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Abstract: In this article, a new three parameters lifetime model called the Topp-Leone Generalized
Inverted Exponential (TLGIE) Distribution is introduced. Various properties of the model are derived,
including moments, quantile function, survival function, hazard rate function, mean deviation
and mode. The method of maximum likelihood is used to estimate the unknown parameters.
The properties of the maximum likelihood estimators using Fisher information matrix are studied.
Three real data sets are applied for illustrative purpose of this study.
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1. Introduction

Lifetime models have received great attention from statisticians, especially in the field of statistical
inference. These models are of great importance in applications in many fields such as medicine,
engineering, biological science, management, and public health. The Generalized Inverted Exponential
(GIE) Distribution is one of these models as it is flexible to contain different forms of hazard function.
It was proposed first by [1].

In recent years, researchers have proposed new families of distributions in the statistical
literature by using different transformation techniques. A common technique is to introduce one
or several additional tuning parameters to a standard probability distribution, with the aim to
improve it, in the theoretical and practical sense. These distribution functions are more flexible to
model real data, for example, the gamma-generated distribution by [2], Kumaraswamy-generated
distribution by [3], McDonald-generated distribution by [4], and Weibull-generated distribution by [5],
the Kumaraswamy-G family by [6] and the odd power Cauchy family by [7]. In 1955, [8] proposed a
new continuous distribution that is attractive as a generator. It is known as: Topp-Leone distribution
(TL). TL provides closed forms of the cumulative distribution function (cdf) and the probability
distribution function (pdf). The TL distribution had not received much attention until [9] discovered
it. Furthermore, there were many authors who were interested in this distribution. For example:
See, [10–20]. In this year some authors study type II Topp-Leone, for example: see, [21,22].

So, in this paper we will introduce three parameter lifetime model called Topp-Leone Generalized
Inverted Exponential Distribution. Our present study will contribute to modeling survival data.
This new model was applied to three real life datasets. The first data set has to do with patients
suffering from blood cancer (Leukemia) from one ministry of health hospital in Saudi Arabia. And the
second data set has to do with the number of successive failures for the air conditioning system of
each member in a fleet of 13 Boeing 720 jet airplanes. The third data has to do with the waiting times
(in seconds), between 65 successive eruptions of the Kiama Blowhole. The results showed that the new
distribution provided better fit than other distributions presented. As such, it can be categorically said
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that the Topp Leone Generalized Inverted Exponential distribution is good distribution in modeling
survival data.

In Section 2, the pdf and cdf will be introduced. The main mathematical properties of the proposed
model including, moments, survival function, hazard rate function, quantile function, mode and mean
deviation will be discussed in Section 3. Moreover, Rényi entropy and fisher information will be
derived in Section 4. In Section 5, we will determine the estimation of parameters. To analyze the
flexibility of maximum likelihood estimators, we will provide simulation study in Section 6. Finally,
three real data sets will be applied in Section 7 for illustrating purpose of this study.

The probability density function (pdf) of a two-parameter Generalized Inverted Exponential (GIE)
Distribution is given by [1] as:

g(x) =
(
θλ

x2

)
exp

(
−
λ
x

)[
1− exp

(
−
λ
x

)]θ−1
, x > 0, λ, θ > 0, (1)

and the cumulative distribution function (CDF) is given by

G (x) = 1−
[
1− exp

(
−
λ
x

)]θ
, x > 0, λ, θ > 0, (2)

where, θ is the shape parameter and λ is the scale parameter.
Recently, [15] studied Top Leone (TL) family of distributions. The cdf of TL distribution is given by:

FTL−G (x) = [G(x)]α [2−G(x)]α = [1− (G(x))
2
]
α

, α > 0 (3)

The corresponding PDF of (3) is given by:

fTL−G ( x ) = 2 α g ( x ) G(x) [G(x)]α−1 [2−G(x)]α−1, α > 0 (4)

where g(x) = dG(x)
dx considers a pdf of baseline distribution and G (x) = 1 − G ( x ). Now, we define

a new lifetime model called the TLGIE distribution.

