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Abstract: Information entropy metrics have been applied to a wide range of problems that were
abstracted as complex networks. This growing body of research is scattered in multiple disciplines,
which makes it difficult to identify available metrics and understand the context in which they are
applicable. In this work, a narrative literature review of information entropy metrics for complex
networks is conducted following the PRISMA guidelines. Existing entropy metrics are classified
according to three different criteria: whether the metric provides a property of the graph or a
graph component (such as the nodes), the chosen probability distribution, and the types of complex
networks to which the metrics are applicable. Consequently, this work identifies the areas in need for
further development aiming to guide future research efforts.
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1. Introduction

A wide range of problems, such as social network analysis, communications routing,
protein interactions, identification of key players in transaction networks, vulnerability of water
distribution networks, and city traffic studies, deals with determining the entropy of relational
structures, such as complex networks or graphs. Given the great differences in routes and flow
types that these varied networks follow, a great body of research has been developed that presents
varied information entropy metrics. Each entropy metric provides different characteristics of a network
or its components. Furthermore, it is accepted that not all of the metrics are applicable to all networks.
Unfortunately, this growing body of research is scattered in multiple disciplines. Thus, it is difficult
to identify the available metrics and understand the context in which they are applicable, as well
as to determine areas in need of further development. Consequently, a systematic literature review
of information entropy metrics for graphs is direly needed. This work aims at conducting a survey
of existing graph entropy metrics that are specifically based on information entropy, as described
by Shannon’s formulation [1]. In addition, these entropy metrics will be classified with respect to
the probability distribution that they make use of and the type of networks they can be applied to.
The final objective of this work is to identify open research avenues.

This work is organized, as follows. Section 2 introduces preliminary concepts in graph theory
and Shannon’s information entropy. This section provides definitions, formulations and notation used
throughout this work. Section 3 details the procedure that is followed in order to produce this review
article and defines the scientific questions that this work aims to answer. Section 4 summarizes the
works that were considered for this narrative review in terms of three factors: the use of entropy as a
networks vs. a node metric, the different types of probability distributions, and the types of graphs to
which these metrics are applicable. Finally, Section 5 discusses open research avenues and presents
final remarks.
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2. Preliminaries

2.1. Complex Networks

A complex network or graph G is composed of a finite set of nodes V and a set of edges E. The set
of nodes cannot be empty, V 6= ∅, thus V = {v0, v1, ..., vN}. The set of edges E are pairs of nodes
(vi, vj) that denote some kind of relationship between nodes. Two nodes that are joined by an edge
are referred to as adjacent or neighboring. If the edges are unordered, then the graph is said to be
undirected. When the edges are ordered, the graph is called directed. Simply put, in an undirected
graph, the edges (vi, vj) and (vj, vi) are equivalent, while, in a directed graph, they are not.

Graph G can be completely described by means of an adjacency matrix A of elements aij = 1 if
there exists an edge between nodes vi and vj and 0 otherwise. Such graphs are known as binary or
unweighted. If the edges carry a numerical value measuring a property of the edge (distance, strength
of a relationship, number of transactions, etc.), then graph G is generally described while using a
weight matrixW of elements wij > 0 and it is called a weighted graph.

A graph G is said to be connected, if, for every pair of distinct nodes vi and vj, there is a path from
vi to vj; otherwise, it is said to be disconnected.

2.2. Notation

In this work, the node notations vi and i are considered to be equivalent, vi ≡ i, and it used
interchangeably in order to avoid multiple subscripts where necessary.

2.3. Traditional Centrality Metrics

2.3.1. Degree

For an undirected graph, the degree of a node i is the number of nodes j to which i is adjacent.
The degree ki can be calculated from the adjacency matrix, as follows:

ki = ∑
j

aij = ∑
j

aji. (1)

For directed graphs, the in- and out-degree, kin
i , and kout

i , respectively, can be defined. The former
is the number of ingoing links, while the latter indicates the number of outgoing links. In general,
the degree can be calculated as the sum of these two components [2]:

ki = kin
i + kout

i = ∑
j

aji + ∑
j

aij. (2)

2.3.2. Strength

The node strength is the natural generalization of the node degree for weighted graphs.
Thus, it can be calculated from the weight matrix. For undirected graphs, it is defined as

si = ∑
j

wij = ∑
j

wji (3)

and for directed graphs, as follows

si = sin
i + sout

i = ∑
j

wji + ∑
j

wij. (4)
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2.3.3. Betweenness

The betweenness centrality η was defined by Freeman [3] and it represents the fraction of times
in which a node v falls on the geodesic path σ between any two other nodes i and j. This metric
captures the potential that node v has to control the communication between nodes i and j. It can be
calculated as

ηv = ∑
i,j∈V

σ(i, j|v)
σ(i, j)

. (5)

Note that a geodesic path is the shortest possible sequence of linked nodes from i to j, in which
neither nodes nor edges are repeated.

2.3.4. Closeness

Closeness centrality is defined in terms of distance and it can be interpreted either as a metric
of independence from control by others or as a measure of access or efficiency [4]. Given d(i, j),
i.e., the distance between nodes i and j, ∀j ∈ V, the closeness centrality C of node i is defined as

Ci =
1

∑
j∈V

d(i, j)
(6)

2.3.5. Eigenvector

Being originally suggested by Bonacich [5,6], eigenvector centrality uses the eigenvector of the
largest eigenvalue of the adjacency matrix A as a centrality metric. While degree centrality weights
every contact equally, the eigenvector weights neighbors according to their own value of centrality,
i.e., the centrality of node i is proportional to the sum of the centralities of the nodes to which it
is connected. This metric can also be interpreted as a weighted sum of not only direct neighbors,
but indirect ones of every length. The eigenvector centrality is defined as

xi =
1
λ

N

∑
j=1

aijxj (7)

where λ is the largest eigenvalue of A = aij and x is the corresponding eigenvector.

