
entropy

Article

Enhanced Deep Learning Architectures for Face
Liveness Detection for Static and Video Sequences

Ranjana Koshy * and Ausif Mahmood

Computer Science and Engineering Department, University of Bridgeport, Bridgeport, CT 06604, USA;
mahmood@bridgeport.edu
* Correspondence: rkoshy@my.bridgeport.edu; Tel.: +1-203-576-4737

Received: 1 October 2020; Accepted: 19 October 2020; Published: 21 October 2020
����������
�������

Abstract: Face liveness detection is a critical preprocessing step in face recognition for avoiding
face spoofing attacks, where an impostor can impersonate a valid user for authentication.
While considerable research has been recently done in improving the accuracy of face liveness
detection, the best current approaches use a two-step process of first applying non-linear anisotropic
diffusion to the incoming image and then using a deep network for final liveness decision. Such an
approach is not viable for real-time face liveness detection. We develop two end-to-end real-time
solutions where nonlinear anisotropic diffusion based on an additive operator splitting scheme is first
applied to an incoming static image, which enhances the edges and surface texture, and preserves the
boundary locations in the real image. The diffused image is then forwarded to a pre-trained Specialized
Convolutional Neural Network (SCNN) and the Inception network version 4, which identify the
complex and deep features for face liveness classification. We evaluate the performance of our
integrated approach using the SCNN and Inception v4 on the Replay-Attack dataset and Replay-Mobile
dataset. The entire architecture is created in such a manner that, once trained, the face liveness
detection can be accomplished in real-time. We achieve promising results of 96.03% and 96.21% face
liveness detection accuracy with the SCNN, and 94.77% and 95.53% accuracy with the Inception
v4, on the Replay-Attack, and Replay-Mobile datasets, respectively. We also develop a novel deep
architecture for face liveness detection on video frames that uses the diffusion of images followed by
a deep Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) to classify
the video sequence as real or fake. Even though the use of CNN followed by LSTM is not new,
combining it with diffusion (that has proven to be the best approach for single image liveness
detection) is novel. Performance evaluation of our architecture on the REPLAY-ATTACK dataset gave
98.71% test accuracy and 2.77% Half Total Error Rate (HTER), and on the REPLAY-MOBILE dataset
gave 95.41% accuracy and 5.28% HTER.

Keywords: face liveness detection; diffusion; SCNN; Inception v4; CNN-LSTM; Replay-Attack dataset;
Replay-Mobile dataset

1. Introduction

Face recognition is a popular biometric authentication technique that is extensively used in many
security and online systems. It has the advantages of easy deployment and being non-intrusive when
compared to other biometric authentication schemes. Current approaches to face recognition have the
key disadvantage of being easily spoofed where an impostor can present a photograph or recorded
video of another person to the camera. Hence, face liveness detection is a crucial preprocessing
step before performing the face authentication via face recognition. Various approaches have been
proposed for face liveness detection on static images, such as analysis of texture differences between
live and fake faces as in Reference [1], motion analysis, and deep Convolutional Neural Network (CNN)

Entropy 2020, 22, 1186; doi:10.3390/e22101186 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e22101186
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/10/1186?type=check_update&version=2

Entropy 2020, 22, 1186 2 of 28

architectures, etc. Most of the recent research resulting in high accuracy face liveness detection and has
focused on a two-step process of performing a speed diffusion, which is followed either by a Support
Vector Machine (SVM) as a classifier [2], or a deep CNN architecture [3,4]. Existing approaches that
have been proposed to address dynamic face spoofing attacks on recorded videos are based on methods
such as texture analysis, motion analysis, image quality, and 3D structure information. Recent research
has focused on using deep CNN architectures and recurrent neural networks (RNN) for face liveness
detection on video frames.

We present real-time solutions for face liveness detection on static images by integrating anisotropic
diffusion for converting the captured image to the diffused form, and the deep CNN into a single
framework. The anisotropic diffusion allows the illumination energies to diffuse slowly on a uniform
2D surface, while moving faster on a 3D live face because of its non-uniformity [2]. The diffused image
is then fed to the deep CNN architectures, i.e., Specialized Convolutional Neural Network (SCNN)
and Inception v4. In the real-time solution using the SCNN, we compute the smoothness of diffusion
parameter alpha, whereas, for the Inception v4, we fix a value for the alpha. We evaluate the performance
of our proposed methods on the Replay-Attack dataset and the Replay-Mobile dataset, respectively.
For the Inception v4, we experiment with various values of the parameter alpha that defines the
smoothness of diffusion. On average, an alpha value of up to 75 gave better classification results in the
integrated environment, since higher values blur out important information from the image. We further
perform a comparison of our proposed approaches with previous state-of-the-art approaches as well as
other deep architectures for face liveness detection on static images, and determine that our end-to-end
approaches produce competitive accuracy with the advantage of being “real-time” on a standard
medium power computer in the detection of liveness of images to counteract face spoofing.

For face liveness detection on video sequences, we develop a CNN-LSTM architecture where
nonlinear diffusion is first applied to the individual frames in the sequence, and then the deep CNN
and LSTM capture the deep spatial and temporal features in the sequence. Even though use of CNN
followed by LSTM has been reported in the literature, our contribution is to further add anisotropic
diffusion in the beginning. We evaluate the performance of the proposed video frame based face
liveness framework on the Replay-Attack dataset and the Replay-Mobile dataset. We also perform
a comparison of our proposed approach with previous state-of-the-art approaches for face liveness
detection on video frames, and demonstrate that our architecture is very competitive in liveness
detection of video sequences to counteract face spoofing. The performance of the proposed framework
yields competitive results. We obtained better results compared to the reported results in the literature
with the Replay-Mobile dataset, and second best results with the Replay-Attack dataset.

The rest of the paper is organized as follows. Section 2 discusses previous work related to
face liveness detection on static images and video sequences. Our proposed real-time methods of
integrating anisotropic diffusion and CNN architectures for liveness detection on static images, and the
method of applying diffusion followed by a CNN-LSTM for liveness detection on video sequences,
are discussed in Section 3. Section 4 presents a performance evaluation of our architectures on the
Replay-Attack dataset and Replay-Mobile dataset, respectively, for face anti-spoofing. The concluding
remarks are mentioned in Section 5.

2. Related Work

Many methods have been proposed by researchers for determining the liveness of a captured
static image by extracting the features from a 2D image, and then feeding these to a classifier. Some of
these include extraction of variations of Local Binary Patterns, and, using a Support Vector Machine
(SVM) classifier to identify whether the face is real or fake. Parveen et al. [1] introduced a texture
descriptor known as Dynamic Local Ternary Pattern (DLTP), where the textural properties of facial
skin were explored using dynamic threshold setting, and the SVM with linear kernel was used for
classification. The method proposed by Kim et al. [2] is based on the idea of differencing in surface
properties between live and fake faces by using diffusion speed. They computed the diffusion speed

Entropy 2020, 22, 1186 3 of 28

by utilizing the total variation flow and extracted anti-spoofing features based on the local patterns of
diffusion speeds, which were then fed to a linear SVM classifier for determining the liveness of the
facial image. Gragnaniello et al. [5] proposed a domain-aware CNN architecture by adding appropriate
regularization terms to the loss function. In the work proposed by Das et al. [6], hand-crafted
features and deep features were extracted by using a combination of a Local Binary Pattern (LBP) and
a pre-trained CNN model based on the VGG-16 network architecture for the liveness detection.

Some of the recent work in face liveness detection has focused on the use of deep CNN
architectures [3,4,7,8], since these provide better liveness detection accuracy than the above-mentioned
approaches. Rehman et al. [7] employed data randomization on small mini batches for the training
of deep CNNs for liveness detection. In the proposed work by Alotaibi et al. [3], a combination of
diffusion of the captured image followed by only a simple three-layer CNN architecture was utilized.
The research proposed by Koshy et al. [4] used a combination of nonlinear diffusion and explored three
architectures such as CNN-5, ResNet50, and Inception v4, and the best architecture was determined to
be the Inception v4. The main drawback of the approaches in References [3,4] has been a requirement
of a preprocessing step to obtain the diffused image before feeding it to a deep CNN for classification,
making it unsuitable for real-time deployment. A part of our work in this paper enhances the ideas of
References [3,4] in a better integrated approach.

Various approaches have been proposed to address dynamic face spoofing attacks to determine the
liveness of a video sequence. Wang et al. [9] proposed a detection approach where the sparse structure
information in 3D space was analyzed. Facial landmarks were detected from the given face video,
and key frames were selected from which the sparse 3D facial structure was recovered. The structures
were then aligned and the structure features were extracted for classification using an SVM classifier.
Another technique reported by Anjos et al. [10] is based on foreground and background motion
correlation using optical flow, where they detected motion correlations between the head of the user
and the background, and then fed extracted features to a binary classifier to classify the sequence
as real or fake. Wen et al. [11] proposed a detection algorithm based on Image Distortion Analysis
(IDA). They extracted four different features, namely specular reflection, chromatic moment, blurriness,
and color diversity, to form the feature vector, which was then fed to an SVM classifier.

A method based on the Local Binary Patterns from Three Orthogonal Planes (LBP-TOP) operator
combining both space and time information into a single multi-resolution texture descriptor was
presented by de Freitas Pereira et al. [12]. The histograms were computed from the local binary
patterns and concatenated for classification using Linear Discriminant Analysis (LDA) and SVM.
Bharadwaj et al. [13] used motion magnification followed by two approaches, where one involves
texture analysis using LBP and an SVM classifier, and the other involves a motion estimation
approach using a Histogram of Oriented Optical Flow (HOOF) descriptor with LDA for classification.
Tang et al. [14] proposed a challenge-response liveness detection protocol called face flashing that
flashes randomly generated colors and verifies the reflected light. This was repeated many times so
that enough responses could be collected to ensure security. Yeh at al. [15] proposed an approach
against face spoofing attacks based on perpetual image quality assessment with multi-scale analysis.
They used a combination of an image quality evaluator and a quality assessment model for selecting
effective pixels to create the image quality features for liveness detection. Pan et al. [16] presented
a time-based presentation attack detection algorithm for capturing the texture changes in a frame
sequence. They used a Motion History Image (MHI) descriptor to get the primary features, and used
LBP and a pre-trained CNN to get the secondary feature vectors, which were then fed to a classifier
network. In the work proposed by Asim et al. [17], LBP-TOP is cascaded with a CNN to extract
spatio-temporal features from video sequences, which is followed by SVM with Radial Basis Function
(RBF) kernel for classification.

Xu et al. [18] proved that a deep architecture combining LSTM with CNN can be used for face
anti-spoofing in videos. Local and dense features were extracted by the CNN, while the LSTM captured
the temporal relationships in the input sequences. Tu et al. [19] also proposed a joint CNN-LSTM

Entropy 2020, 22, 1186 4 of 28

network for face anti-spoofing in video sequences by focusing on the motion cues across video frames.
They used the Eulerian motion magnification as preprocessing to enhance the facial expressions
of individuals. Then the CNN was used for extracting the highly discriminative features of video
frames, and the LSTM was used to capture the temporal dynamics in the videos. Costa-Pazo et al. [20]
introduced the Replay-Mobile database, and they describe two face presentation attack detection
methods that were applied to the database. In one method, Image Quality Measures (IQM) were used
as features, and, in the other, a texture-based approach using Gabor-jets were used. Classification was
done using the support vector machine with a radial basis function kernel.

Nikisins et al. [21] proposed an anomaly detection, or a one-class classifier-based face presentation
attack detection system having better generalization properties against unseen types of attacks.
They used an aggregated database consisting of three publicly available datasets, which includes the
Replay-Attack dataset and Replay-Mobile dataset, for their experiments. Their system consisted of
a preprocessor, feature extractor, and one-class classifier. They also evaluated and reported the results
of some of the successful, previously published face liveness detection systems on the Replay-Attack
and Replay-Mobile datasets, such as the LBP-based system in Reference [22]. The IQM-based system
where feature vector of a frame is a concatenation of quality measures introduced in References [11,23],
and the motion-based approach in Reference [24]. Evaluation using the LBP-based system and
IQM-based system were done on the frame-level, whereas the motion-based approach was done on
video sequences. Fatemifar et al. [25] adopted the anomaly detection approach where the detector
is trained on genuine accesses only, using one-class classifiers built using representations obtained
from deep pre-trained CNN models. Each frame in a video clip was photometrically normalized
based on the retina method for reducing the impact of various lighting conditions before they were
fed to pre-trained networks. They used different CNN architectures and anomaly detectors of which
the class-specific Mahalanobis distance with GoogleNet features achieved better performance on the
Replay-Mobile dataset. Arashloo [26] presented a one-class novelty detection approach based on kernel
regression using the Replay-Mobile dataset in which only bona fide samples were used in the training
process, as in Reference [25]. A projection function defined in terms of kernel regression maps bona fide
samples onto a compact cluster of target samples, and provides the best separability of normal samples
from outliers with classification based on the Fisher criterion. Other mechanisms, which include
a multiple kernel fusion approach, sparse regularization, and client-specific and probabilistic modeling
were also incorporated to improve performance.

The methods proposed by de Freitas Pereira et al. [12] and Bharadwaj et al. [13] made use of
hand-crafted feature extraction, while we are using a CNN that does the feature extraction by itself,
which eliminates hand-engineered feature extraction. Though the method proposed by Tu et al. [19]
gave state-of-the-art performance, compared to the 13 convolution layers of the VGG-16 they used,
we are using only a 4-layer CNN as the front-end of our architecture with which we get very competitive
results. The work presented by Fatemifar et al. [25] and Arashloo [26] used pre-trained models such as
GoogleNet, ResNet50, etc., while we designed a CNN-LSTM architecture with which we achieved
better results on the Replay-Mobile dataset. The enhancement in our work is to apply nonlinear
diffusion to the frames in the sequence to obtain the sharp edges and preserve the boundary locations,
and then feed the diffused frames to the CNN-LSTM.