2. The Topp-Leone Generalized Inverted Exponential Distribution

In this section, we derive three parameter Topp-Leone generalized inverted exponential
distribution. The cdf and pdf of TLGIE distribution with three parameters ( α , λ, θ ) is obtained by
inserting (1) and (2) in (3) and (4):

F (x) =
[
1−

[
1− exp

(
−
λ
x

)]2θ]α
, x > 0, λ, θ, α > 0, (5)

and

f (x) =
2θλα

x2 exp
(
−
λ
x

) [
1− exp

(
−
λ
x

)]2θ−1 [
1−

[
1− exp

(
−
λ
x

)]2θ]α−1

, x > 0, λ, θ, α > 0 (6)

where, λ is a scale parameter and θ, α are shape parameters.

Some Ideal Sub Models as Special Cases from Our Proposed Distribution

• For θ = 1, the proposed distribution in (5) converts to Topp-Leone Inverted Exponential
(TLIE) distribution.

• For λ = 1 and θ = 1, the proposed distribution reduces to Topp-Leone Standard Inverted
Exponential (TLSIE) distribution.

• For α = 1 and θ = 1
2 , the proposed distribution reduces to Inverted Exponential (IE) distribution.
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• For λ = 1, the proposed distribution reduces to Topp-Leone Generalized Standard Inverted
Exponential (TLGSIE) distribution.

• If we replace 2θ = γ in Equation (5), we obtain: F (x) =
[
1−

[
1− exp

(
−
λ
x

)]γ]α
, x > 0, λ, θ, α > 0,

the cdf of Exponentiated Generalized Inverted Exponential (EGIE) distribution with three
parameters (θ, λ, α).

We can rewrite the cdf & pdf of TLGIE distribution using following series representations of [23].
For any real value of α,

[1 + y]α =
∞∑

i = 0

Γ(α+ 1)
j!Γ(α+ 1− j)

y j,α > 0,α ∈ R

The TLGIE distribution in (5) and (6) can be written as infinite sum as follows:

f (x) = 2θλα
x2

∞∑
k=0

∞∑
j=0

(−1)k + jΓ (α) Γ (2θ (1 + k)) exp(− λx (1 + j))
k j Γ (k)Γ ( j) Γ(α − k) Γ (2 θ (1+k)− j) (7)

f (x) = 2θλα
x2

∞∑
k = 0

∞∑
j = 0

(−1)k + j exp(− λx (1+ j))
kjβ(k,α−k)β( j,2θ(1+k)− j) (8)

F(x) =
∞∑

k = 0

∞∑
j = 0

(−1)k+ jΓ(α+1)Γ(2θk+1) exp(− λx j)
Γ(k+1)Γ(α−k+1)Γ( j+1)Γ(2θk− j+1) (9)

F( x ) = 1
α + 1

∞∑
k=0

∞∑
j=0

(−1)k + j exp (− λx j)
(2 θ k + 1) β (k + 1,α − k + 1) β ( j + 1, 2 θ k − j+1) (10)

Figure 1 Plots (a–f) show different shapes of the probability density functions for various values
of the parameters. For these plots, it is surely clear that Topp-Leone generalized inverted exponential
distribution is unimodal, right skewed and semi symmetrical distribution for some values of parameters.
Therefore, according to the figures above we can assume that TLGIE distribution can be helpful in
numerous applications in many fields.Entropy 2020, 22, x FOR PEER REVIEW 4 of 16 
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Figure 1. Plots of the pdf of TLGIE distribution for selected values of the parameters when (a,b) 𝛼 
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Figure 1. Plots of the pdf of TLGIE distribution for selected values of the parameters when
(a,b) α increases, (c,d) θ increases and (e,f) λ increases.



