formula
(104) is obviously valid, and (105) is implied by

 −Γ(q)
>

d(q),S
(

1− d(q),S
) +

Γ(q)
>

d(q),S − d(q),Sd(q),T

 · d(q),S ·
(

1−
(

d(q),S
)n)

1− d(q),S

= − Γ(q)
> ·

d(q),S − d(q),T(
1− d(q),S

)2 (
1− d(q),T

) · (1−
(

d(q),S
)n)

.

The parts (d) and (e) are trivial by incorporating that in all respective cases one has d(q),S ∈]0, 1[,
d(q),T ∈]0, 1[ and limn→∞ n · d(q),S = 0.

Proof of Theorem 5. (a) For λ ∈ ]0, 1[, we get 0 < qE
λ < βλ and the assertion follows by applying part

(a) of Lemma A4. Notice that in the current subcase PNI ∪ PSP,1 there holds pE
λ

qE
λ

βλ − αλ = 0 as well as
pE

λ

qE
λ

= αA
βA

= αH
βH

. For the case λ ∈ R\[0, 1], one gets from Lemma A1 that max{0, βλ} < qE
λ, and there holds

qE
λ < min{1, eβλ−1} iff λ ∈]λ−, λ+[ \[0, 1], cf. Lemma 1. Thus, an application of part (c) of Lemma A4

proves the desired result. The assertion (b) is equivalent to part (d) of Lemma A4.
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Proof of Theorem 6. The assertions follow immediately from (A45), Lemma A4(b),(e), Proposition
6(d) as well as the incorporation of the fact that for λ ∈]0, 1[ there holds qL

λ = βλ
Aβ1−λ
H < βλ in

the case (βA, βH, αA, αH) ∈ (PSP\(PSP,1 ∪ PSP,4)) (i.e., βA 6= βH) respectively qL
λ = βλ in the case

(βA, βH, αA, αH) ∈ PSP,4 (i.e., βA = βH).

Proof of Theorem 7. This can be deduced from (A46), from the parts (b), (c) and (e) of Lemma A4 as
well as the incorporation of pU

λ ≥ αλ
Aα1−λ
H > 0 for λ ∈]0, 1[. Notice that an inadequate choice of pU

λ , qU
λ

may lead to pU
λ

qU
λ

(βλ + x(q
U
λ )

0 )− αλ > 0.

Proof of Theorem 8. The assertions follow immediately from (A45) and from the parts (b), (c) and (e) of
Lemma A4. Notice that an inadequate choice of pL

λ, qL
λ may lead to pL

λ

qL
λ

(βλ + x(q
U
λ )

0 )− αλ < 0.

Proof of Theorem 9. Let pU
λ = αλ

Aα1−λ
H > max{0, αλ} and qU

λ = βλ
Aβ1−λ
H > max{0, βλ}. Since qU

λ <

min{1, eβλ−1} iff λ ∈]λ−, λ+[ \[0, 1] (cf. Lemma 1 for qλ := qU
λ )), this theorem follows from (A46) of

Lemma A4, from the parts (b), (e) of Lemma A4 and from part (d) of Proposition 14.

Appendix A.4. Proofs and Auxiliary Lemmas for Section 7

Proof of Theorem 10. As already mentioned above, one can adapt the proof of Theorem 9.1.3 in Ethier
& Kurtz [138] who deal with drift-parameters η = 0, κ• = 0, and the different setup of σ−independent
time-scale and a sequence of critical Galton-Watson processes without immigration with general offspring
distribution. For the sake of brevity, we basically outline here only the main differences to their proof;
for similar limit investigations involving offspring/immigration distributions and parametrizations
which are incompatble to ours, see e.g., Sriram [142].

As a first step, let us define the generator

A• f (x) :=
(
η − κ• · x

)
· f ′(x) +

σ2

2
· x · f ′′(x), f ∈ C∞

c
(
[0, ∞)

)
,

which corresponds to the diffusion process X̃ governed by (133). In connection with (130), we study

T(m)
• f (x) := EP•

[
f

(
1
m

(
mx

∑
k=1

Y(m)
0,k + Ỹ(m)

0

))]
, x ∈ E(m) :=

1
m
N0, f ∈ C∞

c
(
[0, ∞),

where the Y(m)
0,k , Ỹ(m)

0 are independent and (Poisson-β
(m)
• respectively Poisson-α

(m)
• ) distributed as the

members of the collection Y(m) respectively Ỹ(m). By the Theorems 8.2.1 and 1.6.5 as well as Corollary
4.8.9 of [138] it is sufficient to show

lim
m→∞

sup
x∈E(m)

∣∣∣σ2m
(

T(m)
• f (x)− f (x)

)
− A• f (x)

∣∣∣ = 0, f ∈ C∞
c
(
[0, ∞)

)
. (A58)

But (A58) follows mainly from the next
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Lemma A5. Let

S(m)
n :=

1√
n

(
n

∑
k=1

(
Y(m)

0,k − β
(m)
•
)
+ Ỹ(m)

0 − α
(m)
•

)
, n ∈ N, m ∈ N,

with the usual convention S(m)
0 := 0. Then for all m ∈ N, x ∈ E(m) and all f ∈ C∞

c
(
[0, ∞)

)
ε(m)(x) := EP•

[∫ 1

0

(
S(m)

mx

)2
x(1− v)

(
f ′′
(

β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx

)
− f ′′(x)

)
dv

]

=
1

σ2 ·
[
σ2m ·

(
T(m)
• f (x)− f (x)

)
− A• f (x)

]
+ R(m), where lim

m→∞
R(m) = 0. (A59)

Proof of Lemma A5. Let us fix f ∈ C∞
c
(
[0, ∞)

)
. From the involved Poissonian expectations it is easy to

see that
lim

m→∞

∣∣∣σ2m
(

T(m)
• f (0)− f (0)

)
− A• f (0)

∣∣∣ = 0 ,

and thus (A59) holds for x = 0. Accordingly, we next consider the case x ∈ E(m)\{0}, with fixed m ∈ N.

From EP•

[(
S(m)

mx

)2
]
= β

(m)
• + α

(m)
•

mx we obtain

EP•

[(
S(m)

mx

)2
x f ′′(x)

∫ 1

0
(1− v)dv

]
=

1
2

(
β
(m)
• · x +

α
(m)
•
m

)
f ′′(x) =: amx

f ′′(x)
2

=: a
f ′′(x)

2
. (A60)

Furthermore, with bmx := b := a +
√

x/m · S(m)
mx = 1

m

(
∑mx

k=1 Y(m)
0,k + Ỹ(m)

0

)
we get on {S(m)

mx 6= 0}

∫ 1

0
f ′′
(

β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx

)
dv =

√
m
x
· 1

S(m)
mx

∫ b

a
f ′′(y)dy =

√
m
x
· f ′(b)− f ′(a)

S(m)
mx

(A61)

as well as

∫ 1

0
v f ′′

(
β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx

)
dv =

m

x
(

S(m)
mx

)2

[ ∫ b

a
y f ′′(y) dy− a

∫ b

a
f ′′(y) dy

]

=

√
m
x
· f ′(b)

S(m)
mx

+
m
x
· f (a)− f (b)(

S(m)
mx

)2 . (A62)