3. Proposed Method

For the end-to-end real-time solution for liveness detection on static images, we propose a solution
similar to what was done in References [3,4]. However, instead of using a preprocessing step
(via Matlab code) for diffusing the images and feeding them to the deep CNN network, we provide
an end-to-end solution with diffusion as well as more advanced deep CNNs. In our framework, we use
a combined architecture where the diffusion process and deep CNN are implemented in a single step.
We use two different methods for the end-to-end solution. In the first method, we use an alpha trainable
network that computes the smoothness of the diffusion parameter (alpha), and the diffused image is

Entropy 2020, 22, 1186 5 of 28

then created using this computed alpha. This diffused image is then fed to a pre-trained three-layer
CNN model (CNN layers with Batch Normalization) that gave 97.50% accuracy on the Replay-Attack
dataset, and 99.62% accuracy on the Replay-Mobile dataset, respectively. In the second method, we fix
a value for the smoothness of the diffusion parameter (alpha) using what we create for the diffused
image, and then feed the diffused image to an Inception v4 network. In either case, we feed the original
captured images to the framework, where the first layer computes the nonlinear diffusion based
on an Additive Operator Splitting (AOS) scheme and an efficient block-solver called a Tri-Diagonal
Matrix Algorithm (TDMA). This enhances the edges and preserves the boundary locations of the real
image (similar to the work proposed in References [3,4]). This diffused input image is then fed to the
deep CNN architecture or the Inception v4 network to extract the complex and deep features, and to
classify the image as real or fake. Our integrated implementation results in real-time detection of
liveness. We also do a comparison of our proposed integrated method with the previous approaches
that have been proposed for liveness detection to determine how well it performs with regard to
current state-of-the-art methods.

For the liveness detection on video frames, we propose a solution where we also first apply
the nonlinear diffusion based on the AOS scheme and TDMA to the individual frames of the video
sequence. This enhances the edges and preserves the boundary locations of the real image (similar to
the static method proposed in References [3,4]). These diffused input images are then fed one-by-one
to the CNN, which acts as the front-end of our architecture, and extracts the complex and deep features.
The output of the CNN is then fed to the LSTM, which detects the temporal information in the sequence,
and, finally, the output dense neural network layer classifies the sequence as real or fake. For the sake
of completeness, we provide a brief summary of the key concepts in nonlinear diffusion.

3.1. Nonlinear Diffusion

Linear diffusion smoothens the input image at a constant rate in all directions to remove noise.
Therefore, the smoothing process does not consider information regarding important image features
such as edges [27]. The solution of the linear diffusion equation is given by:

∂I/∂t = div(d∇I), (1)

where I is the image, d is the scalar diffusivity, and div is the divergence operator. This is somewhat
equivalent to convolving the image with a Gaussian kernel, and, hence, linear diffusion can be regarded
as a low pass filtering process.

The edge-preserving capability of nonlinear diffusion makes it a powerful denoising
technique, as the information contained in high spatial frequency components is preserved [28].
Anisotropic diffusion, which is nonlinear diffusion based on a partial differential equation, prevents the
blurring and localization issues associated with linear diffusion, and focuses on reducing the image
noise without reducing significant parts of the image content such as edges. It improves the scale-space
technique, enhances the boundaries, and preserves the edges [29]. The diffusion coefficient is locally
adapted, and is chosen as a function of the image gradient, that varies with both the edge location and
its orientation in order to preserve the edges. The nonlinear diffusion process is defined by the equation.

∂I/∂t = div(g(|∇I|)∇I), (2)

where ∇I is the gradient, and the diffusivity g is a function of the gradient ∇I.
The Additive Operator Splitting (AOS) scheme addresses the problem of regularization associated

with anisotropic diffusion [30]. This semi-implicit scheme is stable for all time-steps, and ensures that
all co-ordinate axes are treated equally, as defined by Equation (3) [31]. AOS enables fast diffusion,

Entropy 2020, 22, 1186 6 of 28

resulting in smoothing of the edges in fake images while the edges in real images will be preserved.
The iterative solution in AOS is given in Equation (3).

(Ik)
t+1 =

m∑
l=1

(
mI − τm2Al

)−1
It
k, (3)

where Ik is the diffused image, m is the number of dimensions, k represents the channel, I is the identity
matrix, Al. is the diffusion, and τ is the time steps (referred to as param. alpha in our implementation).
In the two-dimensional case, m = 2, and the equation then becomes:

(Ik)
t+1 = (2I − 4τA1)

−1It
k + (2I − 4τA2)

−1It
k, (4)

where A1 and A2 denote the diffusion in the horizontal and vertical directions. The equation is split
into two parts in the operator splitting scheme. The solution to each is computed separately and results
are then combined.

The block-solver Tri-diagonal matrix algorithm (TDMA) is a simplified form of Gaussian
elimination, useful in solving tri-diagonal systems of equations. The AOS scheme, together with
TDMA can, therefore, be used to efficiently solve the nonlinear, scalar-valued diffusion equation [31].
We implement the AOS scheme in the first layer of our implementations.

3.2. End-to-End Diffusion-CNN Networks

3.2.1. Specialized Convolutional Neural Network (SCNN)

We implemented a specialized end-to-end diffusion-CNN network (with Batch Normalization)
where the smoothness of the diffusion parameter (alpha) is learned by the network. Convolutional
Neural Networks (CNNs) work by combining the architectural concepts of local receptive fields,
shared weights, and spatial or temporal subsampling in order to ensure some degree of shift, scale,
and distortion invariance. To achieve higher accuracy, we use transfer learning by first training the
CNN network on diffused images created with a fixed smoothness of diffusion value of 15. We then
initialize the pre-trained convolutional neural network with batch normalization in the integrated
diffusion architecture and retrain it again to obtain higher accuracy.

In our architecture, the original image is first fed to an alpha network to compute the value of the
smoothness of diffusion parameter (alpha). This is a neural network comprising of a hidden layer of
15 neurons followed by a dense layer of one neuron, which outputs the alpha. The Rectified Linear
Unit (ReLU) activation function is applied to the neurons in these layers. The SCNN model consists of
three convolutional layers C1, C2, and C3 with 16, 32, and 64 feature maps, respectively, where kernel
sizes of 15 × 15, 7 × 7, and 5 × 5 are used in the convolutions. Each convolution is followed by batch
normalization, and max pooling is applied to the C1 and C2 layers after batch normalization for
reducing the resolution. The higher filter size in the C1 layer is important to extract the diffusion
enhanced features for liveness detection. The C3 layer batch normalization is followed by a dense layer
of 64 neurons, and a dense output layer of one neuron. The ReLU activation function is applied to the
convolution layers, the hidden layer, and the sigmoid activation function is applied to the output layer.
The SCNN is trained using the binary-cross-entropy loss function, and the Adam optimizer with an
initial learning rate set to 0.001.

Figure 1 below shows the proposed architecture. The nonlinear diffusion code implemented in
TensorFlow is used to convert the original image to diffused form with the parameter Alpha determined
from the alpha network (bottom left in Figure 1). During backpropagation, the weights in the alpha
network will be updated, and the updated weights are used in the computation of the output of the
single neuron in the dense layer (parameter alpha) on the next forward pass.

Entropy 2020, 22, 1186 7 of 28

Entropy 2020, 22, x FOR PEER REVIEW 7 of 27

Figure 1. End-to-end architecture using the Specialized Convolutional Neural Network (SCNN)
(alpha is learned by the network).

3.2.2. Inception v4

To determine if a more advanced CNN network will result in better accuracy, we replace the
CNN part in Figure 1 with the Inception v4 network. However, instead of using an alpha network
that computes the smoothness of diffusion (alpha), we fix the value of alpha in order to improve the
real-time performance. The first stage is the nonlinear diffusion stage, whose input is the original 64
× 64 input image captured through the webcam, which is followed by the Inception network v4
architecture. The inception network is a CNN architecture designed as a deeper and wider network.
It consists of inception modules stacked upon each other with intermittent subsampling layers for
reducing the resolution and, thereby, reducing the shift and distortion in the image.

The Inception network v4 architecture consists of an inception stem, three different inception
blocks, namely inception-A, inception-B, and inception-C, which are used repeatedly 4, 7, and 3
times, respectively, and two reduction blocks for changing the resolution of the grid [4,32].
Convolutions in the inception modules within a block are performed by applying filters of multiple
sizes to the same layer, making the network wider and enhancing the recognition of features at
different scales. The resulting feature maps are then aggregated and forwarded to the next layer [33].
The complete architecture for this approach is illustrated in Figure 2. The diffused image obtained
from the nonlinear diffusion stage using the fixed value of alpha is fed to the next stage, which is the
inception stem of the Inception v4 network in which the output is then fed to the inception-A blocks,
reduction-A block, Inception-B blocks, reduction-B block, and inception-C blocks, which is followed
by an average pooling layer, dropout, and a dense output layer of two neurons with SoftMax
activation. The network was trained by using the Adam optimization algorithm. Since our targets are
in a categorical format with two classes of fake and real, we used the categorical cross-entropy as a
loss function. The diffusion block was implemented via direct implementation of the diffusion
equations, as described in Section 3.1.

Figure 2. End-to-end architecture using the Inception v4 network.

Figure 1. End-to-end architecture using the Specialized Convolutional Neural Network (SCNN)
(alpha is learned by the network).

3.2.2. Inception v4

To determine if a more advanced CNN network will result in better accuracy, we replace the
CNN part in Figure 1 with the Inception v4 network. However, instead of using an alpha network
that computes the smoothness of diffusion (alpha), we fix the value of alpha in order to improve the
real-time performance. The first stage is the nonlinear diffusion stage, whose input is the original
64 × 64 input image captured through the webcam, which is followed by the Inception network v4
architecture. The inception network is a CNN architecture designed as a deeper and wider network.
It consists of inception modules stacked upon each other with intermittent subsampling layers for
reducing the resolution and, thereby, reducing the shift and distortion in the image.

The Inception network v4 architecture consists of an inception stem, three different inception
blocks, namely inception-A, inception-B, and inception-C, which are used repeatedly 4, 7, and 3 times,
respectively, and two reduction blocks for changing the resolution of the grid [4,32]. Convolutions in the
inception modules within a block are performed by applying filters of multiple sizes to the same layer,
making the network wider and enhancing the recognition of features at different scales. The resulting
feature maps are then aggregated and forwarded to the next layer [33]. The complete architecture for
this approach is illustrated in Figure 2. The diffused image obtained from the nonlinear diffusion stage
using the fixed value of alpha is fed to the next stage, which is the inception stem of the Inception
v4 network in which the output is then fed to the inception-A blocks, reduction-A block, Inception-B
blocks, reduction-B block, and inception-C blocks, which is followed by an average pooling layer,
dropout, and a dense output layer of two neurons with SoftMax activation. The network was trained
by using the Adam optimization algorithm. Since our targets are in a categorical format with two
classes of fake and real, we used the categorical cross-entropy as a loss function. The diffusion block
was implemented via direct implementation of the diffusion equations, as described in Section 3.1.

Entropy 2020, 22, x FOR PEER REVIEW 7 of 27

Figure 1. End-to-end architecture using the Specialized Convolutional Neural Network (SCNN)
(alpha is learned by the network).

3.2.2. Inception v4

To determine if a more advanced CNN network will result in better accuracy, we replace the
CNN part in Figure 1 with the Inception v4 network. However, instead of using an alpha network
that computes the smoothness of diffusion (alpha), we fix the value of alpha in order to improve the
real-time performance. The first stage is the nonlinear diffusion stage, whose input is the original 64
× 64 input image captured through the webcam, which is followed by the Inception network v4
architecture. The inception network is a CNN architecture designed as a deeper and wider network.
It consists of inception modules stacked upon each other with intermittent subsampling layers for
reducing the resolution and, thereby, reducing the shift and distortion in the image.

The Inception network v4 architecture consists of an inception stem, three different inception
blocks, namely inception-A, inception-B, and inception-C, which are used repeatedly 4, 7, and 3
times, respectively, and two reduction blocks for changing the resolution of the grid [4,32].
Convolutions in the inception modules within a block are performed by applying filters of multiple
sizes to the same layer, making the network wider and enhancing the recognition of features at
different scales. The resulting feature maps are then aggregated and forwarded to the next layer [33].
The complete architecture for this approach is illustrated in Figure 2. The diffused image obtained
from the nonlinear diffusion stage using the fixed value of alpha is fed to the next stage, which is the
inception stem of the Inception v4 network in which the output is then fed to the inception-A blocks,
reduction-A block, Inception-B blocks, reduction-B block, and inception-C blocks, which is followed
by an average pooling layer, dropout, and a dense output layer of two neurons with SoftMax
activation. The network was trained by using the Adam optimization algorithm. Since our targets are
in a categorical format with two classes of fake and real, we used the categorical cross-entropy as a
loss function. The diffusion block was implemented via direct implementation of the diffusion
equations, as described in Section 3.1.

Figure 2. End-to-end architecture using the Inception v4 network.

Figure 2. End-to-end architecture using the Inception v4 network.

3.3. CNN-LSTM

For liveness detection on video frames, we need to keep track of the information in a sequence of
frames. Thus, our architecture for this case consists of diffusion, which is followed by CNN feeding
to an LSTM layer, as shown in Figure 3. Multiplicative units called gates (input, output, forget)
in each LSTM cell provide continuous analogues of write, read, and reset operations for the cells [34].

Entropy 2020, 22, 1186 8 of 28

These units learn to open and close access to the constant error flow through internal states of the
cells [35]. The input gate indicates how much of the new information must be stored in the cell state,
the forget gate indicates how much of the internal state can be removed, and the output gate indicates
how much of the cell state can be sent as output to the next time-step. LSTMs in combination with
CNNs have been used successfully in person identification from lip texture analysis [36], 3D gait
recognition [37], image-to-video person re-identification [38], and a deep bi-directional LSTM was
used with CNN for action recognition in video sequences in Reference [39]. Our enhancement is the
addition of the diffusion preprocessing to further enhance liveness detection.