Entropy 2020, 22, 1144 4 of 15

3. Properties of TLGIE Distribution

3.1. Quantile and Median

The qth percentile of the distribution can be obtained by solving xq for variable X. The qth percentile
is obtained by solving Q ( x ) = F−1 ( x ) as:

xq =
−λ

ln ( 1 − (1 − q
1
α )

1
2θ

(11)

The Median of the TLGIE distribution can be defined at q = 0.5. We can easily generate the random
sample from (11) using q as uniform random number.

3.2. Moments

The moments of TLGIE distribution is computed using Equation (7) as following:

µr
′ = 2θλα

∑
∞

k=0

∑
∞

j=0

(−1)k+ jΓ(α)Γ(2θ(1 + k))
kjΓ(k)Γ( j)Γ(α− k)Γ((2θ(1 + k) − j)

×

∫
∞

0
xr−2 exp

(
−
λ
x
(1 + j)

)
dx, (12)

Making transformation as y = λ
x ( j + 1) in above expression, we obtain the moments of

Topp-Leone generalized inverted exponential distribution:

µr
′ = 2θλrα

∞∑
k=0

∞∑
j=0

(−1)k + j Γ (α) Γ (2 θ (1 + k))(1 + j)r − 1

k j Γ (k) Γ ( j) Γ (α − k) Γ ( 2 θ (1 + k)− j)

×

(
Er(1) +

∞∑
i=0

(−1)i

(i − r + 1)i!

) (13)

where Er(1) is the integration exponential function.
We can compute the coefficient of variation (CV), coefficient of skewness (CS) and coefficient of

kurtosis (CK) of TLGIE distribution using (13) in the following relations:

CV =
√
µ2
µ1
− 1.

CS =
µ3−3µ2µ1+2µ3

1

(µ2−µ1)
3
2

.

CK =
µ4−4µ3µ1+6µ2µ

2
1

(µ2−µ
2
1)

2 .

CV, CS and CK are very important statistical measures for studying the behavior of the distribution.

3.3. Reliability Function

The TLGIE distribution is used for describing a random lifetime in reliability analysis. The reliability
function of the TLGIE distribution is denoted by R ( x ), also known as survival function and obtained
as follows

R ( x ) = 1 − F ( x ), (14)

The survival function of TLGIE distribution is obtained by substituting (5) in (14) to deduce:

R ( x ) = 1 −
[
1−

[
1− exp

(
−
λ
x

)]2 θ]α
, (15)

Figure 2 shows that the reliability curves for different values of the parameters for TLGIE
distribution is decreasing. Figure 3 shows that the hazard function for different values of the
parameters for TLGIE is increasing at first then decreasing in shape i.e., it takes the upside-down



Entropy 2020, 22, 1144 5 of 15

bathtub shaped. The lifetime models that present first increase and then decrease shaped failure rates
are very useful in survival analysis.
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3.4. Hazard Rate Function

It is another characteristic in reliability analysis. It is denoted by h(y). For TLGIE the hazard
function is defined as follows

h ( x ) =

2 θ λ α
x2 exp

(
−
λ
x

) [
1− exp

(
−
λ
x

)]2 θ −1
[
1 −

[
1− exp

(
−
λ
x

)]2 θ
]α −1

1 −
[
1−

[
1− exp

(
−
λ
x

)]2 θ
]α , (16)

3.5. Mode

We consider the density function of TLGIE distribution given in (6) and take the first derivative
with respect to x to obtain the mode of Topp-Leone generalized inverted exponential distribution
as follows

d f (x)
dx = f (x)[−2

x + λ
x2 − (2θ− 1) λx2 exp

(
−
λ
x

)[
1− exp

(
−
λ
x

)]−1

+2θ(α− 1) λx2 exp
(
−
λ
x

)[
1− exp

(
−
λ
x

)]2θ−1
[
1−

[
1− exp

(
−
λ
x

)]2θ
]−1

],
(17)

By putting d f (x)
dx = 0, the maxima can be obtained by solving (17) iteratively using numerical

methods as Newton- Raphson.
The mode, median, mean, skewness and kurtosis of the TLGIE distribution for various values of

α, θ and λ shown in Tables 1 and 2.