2.3.6. Clustering Coefficient

The clustering coefficient, which was first introduced in [7], indicates that the likelihood that two
neighbors of a node i are adjacent, i.e., the ratio between the number of triangles ti, with i as one vertex
and the number of all possible triangles that i could form Ti.

CC(i) =
ti
Ti

=
2ti

ki(ki − 1)
. (8)

The original formulation [7] is applicable in the case of binary undirected networks. Several
generalizations were made in order to extend its application to weighted undirected networks [8] as
well as to both binary and weighted directed networks [9].
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2.4. Information Functional

Dehmer [10] defined an information functional f of graph G as a function that is capable of
capturing structural information of the underlying graph. f : S → R+ where S is an abstract set.
In addition, f is assumed to always be monotonous. Because f has to be defined concretely, arbitrary
graph-theoretical properties or quantities can be used. Thus, an information functional f can be,
for example, any of the centrality measures defined in the previous Section.

An information functional quantifies structural information of a graph and produces a derived
probability distribution, as follows

p(vi) =
f (vi)

N

∑
j=1

f (vj)

(9)

where f is an arbitrary information functional. Because 0 ≤ p(vi) ≤ 1 and ∑N
i=1 p(vi) = 1,

the quantities p(vi) can be interpreted as vertex probabilities.

2.5. Shannon’s Entropy

Information theory originated in the need to quantify fundamental limits on signal processing.
Shannon [1] developed the concept of information entropy, which quantifies the average number of
bits needed to store or communicate a message: one cannot store or communicate a message with n
different symbols in less than log2 n bits. Shannon’s entropy determines a lower limit, below which
no message can be further compressed. In addition, Shannon’s information theory has also been
regarded as a measure to quantify uncertainty, or entropy, in a system [11]. It allows for quantifying
the uncertainty that is involved in predicting the value of a random variable, i.e., the amount of
randomness or freedom of choice. It is defined, as follows:

Definition 1. For an ensemble X(R, pi), where R is the set of possible outcomes (the random variable),
and n = |R| and pi is the probability of an outcome in R. The Shannon information content or entropy of X is
given by

H(X) = −
n

∑
i=1

pi log2 pi (10)

where calculating H(X) requires the mass distribution probability of ensemble X.

However, it must be noted that the Shannon’s information measure can be based on logarithms of
base 2, e or 10 without loss of generality.

Shannon’s information entropy formulation has a number of properties worth mentioning:

• Because Shannon’s information entropy is a measure of uncertainty, the entropy H increases as
the probabilities pi become equal. In fact, H attains its maximum possible value when all of the pi
are exactly equal. In this case, where all pi = 1/n, H = log2 n.

• For equiprobable outcomes, the value of the entropy H increases with n.
• When there is only one possible outcome, the system is perfectly predictable and, thus, H = 0.
• The mathematical formulation that is presented in Equation (10) is that of a continuous function

of pi. Additionally, thus, small changes in pi result in small changes in H.
• Equation (10) is a symmetric function, i.e., exchanging the values of two probabilities does not

change the resulting value of the entropy H.
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2.6. Other Definitions

2.6.1. Paths, Geodesics, Walks and Trails

Borgatti [12] explained that flow on a network can follow different types of routes. He classified
them, as follows. Paths are a sequence of linked nodes in which neither nodes nor edges are repeated.
A path of length n from node i to node j is an ordered sequence of distinct nodes P = {v0, v1, ..., vn}
with v0 = i, vn = j and (vt, vt+1) ∈ E for t = 0, 1, ..., n− 1. Geodesics are shortest paths. The notation is
analogous to paths, with the caveat that P is the shortest path from i to j. Trails allow for nodes to be
repeated; however, each edge (vt, vt+1) can appear only once. Finally, walks allow for both nodes and
edges to be repeated.

2.6.2. Distance in Graph G

The distance between two nodes i and j in graph G is written as d(i, j) and it corresponds to the
number of edges in a shortest path, i.e., the geodesic, connecting them.

2.6.3. Graph Diameter

The diameter of a graph G is the greatest distance between any two vertices in G. It is denoted as
D(G) = maxi∈V maxj∈V d(i, j).

3. Materials and Methods

The present literature synthesis is the result of a systematic review that was conducted following
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram [13]
in Figure 1. The original database search was conducted in July 2020 while using Web of Science.
The search terms were “entropy AND centrality” conducted on title, abstract, author keywords,
and Keywords Plus. All of the years and indexes were used. Only records that were in English
language were eligible.

The “other sources” are mostly constituted by articles identified through Google Scholar.
Any other articles referenced in those identified through database search and deemed interesting were
further explored and they are also accounted in the “other sources” set.

After removing duplicate records, these were screened by title and then by abstract to identify
records dealing with entropy in the context of complex network analysis. Full text assessment was
conducted on 52 records and 50 of them were included in the study that was presented in this work.
These two records were excluded, because they use Shannon’s entropy in order to calculate the
weight coefficients of a decision matrix instead of using it to calculate the entropy of the nodes or
network itself.

The present study focuses on identifying a number of elements in the records evaluated:

• Is Shannon’s entropy used as a network or node metric?
• When Shannon’s entropy is used with the objective of ranking nodes by importance (also known

as a centrality metric), is the entropy of the node calculated directly or obtained as the difference
between the entropy of the graph before and after node removal?

• What is the definition of the probability distribution pi?
• To which type of complex network is the metric applicable? Undirected or directed graph?

Weighted or unweighted? Should the graph be strongly connected? Are self-loops allowed?
And so on.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow
diagram describing the systematic review process undergone in this work.

4. Results

The 50 records that are included in this literature review are summarized, in chronological order,
in Table 1. The 50 included articles span close to 15 years, from 2007 to date. While research on the use
of entropy as a centrality metric for complex network analysis is on the rise, 2017 has been the most
prolific year to date, as shown in Figure 2. Furthermore, the included articles were authored by over
130 people. No particular author stands out, since the most prolific researchers in this subject authored,
at most, three articles on the topic. Journal articles represent 80% of included records, while conference
proceedings account for 20%. Finally, Figure 3 shows the distribution of the articles on different
journals. In the following Sections, answers to the research questions that are introduced in Section 3
are presented.
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Figure 2. Number of articles included by year.