Entropy 2020, 22, x FOR PEER REVIEW 8 of 27

3.3. CNN-LSTM

For liveness detection on video frames, we need to keep track of the information in a sequence
of frames. Thus, our architecture for this case consists of diffusion, which is followed by CNN feeding
to an LSTM layer, as shown in Figure 3. Multiplicative units called gates (input, output, forget) in
each LSTM cell provide continuous analogues of write, read, and reset operations for the cells [34].
These units learn to open and close access to the constant error flow through internal states of the
cells [35]. The input gate indicates how much of the new information must be stored in the cell state,
the forget gate indicates how much of the internal state can be removed, and the output gate indicates
how much of the cell state can be sent as output to the next time-step. LSTMs in combination with
CNNs have been used successfully in person identification from lip texture analysis [36], 3D gait
recognition [37], image-to-video person re-identification [38], and a deep bi-directional LSTM was
used with CNN for action recognition in video sequences in Reference [39]. Our enhancement is the
addition of the diffusion preprocessing to further enhance liveness detection.

Figure 3. Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM).

The CNN part in our CNN-LSTM network has convolutional layers C1 and C2, one subsampling
layer, and a fully connected layer of 50 neurons (adapted from the CNN-5 in Reference [4]). This is
followed by the LSTM layer, which consists of 60 cells, and a feedforward output layer of two
neurons. The sigmoid activation function is applied to the output layer, giving an output in the range
0 to 1. Nonlinear diffusion is first applied to the frames in each input sequence, and the diffused
frames are fed to the CNN. The CNN captures the spatial information in the sequence by extracting
the complex and deep discriminative features, and the hidden layer of CNN produces an output of
50 features per frame. The input to the LSTM layer is three-dimensional, where the three dimensions
are samples, time-steps, and features (i.e., batch size, 20, 50), where 20 is the number of frames (time-
steps) per sequence. The LSTM layer captures the long-term temporal dependencies across frames in
the sequence, and the 60 features obtained from the LSTM layer are fed to the output layer, which
then classifies the 20-frame sequence as real or fake. The network is trained by backpropagation
through time using the Adam optimization algorithm with mean-squared-error as the loss function,
and batch size set to 32. Implementation of the diffusion block was done via direct implementation
of the diffusion equations.

Figure 3. Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM).

The CNN part in our CNN-LSTM network has convolutional layers C1 and C2, one subsampling
layer, and a fully connected layer of 50 neurons (adapted from the CNN-5 in Reference [4]). This is
followed by the LSTM layer, which consists of 60 cells, and a feedforward output layer of two neurons.
The sigmoid activation function is applied to the output layer, giving an output in the range 0 to 1.
Nonlinear diffusion is first applied to the frames in each input sequence, and the diffused frames
are fed to the CNN. The CNN captures the spatial information in the sequence by extracting the
complex and deep discriminative features, and the hidden layer of CNN produces an output of
50 features per frame. The input to the LSTM layer is three-dimensional, where the three dimensions
are samples, time-steps, and features (i.e., batch size, 20, 50), where 20 is the number of frames
(time-steps) per sequence. The LSTM layer captures the long-term temporal dependencies across
frames in the sequence, and the 60 features obtained from the LSTM layer are fed to the output layer,
which then classifies the 20-frame sequence as real or fake. The network is trained by backpropagation
through time using the Adam optimization algorithm with mean-squared-error as the loss function,
and batch size set to 32. Implementation of the diffusion block was done via direct implementation of
the diffusion equations.

4. Performance Evaluation

We performed experimental evaluations using our proposed end-to-end diffusion–SCNN
architecture, and the end-to-end diffusion-Inception v4 architecture on the Replay-Attack dataset and the
Replay-Mobile dataset. We describe the experimental results, and the hyper-parameter settings used in
the experiments. We also do a performance comparison with other existing liveness detection methods
on static images. For liveness detection on video sequences, we performed experimental evaluations
using the CNN-LSTM architecture on the Replay-Attack dataset and Replay-Mobile dataset. We present

Entropy 2020, 22, 1186 9 of 28

the experimental results, and the hyper-parameter settings used in the experiments. We further do
a performance comparison with other existing liveness detection methods on video sequences.

4.1. Datasets

4.1.1. Replay-Attack Dataset

The Replay-Attack database [22] is a 2D face spoofing attack database that consists of 1200 short
video recordings of real-access and attack attempts of 50 different subjects. The frames in the video clip
have a resolution of 320 × 240 pixels. As shown in Table 1, the data is divided into three sub-groups
comprising of training, development, and test sets. Clients that appear in one dataset do not appear in any
other dataset. Both real and attack videos were taken under two different lighting conditions including
controlled and adverse. There are 4 real and 20 attack videos per subject. The attack videos include four
mobile attacks using an iPhone screen, four screen attacks using an iPad screen, and two hard-copy
print attacks with each captured in two different modes, hand-based attacks, and fixed-support attacks.
The training set consists of 15 subjects and 360 video clips. The development set consists of 15 subjects
and 360 video clips, and the testing set consists of 20 subjects and 480 video clips.

Table 1. Replay-Attack Dataset.

Number of
Subjects

Real-Access
Videos Attack Videos Total

Training set 15 60 300 360
Development set 15 60 300 360

Testing set 20 80 400 480
Total 50 200 1000 1200

4.1.2. Replay-Mobile Dataset

The Replay-Mobile dataset [20] consists of 1030 video clips of photo and video attacks of
40 clients. The videos were recorded under different lighting conditions with an iPad Mini2
(running iOS) and an LG-G4 smartphone (running Android), and the frames in the video clips
are of a 720 × 1080 resolution. The videos are grouped into training set, development, and test set.
These sets are disjoint, and, therefore, clients in one set do not appear in the other sets. The real-access
videos were taken under five different lighting conditions (controlled, adverse, direct, lateral, diffuse).
In order to produce the attacks, high-resolution photos and videos from each client were used under
similar conditions as in their authentication sessions (light on and light off).

For the real-access, each client recorded 10 videos, with two videos in each of the five lighting
conditions. Two kinds of attacks were performed including matte-screen attacks and print attacks.
Each client recorded 16 attack videos, which include four mobile attacks and four tablet attacks using
a mattescreen. Two print attacks were each captured by fixed-support and hand-held smartphone.
Two print attacks were each captured by fixed-support and a hand-held tablet. There are 12 subjects in
the training set with 120 real-access and 192 attack videos, 16 subjects in the development set with
160 real-access and 256 attack videos, and 12 subjects in the test set with 110 real-access videos
(since one subject was not available) and 192 attack videos (Table 2).

Table 2. Replay-mobile dataset.

Number of
Subjects

Real-Access
Videos Attack Videos Total

Training set 12 120 192 312
Development set 16 160 256 416

Testing set 12 110 192 302
Total 40 390 640 1030

Entropy 2020, 22, 1186 10 of 28

4.2. Experimental Setup

Our experiments were implemented on an Intel Xeon E3-1271 @3.60 GHz with 32GB RAM PC.
For diffusing the captured image in the end-to-end real-time liveness detection of a static image,
we implemented the diffusion equations, as described in Section 3.1 to integrate with the TensorFlow.
The SCNN and Inception v4 code were also written using TensorFlow. The complete code implements
the framework by doing the implementation and classification in a single step. For the CNN-LSTM,
the diffusion equations were implemented using the Matlab code (version 9.8, R2020a) by the author of
Reference [31], and the implementation of the CNN-LSTM was carried out in TensorFlow.

4.3. Experimental Results

4.3.1. End-to-End Diffusion—CNN Networks

For the end-to-end networks, we conducted experiments on the Replay-Attack dataset and the
Replay-Mobile dataset. The original images read from folders were grayscaled and then fed to the
end-to-end architectures. Figure 4 shows some samples from the Replay-Attack dataset and the
Replay-Mobile dataset, and the corresponding diffused images. The first row in both (a) and (b)
shows real images from the Replay-Attack and Replay-Mobile datasets, respectively, and the second
row in (a) and (b) shows fake images. The first column in (a) and (b) are original non-diffused images,
and the remaining columns are their diffused versions created with a parameter alpha set to 15, 25, 50,
75, and 100, respectively. It can be observed that a value below 50 produces better diffused images
with highlighted edges and enhanced boundaries in the real image, whereas a high value of 75/100 for
the smoothness parameter alpha blurs out important edges from the images.

We conducted numerous experiments individually on the grayscaled images of the Replay-Attack
dataset and the Replay-Mobile dataset. We tuned the hyperparameters by validating on the validation
set during training, and the best model obtained was evaluated on the test set. We computed the test
accuracy, and the Half Total Error Rate (HTER), which is defined as:

HTER = (FAR + FRR)/2, (5)

where FAR is the False Acceptance Rate, and FRR is the False Rejection Rate.

FAR = False Acceptance/Number of Impostor images (6)

FRR = False Rejection/Number of Real images (7)

We used 20 frames of each video clip in the training, development, and testing sets, which are
resized to a size of 64 × 64. Thus, a total of 7200 training images, 7200 developmental set (validation)
images, and 9600 testing images were used from the Replay-Attack dataset, and 6240 training images,
8320 development set images, and 6040 test set images were used from the Replay-Mobile dataset.

Entropy 2020, 22, 1186 11 of 28

Entropy 2020, 22, x FOR PEER REVIEW 10 of 27

Table 2. Replay-mobile dataset.

 Number of Subjects Real-Access Videos Attack Videos Total
Training set 12 120 192 312

Development set 16 160 256 416
Testing set 12 110 192 302

Total 40 390 640 1030

4.2. Experimental Setup

Our experiments were implemented on an Intel Xeon E3-1271 @3.60GHz with 32GB RAM PC.
For diffusing the captured image in the end-to-end real-time liveness detection of a static image, we
implemented the diffusion equations, as described in Section 3.1 to integrate with the TensorFlow.
The SCNN and Inception v4 code were also written using TensorFlow. The complete code
implements the framework by doing the implementation and classification in a single step. For the
CNN-LSTM, the diffusion equations were implemented using the Matlab code (version 9.8, R2020a)
by the author of Reference [31], and the implementation of the CNN-LSTM was carried out in
TensorFlow.

4.3. Experimental Results

4.3.1. End-to-End Diffusion—CNN Networks

For the end-to-end networks, we conducted experiments on the Replay-Attack dataset and the
Replay-Mobile dataset. The original images read from folders were grayscaled and then fed to the
end-to-end architectures. Figure 4 shows some samples from the Replay-Attack dataset and the
Replay-Mobile dataset, and the corresponding diffused images. The first row in both (a) and (b)
shows real images from the Replay-Attack and Replay-Mobile datasets, respectively, and the second
row in (a) and (b) shows fake images. The first column in (a) and (b) are original non-diffused images,
and the remaining columns are their diffused versions created with a parameter alpha set to 15, 25,
50, 75, and 100, respectively. It can be observed that a value below 50 produces better diffused images
with highlighted edges and enhanced boundaries in the real image, whereas a high value of 75/100
for the smoothness parameter alpha blurs out important edges from the images.

(a)

(b)

Figure 4. Sample images from the datasets and their corresponding diffused versions. (a) Images from
the Replay-Attack dataset. (b) Images from the Replay-Mobile dataset. The images in the first row
of both (a,b) are real, and the images in the second row of both (a,b) are fake.

SCNN

Using the Specialized Convolutional Neural Network (SCNN), our experiments on the
Replay-Attack dataset gave test accuracy of 96.03% and hter of 7.53%, and 96.21% test accuracy
and 4.96% hter on the Replay-Mobile dataset. We first trained the three-layer CNN on diffused training
images created with an alpha parameter of 15 for 100 epochs by validating on the diffused validation
images created with the same alpha, for tuning the hyperparameters. We experimented with various
learning rates, and the best model obtained gave an accuracy of 97.50% at a learning rate of 0.005 for
the Replay-Attack dataset, and 99.62% accuracy at a learning rate of 0.0005 for the Replay-Mobile
dataset. We used these pre-trained models in the CNN part of the end-to-end SCNN architecture.
We trained the SCNN network on the original training images for 30 epochs while validating on the
original images of the validation set. We used the Adam optimizer, binary-cross-entropy loss function,
and sigmoid activation function in the output layer. The training was done by setting the learning
rate of the optimizer to its default value (0.001), and also using the learning rates, which gave the best
model of the pre-trained CNN-3, which were 0.005 for the Replay-Attack dataset, and 0.0005 for the
Replay-Mobile dataset. The smoothness of diffusion (alpha) was learned by the network each time.
The original image fed to the network was diffused with this learned alpha, and the diffused image
was then fed to the pre-trained 3-layer CNN. The weights of the better model were saved during
the 30 epochs of training. Following training, the best model weights obtained during validation
were loaded, and the network model was compiled and evaluated on the test set. The experimental
results are summarized in Table 3 below.

Entropy 2020, 22, 1186 12 of 28

Table 3. Highest validation accuracy (best model) obtained during validation, and the test results
obtained by evaluating the best model on the test set for the Specialized Convolutional Neural
Network (SCNN).

Replay-Attack Replay-Mobile

Best model (%) 95.04 98.56
Test Accuracy (%) 96.03 96.21

HTER (%) 7.53 4.96

The real-time evaluation of a test image on a trained SCNN network takes approximately 0.021 s
for the Replay-Attack dataset, and 0.016 s for the Replay-Mobile dataset.

Inception v4 Network

For the end-to-end solution using Inception v4 network (Figure 2), we trained the network on the
original images of the training set for 30 epochs using a fixed value for the smoothness of the diffusion
parameter (parameter alpha) while validating on the original images of the validation (development)
set for tuning the hyperparameters and selecting the best model for evaluation. We repeated the
training process for various values of alpha and learning rates of the optimizer used. The best model
obtained was then evaluated on the test set. We used the Adam optimizer, categorical cross-entropy
loss function, and SoftMax classifier in the last stage with a batch size set to 32. The tables and plots
below summarize the results obtained.