With our choice β
(m)
• = 1− κ•

σ2m and α
(m)
• = β

(m)
• · η

σ2 , a Taylor expansion of f at x gives

f (a) = f (x) +
1

σ2m
· f ′(x)

(
β
(m)
• · η − κ• · x

)
+ o

(
1
m

)
, (A63)
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where for the case η = κ = 0 we use the convention o
(

1
m

)
≡ 0. Combining (A60) to (A63) and the

centering EP•
[
S(m)

mx

]
= 0, the left hand side of Equation (A59) becomes

EP•

[∫ 1

0

(
S(m)

mx

)2
x(1− v)

(
f ′′
(

β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx

)
− f ′′(x)

)
dv

]
= EP•

[√
mx · S(m)

mx ·
(

f ′(b)− f ′(a)
)]
− EP•

[√
mx · S(m)

mx · f ′(b) + m · ( f (a)− f (b))
]

− 1
2

(
β
(m)
• · x +

α
(m)
•
m

)
· f ′′(x)

= m ·
(

EP•
[

f (b)
]
− f (a)

)
− 1

2

(
β
(m)
• · x +

α
(m)
•
m

)
· f ′′(x)

= m ·
{

EP•

[
f

(
1
m

(
mx

∑
k=1

Y(m)
0,k + Ỹ0

))]
− f (x)

}
− 1

σ2 A• f (x)

+
1

σ2

[
(η − κ• · x)− β

(m)
• · η + κ• · x

]
· f ′(x) +

x
2

[
1− β

(m)
• − α

(m)
•
m

]
· f ′′(x)−m · o

(
1
m

)

which immediately leads to the right hand side of (A59).

To proceed with the proof of Theorem 10, we obtain for m ≥ 2κ•/σ2 the inequality β
(m)
• ≥ 1/2 and

accordingly for all v ∈]0, 1[, x ∈ E(m)

β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx = (1− v) · x · β(m)

• + (1− v)
α
(m)
•
m

+ v

(
mx

∑
k=1

Y(m)
0,k + Ỹ0

)
≥ x · 1− v

2
.

Suppose that the support of f is contained in the interval [0, c]. Correspondingly, for v ≤ 1− 2c/x the
integrand in ε(m)(x) is zero and hence with (A64) we obtain the bounds∣∣∣∣∣

∫ 1

0

(
S(m)

mx

)2
x(1− v)

(
f ′′
(

β
(m)
• x +

α
(m)
•
m

+ v
√

x
m

S(m)
mx

)
− f ′′(x)

)
dv

∣∣∣∣∣
≤

∫ 1

0∨(1−2c/x)

(
S(m)

mx

)2
x(1− v) · 2

∥∥ f ′′
∥∥

∞ dv ≤ x ·
(

S(m)
mx

)2
(

1∧ 2c
x

)2 ∥∥ f ′′
∥∥

∞ .

From this, one can deduce limm→∞ supx∈E(m) ε(m)(x) = 0–and thus (A58) – in the same manner as at the
end of the proof of Theorem 9.1.3 in [138] (by means of the dominated convergence theorem).

Proof of Proposition 15. Let (κA, κH, η) ∈ P̃NI ∪ P̃SP,1 be fixed. We have to find those orders λ ∈ R\[0, 1]
which satisfy for all sufficiently large m ∈ N

q(m)
λ =

(
1− κA

σ2m

)λ (
1− κH

σ2m

)1−λ
< min

{
1 , eβ

(m)
λ −1

}
. (A64)

In order to achieve this, we interpret q(m)
λ = qλ

( 1
m
)

in terms of the function

qλ(x) :=
(

1− κA
σ2 · x

)λ (
1− κH

σ2 · x
)1−λ

, x ∈]− ε, ε[ , (A65)
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for some small enough ε > 0 such that (A65) is well-defined. Since β
(m)
λ − 1 = − κλ

σ2·m = − κλ

σ2 · x =

− λκA+(1−λ)κH
σ2 · x, for the verification of (A64) it suffices to show

lim
x↘0

1− qλ(x)
x

> 0 , (A66)

and lim
x↘0

e−
κλ
σ2 ·x − qλ(x)

x2 > 0 . (A67)

By l’Hospital’s rule, one gets limx↘0
1−qλ(x)

x = λκA+(1−λ)κH
σ2 = κλ

σ2 and hence

(A66) ⇐⇒


λ < κH

κH−κA
, if κA < κH ,

λ > − κH
κA−κH

, if κA > κH .

(A68)

To find a condition that guarantees (A67), we use l’Hospital’s rule twice to deduce

lim
x↘0

e−
κλ
σ2 ·x − qλ(x)

x2 =
1

2σ4

[
κ2

λ − λ(λ− 1)(κA − κH)
2
]

=
1

2σ4

[
λκ2
A + (1− λ)κ2

H

]
and hence we obtain

(A67) ⇐⇒


λ <

κ2
H

κ2
H−κ2

A
, if κA < κH,

λ > − κ2
H

κ2
A−κ2

H
, if κA > κH.

(A69)

To compare both the lower and upper bounds in (A68) and (A69), let us calculate

κ2
H

κ2
H − κ2

A
− κH

κH − κA
= − κAκH

(κH − κA)(κH + κA)


< 0, if κA < κH,

> 0, if κA > κH.

(A70)

Incorporating this, we observe that both conditions (A66) and (A67) are satisfied simultaneously iff

λ < min

{
κH

κH − κA
,

κ2
H

κ2
H − κ2

A

}
=

κ2
H

κ2
H − κ2

A
if κA < κH,

λ > max

{
− κH

κA − κH
, −

κ2
H

κ2
A − κ2

H

}
= −

κ2
H

κ2
A − κ2

H
if κA > κH,

which finishes the proof.

The following lemma is the main tool for the proof of Theorem 11.
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Lemma A6. Let (κA, κH, η, λ) ∈ (P̃NI ∪ P̃SP,1)×
( ]

λ̃−, λ̃+
[
\{0, 1}

)
. By using the quantities κλ := λκA + (1−

λ)κH and Λλ :=
√

λκ2
A + (1− λ)κ2

H from (150) (which is well-defined, cf. (138)), one gets for all t > 0

(a) lim
m→∞

m ·
(

1− q(m)
λ

)
= lim

m→∞
m ·
(

1− β
(m)
λ

)
=

κλ

σ2 .

(b) lim
m→∞

m2 · a(m)
1 = lim

m→∞
m2 ·

(
q(m)

λ − β
(m)
λ

)
= −λ(1− λ) (κA − κH)

2

2σ4 = −
Λ2

λ − κ2
λ

2σ4 .

(c) lim
m→∞

m · x(m)
0 = −Λλ − κλ

σ2

 < 0, if λ ∈]0, 1[,

> 0, if λ ∈
]
λ̃−, λ̃+

[∖
[0, 1].

(d) lim
m→∞

m2 · Γ(m)
< = lim

m→∞
m2 · Γ(m)

> =
(Λλ − κλ)

2

2σ4 > 0 .

(e) lim
m→∞

m · (1− d(m),S) =
Λλ + κλ

2σ2 > 0 .

( f ) lim
m→∞

m · (1− d(m),T) =
Λλ

σ2 > 0 .