Table 1. The mode, median, mean, skewness and kurtosis of the TLGIE distribution for
λ = 2,θ = {1, 1.5, 2} and α = {1, 1.5, 2}.

α Mode Median Mean Skewness Kurtosis

θ = 1,λ = 2

1 0.883857 1.62873 2.77259 0.329501 1.01815

1.5 1.21014 2.13383 3.53576 0.323435 0.998774

2 1.49385 2.56696 4.18599 0.320047 0.988074

θ = 1.5,λ = 2

1 0.813107 1.26708 1.72609 0.266825 0.783853

1.5 1.06167 1.58027 2.10295 0.260112 0.764511

2 1.26368 1.83326 2.40667 0.25654 0.754304

θ = 2,λ = 2

1 0.763937 1.08802 1.35919 0.230164 0.66022

1.5 0.96812 1.32112 1.6177 0.223727 0.642568

2 1.12748 1.50317 1.81971 0.220472 0.63372

From Tables 1 and 2, we can study the behavior of the TLGIE distribution by changing the
parameter values. We can deduce that if α increases, the mode, median and mean are increased but
the skewness and kurtosis are decreased. If θ increases, the mode, median and mean are decreased,
else the skewness and kurtosis are decrease. If λ increase, the mode, median and mean are decrease
but the skewness and kurtosis remain the same. In any values of parameters, we observe that
mode < median < mean, this means that the TLGIE distribution is always right skewed and unimodal.
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Table 2. The mode, median, mean, skewness and kurtosis of the TLGIE distribution for
θ = 2,λ = {1.5, 2, 2.5} and α = {1, 1.5, 2.5}.

α Mode Median Mean Skewness Kurtosis

θ = 2,λ = 1.5

1 0.572953 0.816016 1.01939 0.230164 0.66022

1.5 0.72609 0.990843 1.21328 0.223727 0.642568

2.5 0.944791 1.24077 1.49067 0.218523 0.628463

θ = 2,λ = 2

1 0.763937 1.08802 1.35919 0.230164 0.66022

1.5 0.96812 1.32112 1.6177 0.223727 0.642568

2.5 1.25972 1.65436 1.98757 0.218523 0.628463

θ = 2,λ = 2.5

1 0.954922 1.36003 1.69899 0.230164 0.66022

1.5 1.21015 1.65141 2.02213 2.02213 0.642568

2.5 1.57465 2.06794 2.48446 0.218523 0.628463

3.6. The Mean Deviation and the Median Deviation

The mean deviation is a measure of dispersion derived by computing the mean of the absolute
values of the differences between the observed values of a variable and the mean or median of the
variable. Also, it is called average deviation. The mean deviation about the mean is defined by:

D (µ) = E
∣∣∣x − µ∣∣∣

=
∞∫
0

∣∣∣x− µ∣∣∣ f (x) dx

=
µ∫

0
(x − µ) f (x) dx +

∞∫
µ
(x − µ) f (x) dx

= 2 µ F (µ) − 2
µ∫

0
x dF (x)

= 2
µ∫

0
F (x) dx,

(18)

By substituting from Equation (9) in (18), we obtain the mean deviation about the mean as:

D(µ) = 2
∞∑

k = 0

∞∑
j = 0

(−1)k+ jΓ(α+1)Γ(2θk+1)
Γ(k+1)Γ(α−k+1)Γ( j+1)Γ(2θk− j+1)×

µ∫
0

exp
(
−
λ
x j

)
dx

= 2
∞∑

k = 0

∞∑
j = 0

( − 1 )k + jΓ(α+1)Γ(2θk+1)
Γ(k+1)Γ(α−k+1)Γ( j+1)Γ(2θk− j+1)

,

×

(
µ exp

(
−
λ
µ j

)
− λ jΓ(0, λµ j)

)
, (λµ j) ∈ R > 0

(19)

where, Γ(0, λµ j) is the incomplete gamma function.
Next, the mean deviation about the median is obtained as:

D ( m ) = E | x − m |

= µ − m + 2
m∫
0

F ( x ) dx (20)
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And for TLGIE, by substituting from Equation (9) in (20), we obtain the median deviation as:

D(m) = µ−m + 2
∞∑

k = 0

∞∑
j = 0

(−1)k+ jΓ(α+1)Γ(2θk+1)
Γ(k+1)Γ(α−k+1)Γ( j+1)Γ(2θk− j+1)×

m∫
0

exp
(
−
λ
x j

)
dx

= µ−m + 2
∞∑

k = 0

∞∑
j = 0

( − 1 )k + jΓ(α+1)Γ(2θk+1)
Γ(k+1)Γ(α−k+1)Γ( j+1)Γ(2θk− j+1)

×

(
m exp

(
−
λ
m j

)
− λ jΓ(0, λm j)

)
, ( λm j) ∈ R > 0

(21)

where, Γ(0, λm j) was known in (19).

4. Rényi Entropy of TLGIE

In the present section, we provide an important measure, the Rényi entropy. It was introduced
by [24]. It is one of the several generalizations of Shannon’s entropy, see [25]. The theory of
entropy has been successfully used in a wide diversity of applications such as in information theory,
engineering, and physics, see [26]. Entropy is defined in physics via the second law of thermodynamics.
Thermodynamic system that is also usually considered to be a measure of the system’s disorder, that is
a property of the system’s state, and that varies directly with any reversible change in heat in the system
and inversely with the temperature of the system. In this paper, we interest in the statistical mechanics
of entropy. The interpretation of entropy in statistical mechanics is the measure of uncertainty,
which remains about a system after its observable macroscopic properties, such as temperature,
pressure and volume, have been taken into account. The entropy of a probability distribution can be
interpreted not only as a measure of uncertainty but also as a measure of information. It has also been
used for the characterization of numerous standard probability distributions. For the density function
f (x), the Rényi entropy is defined by:

Rβ ( x ) =
1

1− β
Log [ J ( β ) ] (22)

where

J ( β ) =

∞∫
0

f β ( x ) dx; β , 1 (23)

By substituting from Equation (9) in (23), we obtain:

J(β) = (2 α θ λ)β
∞∑

k = 0

∞∑
j = 0

(−1)k+ j
(
β(α− 1)

k

)(
2θ(β+ k) − β

j

)
∞∫
0

x−2β exp
(
−
λ
x (k + β)

)
dx

= (2 α θ λ)βΓ(2β− 1)
∞∑

k = 0

∞∑
j = 0

(−1)k + j

[λ ( k + β )]2 β − 1×

(−1)k+ jΓ(β(α−1)+1)Γ(2θ(β+k)−β+1)
Γ(k+1)Γ( j+1)Γ(β(α−1)−k+1)Γ(2θ(β+k)−β− j+1)

, (24)

Thus, the Rényi entropy for TLGIE distribution is

Rβ ( x ) =
1

1− β
Log


(2 α θ λ)βΓ(2β− 1)

∞∑
k = 0

∞∑
j = 0

( − 1 )k + j

[λ ( k + β )]2 β − 1×

(−1)k+ jΓ(β(α−1)+1)Γ(2θ(β+k)−β+1)
Γ(k+1)Γ( j+1)Γ(β(α−1)−k+1)Γ(2θ(β+k)−β− j+1)
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5. Parameters Estimation

5.1. Maximum Likelihood Estimation

In this section, we derive the maximum likelihood estimates (MLEs) and inference for unknown
parameters of Topp-Leone Generalized Inverted Exponential distribution. Let x1, x2, . . . , xn be a
realization of a random sample of size n from TLGIE distribution then the likelihood function is written
as follows

L =
n∏

i=0

f (yi),

and the log-likelihood function is given as follows

` = log ( L ) = n log ( 2 α θ λ ) − 2
n∑

i=1
log ( xi) −

n∑
i=1

λ
xi

+ ( 2 θ − 1 )
n∑

i=1
log ( 1 − e−

λ
xi )