Entropy 2020, 22, 1417 7 of 26

Table 1. Included records, by year.

Refs. Authors Year Record Type Journal/Booktitle

[14] Tutzauer, Frank 2007 article Social networks
[15] Hussain, DM Akbar and Ortiz-Arroyo, Daniel 2008 proceeding European Conference on Intelligence and Security Informatics
[16] Ortiz-Arroyo, Daniel and Hussain, DM Akbar 2008 proceeding European Conference on Intelligence and Security Informatics
[17] Tutzauer, Frank and Elbirt, Benjamin 2009 article Communication Monographs
[18] Dehmer, Matthias and Mowshowitz, Abbe 2011 article Information Sciences
[19] Delvenne, Jean-Charles and Libert, Anne-Sophie 2011 article Physical Review E
[20] Sun, Rui and Mu, A-li and Li, Lin and Zhong, Mi 2012 proceeding Fourth International Conference on Machine Vision (ICMV 2011):

Machine Vision, Image Processing, and Pattern Analysis
[21] Serin, Ekrem and Balcisoy, Selim 2012 proceeding 2012 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining
[22] Dehmer, Matthias and Sivakumar, Lavanya 2012 article PloS one
[23] Fewell, Jennifer H and Armbruster, Dieter and Ingraham, John and Petersen, Alexander and Waters,

James S
2012 article PloS one

[24] Chellappan, Vanniarajan and Sivalingam, Krishna M 2013 proceeding 2013 19th IEEE Workshop on Local & Metropolitan Area Networks
(LANMAN)

[25] V. Chellappan and K. M. Sivalingam and K. Krithivasan 2014 proceeding 2014 IEEE 20th International Workshop on Local Metropolitan
Area Networks (LANMAN)

[26] Estrada, Ernesto and José, A and Hatano, Naomichi 2014 article Linear Algebra and its Applications
[27] Benzi, Michele 2014 article Linear Algebra and its Applications
[28] Chen, Zengqiang and Dehmer, Matthias and Shi, Yongtang 2014 article Entropy
[29] Nikolaev, Alexander G and Razib, Raihan and Kucheriya, Ashwin 2015 article Social Networks
[30] Caravelli, Francesco 2015 article Chaos, Solitons & Fractals
[31] Lu, Guoxiang and Li, Bingqing and Wang, Lijia 2015 article Entropy
[32] Nie, Tingyuan and Guo, Zheng and Zhao, Kun and Lu, Zhe-Ming 2016 article Physica A: Statistical Mechanics and its Applications
[33] Gialampoukidis, Ilias and Kalpakis, George and Tsikrika, Theodora and Vrochidis, Stefanos and

Kompatsiaris, Ioannis
2016 proceeding 2016 European Intelligence and Security Informatics

Conference (EISIC)
[34] Chellappan, Vanniyarajan and Sivalingam, Krishna M and Krithivasan, Kamala 2016 article Computer Networks
[35] Singh, Priti and Chakraborty, Abhishek and Manoj, BS 2017 article Physica A: Statistical Mechanics and its Applications
[36] Weber, Charles M and Hasenauer, Rainer P and Mayande, Nitin V 2017 proceeding 2017 Portland international conference on management of

engineering and technology (PICMET)
[37] Bekiros, Stelios and Nguyen, Duc Khuong and Junior, Leonidas Sandoval and Uddin, Gazi Salah 2017 article European Journal of Operational Research
[38] Wang, Qin and Zeng, Guangping and Tu, Xuyan 2017 article Entropy
[39] Ai, Xinbo 2017 article Entropy
[40] Jimenez-Martinez, Joaquin and Negre, Christian FA 2017 article Physical Review E
[41] Cai, Meng and Cui, Ying and Stanley, H Eugene 2017 article Scientific reports
[42] Wiedermann, Marc and Donges, Jonathan F and Kurths, Jürgen and Donner, Reik V 2017 article Physical Review E
[43] Zareie, Ahmad and Sheikhahmadi, Amir and Fatemi, Adel 2017 article Chaos, Solitons & Fractals
[44] Qiao, Tong and Shan, Wei and Zhou, Chang 2017 article Entropy
[45] Tulu, Muluneh Mekonnen and Hou, Ronghui and Younas, Talha 2018 article IEEE Access
[46] Oggier, Frédérique and Phetsouvanh, Silivanxay and Datta, Anwitaman 2018 proceeding 2018 International Symposium on Information Theory and Its

Applications (ISITA)
[47] Stella, Massimo and De Domenico, Manlio 2018 article Entropy
[48] Qiao, Tong and Shan, Wei and Yu, Ganjun and Liu, Chen 2018 article Entropy



Entropy 2020, 22, 1417 8 of 26

Table 1. Cont.

Refs. Authors Year Record Type Journal/Booktitle

[49] Barucca, Paolo and Caldarelli, Guido and Squartini, Tiziano 2018 article Journal of Statistical Physics
[50] Zhang, Zundong and Ma, Weixin and Zhang, Zhaoran and Xiong, Changzhe 2018 proceeding 2018 Chinese Control And Decision Conference (CCDC)
[51] M. Xu and J. Wu and M. Liu and Y. Xiao and H. Wang and D. Hu 2019 article IEEE Transactions on Intelligent Transportation Systems
[52] Ahmad Zareie and Amir Sheikhahmadi and Mahdi Jalili 2019 article Future Generation Computer Systems
[53] Zarghami, Seyed Ashkan and Gunawan, Indra and Schultmann, Frank 2019 article Built Environment Project and Asset Management
[54] Oggier, Frédérique and Phetsouvanh, Silivanxay and Datta, Anwitaman 2019 article PeerJ Computer Science
[55] J. Zhao and X. Lei 2019 article IEEE Access
[56] Wang, Lixiang and Dai, Wei and Luo, Guixiu and Zhao, Yu 2019 article Entropy
[57] Li, Yichuan and Cai, Weihong and Li, Yao and Du, Xin 2020 article Entropy
[58] Tao Wen and Yong Deng 2020 article Information Sciences
[59] Guo, Chungu and Yang, Liangwei and Chen, Xiao and Chen, Duanbing and Gao, Hui and Ma, Jing 2020 article Entropy
[60] Ni, Chengzhang and Yang, Jun and Kong, Demei 2020 article Physica A: Statistical Mechanics and its Applications
[61] Hamid Bashiri and Hossein Rahmani and Vahid Bashiri and Dezső Módos and Andreas Bender 2020 article Computers in Biology and Medicine
[62] Min Wang and Wanchun Li and Yuning Guo and Xiaoyan Peng and Yingxiang Li 2020 article Physica A: Statistical Mechanics and its Applications
[63] Chandni Saxena and M.N. Doja and Tanvir Ahmad 2020 article Physica A: Statistical Mechanics and its Applications
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Figure 3. Distribution of records by journal.