(g) lim
m→∞

m · (1− d(m),Sd(m),T) =
3Λλ + κλ

2σ2 > 0 .

(h) lim
m→∞

(
d(m),S

)σ2mt
= exp

{
−Λλ + κλ

2
· t
}

< 1 .

(i) lim
m→∞

(
d(m),T

)σ2mt
= exp {−Λλ · t} < 1 .

(j) lim
m→∞

(
d(m),Sd(m),T

)σ2mt
= exp

{
−3Λλ + κλ

2
· t
}

< 1 .

(k) for λ ∈]0, 1[, there holds for the respective quantities defined in (142) to (145)

lim
m→∞

m · ζ(m)
bσ2mtc =

(Λλ − κλ)
2

2σ2 ·Λλ
· e−Λλ ·t ·

(
1− e−Λλ ·t

)
> 0 ,

lim
m→∞

ϑ
(m)
bσ2mtc =

1
4
·
(

Λλ − κλ

Λλ

)2
·
(

1− e−Λλ ·t
)2

> 0 ,

lim
m→∞

m · ζ(m)
bσ2mtc =

(Λλ − κλ)
2

σ2 ·
[

e−
1
2 (Λλ+κλ)·t − e−Λλ ·t

Λλ − κλ
−

e−
1
2 (Λλ+κλ)·t

(
1− e−Λλ ·t

)
2 ·Λλ

]
> 0 ,

lim
m→∞

ϑ
(m)
bσ2mtc =

(Λλ − κλ)
2

Λλ
·
[

1− e−
1
2 (3Λλ+κλ)·t

3Λλ + κλ
+

e−Λλ ·t − e−
1
2 (Λλ+κλ)·t

Λλ − κλ

]
> 0 .

(l) for λ ∈
]
λ̃−, λ̃+

[∖
[0, 1], there holds for the respective quantities defined in (146) to (149)

lim
m→∞

m · ζ(m)
bσ2mtc =

(Λλ − κλ)
2

2σ2 · κλ
· e−Λλ ·t ·

(
1− e−κλ ·t) > 0 ,

lim
m→∞

ϑ
(m)
bσ2mtc =

(Λλ − κλ)
2

2 · κλ
·
[

1− e−Λλ ·t

Λλ
− 1− e−(Λλ+κλ)·t

Λλ + κλ

]
> 0 ,

lim
m→∞

m · ζ(m)
bσ2mtc =

(Λλ − κλ)
2

2 · σ2 · e−
1
2 (Λλ+κλ)·t ·

[
t − 1− e−Λλ ·t

Λλ

]
> 0 ,

lim
m→∞

ϑ
(m)
bσ2mtc = (Λλ − κλ)

2 ·
[
(Λλ − κλ)

(
1− e−

1
2 (Λλ+κλ)·t

)
Λλ · (Λλ + κλ)

2

+
1− e−

1
2 (3Λλ+κλ)·t

Λλ · (3Λλ + κλ)
− e−

1
2 (Λλ+κλ)·t

Λλ + κλ
· t
]

> 0 .

Proof of Lemma A6. For each of the assertions (a) to (l), we will make use of l’Hospital’s rule. To begin
with, we obtain for arbitrary µ, ν ∈ R

lim
m→∞

m
[
1− (β

(m)
A )µ(β

(m)
H )ν

]
= lim

m→∞
m2
[
µ · (β

(m)
A )µ−1(β

(m)
H )ν κA

σ2 m2 + ν · (β
(m)
A )µ(β

(m)
H )ν−1 κH

σ2 m2

]
= µ

κA
σ2 + ν

κH
σ2 . (A71)
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From this, the first part of (a) follows immediately and the second part is a direct consequence of the
definition of β

(m)
λ . Part (b) can be deduced from (A71):

lim
m→∞

m2 · a(m)
1 = lim

m→∞

m
2σ2 ·

[
λ · κA

(
1− (β

(m)
A )λ−1(β

(m)
H )1−λ

)
+ (1− λ) · κH

(
1− (β

(m)
A )λ(β

(m)
H )−λ

) ]
= −λ(1− λ)(κA − κH)

2

2σ4 = −
Λ2

λ − κ2
λ

2σ4 .

For the proof of (c), we rely on the inequalities x(m)
0 ≤ x(m)

0 ≤ x(m)
0 (m ∈ N), where x(m)

0 and x(m)
0 are the

obvious notational adaptions of (124) and (126), respectively. Notice that x(m)
0 and x(m)

0 are solutions
of the (again adapted) quadratic equations Q(m)

λ (x) = x resp. Q(m)
λ (x) = x (cf. (127) and (128)). These

solutions clearly exist in the case λ ∈]0, 1[. For sufficiently large approximations steps m ∈ N, these
solutions also exist in the case λ ∈

]
λ̃−, λ̃+

[∖
[0, 1] since (138) together with parts (a) and (b) imply

lim
m→∞

(
m · (1− q(m)

λ )
)2
− 2 · q(m)

λ ·m2 · a(m)
1 = σ−2 ·

[
λκ2
A + (1− λ)κ2

H

]
> 0, for λ ∈

]
λ̃−, λ̃+

[∖
[0, 1].

To prove part (c), we show that the limits of x(m)
0 and x(m)

0 coincide. Assume first that λ ∈]0, 1[. Using (a)
and (b), we obtain together with the obvious limit limm→∞ q(m)

λ = 1

lim
m→∞

m · x(m)
0 = lim

m→∞

(
q(m)

λ

)−1
·
[

m · (1− q(m)
λ )−

√(
m · (1− q(m)

λ )
)2
− 2 · q(m)

λ ·m2 · a(m)
1

]

=
κλ

σ2 −

√( κλ

σ2

)2
+

Λ2
λ − κ2

λ

σ4 = −Λλ − κλ

σ2 . (A72)

Let x(m)
0 be the adapted version of the auxiliary fixed-point lower bound defined in (125).

By incorporating limm→∞ β
(m)
λ = 1 we obtain with (a) and (b)

lim
m→∞

x(m)
0 = lim

m→∞
max

−β
(m)
λ ,

q(m)
λ − β

(m)
λ

1− q(m)
λ

 = lim
m→∞

1
m
·

m2 · a(m)
1

m ·
(

1− q(m)
λ

) = 0,

which implies

lim
m→∞

m · x(m)
0 = lim

m→∞

e−x(m)
0

q(m)
λ

·
[

m · (1− q(m)
λ )−

√(
m · (1− q(m)

λ )
)2
− 2 · ex(m)

0 q(m)
λ ·m2 · a(m)

1

]

=
κλ

σ2 −

√( κλ

σ2

)2
+

Λ2
λ − κ2

λ

σ4 = −Λλ − κλ

σ2 . (A73)

Combining (A72) and (A73), the desired result (c) follows for λ ∈]0, 1[. Assume now that λ ∈]
λ̃−, λ̃+

[∖
[0, 1]. In this case the approximates x(m)

0 and x(m)
0 have a different form, given in (124) and

(126). However, the calculations work out in the same way: with parts (a) and (b) we get

lim
m→∞

m · x(m)
0 = lim

m→∞

1

q(m)
λ

·
[

m ·
(

1− q(m)
λ

)
−
√(

m · (1− q(m)
λ )

)2
− 2 · q(m)