+ ( α − 1 )
n∑

i=1
log

(
1 − ( 1 − e−

λ
xi )

2 θ
) ,

(25)
Differentiating (25) with respect α,θ,λ, respectively, and equating them to 0, we have

n
α

+
n∑

i=1

log
(
1 − ( 1 − e−

λ
xi )

2 θ
)
= 0, (26)

n
θ

+ 2
n∑

i=1

log ( 1 − e−
λ
xi ) − 2 ( α − 1 )

n∑
i=1

( 1 − e−
λ
xi )

2 θ
log ( 1 − e−

λ
xi )

1 − ( 1 − e−
λ
xi )

2 θ
= 0, (27)

n
λ
−

n∑
i=1

1
xi

+ ( 2 θ − 1 )
n∑

i=1

xi
− 1 e−

λ
xi

1 − e−
λ
xi

− 2 θ ( α − 1 )
n∑

i=1

xi
− 1 e−

λ
xi ( 1 − e−

λ
xi )

2 θ − 1

1 − ( 1 − e−
λ
xi )

2 θ
= 0, (28)

The maximum likelihood estimates of α, θ and λ are obtained iteratively by solving (26), (27),
and (28), simultaneously.

5.2. Fisher Information

The approximate variance covariance matrix of the (MLEs) for the parameters of TLGIE distribution

with γ =

(
∧
α,
∧

θ,
∧

λ

)
is obtained by

∧

I
−1

n

(
∧
γ
)
=


var(

∧

α) cov(
∧
α,
∧

θ) cov(
∧
α,
∧

λ)

cov(
∧

θ,
∧

α) var(
∧

θ) cov(
∧

θ,
∧

λ)

cov(
∧

λ,
∧

α) cov(
∧

λ,
∧

θ) var(
∧

λ)


∧

I
−1

n

(
∧
γ
)
=

(
−

(
∂2 log L
∂γi∂γ j

))
γ=
∧
γ

The elements of the observed Fisher information matrix, could be found by using the second
partial derivatives of the maximum likelihood estimators as follows

∂2 log L
∂α2 = −

n
α2 , (29)
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∂2 log L
∂α ∂θ

= − 2
n∑

i=1

( 1 − e−
λ
xi )

2 θ
log ( 1 − e−

λ
xi )

1 − ( 1 − e−
λ
xi )

2 θ
, (30)

∂2 log L
∂α ∂λ

= − 2 θ
n∑

i=1

e−
λ
xi ( 1 − e−

λ
xi )

2 θ +1

xi

(
1 − ( 1 − e−

λ
xi )

2 θ
) , (31)

∂2 log L
∂θ2 = −

n
θ2 + 4 ( 1 − α )

n∑
i=1

( 1 − e−
λ
xi )

2 θ
log ( 1 − e−

λ
xi )

2

(
1 − ( 1 − e−

λ
xi )

2 θ
)2 , (32)

∂2 log L
∂θ ∂λ = − 2 ( 1 − α )

n∑
i=1

e
−

λ
xi ( 1 − e

−
λ
xi )

2 θ −11 + 2 θ log ( 1 − e
−

λ
xi )−( 1 − e

−
λ
xi )

2 θ
xi

1 − ( 1 − e
−

λ
xi )

2 θ2

+ 2
n∑

i=1

e
−
λ
xi

xi ( 1 − e
−

λ
xi )

, (33)

∂2 log L
∂λ2 = −

n
λ2 + ( 2 θ − 1 )

n∑
i=1

e−
λ
xi

x2
i ( 1 − e−

λ
xi )

2 + 2 θ ( α− 1 )
n∑

i=1

e−
λ
xi ( 1 − e−

λ
xi )

2 θ − 1
ψi

x2
i

(
1 − ( 1 − e−

λ
xi )

2 θ
)2 ,

(34)

where: ψi = 1 − ( 1 − e−
λ
xi )

2 θ
− ( 2 θ − 1 ) e−

λ
xi ( 1 − e−

λ
xi )
−1
− e−

λ
xi ( 1 − e−

λ
xi )

2 θ −1
.