4.1. Shannon’s Entropy as a Networks vs. Node Metric

4.1.1. Graph Entropy

A number of authors use information entropy as a network or graph
metric [15,16,18,22–28,31,34,35,37–41,50,53]. However, a distinction should be made: while all
of these works measure the entropy of the network, some use graph entropy to indirectly measure the
centrality of the nodes (see Section 4.2). In the latter, the total entropy of the full network, as well as
the entropy of the network when node i and its edges had been removed are calculated. Subsequently,
the entropy change ∆H(i) = H(G)− H(G− {i}) produced by node i can be obtained ∀i ∈ V. In these
works, the authors claim that the maximum graph entropy change is associated with the most
central node.

Traditional graph entropy metrics are based on graph invariants, such as the number of nodes
or edges or the degree distribution [18]. These metrics are typically used to measure the structural
complexity of a graph. A limitation of these graph entropy metrics is that structurally non-equivalent
graphs may have the same information content, i.e., the same value of graph entropy.

It is also possible to produce graph entropy metrics that are based on information
functionals [18,22] (see the definition in Section 2.4). In fact, probability distribution definitions while
using information functionals are used in several graph entropy metrics. For example, information
functionals are based on edge or node betweenness centrality [24,25,34,50,53] distances to a given
vertex [28], degree, degree power or probability distribution of degrees [31,41], paths or paths’
length [16,35], and closeness or eigenvector centrality [53].

4.1.2. Node Entropy

Information entropy may also be used as a centrality metric to rank nodes (or
edges) by importance. In this sense, several authors [14,17,19–21,23,29,30,32,33,36,42–52,54–63]
developed a number of node entropy metrics and provided the appropriate interpretation.
Like for graph entropy metrics, many of these are constructed equivalently to the use of
information functionals (see Equation (9)) [20,21,44,48,51,56,59–62]. Node entropy metrics are based
on degree [21,32,56,57,59,60,62,63], neighbor degree [59] or strength [57], the weight of edges [56,60],
betweenness [21,33], closeness centrality [21], paths [14,17,54], or walks [19,23,29,30], or less traditional
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metrics, such as the topological potential [20], the probability of information flow [36], the probability
of a protein complex [55], the number of nodes [58], or protein annotations [61]. In many cases, locality
is important and, thus, the properties of the neighbors are taken into account [57,60,62,63].

4.2. Centrality of Nodes: Direct vs. Indirect Entropy Metrics

As explained in the previous Section, entropy metrics can be used as centrality metric in a similar
fashion to degree or betweenness centrality. This type of entropy metrics produces node rankings
and aids in the identification of the most central node (according to a context-dependent definition of
centrality). These rankings can be of two types: direct and indirect. The former implies the calculation
of node entropy H(i) directly from a probability distribution. The latter is obtained from the change in
entropy that is incurred when a node and its adjacent edges are removed from a graph. In this case,
the importance of a node is calculated as the difference between the baseline (or full) graph entropy
and that of the graph once node i and its edges have been removed, H(i) = H(G) − H(G − {i}).
Section 4.1.1 previously noted this, where it was stated that the entropy of the network H(G) is
sometimes used to indirectly measure the centrality of nodes. Section 4.1.2 lists examples of direct
node entropy centrality metrics, while examples of indirect node entropy rankings are available
in [15,16,21,39].

It should be noted that, like traditional centrality metrics, node rankings that are based on entropy
are calculated based on a number of assumptions as well as the characteristics of the underlying graph.
Consequently, not all centrality metrics are applicable to all graphs. This was originally stated by
Borgatti [12], who explained that flow on a network must follow a type of route (paths, geodesics,
trails, or walks) and a type of traffic (parallel duplication, serial duplication, or transfer). Indeed,
several authors echoed the fact that the meaning of centrality is context-dependent in the cited works:

• “Each measure of centrality makes assumptions about the importance of the various types of
traffic flow and, thus, each measure of centrality can be assessed by where it falls in the typology
(refers to Borgatti’s typology [12])” [14]

• “Key players are those elements in the network that are considered to be important, in regard to
some criteria.” [16]

• “... in any centrality application one should take into account the characteristics of the flow of
traffic through the network.” [17]

• “Choosing the right centrality for a specific problem is usually a hard task and [a] common
approach is comparing different centralities for the same network and building hypothesis about
the discovered central nodes.” [21]

• “Different measures of centrality capture different aspects of what it means for a node to be
‘central’ to the network.” [29]

• “A centrality is optimal for one application, yet is often sub-optimal for a different
application.” [32]

• “Centrality is an important concept in network theory, yet there is no unique definition.” [37]
• “Centrality is a measure of the importance of a node in a complex network with respect to a

specific criterion, where several centrality criteria have been proposed.” [40]
• “... a specific centrality is ideal for one application, yet regularly imperfect for an alternate

application.” [44]
• “The significance [the authors mean importance] of a node can have different meanings depending

on its application.” [45]
• “What most important’ means is not universally defined, therefore numerous notions of centrality

have been proposed.” [46]
• “[centrality measures] ... are intended to capture the role played by each node within the network

by optimizing an opportunely defined objective function.” [49]
• “The meaning of ‘important’ depends on the nature of the problem analyzed.” [54]
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• “... all of these methods [centrality metrics] have some limitations and specific application
scenarios that are related to the way they consider the problem. A valid method for ranking nodes
in a complex network remains an open issue.” [57]