λ ·m2 · a(m)
1

]

=
κλ

σ2 −

√( κλ

σ2

)2
+

Λ2
λ − κ2

λ

σ4 = −Λλ − κλ

σ2 ,
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as well as

lim
m→∞

m · x(m)
0 = lim

m→∞
m ·
(

1− q(m)
λ

)
−
√(

m · (1− q(m)
λ )

)2
− 2 ·m2 · a(m)

1

=
κλ

σ2 −

√( κλ

σ2

)2
+

Λ2
λ − κ2

λ

σ4 = −Λλ − κλ

σ2 ,

which finally finishes the proof of part (c). Assertion (d) is a direct consequence of (c). Since the
representations of the parameters c(m),S, d(m),S, c(m),T , d(m),T are the same in both cases λ ∈]0, 1[ and
λ ∈

]
λ̃−, λ̃+

[∖
[0, 1], the following considerations hold generally. Part (e) follows from (b) and (c) by

lim
m→∞

m · (1− d(m),S) = lim
m→∞

m2 · a(m)
1

m · x(m)
0

=
Λλ + κλ

2σ2 > 0 .

Notice that this term is positive since on
]
λ̃−, λ̃+

[
\{0, 1} there holds κλ > 0 as well as Λλ > 0, cf. (A70).

To prove (f), we apply the general limit limx→0
ex−1

x = 1 and get with (a), (c)

lim
m→∞

m · (1− d(m),T) = lim
m→∞

(
m ·
(

1− q(m)
λ

)
− q(m)

λ ·m · x(m)
0 · ex(m)

0 − 1

x(m)
0

)
=

Λλ

σ2 .

The limit (g) can be obtained from (e) and (f):

lim
m→∞

m · (1− d(m),Sd(m),T) = lim
m→∞

{
m · (1− d(m),S) + d(m),S ·m · (1− d(m),T)

}
=

3Λλ + κλ

2σ2 .

The assertions (h) resp. (i) resp. (j) follow from (e) resp. (f) resp. (g) by using the general relation
limm→∞

(
1 + xm

m
)m

= exp {limm→∞ xm}. To get the last two parts (k) and (l), we make repeatedly use of
the results (a) to (j) and combine them with the formulas (142) to (149) of Corollary 14. More detailed,
for λ ∈]0, 1[

(
and thus q(m)

λ < β
(m)
λ

)
we obtain

m · ζ(m)
bσ2mtc = m2 · Γ(m)

< ·

(
d(m),T

)bσ2mtc−1

m ·
(

1− d(m),T
) ·(1−

(
d(m),T

)bσ2mtc)
m→∞−→ (Λλ − κλ)

2

2σ2 ·Λλ
· e−Λλ ·t ·

(
1− e−Λλ ·t

)
> 0 ,

ϑ
(m)
bσ2mtc = m2 · Γ(m)

< ·
1−

(
d(m),T

)bσ2mtc

(
m ·
(

1− d(m),T
))2 ·

1−
d(m),T

(
1 +

(
d(m),T

)bσ2mtc)
1 + d(m),T


m→∞−→ 1

4
·
(

Λλ − κλ

Λλ

)2
·
(

1− e−Λλ ·t
)2

> 0 ,

m · ζ(m)
bσ2mtc = m2 · Γ(m)

< ·
[ (

d(m),S
)bσ2mtc

−
(

d(m),T
)bσ2mtc

m ·
(

1− d(m),T
)
−m ·

(
1− d(m),S

)

−
(

d(m),S
)bσ2mtc−1

·
1−

(
d(m),T

)bσ2mtc

m ·
(

1− d(m),T
) ]

m→∞−→ (Λλ − κλ)
2

σ2 ·
[

e−
1
2 (Λλ+κλ)·t − e−Λλ ·t

Λλ − κλ
−

e−
1
2 (Λλ+κλ)·t

(
1− e−Λλ ·t

)
2 ·Λλ

]
> 0 ,
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ϑ
(m)
bσ2mtc =

m2 · Γ(m)
< · d(m),T

m ·
(

1− d(m),T
) ·
1−

(
d(m),Sd(m),T

)bσ2mtc

m ·
(

1− d(m),Sd(m),T
) −

(
d(m),S

)bσ2mtc
−
(

d(m),T
)bσ2mtc

m ·
(

1− d(m),T
)
−m ·

(
1− d(m),S

)


m→∞−→ (Λλ − κλ)
2

Λλ
·
[

1− e−
1
2 (3Λλ+κλ)·t

3Λλ + κλ
+

e−Λλ ·t − e−
1
2 (Λλ+κλ)·t

Λλ − κλ

]
> 0 .

For λ ∈
]
λ̃−, λ̃+

[∖
[0, 1]

(
and thus q(m)

λ > β
(m)
λ

)
we get

m · ζ(m)
bσ2mtc = m2 · Γ(m)

> ·

(
d(m),T

)bσ2mtc
−
(

d(m),S
)2·bσ2mtc

m ·
(

1− d(m),S
) (

1 + d(m),S
)
−m ·

(
1− d(m),T

)
m→∞−→ (Λλ − κλ)

2

2σ2 · κλ
· e−Λλ ·t ·

(
1− e−κλ ·t) > 0 ,

ϑ
(m)
bσ2mtc =

m2 · Γ(m)
>

m ·
(

1− d(m),S
) (

1 + d(m),S
)
−m ·

(
1− d(m),T

)

·

 d(m),T ·
(

1−
(

d(m),T
)bσ2mtc)

m ·
(

1− d(m),T
) −

(
d(m),S

)2
·
(

1−
(

d(m),S
)2·bσ2mtc)

m ·
(

1− d(m),S
) (

1 + d(m),S
)


m→∞−→ (Λλ − κλ)

2

2 · κλ
·
[

1− e−Λλ ·t

Λλ
− 1− e−(Λλ+κλ)·t

Λλ + κλ

]
> 0 ,

m · ζ(m)
bσ2mtc = m2 · Γ(m)

> ·
(

d(m),S
)bσ2mtc−1

·


⌊
σ2mt

⌋
m

−
1−

(
d(m),T

)bσ2mtc

m ·
(

1− d(m),T
)


m→∞−→ (Λλ − κλ)
2

2 · σ2 · e−
1
2 (Λλ+κλ)·t ·

[
t − 1− e−Λλ ·t

Λλ

]
> 0 ,

ϑ
(m)
bσ2mtc = m2 · Γ(m)

> ·
[

m ·
(

1− d(m),T
)
−m ·

(
1− d(m),S

)
m2 ·

(
1− d(m),S

)2
·m ·

(
1− d(m),T

) ·(1−
(

d(m),S
)bσ2mtc)

+

d(m),T
(

1−
(

d(m),Sd(m),T
)bσ2mtc)

m ·
(

1− d(m),T
)
·m ·

(
1− d(m),Sd(m),T

) −
(

d(m),S
)bσ2mtc

m ·
(

1− d(m),S
) · ⌊σ2mt

⌋
m

]

m→∞−→ (Λλ − κλ)
2 ·
[
(Λλ − κλ)

(
1− e−

1
2 (Λλ+κλ)·t

)
Λλ · (Λλ + κλ)

2 +
1− e−

1
2 (3Λλ+κλ)·t

Λλ · (3Λλ + κλ)
− e−

1
2 (Λλ+κλ)·t

Λλ + κλ
· t
]
> 0.