• Results Obtained with the Replay-Attack Dataset

Table A1 in Appendix A shows the best model (highest validation accuracy) results obtained
for various values of alpha with the Replay-Attack dataset when validating on the validation set
during training for 30 epochs for tuning the hyperparameters. The overall best model obtained was
for alpha of 15, at the default learning rate of 0.001. The results of evaluation of the best models for
each alpha in Table A1, on the test set of the Replay-Attack dataset, are shown in Table 4. It can be
observed that the best results obtained are test accuracy of 94.77%, and HTER of 13.54% for alpha of 15.
The plots of alpha vs. test accuracy and alpha vs. HTER, according to results in Table 4, are shown in
Figures 5 and 6.

Table 4. Test results obtained with the Replay-Attack dataset by evaluating the best model obtained for
each alpha shown in Table A1, on the test set, in Inception v4.

Alpha 15 25 50 75 100

Test accuracy (%) 94.77 94.18 93.54 91.94 93.35
HTER (%) 13.54 15.01 16.25 17.31 16.01

Entropy 2020, 22, 1186 13 of 28

Entropy 2020, 22, x FOR PEER REVIEW 12 of 27

Inception v4 network.
For the end-to-end solution using Inception v4 network (Figure 2), we trained the network on

the original images of the training set for 30 epochs using a fixed value for the smoothness of the
diffusion parameter (parameter alpha) while validating on the original images of the validation
(development) set for tuning the hyperparameters and selecting the best model for evaluation. We
repeated the training process for various values of alpha and learning rates of the optimizer used.
The best model obtained was then evaluated on the test set. We used the Adam optimizer, categorical
cross-entropy loss function, and SoftMax classifier in the last stage with a batch size set to 32. The
tables and plots below summarize the results obtained.

• Results Obtained with the Replay-Attack Dataset

Table A1 in Appendix A shows the best model (highest validation accuracy) results obtained for
various values of alpha with the Replay-Attack dataset when validating on the validation set during
training for 30 epochs for tuning the hyperparameters. The overall best model obtained was for alpha
of 15, at the default learning rate of 0.001. The results of evaluation of the best models for each alpha
in Table A1, on the test set of the Replay-Attack dataset, are shown in Table 4. It can be observed that
the best results obtained are test accuracy of 94.77%, and HTER of 13.54% for alpha of 15. The plots
of alpha vs. test accuracy and alpha vs. HTER, according to results in Table 4, are shown in Figures 5
and 6.

Table 4. Test results obtained with the Replay-Attack dataset by evaluating the best model obtained
for each alpha shown in Table A1, on the test set, in Inception v4.

Alpha 15 25 50 75 100
Test accuracy (%) 94.77 94.18 93.54 91.94 93.35

HTER (%) 13.54 15.01 16.25 17.31 16.01

Figure 5. Plot showing parameter alpha vs. test accuracy (Table 4).

90
91
92
93
94
95
96
97
98
99

100

0 20 40 60 80 100

%
 T

es
t A

cc
ur

ac
y

param. alpha

param. alpha vs Test Accuracy

Figure 5. Plot showing parameter alpha vs. test accuracy (Table 4).Entropy 2020, 22, x FOR PEER REVIEW 13 of 27

Figure 6. Plot showing parameter alpha vs. HTER (Table 4).

On a trained Inception v4 network, real-time evaluation of a test image takes approximately
0.016 s for the Replay-Attack dataset.

• Results Obtained with the Replay-Mobile Dataset

Table A2 shows the best model (highest validation accuracy) results obtained for various values
of alpha with the Replay-Mobile dataset when validating on the validation set during training for 30
epochs for tuning the hyperparameters. The overall best model obtained was for alpha of 15, at the
default learning rate of 0.001. The results from evaluating the best models for each alpha (Table A2)
on the test set of the Replay-Mobile dataset are shown in Table 5. The best results obtained are test
accuracy of 95.53%, and HTER of 5.94% for alpha of 15. The plots of alpha vs. test accuracy and alpha
vs. HTER, according to results in Table 5, are shown in Figures 7 and 8.

Table 5. Test results obtained with the Replay-Mobile dataset by evaluating the best model obtained
for each alpha in Table A2, on the test set, in Inception v4.

Alpha 15 25 50 75 100
Test accuracy (%) 95.53 93.29 91.09 91.26 92.55

HTER (%) 5.94 7.90 9.07 10.91 9.69

Figure 7. Plot showing parameter alpha vs. test accuracy (Table 5).

0
2
4
6
8

10
12
14
16
18
20

0 20 40 60 80 100

%
 H

TE
R

param. alpha

param. alpha vs HTER

90
91
92
93
94
95
96
97
98
99

100

0 20 40 60 80 100

%
 T

es
t A

cc
ur

ac
y

param. alpha

param. alpha vs Test Accuracy

Figure 6. Plot showing parameter alpha vs. HTER (Table 4).

On a trained Inception v4 network, real-time evaluation of a test image takes approximately
0.016 s for the Replay-Attack dataset.

• Results Obtained with the Replay-Mobile Dataset

Table A2 shows the best model (highest validation accuracy) results obtained for various values
of alpha with the Replay-Mobile dataset when validating on the validation set during training for
30 epochs for tuning the hyperparameters. The overall best model obtained was for alpha of 15, at the
default learning rate of 0.001. The results from evaluating the best models for each alpha (Table A2)
on the test set of the Replay-Mobile dataset are shown in Table 5. The best results obtained are test
accuracy of 95.53%, and HTER of 5.94% for alpha of 15. The plots of alpha vs. test accuracy and
alpha vs. HTER, according to results in Table 5, are shown in Figures 7 and 8.

Table 5. Test results obtained with the Replay-Mobile dataset by evaluating the best model obtained
for each alpha in Table A2, on the test set, in Inception v4.

Alpha 15 25 50 75 100

Test accuracy (%) 95.53 93.29 91.09 91.26 92.55
HTER (%) 5.94 7.90 9.07 10.91 9.69

Entropy 2020, 22, 1186 14 of 28

Entropy 2020, 22, x FOR PEER REVIEW 13 of 27

Figure 6. Plot showing parameter alpha vs. HTER (Table 4).

On a trained Inception v4 network, real-time evaluation of a test image takes approximately
0.016 s for the Replay-Attack dataset.

• Results Obtained with the Replay-Mobile Dataset

Table A2 shows the best model (highest validation accuracy) results obtained for various values
of alpha with the Replay-Mobile dataset when validating on the validation set during training for 30
epochs for tuning the hyperparameters. The overall best model obtained was for alpha of 15, at the
default learning rate of 0.001. The results from evaluating the best models for each alpha (Table A2)
on the test set of the Replay-Mobile dataset are shown in Table 5. The best results obtained are test
accuracy of 95.53%, and HTER of 5.94% for alpha of 15. The plots of alpha vs. test accuracy and alpha
vs. HTER, according to results in Table 5, are shown in Figures 7 and 8.

Table 5. Test results obtained with the Replay-Mobile dataset by evaluating the best model obtained
for each alpha in Table A2, on the test set, in Inception v4.

Alpha 15 25 50 75 100
Test accuracy (%) 95.53 93.29 91.09 91.26 92.55

HTER (%) 5.94 7.90 9.07 10.91 9.69

Figure 7. Plot showing parameter alpha vs. test accuracy (Table 5).

0
2
4
6
8

10
12
14
16
18
20

0 20 40 60 80 100

%
 H

TE
R

param. alpha

param. alpha vs HTER

90
91
92
93
94
95
96
97
98
99

100

0 20 40 60 80 100

%
 T

es
t A

cc
ur

ac
y

param. alpha

param. alpha vs Test Accuracy

Figure 7. Plot showing parameter alpha vs. test accuracy (Table 5).Entropy 2020, 22, x FOR PEER REVIEW 14 of 27

Figure 8. Plot showing parameter alpha vs. HTER (Table 5).

On a trained Inception v4 network, real-time evaluation of a test image takes approximately
0.019 s for the Replay-Mobile dataset.

Comparison with State-of-the-Art Methods

The performance of our end-to-end approaches using the SCNN and Inception v4 were
compared with other proposed methods on the Replay-Attack dataset and Replay-Mobile dataset, as
shown in Tables 6 and 7 and Figures 9–12.

Table 6. Comparison with state-of-the-art methods on the Replay-Attack dataset (the results of our
proposed methods are highlighted in bold).

Method Test Accuracy HTER
DLTP [1] 4.8%

Diffusion speed [2] 12.50%
Diffusion-CNN [3] 10%

LiveNet [7] 5.74%
CNN [5] 97.83%

CNN-LBP [6] 75.25%
LBP [21] 15.6%
IQM [21] 4.6%

SCNN (proposed method) 96.03% 7.53%
Inception v4 (proposed method) 94.77% 13.54%

Table 7. Comparison with state-of-the-art methods on the Replay-Mobile dataset (the results of our
proposed methods are highlighted in bold).

Method Test Accuracy HTER
CNN-LBP [6] 90.52%

LBP [21] 17.2%
IQM [21] 4.1%

SCNN (proposed method) 96.21% 4.96%
Inception v4 (proposed method) 95.53% 5.94%

0

2

4

6

8

10

12

0 20 40 60 80 100

%
 H

TE
R

param. alpha

param. alpha vs HTER

Figure 8. Plot showing parameter alpha vs. HTER (Table 5).

On a trained Inception v4 network, real-time evaluation of a test image takes approximately
0.019 s for the Replay-Mobile dataset.

Comparison with State-of-the-Art Methods

The performance of our end-to-end approaches using the SCNN and Inception v4 were compared
with other proposed methods on the Replay-Attack dataset and Replay-Mobile dataset, as shown in
Tables 6 and 7 and Figures 9–12.

Entropy 2020, 22, 1186 15 of 28

Table 6. Comparison with state-of-the-art methods on the Replay-Attack dataset (the results of our
proposed methods are highlighted in bold).

Method Test Accuracy HTER

DLTP [1] 4.8%
Diffusion speed [2] 12.50%
Diffusion-CNN [3] 10%

LiveNet [7] 5.74%
CNN [5] 97.83%

CNN-LBP [6] 75.25%
LBP [21] 15.6%
IQM [21] 4.6%

SCNN (proposed method) 96.03% 7.53%
Inception v4 (proposed method) 94.77% 13.54%

Table 7. Comparison with state-of-the-art methods on the Replay-Mobile dataset (the results of our
proposed methods are highlighted in bold).

Method Test Accuracy HTER

CNN-LBP [6] 90.52%
LBP [21] 17.2%
IQM [21] 4.1%

SCNN (proposed method) 96.21% 4.96%
Inception v4 (proposed method) 95.53% 5.94%Entropy 2020, 22, x FOR PEER REVIEW 15 of 27

Figure 9. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-Attack
dataset (Table 6).

Figure 10. Performance comparison (% HTER) of the end-to-end networks on the Replay-Attack
dataset (Table 6).

Figure 11. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-
Mobile dataset (Table 7).

Figure 12. Performance comparison (% HTER) of the end-to-end networks on the Replay-Mobile
dataset (Table 7).

70

75

80

85

90

95

100

CNN CNN-LBP SCNN Inception v4

%
 T

es
t A

cc
ur

ac
y

0

5

10

15

20

%
 H

TE
R

80

85

90

95

100

CNN-LBP SCNN Inception v4

%
 T

es
t A

cc
ur

ac
y

0

5

10

15

20

LBP IQM SCNN Inception v4

%
 H

TE
R

Figure 9. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-Attack
dataset (Table 6).

Entropy 2020, 22, 1186 16 of 28

Entropy 2020, 22, x FOR PEER REVIEW 15 of 27

Figure 9. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-Attack
dataset (Table 6).

Figure 10. Performance comparison (% HTER) of the end-to-end networks on the Replay-Attack
dataset (Table 6).

Figure 11. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-
Mobile dataset (Table 7).

Figure 12. Performance comparison (% HTER) of the end-to-end networks on the Replay-Mobile
dataset (Table 7).

70

75

80

85

90

95

100

CNN CNN-LBP SCNN Inception v4

%
 T

es
t A

cc
ur

ac
y

0

5

10

15

20

%
 H

TE
R

80

85

90

95

100

CNN-LBP SCNN Inception v4

%
 T

es
t A

cc
ur

ac
y

0

5

10

15

20

LBP IQM SCNN Inception v4

%
 H

TE
R

Figure 10. Performance comparison (% HTER) of the end-to-end networks on the Replay-Attack
dataset (Table 6).

Entropy 2020, 22, x FOR PEER REVIEW 15 of 27

Figure 9. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-Attack
dataset (Table 6).

Figure 10. Performance comparison (% HTER) of the end-to-end networks on the Replay-Attack
dataset (Table 6).

Figure 11. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-
Mobile dataset (Table 7).

Figure 12. Performance comparison (% HTER) of the end-to-end networks on the Replay-Mobile
dataset (Table 7).

70

75

80

85

90

95

100

CNN CNN-LBP SCNN Inception v4

%
 T

es
t A

cc
ur

ac
y

0

5

10

15

20

%
 H

TE
R

80

85

90

95

100

CNN-LBP SCNN Inception v4

%
 T

es
t A

cc
ur

ac
y

0

5

10

15

20

LBP IQM SCNN Inception v4

%
 H

TE
R

Figure 11. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-Mobile
dataset (Table 7).

Entropy 2020, 22, x FOR PEER REVIEW 15 of 27

Figure 9. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-Attack
dataset (Table 6).

Figure 10. Performance comparison (% HTER) of the end-to-end networks on the Replay-Attack
dataset (Table 6).

Figure 11. Performance comparison (% Test accuracy) of the end-to-end networks on the Replay-
Mobile dataset (Table 7).