• “In general, each network has a specific node importance ranking, and different identification
methods consider different structural properties of the network, which would give different
ranking lists.” [58]

• “Various centrality metrics establish different aspects for the meaning of an actor to be central to
the network.” [63]

4.3. Probability Distributions

The probability distribution pi can be based on different graph attributes. The most commonly
encountered ones are:

1. degree or strength (18 records),
2. betweenness (eight records),
3. paths (five records),
4. walks (six records),
5. closeness (four records),
6. distance (three records),
7. eigenvector (two records), and
8. other definitions (nine records).

4.3.1. pi Based on Node Degree

By far, the largest number of entropy metrics are based on node degree [16,21,31,39,41,42,49,56,62],
its extension to weighted graphs, i.e., node strength [38,56], the degree and/or strength of neighbors
of a node [32,43,57,59,60,63], or degrees associated to a subgraph of a node [44,48]. Yet, the definition
of the probability distribution varies from one author to another. A brief summary of these metrics is
provided hereafter, and their formulation is presented in a number of tables.

pi Based on the Degree of Node i

The first group corresponds to entropy metrics, where the probability distribution pi is based on
the degree of the node i, i.e., ki. Table 2 summarizes these.

Ortiz-Arroyo et al. [16] defined pi = ki/ ∑j k j = ki/2N, aiming to determine the connectivity
of a node in a graph by calculating the baseline entropy as well as the entropy of the graph, where
node i has been removed. In Serin et al.’s work [21], pi = knorm

i / ∑N
j=1 knorm

j is used, where knorm
i =

[ki − kmin]/[kmax − kmin] is the normalized degree. Similarly to [16], Serin’s metric is used in order to
determine which node removal disconnects the network the most.

Lu et al. [31] used the q degree power of node i, and defined pi = kq
i / ∑N

j=1 kq
j . They concluded

that, for q = 1, the degree entropy of a graph corresponds to the scale of the graph, since this metric
increases as the graph grows in the number of nodes and edges. It must also be noted that, when q = 1,
Lu’s formulation reduces to the degree information functional (see Equation (9)). While Lu et al. [31]
does not directly provide a definition of the q degree power, they do define the sum of degree powers,
as follows ∑q(G) := ∑i∈V kq

i , where q is an arbitrary real number. In literature [64] it is explained that
when q = 0, ∑0(G) = ∑i∈V k0

i = |V| and when q = 1, ∑1(G) = ∑i∈V ki = 2|E|.
Likewise, Ai [39] used the information functionals (see Equation (9)) based on the in-, out-, and

all-degree. He measured node entropy as the difference between the baseline graph entropy and that
of the graph when node i is removed. Similarly, Wang et al. [56] used information functionals in order
to calculate the structural entropy that is based on the degree, where pi = ki/ ∑j k j, resembling the
work in [31] for q = 1.

Cai et al. [41] studied several degree based entropy metrics. The first is the so-called Degree
Distribution Entropy (DDE), where pi = p(k), i.e., the probability distribution is the distribution
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function of the degree k. They also studied the Wu Structure Entropy (WSE), where the definition
is equivalent to that of [31] for q = 1. Cai et al. [41] also considered two other entropy indices:
SD Structure Entropy, where nodes and edges differences determine network heterogeneity, and FB
Structure Entropy, where network heterogeneity is determined while using the angle of walk position
and medial and radial measurements.

Table 2. Summary of entropy metrics based on degree.

Refs. Entropy Formulation Notes

[16] H(G) = −
N

∑
i=1

ki
2N

log2
ki

2N
Note that, ki

2N = ki

∑N
j=1 k j

. Thus, Ortiz’ formulation is equivalent to that

of [39,41,56].

[21] H(i) = −
N

∑
i=1

knorm
i

∑N
j=1 knorm

j
log

knorm
i

∑N
j=1 knorm

j
knorm

i =
ki − kmin

kmax − kmin

[31] H(G) = −
N

∑
i=1

kq
i

∑N
j=1 kq

j
log

kq
i

∑N
j=1 kq

j
kq

i is the q degree power of node i.

[39,41,56] H(G) = −
N

∑
i=1

ki

∑N
j=1 kj

log
ki

∑N
j=1 kj

Identical to [31] with q = 1. Note that [41] uses the natural logarithm.

[41] H(G) = −
N−1

∑
k=0

p(k) ln p(k) p(k) is the distribution function of the degree.

[41] H(G) = −
N

∑
i=1

pi ln pi pi =
(ki + 1)[1− p(ki) + ∆]

∑N
j=1 (kj + 1)[1− p(kj) + ∆]

where p(ki) is the distribution

probability of node degree ki and ∆ ∼ O(1/N2).

[41] H(G) = −
N

∑
l=1

pl ln pl pl =
∑(i,j∈S(l))(

lWi,j −l W∗i,j) + kl + ∆

∑N
n=1[∑(i,j∈S(n))(

nWi,j −n W∗i,j + ∆) + kn]
where S(l) = {(i, j) :

1 ≤ i ≤ N; 1 ≤ j ≤ N; i 6= j 6= l}, ∆ ∼ O(1/N2), W is the maximum
flow matrix and lW is the matrix when row l and column l are
removed from W.

[42] H(i) = −
N

∑
j=1

aij

ki
log

aij

ki

[45] H(i) = [−∑ ρin
i log ρin

i ] + [−∑ ρext
i,h1

log ρext
i,h1

] where ρin
i =

∑j aij

ki
for i, j ∈ h, and ρext

i,h1
=

∑j aij

ki
for i ∈ h & j ∈ h1.