Proof of Theorem 11. It suffices to compute the limits of the bounds given in Corollary 14 as m tends to
infinity. This is done by applying Lemma A6 which provides corresponding limits of all quantities
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of interest. Accordingly, for all t > 0 the lower bound (153) in the case λ ∈]0, 1[ can be obtained
from (140), (142) and (143) by

lim
m→∞

exp

{
x(m)

0 ·
[

X(m)
0 − η

σ2 ·
d(m),T

1− d(m),T

](
1−

(
d(m),T

)bσ2mtc)

+ x(m)
0

η

σ2 ·
⌊

σ2mt
⌋
+ ζ

(m)
bσ2mtc · X

(m)
0 + ϑ

(m)
bσ2mtc

}

= lim
m→∞

exp

{
m · x(m)

0 ·

X(m)
0
m
− η

σ2 ·
d(m),T

m ·
(

1− d(m),T
)
(1−

(
d(m),T

)bσ2mtc)

+ m · x(m)
0

η

σ2 ·
⌊
σ2mt

⌋
m

+ m · ζ(m)
bσ2mtc ·

X(m)
0
m

+ ϑ
(m)
bσ2mtc

}

= exp

{
− Λλ − κλ

σ2 ·
[

X̃0 −
η

σ2 ·
σ2

Λλ

] (
1− e−Λλt

)
− Λλ − κλ

σ2 · η

σ2 · σ
2t

+
(Λλ − κλ)

2

2σ2 ·Λλ
· e−Λλ ·t ·

(
1− e−Λλ ·t

)
· X̃0 +

η

4σ2 ·
(

Λλ − κλ

Λλ

)2
·
(

1− e−Λλ ·t
)2
}

= exp
{
−Λλ − κλ

σ2

[
X̃0 −

η

Λλ

] (
1− e−Λλ ·t

)
− η

σ2 (Λλ − κλ) · t + L(1)
λ (t) · X̃0 +

η

σ2 · L
(2)
λ (t)

}
.

For all t > 0, the upper bound (154) in the case λ ∈]0, 1[ follows analogously from (141), (144), (145) by

lim
m→∞

exp

{
x(m)

0 ·
[

X(m)
0 − η

σ2 ·
d(m),S

1− d(m),S

](
1−

(
d(m),S

)bσ2mtc)

+ x(m)
0

η

σ2 ·
⌊

σ2mt
⌋
− ζ

(m)
bσ2mtc · X

(m)
0 − ϑ

(m)
bσ2mtc

}

= lim
m→∞

exp

{
m · x(m)

0 ·

X(m)
0
m
− η

σ2 ·
d(m),S

m ·
(

1− d(m),S
)
(1−

(
d(m),S

)bσ2mtc)

+ m · x(m)
0

η

σ2 ·
⌊
σ2mt

⌋
m

− m · ζ(m)
bσ2mtc ·

X(m)
0
m
− ϑ

(m)
bσ2mtc

}

= exp

{
− Λλ − κλ

σ2

[
X̃0 −

η

σ2 ·
2σ2

Λλ + κλ

] (
1−

(
e−

1
2 (Λλ+κλ)t

))
− Λλ − κλ

σ2 · η

σ2 · σ
2t

− (Λλ − κλ)
2

σ2 ·
[

e−
1
2 (Λλ+κλ)·t − e−Λλ ·t

Λλ − κλ
−

e−
1
2 (Λλ+κλ)·t

(
1− e−Λλ ·t

)
2 ·Λλ

]
· X̃0

− η

σ2
(Λλ − κλ)

2

Λλ
·
[

1− e−
1
2 (3Λλ+κλ)·t

3Λλ + κλ
+

e−Λλ ·t − e−
1
2 (Λλ+κλ)·t

Λλ − κλ

]}

= exp

{
− Λλ − κλ

σ2

[
X̃0 −

η
1
2 (Λλ + κλ)

] (
1− e−

1
2 (Λλ+κλ)·t

)
− η

σ2 (Λλ − κλ) · t

− U(1)
λ (t) · X̃0 −

η

σ2 ·U
(2)
λ (t)

}
.

In the case λ ∈
]
λ̃−, λ̃+

[∖
[0, 1], the lower bound as well as the upper bound of the Hellinger integral

limit is obtained analogously, by taking into account that the quantities ζ(m)
n , ϑ

(m)
n , ζ

(m)
n , ϑ

(m)
n now have

the form (146) to (149) instead of (142) to (145). Thus, the functions L(1)
λ (t), U(1)

λ (t), L(2)
λ (t), U(2)

λ (t) are
obtained by employing the limits of part (l) of Lemma A6 instead of part (k).

The next Lemma (and parts of its proof) will be useful for the verification of Theorem 12:
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Lemma A7. Recall the bounds on the Hellinger integral m−limit given in (153) and (154) of Theorem 11, in terms of
L(i)

λ (t) and U(i)
λ (t) (i = 1, 2) defined by (155) to (158). Correspondingly, one gets the following λ−limits for all t ∈ [0, ∞[:

(a) for all κA ∈]0, ∞[ and all κH ∈ [0, ∞[ with κA 6= κH

lim
λ↗1

∂L(1)
λ (t)
∂λ

= lim
λ↗1

∂L(2)
λ (t)
∂λ

= lim
λ↗1

∂ U(1)
λ (t)
∂λ

= lim
λ↗1

∂ U(2)
λ (t)
∂λ

= 0 . (A74)

(b) for κA = 0 and all κH ∈]0, ∞[

lim
λ↗1

∂L(1)
λ (t)
∂λ

= −
κ2
H · t
2σ2 , (A75)

lim
λ↗1

∂L(2)
λ (t)
∂λ

= −
κ2
H · t

2

4
, (A76)

lim
λ↗1

∂ U(1)
λ (t)
∂λ

= lim
λ↗1

∂ U(2)
λ (t)
∂λ

= 0 . (A77)

Proof of Lemma A7. For all κA, κH ∈ [0, ∞[ with κA 6= κH one can deduce from (150) as well as (155) to
(158) the following derivatives:

∂L(1)
λ (t)
∂λ

=
1

2σ2

{
t
2

(
Λλ − κλ

Λλ

)2 (
κ2
A − κ2

H

) [
2e−2Λλt − e−Λλt

]

+ e−Λλt 1− e−Λλt

Λλ

[
Λλ − κλ

Λλ

(
κ2
A − κ2

H − 2Λλ(κA − κH)
)
−
(

Λλ − κλ

Λλ

)2 κ2
A − κ2

H
2

]}
, (A78)

∂L(2)
λ (t)
∂λ

=
1
4

{
Λλ − κλ

Λλ
·
(

1− e−Λλt

Λλ

)2

·
(

κ2
A − κ2

H − 2Λλ(κA − κH)−
Λλ − κλ

Λλ

(
κ2
A − κ2

H

))

+ t · e−Λλt ·
(

Λλ − κλ

Λλ

)2
· 1− e−Λλt

Λλ
·
(

κ2
A − κ2

H

)}
, (A79)