Figure 12. Performance comparison (% HTER) of the end-to-end networks on the Replay-Mobile
dataset (Table 7).

70

75

80

85

90

95

100

CNN CNN-LBP SCNN Inception v4

%
 T

es
t A

cc
ur

ac
y

0

5

10

15

20

%
 H

TE
R

80

85

90

95

100

CNN-LBP SCNN Inception v4

%
 T

es
t A

cc
ur

ac
y

0

5

10

15

20

LBP IQM SCNN Inception v4

%
 H

TE
R

Figure 12. Performance comparison (% HTER) of the end-to-end networks on the Replay-Mobile
dataset (Table 7).

Entropy 2020, 22, 1186 17 of 28

Unlike the other methods, our proposed method is an end-to-end solution capable of liveness
detection in real-time. Even though the accuracy and HTER are slightly below the best reported model,
the tradeoff of real-time performance is an important goal. Therefore, these architectures are
capable of providing an end-to-end solution with the advantage of being real-time for use in face
recognition applications.

4.3.2. CNN-LSTM

For liveness detection on videos, we used 20 frames of each video clip in the training, development,
and test sets. We resized the frames to a size of 64 × 64, and created five sets of diffused images for
our experiments with different values (15, 25, 50, 75, and 100) of the parameter param. alpha that
defines the smoothness of diffusion. Figure 13 below shows some samples from the Replay-Attack
and Replay-Mobile dataset, and their corresponding diffused versions. The first two rows in both
(a) and (b) show real images from the Replay-Attack and Replay-Mobile datasets, respectively, and the
second and third rows in (a) and (b) show fake images in the datasets. The images in the first column in
(a) and (b) are original non-diffused images, and the images in the remaining columns are their diffused
versions created with the parameter alpha set to 15, 25, 50, 75, and 100, respectively. We tested our
proposed framework with each of these sets of diffused images. We conducted numerous experiments
on the Replay-Attack dataset and Replay-Mobile dataset by changing the hyper-parameters during the
learning phase.

We computed the test accuracy of the CNN-LSTM architecture after training for various cases
using diffused images created with param. alpha set to 15, 25, 50, 75, 100. We used the Adam
optimizer and mean-squared-error loss function. The activation functions used were ReLU for the
convolutional layers and hidden layer, and sigmoid for the output layer. The number of neurons
in the hidden layer of the classifier was set to 50, and the number of cells in the LSTM was set to
60. We trained the CNN-LSTM network for 100 epochs on the training set, while validating on the
validation (development) set for tuning the hyperparameters. During each epoch of training, if a better
validation accuracy was obtained, the model was saved. We repeated this process for various values of
learning rates. At the end of training, the saved model (i.e., the one that gave the highest validation
accuracy) was loaded, and then evaluated on the test set for the test accuracy and HTER. We obtained
98.71% test accuracy and 2.77% HTER on the Replay-Attack dataset, and 95.41% test accuracy and
5.28% HTER on the Replay-Mobile dataset. The tables and plots below summarize our results.

Results Obtained with the Replay-Attack Dataset

Table A3 shows the best model (highest validation accuracy) results obtained with the
Replay-Attack dataset when validating on the validation set during training for 100 epochs for
tuning the hyperparameters. The results of evaluation of the best models for each alpha in Table A3,
on the test set of the Replay-Attack dataset, is shown in Table 8. It can be observed that the best results
obtained are test accuracy of 98.71% and HTER of 2.77% with diffused images created with alpha of 15.
The plots of alpha vs. test accuracy and alpha vs. HTER, according to the results in Table 8, are shown
in Figures 14 and 15.

Entropy 2020, 22, 1186 18 of 28

Entropy 2020, 22, x FOR PEER REVIEW 16 of 27

Unlike the other methods, our proposed method is an end-to-end solution capable of liveness
detection in real-time. Even though the accuracy and HTER are slightly below the best reported
model, the tradeoff of real-time performance is an important goal. Therefore, these architectures are
capable of providing an end-to-end solution with the advantage of being real-time for use in face
recognition applications.

4.3.2. CNN-LSTM

For liveness detection on videos, we used 20 frames of each video clip in the training,
development, and test sets. We resized the frames to a size of 64 × 64, and created five sets of diffused
images for our experiments with different values (15, 25, 50, 75, and 100) of the parameter param.
alpha that defines the smoothness of diffusion. Figure 13 below shows some samples from the
Replay-Attack and Replay-Mobile dataset, and their corresponding diffused versions. The first two
rows in both (a) and (b) show real images from the Replay-Attack and Replay-Mobile datasets,
respectively, and the second and third rows in (a) and (b) show fake images in the datasets. The
images in the first column in (a) and (b) are original non-diffused images, and the images in the
remaining columns are their diffused versions created with the parameter alpha set to 15, 25, 50, 75,
and 100, respectively. We tested our proposed framework with each of these sets of diffused images.
We conducted numerous experiments on the Replay-Attack dataset and Replay-Mobile dataset by
changing the hyper-parameters during the learning phase.

(a) Entropy 2020, 22, x FOR PEER REVIEW 17 of 27

(b)

Figure 13. Sample images from the datasets and their corresponding diffused versions. (a) Images
from the Replay-Attack dataset. (b) Images from the Replay-Mobile dataset. The images in the first
two rows of both (a,b) are real, and the images in the third and fourth row of both (a,b) are fake.

We computed the test accuracy of the CNN-LSTM architecture after training for various cases
using diffused images created with param. alpha set to 15, 25, 50, 75, 100. We used the Adam
optimizer and mean-squared-error loss function. The activation functions used were ReLU for the
convolutional layers and hidden layer, and sigmoid for the output layer. The number of neurons in
the hidden layer of the classifier was set to 50, and the number of cells in the LSTM was set to 60. We
trained the CNN-LSTM network for 100 epochs on the training set, while validating on the validation
(development) set for tuning the hyperparameters. During each epoch of training, if a better
validation accuracy was obtained, the model was saved. We repeated this process for various values
of learning rates. At the end of training, the saved model (i.e., the one that gave the highest validation
accuracy) was loaded, and then evaluated on the test set for the test accuracy and HTER. We obtained
98.71% test accuracy and 2.77% HTER on the Replay-Attack dataset, and 95.41% test accuracy and
5.28% HTER on the Replay-Mobile dataset. The tables and plots below summarize our results.

• Results Obtained with the Replay-Attack Dataset

Table A3 shows the best model (highest validation accuracy) results obtained with the Replay-
Attack dataset when validating on the validation set during training for 100 epochs for tuning the
hyperparameters. The results of evaluation of the best models for each alpha in Table A3, on the test
set of the Replay-Attack dataset, is shown in Table 8. It can be observed that the best results obtained
are test accuracy of 98.71% and HTER of 2.77% with diffused images created with alpha of 15. The
plots of alpha vs. test accuracy and alpha vs. HTER, according to the results in Table 8, are shown in
Figures 14 and 15.

Table 8. Test accuracies and HTER obtained by evaluating the best models of each alpha (highlighted
in Table A3) on the test set (the highest test accuracy and lowest HTER are indicated in bold).

Alpha 15 25 50 75 100 Without Diffusion
Test accuracy (%) 98.71 97.35 97.65 95.54 96.77 96.27

HTER (%) 2.77 5.09 4.41 11.29 6.21 8.31

Figure 13. Sample images from the datasets and their corresponding diffused versions. (a) Images from
the Replay-Attack dataset. (b) Images from the Replay-Mobile dataset. The images in the first two
rows of both (a,b) are real, and the images in the third and fourth row of both (a,b) are fake.

Table 8. Test accuracies and HTER obtained by evaluating the best models of each alpha (highlighted in
Table A3) on the test set (the highest test accuracy and lowest HTER are indicated in bold).

Alpha 15 25 50 75 100 Without
Diffusion

Test accuracy (%) 98.71 97.35 97.65 95.54 96.77 96.27
HTER (%) 2.77 5.09 4.41 11.29 6.21 8.31

Entropy 2020, 22, 1186 19 of 28

Entropy 2020, 22, x FOR PEER REVIEW 18 of 27

Figure 14. Plot showing parameter alpha vs. test accuracy (Table 8).

Figure 15. Plot showing parameter alpha vs. HTER (Table 8).

We performed experiments without diffusion, i.e., by feeding the original non-diffused images
directly to the network. The best validation accuracy obtained while validating on the validation set
during training was 97.94%, as shown in Table A3. This model, when loaded and evaluated on the
non-diffused original images of the test set, gave 96.27% test accuracy and 8.31% HTER (Table 8).
Therefore, by applying diffusion, there is a significant improvement in accuracy and HTER by 2.44%
and 5.54%, respectively.

We also computed test results by training the network on the train set, and validating on the
testing set. The Tables A4 and A5, and Figure A1 show the results obtained.

• Results Obtained with the Replay-Mobile Dataset

Table A6 shows the best model (highest validation accuracy) results obtained with the Replay-
Mobile dataset when validating on the validation set during training for 100 epochs for tuning the
hyperparameters. The results of evaluation of the best models for each alpha (Table A6) on the test
set of the Replay-Mobile dataset, are shown in Table 9, and the corresponding plots are shown in
Figures 16 and 17. The best results obtained are the test accuracy of 95.41%, and HTER of 5.28% for
alpha of 100 and 75.

90
91
92
93
94
95
96
97
98
99

100

0 20 40 60 80 100

%
 T

es
t A

cc
ur

ac
y

param. alpha

param. alpha vs Test Accuracy

0

2

4

6

8

10

12

0 20 40 60 80 100

%
 H

TE
R

param. alpha

param. alpha vs HTER

Figure 14. Plot showing parameter alpha vs. test accuracy (Table 8).

Entropy 2020, 22, x FOR PEER REVIEW 18 of 27

Figure 14. Plot showing parameter alpha vs. test accuracy (Table 8).

Figure 15. Plot showing parameter alpha vs. HTER (Table 8).

We performed experiments without diffusion, i.e., by feeding the original non-diffused images
directly to the network. The best validation accuracy obtained while validating on the validation set
during training was 97.94%, as shown in Table A3. This model, when loaded and evaluated on the
non-diffused original images of the test set, gave 96.27% test accuracy and 8.31% HTER (Table 8).
Therefore, by applying diffusion, there is a significant improvement in accuracy and HTER by 2.44%
and 5.54%, respectively.

We also computed test results by training the network on the train set, and validating on the
testing set. The Tables A4 and A5, and Figure A1 show the results obtained.

• Results Obtained with the Replay-Mobile Dataset

Table A6 shows the best model (highest validation accuracy) results obtained with the Replay-
Mobile dataset when validating on the validation set during training for 100 epochs for tuning the
hyperparameters. The results of evaluation of the best models for each alpha (Table A6) on the test
set of the Replay-Mobile dataset, are shown in Table 9, and the corresponding plots are shown in
Figures 16 and 17. The best results obtained are the test accuracy of 95.41%, and HTER of 5.28% for
alpha of 100 and 75.

90
91
92
93
94
95
96
97
98
99

100

0 20 40 60 80 100

%
 T

es
t A

cc
ur

ac
y

param. alpha

param. alpha vs Test Accuracy

0

2

4

6

8

10

12

0 20 40 60 80 100

%
 H

TE
R

param. alpha

param. alpha vs HTER

Figure 15. Plot showing parameter alpha vs. HTER (Table 8).

We performed experiments without diffusion, i.e., by feeding the original non-diffused images
directly to the network. The best validation accuracy obtained while validating on the validation
set during training was 97.94%, as shown in Table A3. This model, when loaded and evaluated on
the non-diffused original images of the test set, gave 96.27% test accuracy and 8.31% HTER (Table 8).
Therefore, by applying diffusion, there is a significant improvement in accuracy and HTER by 2.44%
and 5.54%, respectively.

We also computed test results by training the network on the train set, and validating on the
testing set. The Tables A4 and A5, and Figure A1 show the results obtained.

Results Obtained with the Replay-Mobile Dataset

Table A6 shows the best model (highest validation accuracy) results obtained with the
Replay-Mobile dataset when validating on the validation set during training for 100 epochs for
tuning the hyperparameters. The results of evaluation of the best models for each alpha (Table A6)
on the test set of the Replay-Mobile dataset, are shown in Table 9, and the corresponding plots are

Entropy 2020, 22, 1186 20 of 28

shown in Figures 16 and 17. The best results obtained are the test accuracy of 95.41%, and HTER of
5.28% for alpha of 100 and 75.

Table 9. Test accuracies and HTER obtained by evaluating the best models of each alpha (highlighted in
Table A6) on the test set (the highest test accuracy and lowest HTER are indicated in bold).

Alpha 15 25 50 75 100 Without
Diffusion

Test accuracy (%) 91.87 92.76 94.29 94.39 95.41 95.20
HTER (%) 8.33 7.90 6.41 5.28 5.55 5.91

Entropy 2020, 22, x FOR PEER REVIEW 19 of 27

Table 9. Test accuracies and HTER obtained by evaluating the best models of each alpha (highlighted
in Table A6) on the test set (the highest test accuracy and lowest HTER are indicated in bold).

Alpha 15 25 50 75 100 Without Diffusion
Test accuracy (%) 91.87 92.76 94.29 94.39 95.41 95.20

HTER (%) 8.33 7.90 6.41 5.28 5.55 5.91

Figure 16. Plot showing parameter alpha vs. test accuracy (Table 9).

Figure 17. Plot showing parameter alpha vs. HTER (Table 9).

In the experiments performed without diffusion, i.e., by feeding the original non-diffused
images directly to the network, the best validation accuracy obtained while validating on the
validation set during training was 98.97%, as shown in Table A6. This model, when loaded and
evaluated on the original non-diffused test set images, gave 95.20% test accuracy and 5.91% HTER
(Table 9). In this case, by applying diffusion, though there is no significant improvement as obtained
with the Replay-Attack dataset, there is still a slight improvement in accuracy and HTER.