6. Simulation Study

In this section, we discuss some simulations for different sample size to determine the efficiency
of MLEs. We can generate a random variable X from TLGIE using Mathematica (V.11.0). We generate
samples of size n = 50; 100; 200; 500 and 1000 from TLGIE distribution for some selected combination
of parameters. This process is repeated N = 1000 time to calculate mean estimate, means squared error
and bias. Obtained results are given in following tables.

From Table 3, we observed that when sample size increases the mean squared error (MSE) and
bias (BIAS) decrease. Therefore, the maximum likelihood method works very well to estimate the
parameters of TLGIE distribution.

Table 3. Estimated Mean, MSEs and BIAS of TLGIE distribution.

TrueValues:α=1 θ=1 λ=1

n ∧
α

∧

θ
∧

λ

50

MLE 1.64944 1.3656 1.63393

MSE 2.54294 0.935221 2.53382

BIAS 0.649439 0.365595 0.633934

100

MLE 1.53764 1.2062 1.481

MSE 2.04645 0.312122 1.76203

BIAS 0.537636 0.2062 0.481003

200

MLE 1.48996 1.09878 1.28113

MSE 1.72886 0.0987432 0.980768

BIAS 0.489958 0.0987782 0.281133

500

MLE 1.28438 1.03796 1.11058

MSE 0.888928 0.0282187 0.34375

BIAS 0.284384 0.0379592 0.110576

1000

MLE 1.12872 1.02304 1.0703

MSE 0.359509 0.0125671 0.168361

BIAS 0.12872 0.0230431 0.0703043
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7. Applications

In this section, we provide the application with real data sets to assess the flexibility of TLGIE
distribution. The parameters are estimated using maximum likelihood method.

Mathematica (V.11.0) is used for computation. We describe data sets to find the MLEs of the
parameters. To assess the fitness of the real data for proposed distribution, we compared the fitness
with Topp-Leone Inverted Exponential distribution (TLIE), Topp-Leone Standard Inverted Exponential
distribution (TLSIE), Inverted Exponential distribution (IE) and Topp-Leone Generalized Standard
Inverted Exponential distribution (TLGSIE). The required numerical evaluations are carried out using
the Mathematica (V.11.0) software. In order to compare the four distribution models, we consider the
criteria like AIC (Akaike information criterion), CAIC (consistent Akaike information criteria), see: [27],
and HQIC (Hannan-Quinn information criterion), see: [28]. The better distribution corresponds to
lesser AIC, CAIC and HQIC values.

In the following, we considered three data sets:

7.1. Data Set 1

The first data set that we considered, see [29], represent 40 patients suffering from blood cancer
(Leukemia) from one ministry of health hospital in Saudi Arabia. The ordered life time (in years) are
given as follows: 0.315, 0.496, 0.616, 1.145, 1.208, 1.263, 1.414, 2.025, 2.036, 2.162, 2.211, 2.370, 2.532,
2.693, 2.805, 2.910, 2.912, 3.192, 3.263, 3.348, 3.348, 3.427, 3.499, 3.534, 3.767, 3.751, 3.858, 3.986, 4.049,
4.244, 4.323, 4.381, 4.392, 4.397, 4.647, 4.753, 4.929, 4.973, 5.074, 4.381.

7.2. Data Set 2

The second data set consists of the number of successive failures for the air conditioning system
of each member in a fleet of 13 Boeing 720 jet airplanes, see [30]. The actual data are: 194, 413, 90, 74,
55, 23, 97, 50, 359, 50, 130, 487, 57, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9, 254, 493, 33, 18, 209, 41, 58, 60,
48, 56, 87, 11, 102, 12, 5, 14, 14, 29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 61, 100, 61, 502, 220, 120, 141, 22,
603, 35, 98, 54, 100, 11, 181, 65, 49, 12, 239, 14, 18, 39, 3, 12, 5, 32, 9, 438, 43, 134, 184, 20, 386, 182, 71, 80,
188, 230, 152, 5, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27, 156, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46,
230, 26, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 5, 82, 31, 118, 326, 12, 54, 36, 34, 18, 25, 120, 31, 22, 18,
216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97, 62, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 16, 18, 130,
90, 163, 208, 1, 24, 70, 16, 101, 52, 208, 95, 62, 11, 191, 14, 7.