∂ U(1)
λ (t)
∂λ

=
1

σ2

{
Λλ − κλ

2Λλ

[
t e−Λλt

(
κ2
A − κ2

H

)
− t

2
e−

1
2 (Λλ+κλ)t

(
κ2
A − κ2

H + 2Λλ(κA − κH)
) ]

− e−
1
2 (Λλ+κλ)t − e−Λλt

2Λλ
·
(

κ2
A − κ2

H − 2Λλ(κA − κH)
)

+

(
Λλ − κλ

2Λλ

)2
[

t
2

e−
1
2 (Λλ+κλ)t

(
κ2
A − κ2

H + 2Λλ(κA − κH)
)

− t
2

e−
1
2 (3Λλ+κλ)t

(
3
(

κ2
A − κ2

H

)
+ 2Λλ(κA − κH)

)
+e−

1
2 (Λλ+κλ)t · 1− e−Λλt

Λλ
·
(

κ2
A − κ2

H

) ]

+
Λλ − κλ

Λλ

(
κ2
A − κ2

H − 2Λλ(κA − κH)
) [ e−

1
2 (Λλ+κλ)t − e−Λλ t

Λλ − κλ
−

e−
1
2 (Λλ+κλ)t

(
1− e−Λλ t)

2Λλ

]}
,

(A80)
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∂ U(2)
λ (t)
∂λ

=
(Λλ − κλ)

2

Λλ(3Λλ + κλ)

[
t
2

e−
1
2 (3Λλ+κλ)t

(
3

κ2
A − κ2

H
2Λλ

+ κA − κH

)

− 1− e−
1
2 (3Λλ+κλ)t

3Λλ + κλ
·
(

3
κ2
A − κ2

H
2Λλ

+ κA − κH

)]

+
Λλ − κλ

Λλ

[
t
2

e−
1
2 (Λλ+κλ)t

(
κ2
A − κ2

H
2Λλ

+ κA − κH

)
− t e−Λλt κ2

A − κ2
H

2Λλ

]

+
e−

1
2 (Λλ+κλ)t − e−Λλt

Λλ

(
κ2
A − κ2

H
2Λλ

− κA + κH

)

+

[
2

(
κ2
A − κ2

H
2Λλ

− κA + κH

)
− Λλ − κλ

Λ2
λ

·
κ2
A − κ2

H
2

]

· 1
Λλ

[
Λλ − κλ

3Λλ + κλ

(
1− e−

1
2 (3Λλ+κλ)t

)
− e−

1
2 (Λλ+κλ)t + e−Λλt

]
. (A81)

If κA ∈]0, ∞[ and κH ∈ [0, ∞[ with κA 6= κH, then one gets limλ↗1 Λλ = limλ↗1 κλ = κA > 0 which
implies (A74) from (A78) to (A81). For the proof of part (b), let us correspondingly assume κA = 0
and κH ∈]0, ∞[, which by (150) leads to κλ = κH · (1 − λ), Λλ = κH ·

√
1− λ and the convergences

limλ↗1 Λλ = limλ↗1 κλ = 0. From this, the assertions (A75), (A76), (A77) follow in a straightforward
manner from (A78), (A79), (A80) – respectively – by using (parts of) the obvious relations

lim
λ↗1

κλ

Λλ
= 0, lim

λ↗1

Λλ ± κλ

Λλ
= lim

λ↗1

Λλ − κλ

Λλ + κλ
= 1 , (A82)

lim
λ↗1

1− e−cλ ·t

cλ
= t for all cλ ∈

{
Λλ,

Λλ + κλ

2
,

3 Λλ + κλ

2

}
. (A83)

In order to get the last assertion in (A77), we make use of the following limits

lim
λ↗1

1
Λλ − κλ

− 3
3Λλ + κλ

= lim
λ↗1

4 κH
(κH − κH ·

√
1− λ) · (3 κH + κH ·

√
1− λ)

=
4

3 κH
(A84)

and

lim
λ↗1

1
Λλ

[
1− e−

1
2 (3Λλ+κλ)t

3Λλ + κλ
− 1− e−Λλt

Λλ − κλ
+

1− e−
1
2 (Λλ+κλ)t

Λλ − κλ

]
= 0 . (A85)

To see (A85), let us first observe that the involved limit can be rewritten as

lim
λ↗1

{
1

Λλ(Λλ − κλ)

[
1
3
− 1

3
e−

1
2 (3Λλ+κλ)t + e−Λλt − e−

1
2 (Λλ+κλ)t

]
(A86)

+
1− e−

1
2 (3Λλ+κλ)t

Λλ

[
1

3Λλ + κλ
− 1

3(Λλ − κλ)

]}
. (A87)

Substituting x :=
√

1− λ and applying l’Hospital’s rule twice, we get for the first limit (A86)

lim
x↘0

1
3 −

1
3 e−

κH t
2 (3x+x2) + e−κHtx − e−

κH t
2 (x+x2)

κ2
H · (x2 − x3)

= lim
x↘0

κHt
6 (3 + 2x) e−

κH t
2 (3x+x2) − κH t e−κHtx + κHt

2 (1 + 2x) e−
κH t

2 (x+x2)

κ2
H · (2x− 3x2)

= lim
x↘0

[
− κ2

Ht2

12 (3 + 2x)2 + κHt
3

]
e−

κH t
2 (3x+x2) + κ2

H t2 e−κHtx−
[

κ2
Ht2

4 (1 + 2x)2 − κH t
]

e−
κH t

2 (x+x2)

κ2
H · (2− 6x)

=
1

2κ2
H

[
−

3κ2
Ht2

4
+

κHt
3

+ κ2
Ht2 −

κ2
Ht2

4
+ κHt

]
=

2t
3 κH

.
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The second limit (A87) becomes

lim
λ↗1

1− e−
1
2 (3Λλ+κλ)t

3Λλ + κλ
· 3Λλ + κλ

Λλ
· −4κH
(3κH +

√
1− λκH)(3κH − 3

√
1− λκH)

(A88)

and consequently (A85) follows. To proceed with the proof of (A77), we rearrange

lim
λ↗1

∂ U(2)
λ (t)
∂λ

= lim
λ↗1

{(
Λλ − κλ

Λλ

)2
[

Λλ

3Λλ + κλ

(
t
2

e−
1
2 (3Λλ+κλ)t

(
−

3κ2
H

2Λλ
− κH

))

− Λλ

3Λλ + κλ
· 1− e−

1
2 (3Λλ+κλ)t

3Λλ + κλ

(
−

3κ2
H

2Λλ
− κH

)
+

Λλ

Λλ − κλ

e−
1
2 (Λλ+κλ)t − e−Λλt

Λλ − κλ

(
−

κ2
H

2Λλ
+ κH

)

− Λλ

Λλ − κλ

(
− t

2
e−

1
2 (Λλ+κλ)t

(
−

κ2
H

2Λλ
− κH

)
− t e−Λλt κ2

H
2Λλ

)]

+

[
Λλ − κλ

Λλ

(
−κ2
H + 2ΛλκH

)
+

(
Λλ − κλ

Λλ

)2 κ2
H
2

]
·
[

1− e−
1
2 (3Λλ+κλ)t

Λλ(3Λλ + κλ)
− e−

1
2 (Λλ+κλ)t − e−Λλt

Λλ(Λλ − κλ)