We also computed test results by training the network on the train set, and validating on the
testing set. The Tables A7 and A8, and Figure A2 show the results obtained.

The charts below (Figures 18 and 19) show the best results with diffusion and the results without
diffusion for both the Replay-Attack dataset (Table 8) and the Replay-Mobile dataset (Table 9).

90
91
92
93
94
95
96
97
98
99

100

0 20 40 60 80 100

%
 T

es
t A

cc
ur

ac
y

param. alpha

param. alpha vs Test Accuracy

0
1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100

%
 H

TE
R

param. alpha

param. alpha vs HTER

Figure 16. Plot showing parameter alpha vs. test accuracy (Table 9).

Entropy 2020, 22, x FOR PEER REVIEW 19 of 27

Table 9. Test accuracies and HTER obtained by evaluating the best models of each alpha (highlighted
in Table A6) on the test set (the highest test accuracy and lowest HTER are indicated in bold).

Alpha 15 25 50 75 100 Without Diffusion
Test accuracy (%) 91.87 92.76 94.29 94.39 95.41 95.20

HTER (%) 8.33 7.90 6.41 5.28 5.55 5.91

Figure 16. Plot showing parameter alpha vs. test accuracy (Table 9).

Figure 17. Plot showing parameter alpha vs. HTER (Table 9).

In the experiments performed without diffusion, i.e., by feeding the original non-diffused
images directly to the network, the best validation accuracy obtained while validating on the
validation set during training was 98.97%, as shown in Table A6. This model, when loaded and
evaluated on the original non-diffused test set images, gave 95.20% test accuracy and 5.91% HTER
(Table 9). In this case, by applying diffusion, though there is no significant improvement as obtained
with the Replay-Attack dataset, there is still a slight improvement in accuracy and HTER.

We also computed test results by training the network on the train set, and validating on the
testing set. The Tables A7 and A8, and Figure A2 show the results obtained.

The charts below (Figures 18 and 19) show the best results with diffusion and the results without
diffusion for both the Replay-Attack dataset (Table 8) and the Replay-Mobile dataset (Table 9).

90
91
92
93
94
95
96
97
98
99

100

0 20 40 60 80 100

%
 T

es
t A

cc
ur

ac
y

param. alpha

param. alpha vs Test Accuracy

0
1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100

%
 H

TE
R

param. alpha

param. alpha vs HTER

Figure 17. Plot showing parameter alpha vs. HTER (Table 9).

In the experiments performed without diffusion, i.e., by feeding the original non-diffused images
directly to the network, the best validation accuracy obtained while validating on the validation set
during training was 98.97%, as shown in Table A6. This model, when loaded and evaluated on the
original non-diffused test set images, gave 95.20% test accuracy and 5.91% HTER (Table 9). In this case,
by applying diffusion, though there is no significant improvement as obtained with the Replay-Attack
dataset, there is still a slight improvement in accuracy and HTER.

Entropy 2020, 22, 1186 21 of 28

We also computed test results by training the network on the train set, and validating on the
testing set. The Tables A7 and A8, and Figure A2 show the results obtained.

The charts below (Figures 18 and 19) show the best results with diffusion and the results without
diffusion for both the Replay-Attack dataset (Table 8) and the Replay-Mobile dataset (Table 9).
Entropy 2020, 22, x FOR PEER REVIEW 20 of 27

Figure 18. Test accuracy (%) obtained with and without diffusion for the Replay-Attack and Replay-
Mobile datasets (1: Replay-Attack, 2: Replay-Mobile).

Figure 19. HTER (%) obtained with and without diffusion for Replay-Attack and Replay-Mobile
datasets (1: Replay-Attack, 2: Replay-Mobile).

The training of the CNN-LSTM framework is very fast, as it takes only about 15 min for the
Replay-Attack dataset, and 14 min for the Replay-Mobile dataset.

• Comparison with State-of-the-Art Methods

The performance of our proposed approach was compared with state-of-the-art methods for
liveness detection on the Replay-Attack dataset, as shown in Table 10, and Figures 20 and 21. In
Reference [12], an HTER of 7.60% was achieved, and, in Reference [13], they achieved HTER of 6.62%
using LBP and SVM, and HTER of 1.25% using HOOF and LDA on the Replay-Attack dataset. In
Reference [15], 5.38% HTER was achieved using the multi-scale analysis, and, in Reference [16], the
MHI-LBP gave HTER of 3.9% and MHI-CNN gave HTER of 4.5%. The CNN LBP-TOP method
proposed in Reference [17] gave HTER of 4.7%. In the work proposed in Reference [19] that makes
use of motion cues for face anti-spoofing while 100% and 96.47% accuracy were achieved when tested
separately on Replay-Attack (controlled) and Replay-Attack (adverse) test sets. The work proposed
in Reference [21] reported HTER of 13.2%. We achieved 98.71% accuracy and 2.77% HTER when we
tested our proposed framework on the entire testing set of the Replay-Attack database.

Table 10. Comparison with state-of-the-art methods on the Replay-Attack dataset.

Method Test Accuracy HTER
LBP-TOP [12] 7.60%

LBP and SVM [13] 6.62%

90

92

94

96

98

100

1 2

Test Accuracy

Diffusion

No Diffusion

0

2

4

6

8

10

1 2

HTER

Diffusion

No Diffusion

Figure 18. Test accuracy (%) obtained with and without diffusion for the Replay-Attack and
Replay-Mobile datasets (1: Replay-Attack, 2: Replay-Mobile).

Entropy 2020, 22, x FOR PEER REVIEW 20 of 27

Figure 18. Test accuracy (%) obtained with and without diffusion for the Replay-Attack and Replay-
Mobile datasets (1: Replay-Attack, 2: Replay-Mobile).

Figure 19. HTER (%) obtained with and without diffusion for Replay-Attack and Replay-Mobile
datasets (1: Replay-Attack, 2: Replay-Mobile).

The training of the CNN-LSTM framework is very fast, as it takes only about 15 min for the
Replay-Attack dataset, and 14 min for the Replay-Mobile dataset.

• Comparison with State-of-the-Art Methods

The performance of our proposed approach was compared with state-of-the-art methods for
liveness detection on the Replay-Attack dataset, as shown in Table 10, and Figures 20 and 21. In
Reference [12], an HTER of 7.60% was achieved, and, in Reference [13], they achieved HTER of 6.62%
using LBP and SVM, and HTER of 1.25% using HOOF and LDA on the Replay-Attack dataset. In
Reference [15], 5.38% HTER was achieved using the multi-scale analysis, and, in Reference [16], the
MHI-LBP gave HTER of 3.9% and MHI-CNN gave HTER of 4.5%. The CNN LBP-TOP method
proposed in Reference [17] gave HTER of 4.7%. In the work proposed in Reference [19] that makes
use of motion cues for face anti-spoofing while 100% and 96.47% accuracy were achieved when tested
separately on Replay-Attack (controlled) and Replay-Attack (adverse) test sets. The work proposed
in Reference [21] reported HTER of 13.2%. We achieved 98.71% accuracy and 2.77% HTER when we
tested our proposed framework on the entire testing set of the Replay-Attack database.

Table 10. Comparison with state-of-the-art methods on the Replay-Attack dataset.

Method Test Accuracy HTER
LBP-TOP [12] 7.60%

LBP and SVM [13] 6.62%

90

92

94

96

98

100

1 2

Test Accuracy

Diffusion

No Diffusion

0

2

4

6

8

10

1 2

HTER

Diffusion

No Diffusion

Figure 19. HTER (%) obtained with and without diffusion for Replay-Attack and Replay-Mobile datasets
(1: Replay-Attack, 2: Replay-Mobile).

The training of the CNN-LSTM framework is very fast, as it takes only about 15 min for the
Replay-Attack dataset, and 14 min for the Replay-Mobile dataset.

Comparison with State-of-the-Art Methods

The performance of our proposed approach was compared with state-of-the-art methods for
liveness detection on the Replay-Attack dataset, as shown in Table 10, and Figures 20 and 21.
In Reference [12], an HTER of 7.60% was achieved, and, in Reference [13], they achieved HTER of
6.62% using LBP and SVM, and HTER of 1.25% using HOOF and LDA on the Replay-Attack dataset.
In Reference [15], 5.38% HTER was achieved using the multi-scale analysis, and, in Reference [16],
the MHI-LBP gave HTER of 3.9% and MHI-CNN gave HTER of 4.5%. The CNN LBP-TOP method
proposed in Reference [17] gave HTER of 4.7%. In the work proposed in Reference [19] that makes use
of motion cues for face anti-spoofing while 100% and 96.47% accuracy were achieved when tested
separately on Replay-Attack (controlled) and Replay-Attack (adverse) test sets. The work proposed

Entropy 2020, 22, 1186 22 of 28

in Reference [21] reported HTER of 13.2%. We achieved 98.71% accuracy and 2.77% HTER when we
tested our proposed framework on the entire testing set of the Replay-Attack database.

Table 10. Comparison with state-of-the-art methods on the Replay-Attack dataset.

Method Test Accuracy HTER

LBP-TOP [12] 7.60%
LBP and SVM [13] 6.62%

HOOF and LDA [13] 1.25%
Multi-scale analysis [15] 5.38%

MHI-LBP [16] 3.9%
MHI-CNN [16] 4.5%

CNN LBP-TOP [17] 4.7%
CNN-LSTM (C) [19] 100%
CNN-LSTM (A) [19] 96.47%

Motion-based approach [21] 13.2%
CNN-LSTM (proposed method) 98.71% 2.77%

Entropy 2020, 22, x FOR PEER REVIEW 21 of 27

HOOF and LDA [13] 1.25%
Multi-scale analysis [15] 5.38%

MHI-LBP [16] 3.9%
MHI-CNN [16] 4.5%

CNN LBP-TOP [17] 4.7%
CNN-LSTM (C) [19] 100%
CNN-LSTM (A) [19] 96.47%

Motion-based approach [21] 13.2%
CNN-LSTM (proposed method) 98.71% 2.77%

In the above table, some of the entries are blank because the test accuracy and HTER were not
reported by the authors.

Figure 20. Performance comparison (HTER) on the Replay-Attack dataset (Table 10).

Figure 21. Performance comparison (Test Accuracy) on the Replay-Attack dataset (Table 10).

Table 11 and Figure 22 below shows the comparison of our method with state-of-the-art methods
on the Replay-Mobile dataset. In Reference [20], HTER of 7.80% was achieved for IQM, and HTER of
9.13% was achieved for Gabor-jets. In the work proposed in Reference [21], HTER of 10.4% was
achieved. The anomaly detection approach proposed in Reference [25] gave HTER of 13.70%, and the
one-class multiple kernel fusion regression approach proposed in Reference [26] gave 13.64% HTER.

Table 11. Comparison with state-of-the-art methods on the Replay-Mobile dataset.

Method Test Accuracy HTER
IQM [20] 7.80%

Gabor-jets [20] 9.13%
Motion-based approach [21] 10.4%

Anomaly detection [25] 13.70%
Kernel fusion regression [26] 13.64%

0
2
4
6
8

10
12
14

%
 H

TE
R

80
84
88
92
96

100

CNN-LSTM [C] CNN-LSTM [A] CNN-LSTM (proposed
method)

%
 T

es
t A

cc
ur

ac
y

Figure 20. Performance comparison (HTER) on the Replay-Attack dataset (Table 10).

Entropy 2020, 22, x FOR PEER REVIEW 21 of 27

HOOF and LDA [13] 1.25%
Multi-scale analysis [15] 5.38%

MHI-LBP [16] 3.9%
MHI-CNN [16] 4.5%

CNN LBP-TOP [17] 4.7%
CNN-LSTM (C) [19] 100%
CNN-LSTM (A) [19] 96.47%

Motion-based approach [21] 13.2%
CNN-LSTM (proposed method) 98.71% 2.77%

In the above table, some of the entries are blank because the test accuracy and HTER were not
reported by the authors.

Figure 20. Performance comparison (HTER) on the Replay-Attack dataset (Table 10).

Figure 21. Performance comparison (Test Accuracy) on the Replay-Attack dataset (Table 10).

Table 11 and Figure 22 below shows the comparison of our method with state-of-the-art methods
on the Replay-Mobile dataset. In Reference [20], HTER of 7.80% was achieved for IQM, and HTER of
9.13% was achieved for Gabor-jets. In the work proposed in Reference [21], HTER of 10.4% was
achieved. The anomaly detection approach proposed in Reference [25] gave HTER of 13.70%, and the
one-class multiple kernel fusion regression approach proposed in Reference [26] gave 13.64% HTER.

Table 11. Comparison with state-of-the-art methods on the Replay-Mobile dataset.

Method Test Accuracy HTER
IQM [20] 7.80%

Gabor-jets [20] 9.13%
Motion-based approach [21] 10.4%

Anomaly detection [25] 13.70%
Kernel fusion regression [26] 13.64%

0
2
4
6
8

10
12
14

%
 H

TE
R

80
84
88
92
96

100

CNN-LSTM [C] CNN-LSTM [A] CNN-LSTM (proposed
method)

%
 T

es
t A

cc
ur

ac
y

Figure 21. Performance comparison (Test Accuracy) on the Replay-Attack dataset (Table 10).

In the above table, some of the entries are blank because the test accuracy and HTER were not
reported by the authors.

Table 11 and Figure 22 below shows the comparison of our method with state-of-the-art methods on
the Replay-Mobile dataset. In Reference [20], HTER of 7.80% was achieved for IQM, and HTER of 9.13%
was achieved for Gabor-jets. In the work proposed in Reference [21], HTER of 10.4% was achieved.
The anomaly detection approach proposed in Reference [25] gave HTER of 13.70%, and the one-class
multiple kernel fusion regression approach proposed in Reference [26] gave 13.64% HTER.