7.3. Data Set 3

This data set consists of the waiting times (in seconds), between 65 successive eruptions of the
Kiama Blowhole. These values were recorded with the aid of digital watch on 12 July 1998 by Jim Irish
and has been referenced by [31] and [16]. The actual data are: 83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 18, 16,
29, 54, 91, 8, 17, 55, 10, 35, 47, 77,36, 17, 21, 36, 18, 40, 10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69, 9,
37, 10, 82, 29,8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.

In Tables 4–6, the values of log-likelihood (LL), AIC, CAIC and HQIC are minimum and favorable
of TLGIE distribution than other existing distributions, which indicates that the new model (TLGIE) is
better. It is depicted from the results that our proposed model provides better than other sub models.
It is be more reliable with these types of data.

It is also clear from Figures 4–6, that the TLGIE distribution provides the best fit as compare to
TLIE, TLSIE, IE and TLGSIE for given three data sets. So, the TLGIE model could be chosen as the
best model.
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Table 4. Parameters Estimation for Various Distributions depending on data set 1.

Model Parameters
LL AIC CAIC HQIC

∧
α

∧

θ
∧

λ

TLGIE 0.418685 2.19025 7.26267 −82.2875 170.575 171.242 172.407

TLIE 0.589171 4.55247 −85.5231 175.046 175.37 176.267

TLSIE 4.55482 −90.3942 182.788 182.894 183.399

IE 2.00825 −91.1589 184.318 184.423 184.929

TLGSIE 3.2155 0.755551 −88.1251 180.25 180.575 181.472

Table 5. Parameters Estimation for Various Distributions depending on data set 2.

Model Parameters
LL AIC CAIC HQIC

∧
α

∧

θ
∧

λ

TLGIE 8.84653 0.361313 1.11353 −1065.13 2136.25 2136.38 2140.18

TLIE 1.20401 22.9514 −1164.41 2332.83 2332.89 2335.45

TLSIE 106.161 −1379.43 2762.86 2762.92 2765.4

IE 19.9992 −1082.51 2167.01 2167.03 2168.32

Table 6. Parameters Estimation for Various Distributions depending on data set 3.

Model Parameters
LL AIC CAIC HQIC

∧
α

∧

θ
∧

λ

TLGIE 2.06861 0.77448 14.7643 −295.07 596.14 596.54 598.691

TLSIE 283.888 −304.914 611.828 611.893 612.679
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Abbreviations

TLGIE Topp-Leon Generalized Inverted Exponential
GIE Generalized Inverted Exponential
TL Topp-Leone
cdf cumulative distribution function
pdf probability distribution function
TLIE Topp-Leone Inverted Exponential
TLSIE Topp-Leone Standard Inverted Exponential
IE Inverted Exponential
TLGSIE Topp-Leone Generalized Standard Inverted Exponential
EGIE Generalized Inverted Exponential
Er(1) the integration exponential function
CV coefficient of variation
CS coefficient of skewness
CK coefficient of kurtosis
MLE maximum likelihood estimate
MSE mean squared error
AIC Akaike information criterion
CAIC consistent Akaike information criterion
HQIC Hannan-Quinn information criterion
MLEs the maximum likelihood estimates
L The likelihood function
` the log-likelihood function
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BIAS bias
LL log-likelihood
g(x) pdf of GIE
G(x) Cdf of GIE
FTL−G(x) Cdf of TL distribution
fTL−G(x) Pdf of TL distribution
R (x) The reliability or survival function
h(y) The hazard function
D(µ) The mean deviation
D(m) The median deviation
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