[49] H(G) = −1
2 ∑

i
∑
j 6=i

[pij ln pij + (1− pij) ln(1− pij)] pij =
xixj

1 + xixj
is the Configuration Model representation.

For Wiedermann et al. [42], the entropy of a node is based on the probability to jump between
nodes when traveling randomly through a network. The authors used both the adjacency matrix and
node degree for this purpose, as follows: pi = aij/ki. Similarly, Tulu et al. [45] defined two probability
distributions that were based on the adjacency matrix and the node degree when considering the
community to which nodes i and j belong to. The pi based on the internal density, i.e., pi = ρin

i =

∑j aij/ki, has both nodes i and j from community h. The external density probability distribution,
pi = ρext

i,h1
= ∑j aij/ki, requires, instead, that both nodes belong to different communities, thus i ∈ h

and j ∈ h1.
Finally, Barucca et al. [49] proposed a metric, called InfoRank, based on the degree sequence

allowing for determining the benchmark graph information as well as the node specific information.

pi Based on the Strength of Node i

A second group of metrics is formed by entropy definitions that are based on node strength si,
which, it can be argued, is the extension of node degree to weighted networks. Table 3 summarizes
these metrics. Wang et al. [38] calculated the risk of IT projects based on entropy where pi = si/ ∑j sj.
This risk entropy, they claimed, provides a description of the risk related to heterogeneity of the IT
projects. In [56], the authors defined the interaction frequency entropy, which is based on the weight
of edges as well as the strength of nodes as follows pi = wij/si. The latter is the weighted graph
equivalent to the work of Wiedermann et al. [42] previously cited. Note that, while the authors in [56]
wrote the summation in Shannon’s entropy, as conducted among the neighbors of i, ∑j∈Γ(i), the result
is equivalent to doing ∑j∈V , since, for any j ∈ V, where j /∈ Γ(i) it is always the case that wij = 0. Thus,
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this is not a truly neighbor strength based entropy metric. Similarly, Ni et al. [60] defined a weight
influence entropy while using the same formulation for the probability distribution, as [56].

Table 3. Summary of entropy metrics based on strength.

Refs. Entropy Formulation Notes

[38] H(i) = −
mj

∑
i=1

si

∑
mj

j=1 sj
ln

si

∑
mj

j=1 sj
mj is the number of projects in community j.

[56,60] H(i) = − ∑
j∈Γ(i)

wij

si
log

wij

si
Note that in this case the summation over j ∈ Γ(i)
produces the same result as conducted over j ∈ V.

pi Based on the Degree and/or Strength of the Neighbors of Node i

Yet another group of entropy metrics can be associated to the degree and/or strength of the
neighbors of node i (see Table 4). Nie et al. [32] proposed a metric that combines the degree information
entropy, defined as H(i) = −∑N

i=1 ki log ki, and the local entropy, HL(i) = −∑j∈Γ(i) k j log k j, giving
rise to the “mapping entropy”. The formulation of the latter is H(i) = −ki ∑j∈Γ(i) log k j. However,
we argue that this is not strictly based on Shannon’s entropy. Instead, this metric produces a weighted
degree value for node i while using the degree of its neighbors and, unlike what is prescribed in
Shannon’s formulation (see Equation (10)), the probability pi used before and after the logarithm is not
the same as for the other metrics that are presented here.

Table 4. Summary of entropy metrics based on degree or strength of neighbors.

Refs. Entropy Formulation Notes

[32] H(i) = −ki ∑
j∈Γ(i)

log kj Note that this is not strictly based on Shannon’s entropy.

[43,59] H1(i) = − ∑
j∈Γ(i)

kj

k1
i

log
kj

k1
i

k1
i = ∑

j∈Γ(i)
kj is the total degree of the neighbors of node i.

[43] H2(i) = − ∑
j∈Γ(i)

k1
j

k2
i

log
k1

j

k2
i

k2
i = ∑

j∈Γ(i)
k1

j is the total degree of the neighbors of node i’s neighbors.

[57] Hx(i) = −
N

∑
i=1

kx
i

∑j∈Γ(i) kx
j

log
kx

i
∑j∈Γ(i) kx

j
x represents either the “in” or “out” component of the degree.

[57] Hx(i) = −
N

∑
i=1

sx
i

∑j∈Γ(i) sx
j

log
sx

i
∑j∈Γ(i) sx

j
x represents either the “in” or “out” component of the strength.

[60] H(i) = − ∑
j∈Γ(i)

kβ
j

∑l∈Γ(i) kβ
l

log
kβ

j

∑l∈Γ(i) kβ
l

“confidence influence entropy”

[62] H(i) = − ∑
j∈Γ(i)

kj

∑N
l=1 kl

ln
kj

∑N
l=1 kl

[63] H(i) = − ∑
j∈Γ(i)

1
ki(kj − 1)

log
1

ki(kj − 1)

Zareie et al. [43] proposed an entropy centrality metric that is based on the degrees of the
first and second order neighbors. The entropy of the degree of the first order neighbors has
pi = k j/k1

i = k j/ ∑l∈Γ(i) kl , while the degree entropy of the second order neighbors has pi =

k1
j /k2

i = ∑j∈Γ(i) k j/ ∑j∈Γ(i) k1
j , respectively. Similarly to Zareie’s entropy of first degree neighbors [43],

Guo et al. [59] defined an algorithm that is based on the degree of a node and that of its direct neighbors,
where pi = ki/ ∑j∈Γ(i) k j. The main difference is that this algorithm is applied iteratively in order to
select influential nodes.