]}

= lim
λ↗1

{(
Λλ − κλ

Λλ

)2
[

κ2
H t
4

(
−3 e−

1
2 (3Λλ+κλ)t

3Λλ + κλ
− e−

1
2 (Λλ+κλ)t

Λλ − κλ
+

2 e−Λλt

Λλ − κλ

)
(A89)

+
κ2
H
2

3
(

1− e−
1
2 (3Λλ+κλ)t

)
(3Λλ + κλ)

2 − 1− e−Λλt

(Λλ − κλ)
2 +

1− e−
1
2 (Λλ+κλ)t

(Λλ − κλ)
2

 (A90)

+ κH

(
− Λλ

3Λλ + κλ
· t e−

1
2 (3Λλ+κλ)t

2
+

Λλ

3Λλ + κλ
· 1− e−

1
2 (3Λλ+κλ)t

3Λλ + κλ
− Λλ

Λλ − κλ
· t e−

1
2 (Λλ+κλ)t

2

+
Λλ

Λλ − κλ
· 1− e−Λλt

Λλ − κλ
− Λλ

Λλ − κλ
· 1− e−

1
2 (Λλ+κλ)t

Λλ − κλ

)]

+

[
Λλ − κλ

Λλ

(
−κ2
H + 2ΛλκH

)
+

(
Λλ − κλ

Λλ

)2 κ2
H
2

]
·
[

1− e−
1
2 (3Λλ+κλ)t

Λλ(3Λλ + κλ)
− e−

1
2 (Λλ+κλ)t − e−Λλt

Λλ(Λλ − κλ)

]}
.

(A91)

By means of (A82) to (A84), the limit of the expression after the squared brackets in (A89) becomes

lim
λ↗1

{
κ2
H t
4

[
1− e−

1
2 (Λλ+κλ)t

Λλ − κλ
− 2

1− e−Λλt

Λλ − κλ
+ 3

1− e−
1
2 (3Λλ+κλ)t

3Λλ + κλ
+

1
Λλ − κλ

− 3
3Λλ + κλ

]
=

κH t
3

, (A92)

and the limit of the expression in (A90) becomes with (A85)

lim
λ↗1

{
Λλ

Λλ − κλ
·

κ2
H

2Λλ
·
[

1− e−
1
2 (3Λλ+κλ)t

3Λλ + κλ
− 1− e−Λλt

Λλ − κλ
+

1− e−
1
2 (Λλ+κλ)t

Λλ − κλ

]

−
κ2
H
2
· 1− e−

1
2 (3Λλ+κλ)t

3Λλ + κλ
·
[

1
Λλ − κλ

− 3
3Λλ + κλ

]
= − κHt

3
. (A93)

By putting (A91)–(A93) together with (A85) we finally end up with

lim
λ↗1

∂ U(2)
λ (t)
∂λ

=

[
κHt

3
− κHt

3

]
+ κH

(
− t

6
+

t
6
− t

2
+ t− t

2

)
+

[
−κ2
H +

κ2
H
2

]
· 0 = 0 ,

which finishes the proof of Lemma A7.

Proof of Theorem 12. Recall from (131) the approximative Poisson offspring-distribution parameter
β
(m)
• := 1− κ•

σ2m and Poisson immigration-distribution parameter α
(m)
• := β

(m)
• · η

σ2 , which is a special

case of
(

β
(m)
A , β

(m)
H , α

(m)
A , α

(m)
H
)
∈ PNI ∪ PSP,1. Let us first calculate limm→∞ I

(
P(m)
A,bσ2mtc

∣∣∣∣∣∣P(m)
H,bσ2mtc

)
by starting
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from Theorem 3(a). Correspondingly, we evaluate for all κA ≥ 0, κH ≥ 0 with κA 6= κH by a twofold
application of l’Hospital’s rule

lim
m→∞

m2 ·
[

β
(m)
A ·

(
log

(
β
(m)
A

β
(m)
H

)
− 1

)
+ β

(m)
H

]
= lim

m→∞

−m
2σ2

[
κA log

(
β
(m)
A

β
(m)
H

)
+ κH

(
1−

β
(m)
A

β
(m)
H

)]

=
1

2σ4 · lim
m→∞

β
(m)
H · κA − β

(m)
A · κH(

β
(m)
H

)2 ·
(

κA ·
β
(m)
H

β
(m)
A

− κH

)
=

(κA − κH)
2

2σ4 . (A94)

Additionally there holds

lim
m→∞

m · (1− β
(m)
A ) =

κA
σ2 and lim

m→∞

(
β
(m)
A

)bσ2mtc
= lim

m→∞

[(
1− κA

σ2m

)m]bσ2mtc/m
= e−κA ·t . (A95)

For κA > 0, we apply the upper part of formula (69) as well as (A94) and (A95) to derive

lim
m→∞

Iλ

(
P(m)
A,bσ2mtc

∣∣∣∣∣∣P(m)
H,bσ2mtc

)
= lim

m→∞

m2 ·
[

β
(m)
A ·

(
log
(

β
(m)
A

β
(m)
H

)
− 1
)
+ β

(m)
H

]
m · (1− β

(m)
A )

·
[

X(m)
0
m
−

α
(m)
A

m · (1− β
(m)
A )

]
·
(

1−
(

β
(m)
A

)bσ2mtc)

+
α
(m)
A

β
(m)
A ·m · (1− β

(m)
A )

·m2 ·
[

β
(m)
A ·

(
log

(
β
(m)
A

β
(m)
H

)
− 1

)
+ β

(m)
H

]
·
⌊
σ2mt

⌋
m

]

=
(κA − κH)

2

2σ2 · κA
·
[(

X̃0 −
η

κA

)
·
(
1− e−κA ·t)+ η · t

]
.

For κA = 0 (and thus κH > 0, β
(m)
A ≡ 1, α

(m)
A ≡ η/σ2), we apply the lower part of formula (69) as well as

(A94) and (A95) to obtain

lim
m→∞

Iλ

(
P(m)
A,bσ2mtc

∣∣∣∣∣∣P(m)
H,bσ2mtc

)
=

{
lim

m→∞
m2 ·

[
β
(m)
H − log β

(m)
H − 1

]

·
[

η

2σ2 ·
(⌊

σ2mt
⌋)2

m2 +

(
X(m)

0
m

+
η

2σ2 ·m

)
·
⌊
σ2mt

⌋
m

]}
=

κ2
H

2σ2 ·
[ η

2
· t2 + X̃0 · t

]
.

Let us now calculate the “converse” double limit

lim
λ↗1

lim
m→∞

Iλ

(
P(m)
A,bσ2mtc

∣∣∣∣∣∣P(m)
H,bσ2mtc

)
= lim

λ↗1
lim

m→∞

1− Hλ

(
P(m)
A,bσ2mtc

∣∣∣∣∣∣P(m)
H,bσ2mtc

)
λ · (1− λ)

.