Entropy 2020, 22, 1186 23 of 28

Table 11. Comparison with state-of-the-art methods on the Replay-Mobile dataset.

Method Test Accuracy HTER

IQM [20] 7.80%
Gabor-jets [20] 9.13%

Motion-based approach [21] 10.4%
Anomaly detection [25] 13.70%

Kernel fusion regression [26] 13.64%
CNN-LSTM (proposed method) 95.41% 5.28%

Entropy 2020, 22, x FOR PEER REVIEW 22 of 27

CNN-LSTM (proposed method) 95.41% 5.28%

Figure 22. Performance comparison (HTER) on the Replay-Mobile dataset (Table 11).

As shown in Tables 10 and 11, our architecture gave very competitive results when compared to
other state-of-the-art methods in the literature for the Replay-Attack dataset, and gave the lowest
HTER when compared to state-of-the-art methods for the Replay-Mobile dataset. This proves that it
is an efficient solution for use in face recognition applications that require liveness detection on video
frames for anti-spoofing.

5. Conclusions

We have developed face liveness detection architectures for static as well as video frames. For
static images, our approach is an end-to-end real-time solution to the face liveness detection problem.
Previous best approaches relied on a separate preprocessing step for creating diffused images
whereas our work has integrated the diffusion process as well as the face liveness classification into
a single TensorFlow application. We used a specialized CNN (SCNN) and the Inception v4 network
in conjunction with the anisotropic diffusion for liveness classification. An analysis of the various test
results obtained shows that the smoothness of the diffusion is an important factor in determining the
livelihood of the captured image. We determined that the proposed framework gives better results
with lower values of the smoothness parameter since higher values of this parameter blur out
important information from the image. The nonlinear diffusion together with the CNN’s capability
of recognizing features at different scales enhances the recognition rate. Our proposed framework for
both the end-to-end solutions produced promising results on the Replay-Attack and Replay-Mobile
datasets, compare favourably to other state-of-the-art methods in the literature, and it has the added
advantage of accomplishing face liveness detection in real-time.

We also proposed a solution for face liveness detection in video sequences using a combination
of diffusion (CNN and LSTM). We first applied nonlinear diffusion to each frame in the sequence,
which makes the edge information and surface texture of a real image more pronounced than that of
a fake image. The CNN extracts the complex and deep spatial features of each frame, and the LSTM
captures the temporal dynamics in the sequence in order to classify the video sequence as real or fake.
Our architecture produced competitive results compared to other state-of-the-art methods in the
literature. Our experiments with the Replay-Attack dataset produced 98.71% test accuracy and an
HTER of 2.77%, and our experiments on the Replay-Mobile dataset gave test accuracy of 95.41% and
HTER of 5.28%, proving that it is a successful method for liveness detection of sequences. Our future
work on the end-to-end solution will try to improve the classification accuracy by experimenting with
various hyper-parameters, and then try the improved framework for detecting face spoofing attacks

0

2

4

6

8

10

12

14

16

IQM Gabor-jets Motion-based
approach

Anomaly
detection

Kernel fusion
regression

CNN-LSTM

%
 H

TE
R

Figure 22. Performance comparison (HTER) on the Replay-Mobile dataset (Table 11).

As shown in Tables 10 and 11, our architecture gave very competitive results when compared
to other state-of-the-art methods in the literature for the Replay-Attack dataset, and gave the lowest
HTER when compared to state-of-the-art methods for the Replay-Mobile dataset. This proves that it is
an efficient solution for use in face recognition applications that require liveness detection on video
frames for anti-spoofing.

5. Conclusions

We have developed face liveness detection architectures for static as well as video frames.
For static images, our approach is an end-to-end real-time solution to the face liveness detection
problem. Previous best approaches relied on a separate preprocessing step for creating diffused images
whereas our work has integrated the diffusion process as well as the face liveness classification into
a single TensorFlow application. We used a specialized CNN (SCNN) and the Inception v4 network
in conjunction with the anisotropic diffusion for liveness classification. An analysis of the various
test results obtained shows that the smoothness of the diffusion is an important factor in determining
the livelihood of the captured image. We determined that the proposed framework gives better
results with lower values of the smoothness parameter since higher values of this parameter blur out
important information from the image. The nonlinear diffusion together with the CNN’s capability of
recognizing features at different scales enhances the recognition rate. Our proposed framework for
both the end-to-end solutions produced promising results on the Replay-Attack and Replay-Mobile
datasets, compare favourably to other state-of-the-art methods in the literature, and it has the added
advantage of accomplishing face liveness detection in real-time.

We also proposed a solution for face liveness detection in video sequences using a combination
of diffusion (CNN and LSTM). We first applied nonlinear diffusion to each frame in the sequence,

Entropy 2020, 22, 1186 24 of 28

which makes the edge information and surface texture of a real image more pronounced than that of
a fake image. The CNN extracts the complex and deep spatial features of each frame, and the LSTM
captures the temporal dynamics in the sequence in order to classify the video sequence as real or
fake. Our architecture produced competitive results compared to other state-of-the-art methods in
the literature. Our experiments with the Replay-Attack dataset produced 98.71% test accuracy and
an HTER of 2.77%, and our experiments on the Replay-Mobile dataset gave test accuracy of 95.41% and
HTER of 5.28%, proving that it is a successful method for liveness detection of sequences. Our future
work on the end-to-end solution will try to improve the classification accuracy by experimenting with
various hyper-parameters, and then try the improved framework for detecting face spoofing attacks
on video streams. As for the CNN-LSTM, our future work would be to improve the accuracy by
experimenting with various hyper-parameters as well as deeper architectures.

Author Contributions: This research is part of the R.K. dissertation work under the supervision of A.M.
All authors conceived and designed the experiments. R.K. performed the experiments. Formal analysis, R.K.
Investigation, R.K. Methodology, A.M. Software, R.K. Supervision, A.M. Writing—original draft, Ranjana Koshy.
Writing—review & editing, A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research work was funded in part by the Department of Computer Science and Engineering, CT, USA.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Best model obtained for each alpha while validating on the development set during training,
with the Replay-Attack dataset, in Inception v4.

Alpha 15 25 50 75 100

Val. Acc. 94.81 94.25 93.40 93.44 93.31

Table A2. Best model obtained for each alpha while validating on the development set during training,
with the Replay-Mobile dataset, in Inception v4.

Alpha 15 25 50 75 100

Val. Acc. (%) 98.20 96.98 96.49 95.43 94.66

Table A3. Highest validation accuracy (best model) obtained for different values of
learning rate, by validating on diffused validation images created with each alpha, during training,
with Replay-Attack dataset, in CNN-LSTM (the highest validation accuracy for each alpha,
and without diffusion, is highlighted in bold).

Alpha
Learning Rate

0.001 0.002 0.005 0.0008 0.0005

15 98.22 98.90 95.24 97.46 97.18
25 99.13 95.56 94.74 98.89 97.78
50 96.00 98.58 96.71 98.07 97.51
75 97.56 96.11 96.53 96.17 97.50

100 96.94 95.07 95.53 98.61 98.33
w/o diffusion 97.28 95.46 96.67 97.94 97.54

Entropy 2020, 22, 1186 25 of 28

Table A4. Highest validation accuracy (best model) obtained for different values of
learning rate, by validating on diffused test images created with each alpha, during training,
with Replay-Attack dataset, in CNN-LSTM (the highest validation accuracy for each alpha,
and without diffusion, is highlighted in bold).

Alpha
Learning Rate

0.001 0.002 0.005 0.0008 0.0005

15 97.92 97.05 97.47 96.56 97.25
25 98.40 97.34 92.73 98.78 98.65
50 96.65 95.50 89.49 97.09 99.17
75 94.82 96.07 94.30 96.75 95.76

100 96.67 96.18 97.33 96.68 98.51
w/o diffusion 98.42 94.36 83.33 98.75 97.39

Table A5. HTER obtained by evaluating the best models of each alpha (from Table A4) on the test set
(the overall lowest HTER is highlighted in bold).

Alpha 15 25 50 75 100 Without Diffusion

HTER (%) 6.25 1.73 2.0 6.97 2.97 3.75

Entropy 2020, 22, x FOR PEER REVIEW 24 of 27

Table A5. HTER obtained by evaluating the best models of each alpha (from Table A4) on the test set
(the overall lowest HTER is highlighted in bold).

Alpha 15 25 50 75 100 Without Diffusion
HTER (%) 6.25 1.73 2.0 6.97 2.97 3.75

Figure A1. Plot showing parameter alpha vs. HTER (Table A5).

Table A6. Highest validation accuracy (best model) obtained for different values of learning rate by
validating on diffused validation images created with each alpha, during training with Replay-Mobile
dataset in CNN-LSTM (the highest validation accuracy for each alpha, and without diffusion, is
highlighted in bold).

Alpha
Learning Rate

0.001 0.002 0.005 0.0008 0.0005
15 97.81 95.89 96.83 96.57 97.73
25 98.26 95.91 97.00 97.34 97.40
50 97.40 95.04 93.31 97.27 98.08
75 98.59 96.39 97.31 98.03 97.34

100 98.91 96.71 95.11 97.70 97.01
w/o diffusion 98.97 97.08 88.95 97.88 97.42

Table A7. Highest validation accuracy (best model) obtained for different values of learning rate by
validating on diffused test images created with each alpha, during training, with Replay-Mobile
dataset in CNN-LSTM (the highest validation accuracy for each alpha, and without diffusion, is
highlighted in bold).

Alpha
Learning Rate

0.001 0.002 0.005 0.0008 0.0005
15 93.69 97.07 94.40 94.50 95.50
25 93.69 95.28 92.33 95.33 94.69
50 93.16 94.67 95.43 93.71 92.67
75 95.28 92.67 90.23 96.01 94.88
100 93.71 94.95 90.78 94.74 94.17

w/o diffusion 93.26 94.04 92.38 92.76 95.53

0
1
2
3
4
5
6
7
8

0 20 40 60 80 100

%
 H

TE
R

param. alpha

param. alpha vs HTER

Figure A1. Plot showing parameter alpha vs. HTER (Table A5).

Table A6. Highest validation accuracy (best model) obtained for different values of learning rate by
validating on diffused validation images created with each alpha, during training with Replay-Mobile
dataset in CNN-LSTM (the highest validation accuracy for each alpha, and without diffusion,
is highlighted in bold).

Alpha
Learning Rate

0.001 0.002 0.005 0.0008 0.0005

15 97.81 95.89 96.83 96.57 97.73
25 98.26 95.91 97.00 97.34 97.40
50 97.40 95.04 93.31 97.27 98.08
75 98.59 96.39 97.31 98.03 97.34

100 98.91 96.71 95.11 97.70 97.01
w/o diffusion 98.97 97.08 88.95 97.88 97.42

Entropy 2020, 22, 1186 26 of 28

Table A7. Highest validation accuracy (best model) obtained for different values of learning rate by
validating on diffused test images created with each alpha, during training, with Replay-Mobile dataset
in CNN-LSTM (the highest validation accuracy for each alpha, and without diffusion, is highlighted
in bold).

Alpha
Learning Rate

0.001 0.002 0.005 0.0008 0.0005

15 93.69 97.07 94.40 94.50 95.50
25 93.69 95.28 92.33 95.33 94.69
50 93.16 94.67 95.43 93.71 92.67
75 95.28 92.67 90.23 96.01 94.88

100 93.71 94.95 90.78 94.74 94.17
w/o diffusion 93.26 94.04 92.38 92.76 95.53

Table A8. HTER obtained by evaluating the best models of each alpha (from Table A7) on the test set
(the overall lowest HTER is highlighted in bold).

Alpha 15 25 50 75 100 Without Diffusion

HTER (%) 3.47 5.83 4.97 4.68 5.77 5.06

Entropy 2020, 22, x FOR PEER REVIEW 25 of 27

Table A8. HTER obtained by evaluating the best models of each alpha (from Table A7) on the test set
(the overall lowest HTER is highlighted in bold).

Alpha 15 25 50 75 100 Without Diffusion
HTER (%) 3.47 5.83 4.97 4.68 5.77 5.06

Figure A2. Plot showing parameter alpha vs. HTER (Table A8).

Reference

1. Parveen, S.; Ahmad, S.M.S.; Abbas, N.H.; Adnan, W.A.W.; Hanafi, M.; Naeem, N. Face Liveness Detection
Using Dynamic Local Ternary Pattern (DLTP). Computers 2016, 5, 10, doi:10.3390/computers5020010.

2. Kim, W.; Suh, S.; Han, J. Face Liveness Detection from a Single Image via Diffusion Speed Model. IEEE
Trans. Image Process. 2015, 24, 2456–2465, doi:10.1109/TIP.2015/2422574.

3. Alotaibi, A.; Mahmood, A. Deep face liveness detection based on nonlinear diffusion using convolutional
neural network. SIViP 2017, 11, 713–720; doi:10.1007/s11760–016–1014–2.

4. Koshy, R.; Mahmood, A. Optimizing Deep CNN Architectures for Face Liveness Detection. Entropy 2019,
21, 423, doi:10.3390/e21040423.

5. Gragnaniello, D.; Sansone, C.; Poggi, G.; Verdoliva, L. Biometric Spoofing Detection by a Domain-Aware
Convolutional Neural Network. In Proceedings of the 2016 12th International Conference on Signal-Image
Technology & Internet-Based Systems (SITIS), Naples, Italy, 28 November–1 December 2016; pp. 193–198,
doi:10.1109/SITIS.2016.38.

6. Das, P.K.; Hu, B.; Liu, C.; Cui, K.; Ranjan, P.; Xiong, G. A New Approach for Face Anti-Spoofing Using
Handcrafted and Deep Network Features. In Proceedings of the 2019 IEEE International Conference on
Service Operations and Logistics, and Informatics (SOLI), Zhengzhou, China, 6–8 November 2019; pp. 33–
38, doi:10.1109/SOLI48380.2019.8955089.