Li et al. [57] proposed a structural entropy centrality made of two components: one that is
associated with the in-degree of a node and that of its neighbors, where pi = kin

i / ∑j∈Γ(i) kin
j ; and,

another component that is associated with the out-degree where pi = kout
i / ∑j∈Γ(i) kout

j . Equivalently,

Li et al. [57] also defined the interaction entropy that is based on strength with “in” (pi = sin
i / ∑j∈Γ(i) sin

j )
and “out” (pi = sout

i / ∑j∈Γ(i) sout
j ) components.
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Ni et al. [60] defined the direct influence as the sum of a weight influence entropy (presented
previously in Table 3) and the confidence influence entropy. The latter is calculated while using the
degree of node i’s neighbors. The probability distribution is defined as pi = kβ

i / ∑j∈Γ(i) kβ
j , where β is

a tunable parameter, called confidence strength.
Wang et al. [62] proposed a probability distribution that is dependent on the degree of the

neighbors of node i, i.e., pi = k j/ ∑N
l=1 kl . This should not be confused with the degree information

functional. The authors stated that the summation in Shannon’s entropy formula of Equation (10) is
conducted over the neighbors of node i, giving H(i) = −∑j∈Γ(i) pi ln pi.

Finally, Saxena et al. [63] based the entropy metric on the node’s degree as well as the degree of
its neighbors, as follows: pi = 1/[ki(k j − 1)]. For this probability distribution, k j is the degree of node
j, which is a neighbor of node i, thus j ∈ Γ(i).

pi Based on the Degree and/or Strength of Nodes in a Subgraph of Node i

Lastly, and arguably related to the latter group, entropy metrics can be based on degree and/or
strength values that are associated with subgraphs of node i (see Table 5). Only Qiao et al. [44,48]
developed metrics of this kind. Originally developed for undirected, unweighted graphs [44], the local
influence can be calculated while using pi = kGi

i / ∑j∈Gi
kGi

j where Gi is the subgraph in which node
i is the central node. The metric was later generalized to directed, weighted networks [48]. In this
case, the structural information entropy is calculated equivalently to the undirected, unweighted case.
The interaction frequency entropy is based on edge weights and out-strength in the subgraph Gi, as
follows pi = wGi

ij / ∑l∈Gi
wGi

il .

Table 5. Summary of entropy metrics that are based on degree or strength in subgraphs.

Refs. Entropy Formulation Notes

[44,48] H(i) = − ∑
i∈Gi

kGi
i

∑j∈Gi
kGi

j

log
kGi

i

∑j∈Gi
kGi

j

Gi is the subgraph that has node i as central node.

[48] H(i) = − ∑
j∈Gi

wGi
ij

∑l∈Gi
wGi

il

log
wGi

ij

∑l∈Gi
wGi

il

Gi is the subgraph that has node i as central node.

4.3.2. pi Based on Betweenness

A number of authors have based their entropy metric on betweenness centrality. Table 6 presents
a summary. Serin et al. [21] proposed a combined metric that is based on degree, betweenness,
and closeness (see Sections 4.3.1 and 4.3.5). The betweenness portion requires pi = ηnorm

i / ∑N
j=1 ηnorm

j ,
where ηnorm

i = [ηi − ηmin]/[ηmax − ηmin] is the normalized betweenness of node i. The authors claim
that betweenness entropy can identify nodes that affect the flow of data through the network.

Chellappan et al. [24,25,34] used edge betweenness centrality instead of the node betweennnes.
They defined pi = η•,•(u, v)/ ∑(x,y)∈E η•,•(x, y), where the double-bullet notation indicates all pairs of
nodes. The authors posed that high edge betweenness entropy is indicative of a high diversity of paths
in tactical communication networks [24]. They further proposed the use of entropy maximization and
betweenness entropy in order to make communications routing decentralized [25] and handle single
edge failures [34]. Similarly, Zhang et al. [50] used edge betweenness centrality in order to analyze
transportation networks in Xiamen. In these graphs, intersections are represented as nodes, road
segments as edges and average travel times as edge weights. The authors proposed pi = ηi,j(e)/ηi,j,
where e ∈ E is an edge.



Entropy 2020, 22, 1417 15 of 26

Table 6. Summary of entropy metrics based on betweenness centrality.

Refs. Entropy Formulation Notes

[21] H(i) = −
N

∑
i=1

ηnorm
i

∑N
j=1 ηnorm

j
log

ηnorm
i

∑N
j=1 ηnorm

j
ηnorm

i =
ηi − ηmin

ηmax − ηmin

[24,25,34] H(G) = − ∑
(u,v)∈E

p(u, v) log p(u, v) p(u, v) =
η•,•(u, v)

∑(x,y)∈E η•,•(x, y)
where η•,•(u, v) is the

shortest path betweenness centrality of a link (u, v)
for every pair of source-sink nodes.

[33] H(i) = −ηi ∑
j∈Γ(i)

log ηj Not strictly following Shannon’s formulation.

[39,53] H(G) = −
N

∑
i=1

ηi

∑N
j=1 ηj

log
ηi

∑N
j=1 ηj

[50] H(G) = − ∑
(u,v)∈E,∀i,∀j

ηi,j(u, v)
ηi,j

ln
ηi,j(u, v)

ηi,j
While similar to the formulation in [24,25,34], the
chosen logarithm base is different.

In Ai’s work [39], the importance of a node is measured as the network entropy change before
and after node removal. The author used both degree and betweenness (see Section 4.3.1). In both
cases, pi is obtained while using information functionals (see Equation (9)), thus pi = ηi/ ∑N

j=1 ηj.
Similarly, Zarghami et al. [53] developed a vulnerability index in order to evaluate water distribution
networks. The index is based on betweenness as well as closeness and eigenvector centrality (see
Sections 4.3.5 and 4.3.7). The betweenness portion makes used of information functionals, as in the
case of [39].

Gialampoukidis et al. [33] furthered the work of Nie et al. [32] that is described in Section 4.3.1.
They developed a metric called Mapping Entropy Betweenness where H = −ηi ∑j∈Γ(i) log ηj that they
interpreted as a weighted betweenness centrality making use of node i’s neighbors. While the authors
named this metric “entropy”, just like in the case of Nie et al. [32], this is not strictly based on the
formulation of Shannon’s entropy described in Equation (10).