This will be achieved by evaluating for each t > 0 the two limits

lim
λ↗1

1− DL
λ,X̃0,t

λ · (1− λ)
and lim

λ↗1

1− DU
λ,X̃0,t

λ · (1− λ)
(A96)

which will turn out to coincide; the involved lower and upper bound DL
λ,X̃0,t

, DU
λ,X̃0,t

defined by (153)
and (154) satisfy limλ↗1 DL

λ,X̃0,t
= limλ↗1 DU

λ,X̃0,t
= 1 as an easy consequence of the limits (cf. 150)

lim
λ↗1

Λλ = κA ≥ 0 and lim
λ↗1

κλ = κA ≥ 0 , (A97)
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as well as the formulas (A82) and (A83) for the case κA = 0. Accordingly, we compute

lim
λ↗1

1− DL
λ,X̃0,t

λ · (1− λ)
= lim

λ↗1

−DL
λ,X̃0,t

1− 2λ

∂

∂λ

[
− Λλ − κλ

σ2 ·
[

X̃0 −
η

Λλ

]
·
(

1− e−Λλ ·t
)
− η

σ2 · (Λλ − κλ) · t

+ L(1)
λ (t) · X̃0 +

η

σ2 · L
(2)
λ (t)

]

= lim
λ↗1

{
− Λλ − κλ

σ2

[(
X̃0 −

η

Λλ

)
· te−Λλ ·t · ∂ Λλ

∂λ
+
(

1− e−Λλ ·t
)
· η

Λ2
λ

· ∂ Λλ

∂λ

]

− 1
σ2 ·

∂

∂λ
(Λλ − κλ) ·

(
X̃0 −

η

Λλ

)
·
(

1− e−Λλ ·t
)
− η t

σ2 ·
∂

∂λ
(Λλ − κλ)

+ X̃0
∂L(1)

λ (t)
∂λ

+
η

σ2
∂L(2)

λ (t)
∂λ

}
, with (A98)

∂ Λλ

∂λ
=

κ2
A − κ2

H
2 Λλ

and
∂ κλ

∂λ
= κA − κH . (A99)

For the case κA > 0, one can combine this with (A97) and (A74) to end up with

lim
λ↗1

1− DL
λ,X̃0,t

λ · (1− λ)
=

(κA − κH)
2

2σ2 · κA
·
[(

X̃0 −
η

κA

)
·
(
1− e−κA ·t)+ η · t

]
. (A100)

For the case κA = 0, we continue the calculation (A98) by rearranging terms and by employing the
Formulas (A75), (A76), (A82) and (A83) as well as the obvious relation 1

Λ −
Λ−κλ

Λ2 = 1
κH

and obtain

lim
λ↗1

1− DL
λ,X̃0,t

λ · (1− λ)
= lim

λ↗1

{
κ2
H · X̃0

2σ2

[
Λλ − κλ

Λλ
· t · e−Λλt +

1− e−Λλt

Λλ

]

+
η · κ2

H · t
2σ2

[
1

Λλ
− Λλ − κλ

Λ2
λ

+
Λλ − κλ

Λλ
· 1− e−Λλt

Λλ

]
−

η · κ2
H

2σ2 ·
1− e−Λλt

Λλ

[
1

Λλ
− Λλ − κλ

Λ2
λ

]

− κH · X̃0

σ2

(
1− e−Λλt

)
+

η · κH
σ2

[
1− e−Λλt

Λλ
− t

]
+

∂L(1)
λ (t)
∂λ

· X̃0 +
η

σ2 ·
∂L(2)

λ (t)
∂λ

}

=
κ2
H X̃0 t

σ2 +
η κ2
H t

2σ2

[
1

κH
+ t
]
− η κH t

2σ2 −
κ2
H X̃0 t
2σ2 −

η κ2
H t2

4σ2 =
κ2
H

2σ2 ·
[ η

2
· t2 + X̃0 · t

]
. (A101)

Let us now turn to the second limit (A96) for which we compute analogously to (A98)

lim
λ↗1

1− DU
λ,X̃0,t

λ · (1− λ)
= lim

λ↗1

−DU
λ,X̃0,t

1− 2λ

∂

∂λ

[
− Λλ − κλ

σ2 ·
[

X̃0 −
η

1
2 (Λλ + κλ)

]
·
(

1− e−
1
2 (Λλ+κλ)·t

)

− η

σ2 · (Λλ − κλ) · t−U(1)
λ (t) · X̃0 −

η

σ2 ·U
(2)
λ (t)

]

= lim
λ↗1

{
− Λλ − κλ

σ2

[(
X̃0 −

η
1
2 (Λλ + κλ)

)
· t

2
· e−

1
2 (Λλ+κλ)·t ∂

∂λ
(Λλ + κλ)

+
(

1− e−
1
2 (Λλ+κλ)·t

)
· 2 · η
(Λλ + κλ)2 ·

∂

∂λ
(Λλ + κλ)

]

− 1
σ2 ·

∂

∂λ
(Λλ − κλ) ·

(
X̃0 −

η
1
2 (Λλ + κλ)

)
·
(

1− e−
1
2 (Λλ+κλ)·t

)
− η t

σ2 ·
∂

∂λ
(Λλ − κλ)

−
∂ U(1)

λ (t)
∂λ

· X̃0 −
η

σ2
∂ U(2)

λ (t)
∂λ

}
. (A102)
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For the case κA > 0, one can combine this with (A97), (A99) and (A74) to end up with

lim
λ↗1

1− DU
λ,X̃0,t

λ · (1− λ)
=

(κA − κH)
2

2σ2 · κA
·
[(

X̃0 −
η

κA

)
·
(
1− e−κA ·t)+ η · t

]
. (A103)

For the case κA = 0, we continue the calculation of (A102) by rearranging terms and by employing the
formulas (A77), (A82) and (A83) as well as the obvious relation limλ↗1

1
Λλ
− Λλ−κλ

Λλ(Λλ+κλ)
= 2

κH
to obtain

lim
λ↗1

1− DU
λ,X̃0,t

λ · (1− λ)
= lim

λ↗1

{
t · X̃0

4σ2 ·
Λλ − κλ

Λλ
· e−

1
2 (Λλ+κλ)·t

(
κ2
H + 2ΛλκH

)
+

X̃0

2σ2 ·
1− e−

1
2 (Λλ+κλ)·t

Λλ

(
κ2
H − 2ΛλκH

)
− η · t

σ2

[
κH

(
1 + e−

1
2 (Λλ+κλ)·t Λλ − κλ

Λλ + κλ

)
−

κ2
H
2
·
(

1
Λλ
− Λλ − κλ

Λλ(Λλ + κλ)
+

Λλ − κλ

Λλ + κλ
· 1− e−

1
2 (Λλ+κλ)·t

Λλ

)]

+
2η

σ2 ·
1− e−

1
2 (Λλ+κλ)·t

Λλ + κλ

[
κH

(
1 +

Λλ − κλ

Λλ + κλ

)
−

κ2
H
2

(
1

Λλ
− Λλ − κλ

Λλ(Λλ + κλ)

)]

−
∂ U(1)

λ (t)
∂λ

· X̃0 −
η

σ2
∂ U(2)

λ (t)
∂λ

}

=
κ2
H t X̃0

4σ2 +
κ2
H t X̃0

4σ2 − η t
σ2

[
2κH − κH −

κ2
H t
4

]
+

η t
σ2 [2κH − κH] =

κ2
H

2σ2

[ η

2
· t2 + X̃0 · t

]
. (A104)

Since (A100) coincides with (A103) and (A101) coincides with (A104), we have finished the proof.
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