7. Rehman, Y.A.U.; Po, L.M.; Liu, M. LiveNet: Improving features generalization for face liveness detection
using convolution neural networks. Expert Syst. Appl. 2018, 108, 159–169.

8. Alotaibi, A.; Mahmood, A. Enhancing computer vision to detect face spoofing attack utilizing a single frame
from a replay video attack using deep learning. In Proceedings of the International Conference on
Optoelectronics and Image Processing (ICOIP), Warsaw, Poland, 10–12 June 2016; pp. 1–5,
doi:10.1109/OPTIP.2016.7528488.

9. Wang, T.; Yang, J.; Lei, Z.; Liao, S.; Li, S.Z. Face Liveness Detection Using 3D Structure recovered from a
single camera. In proceedings of the 2013 International Conference on Biometrics (ICB), Madrid, Spain, 4–
7 June 2013; pp. 1–6, doi:10.1109/ICB.2013.6612957.

10. Anjos, A.; Chakka, M.M.; Marcel, S. Motion-based counter-measures to photo attacks in face recognition.
IET Biom. 2014, 3, 147–158, doi:10.1049/iet-bmt.2012.0071.

11. Wen, D.; Han, H.; Jain, A.K. Face Spoof Detection with Image Distortion Analysis. IEEE Trans. Inf. Forensics

0

1

2

3

4

5

6

7

0 20 40 60 80 100

%
 H

TE
R

param. alpha

param. alpha vs HTER

Figure A2. Plot showing parameter alpha vs. HTER (Table A8).

References

1. Parveen, S.; Ahmad, S.M.S.; Abbas, N.H.; Adnan, W.A.W.; Hanafi, M.; Naeem, N. Face Liveness Detection
Using Dynamic Local Ternary Pattern (DLTP). Computers 2016, 5, 10. [CrossRef]

2. Kim, W.; Suh, S.; Han, J. Face Liveness Detection from a Single Image via Diffusion Speed Model. IEEE Trans.
Image Process. 2015, 24, 2456–2465. [CrossRef] [PubMed]

3. Alotaibi, A.; Mahmood, A. Deep face liveness detection based on nonlinear diffusion using convolutional
neural network. SIViP 2017, 11, 713–720. [CrossRef]

4. Koshy, R.; Mahmood, A. Optimizing Deep CNN Architectures for Face Liveness Detection. Entropy 2019,
21, 423. [CrossRef]

http://dx.doi.org/10.3390/computers5020010
http://dx.doi.org/10.1109/TIP.2015.2422574
http://www.ncbi.nlm.nih.gov/pubmed/25879944
http://dx.doi.org/10.1007/s11760-016-1014-2
http://dx.doi.org/10.3390/e21040423

Entropy 2020, 22, 1186 27 of 28

5. Gragnaniello, D.; Sansone, C.; Poggi, G.; Verdoliva, L. Biometric Spoofing Detection by a Domain-Aware
Convolutional Neural Network. In Proceedings of the 2016 12th International Conference on
Signal-Image Technology & Internet-Based Systems (SITIS), Naples, Italy, 28 November–1 December 2016;
pp. 193–198. [CrossRef]

6. Das, P.K.; Hu, B.; Liu, C.; Cui, K.; Ranjan, P.; Xiong, G. A New Approach for Face Anti-Spoofing Using
Handcrafted and Deep Network Features. In Proceedings of the 2019 IEEE International Conference
on Service Operations and Logistics, and Informatics (SOLI), Zhengzhou, China, 6–8 November 2019;
pp. 33–38. [CrossRef]

7. Rehman, Y.A.U.; Po, L.M.; Liu, M. LiveNet: Improving features generalization for face liveness detection
using convolution neural networks. Expert Syst. Appl. 2018, 108, 159–169. [CrossRef]

8. Alotaibi, A.; Mahmood, A. Enhancing computer vision to detect face spoofing attack utilizing a single
frame from a replay video attack using deep learning. In Proceedings of the International Conference on
Optoelectronics and Image Processing (ICOIP), Warsaw, Poland, 10–12 June 2016; pp. 1–5. [CrossRef]

9. Wang, T.; Yang, J.; Lei, Z.; Liao, S.; Li, S.Z. Face Liveness Detection Using 3D Structure recovered from
a single camera. In Proceedings of the 2013 International Conference on Biometrics (ICB), Madrid,
Spain, 4–7 June 2013; pp. 1–6. [CrossRef]

10. Anjos, A.; Chakka, M.M.; Marcel, S. Motion-based counter-measures to photo attacks in face recognition.
IET Biom. 2014, 3, 147–158. [CrossRef]

11. Wen, D.; Han, H.; Jain, A.K. Face Spoof Detection with Image Distortion Analysis. IEEE Trans. Inf.
Forensics Secur. 2015, 10, 746–761. [CrossRef]

12. De Freitas Pereira, T.; Anjos, A.; De Martino, J.M.; Marcel, S. LBP – TOP based countermeasure against
face spoofing attacks. In Proceedings of the ACCV’ 12 Proceedings of the 11th International Conference on
Computer Vision–Volume Part I, Daejeon, Korea, 5–6 November 2012; pp. 121–132.

13. Bharadwaj, S.; Dhamecha, T.I.; Vatsa, M.; Singh, R. Computationally Efficient Face Spoofing Detection
with Motion Magnification. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern
Recognition Workshops, Portland, OR, USA, 23–28 June 2013; pp. 105–110. [CrossRef]

14. Tang, D.; Zhou, Z.; Zhang, Y.; Zhang, K. Face Flashing: A Secure Liveness Detection Protocol Based on
Light Reflections. arXiv 2018, arXiv:1801.01949.

15. Yeh, C.; Chang, H. Face Liveness Detection Based on Perpetual Image Quality Assessment Features with
Multi-Scale Analysis. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 49–56. [CrossRef]

16. Pan, S.; Deravi, F. Spatio-Temporal Texture Features for Presentation Attack Detection in Biometric Systems.
In Proceedings of the 2019 Eighth International Conference on Emerging Security Technologies (EST),
Colchester, UK, 22–24 July 2019; pp. 1–6. [CrossRef]

17. Asim, M.; Ming, Z.; Javed, M.Y. CNN based spatio-temporal feature extraction for face anti-spoofing. In
Proceedings of the 2017 2nd International Conference on Image, Vision, and Computing (ICIVC), Chengdu,
China, 2–4 June 2017; pp. 234–238. [CrossRef]

18. Xu, Z.; Li, S.; Deng, W. Learning temporal features using LSTM-CNN architecture for face anti-spoofing.
In Proceedings of the 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur,
Malaysia, 3–6 November 2015; pp. 141–145. [CrossRef]

19. Tu, X.; Zhang, H.; Zie, M.; Luo, Y.; Zhang, Y.; Ma, Z. Enhance the Motion Cues for Face Anti-Spoofing using
CNN-LSTM Architecture. arXiv 2019, arXiv:1901.05635.

20. Costa-Pazo, A.; Bhattacharjee, S.; Vasquez-Fernandez, E.; Marcel, S. The REPLAY-MOBILE Face
Presentation-Atttack Database. In Proceedings of the 2016 International Conference of the Biometrics
Special Interest Group (BIOSIG), Darmstadt, Germany, 21–23 September 2016; pp. 1–7. [CrossRef]

21. Nikisins, O.; Mohammadi, A.; Anjos, A.; Marcel, S. On Effectiveness of Anomaly Detection Approaches
against Unseen Presentation Attacks in Face Anti-spoofing. In Proceedings of the 2018 International
Conference on Biometrics (ICB), Gold Coast, QLD, Australia, 20–23 February 2018; pp. 75–81. [CrossRef]

22. Chingovska, I.; Anjos, A.; Marcel, S. On the Effectiveness of Local Binary Patterns in Face Anti-spoofing. In
Proceedings of the 2012 BIOSIG – Proceedings of the International Conference of Biometrics Special Interest
Group (BIOSIG), Darmstadt, Germany, 6–7 September 2012; pp. 1–7.

23. Galbally, J.; Marcel, S.; Fierrez, J. Image Quality Assessment for Fake Biometric Detection: Application to Iris,
Fingerprint, and Face Recognition. IEEE Trans. Image Process. 2014, 23, 710–724. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/SITIS.2016.38
http://dx.doi.org/10.1109/SOLI48380.2019.8955089
http://dx.doi.org/10.1016/j.eswa.2018.05.004
http://dx.doi.org/10.1109/OPTIP.2016.7528488
http://dx.doi.org/10.1109/ICB.2013.6612957
http://dx.doi.org/10.1049/iet-bmt.2012.0071
http://dx.doi.org/10.1109/TIFS.2015.2400395
http://dx.doi.org/10.1109/CVPRW.2013.23
http://dx.doi.org/10.1109/WACV.2018.00012
http://dx.doi.org/10.1109/EST.2019.8806220
http://dx.doi.org/10.1109/ICIVC.2017.7984552
http://dx.doi.org/10.1109/ACPR.2015.7486482
http://dx.doi.org/10.1109/BIOSIG.2016.7736936
http://dx.doi.org/10.1109/ICB2018.2018.00022
http://dx.doi.org/10.1109/TIP.2013.2292332
http://www.ncbi.nlm.nih.gov/pubmed/26270913

Entropy 2020, 22, 1186 28 of 28

24. Anjos, A.; Marcel, S. Counter-measures to photo attacks in face recognition: A public database and a baseline.
In Proceedings of the 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11–13
October 2011; pp. 1–7. [CrossRef]

25. Fatemifar, S.; Arashloo, S.R.; Awais, M.; Kittler, J. Spoofing Attack Detection by Anomaly Detection.
In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8464–8468. [CrossRef]

26. Arashloo, S.R. Unseen Face Presentation Attack Detection Using Class-Specific Sparse One-Class Multiple
Kernel Fusion Regression. arXiv 2019, arXiv:1912.13276.

27. Erdem, E. Linear Diffusion. 2012. Available online: https://web.cs.hacettepe.edu.tr/~{}erkut/bil717.s12/w03-
lineardif.pdf (accessed on 19 September 2019).

28. Hajiaboli, M.R.; Ahmad, M.O.; Wang, C. An Edge-Adapting Laplacian Kernel for Nonlinear Diffusion Filters.
IEEE Trans. Image Process. 2012, 21, 1561–1572. [CrossRef] [PubMed]

29. Perona, P.; Malik, J. Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Trans. Pattern Anal.
Mach. Intell. 1990, 12, 629–639. [CrossRef]

30. Weickert, J.; Romeny, B.M.T.H.; Viergever, M.A. Efficient and Reliable Schemes for Nonlinear
Diffusion Filtering. IEEE Trans. Image Process. 1998, 7, 398–410. [CrossRef] [PubMed]

31. Ralli, J. PDE Based Image Diffusion and AOS. 2014. Available online: http://www.jarnoralli.com/images/pdf/
diffusion_and_aos.pdf (accessed on 28 August 2017).

32. Szegedy, C.; Ioffe, S.; Vanhoucke, V. Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning. arXiv 2016, arXiv:1602.07261.

33. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [CrossRef]

34. Mulder, W.D.; Bethard, S.; Moens, M. A survey on the application of recurrent neural networks to statistical
language modeling. Comput Speech Lang. 2015, 30, 61–98. [CrossRef]

35. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780.
[CrossRef] [PubMed]

36. Lu, Z.; Wu, X.; He, R. Person Identification from Lip Texture Analysis. In Proceedings of the 2016
IEEE International Conference on Digital Signal Processing (DSP), Beijing, China, 16–18 October 2016;
pp. 472–476. [CrossRef]

37. Liu, Y.; Jiang, X.; Sun, T.; Xu, K. 3D Gait Recognition Based on a CNN-LSTM Network with the Fusion of
SkeGEI and DA Features. In Proceedings of the 2019 16th IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), Taipei, Taiwan, 18–21 September 2019; pp. 1–8. [CrossRef]

38. Zhang, D.; Wu, W.; Cheng, H.; Zhang, R.; Dong, Z.; Cai, Z. Image-to-Video Person Re-Identification
With temporally Memorized Similarity Learning. IEEE Trans. Circuits Syst. Video Technol. 2018,
28, 2622–2632. [CrossRef]

39. Ullah, A.; Ahmad, J.; Muhammad, K.; Sajjad, M.; Baik, S.W. Action Recognition in Video Sequences using
Deep Bi-directional LSTM with CNN Features. IEEE Access 2017, 6, 1155–1166. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/IJCB.2011.6117503
http://dx.doi.org/10.1109/ICASSP.2019.8682253
https://web.cs.hacettepe.edu.tr/~{}erkut/bil717.s12/w03-lineardif.pdf
https://web.cs.hacettepe.edu.tr/~{}erkut/bil717.s12/w03-lineardif.pdf
http://dx.doi.org/10.1109/TIP.2011.2172803
http://www.ncbi.nlm.nih.gov/pubmed/22020687
http://dx.doi.org/10.1109/34.56205
http://dx.doi.org/10.1109/83.661190
http://www.ncbi.nlm.nih.gov/pubmed/18276260
http://www.jarnoralli.com/images/pdf/diffusion_and_aos.pdf
http://www.jarnoralli.com/images/pdf/diffusion_and_aos.pdf
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1016/j.csl.2014.09.005
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/ICDSP.2016.7868602
http://dx.doi.org/10.1109/AVSS.2019.8909881
http://dx.doi.org/10.1109/TCSVT.2017.2723429
http://dx.doi.org/10.1109/ACCESS.2017.2778011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Method
	Nonlinear Diffusion
	End-to-End Diffusion-CNN Networks
	Specialized Convolutional Neural Network (SCNN)
	Inception v4

	CNN-LSTM

	Performance Evaluation
	Datasets
	Replay-Attack Dataset
	Replay-Mobile Dataset

	Experimental Setup
	Experimental Results
	End-to-End Diffusion—CNN Networks
	CNN-LSTM

	Conclusions
	
	References