4.3.3. pi Based on Paths

Some authors based their entropy metrics on paths, i.e., a sequence of linked nodes, in which
neither nodes nor edges are repeated. Table 7 summarizes these metrics. Tutzauer [14] developed an
entropy centrality metric specific for networks that are characterized by a flow that follows paths and
corresponds to a transfer process. In this case, pi = pij is the probability that a flow starting on node i
ends in node j. pij is given by the sum over all paths between nodes i and j of the stopping probability
in node j multiplied by the product of the transfer probability of all the nodes appearing in the path
before j. The formulation of Tutzauer’s work [14] is available in Table 7. The author furthered his
work [17] to define centralization and differentiate it from centrality. He argued that, while centrality is
a property of the nodes, centralization is a property of the network. Thus, highly centralized networks
have one or few high centrality nodes. In his latter work, Tutzauer [17] continued to use the probability
distribution pi = pij described earlier.

Ortiz-Arroyo et al. [16] proposed, in addition to a degree-based entropy (see Section 4.3.1),
a centrality entropy with a probability distribution that is based on the number of paths. In this case,
pi is the ratio between the number of paths that have node i as a starting point and the total number of
paths in graph G. The authors calculate the centrality entropy for the full graph and after the removal
of a node. They associate the largest change in entropy to the most central node.

Oggier et al. [46] extended Tutzauer’s work [14] to non-atomic flows, i.e., to the case in which
the flow can be split among neighbors of i, as opposed to fully transferred to a single neighbor.
In this case, pi is the sum over all paths between i and j of the product among all nodes in the path of
the split-and-transfer probability times the ratio between the incoming flow and the number of edges
it can split to. The authors claim that flow originating at highly central nodes spreads more evenly
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across the graph. The authors furthered their work in [54], where they defined the split-and-transfer
entropy and demonstrated specific applications.

Computational complexity is an important issue that was discussed by several of the authors
that developed path-based metrics [14,17,46,54]. This complexity arises from the need to identify all
paths in graph G. However, the number of paths grows combinatorially as the number of nodes and
edges grows. While some solutions that disregard paths whose probability falls under an arbitrary
threshold have been reported, these metrics have not had wide adoption for medium to big graphs.
Some authors [29] contend that using walks instead of paths is the most computationally efficient
alternative, as it is further explained in Section 4.3.4.

Table 7. Summary of entropy metrics based on paths.

Refs. Entropy Formulation Notes

[14,17] H(i) = −
N

∑
j=1

pij log2 pij pij =
K(i,j)

∑
k=1

σk(j)
n(k)−1

∏
t=0

τk(vt) where pij is the probability of a path

starting in node i and ending on node j which is a function of the
transfer τk(vt) and the stopping σk(j) probabilities.

[16] H(G) = −
N

∑
i=1

γ(vi) log2 γ(vi) γ(vi) =
|paths(vi)|

|paths(v1, v2, ..., vN)| is the fraction of paths in graph G

that start on node vi.

[46] H(i) = −
N

∑
j=1

pij log2 pij pij = ∑
P∈Ps,j

∏
v∈P

τPv (v)
f (v′, v)
|S(Pv)|

where P is a path in the set of paths

between s and j, Ps,j. τPv (v) is the split and transfer probability,
f (v′, v) is the flow incoming to node v and |S(Pv)| is the number
of edges to which the flow can be split into.

[54] H(i) = − ∑
v∈V

quv log2 quv quv = q(x)wx(u, v) where q(x) is the probability of choosing an
outgoing edge and ∑x∈Eu

q(x) = 1. wx(u, v) is a weight associated
with the edge (u, v) such that ∑(u,v)∈x wx(u, v) = fu, i.e., the flow
that reached node u.

4.3.4. pi Based on Walks

An alternative to paths that forgoes the computational complexity are walks. A walk is a sequence
of linked nodes, where both nodes and edges can be repeated. A number of authors have used walks
to define their entropy metrics. Table 8 summarizes their formulations.

Table 8. Summary of entropy metrics based on walks.

Refs. Entropy Formulation Notes

[19] H(i, t) = λ−tuivj log(λ−tuivj) t is the path length, λ is the dominant eigenvalue
of A, u is the left eigenvector and v is the right one.

[23] N/A Formulation is not provided by the authors.

[26,27] H(G) = −∑
i

(exp βA)ii
Z

ln
(exp βA)ii

Z
A is the adjacency matrix, β = (kBT)−1 is the
inverse temperature and Z = Tr(exp βA) is the
partition function for the graph.

[29] H(i, t) = −
N

∑
j=1

(p(t)ij + p(t)ij′ ) log(p(t)ij + p(t)ij′ ) pij are the elements of the Markov chain transition
probability and t is the number of transitions.

[30] H(i) = − 1
N

N

∑
j=1

M∗ij log M∗ij M∗ij = limk→∞ ∑N
j1,...,jk=1 Mij1 ...Mjk j with Mij, the

Markov operator.

Delvenne and Libert [19] proposed an entropy rank based on Shannon’s entropy for
Ruelle–Bowens random walks of length t. The authors determined that the probability pi = pij
of a random surfer following a walk of length t from node i to node j does not depend on the
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intermediate vertices. In fact, pij = λ−tuivj, where λ is the dominant eigenvalue of the adjacency
matrix of maximal magnitude, u is the non-negative left eigenvector for λ, and v is the non-negative
right eigenvector for λ. They claim that Ruelle–Bowens random walks provide a spectral centrality
that is different from those that are found in literature and which properties may be more suitable in
certain contexts.

Fewell et al. [23] used a number of network metrics in order to analyze the 2010 NBA first
round play-offs. In particular, they calculated individual player entropy (while using Shannon’s
entropy formulae) in order to measure the uncertainty of ball transitions between any player or
outcome. They also estimated “team entropy”, which measures the multiplicity of options across all
ball movements instead of just across players, from the transition matrix describing ball movement
probabilities. The authors proposed that entropy is strongly influenced by the extent to which multiple
players distribute the ball. In fact, their study demonstrated that high team entropy was a good
predictor of team success. However, their work does not provide sufficient information to enable the
reproducibility of the metric.

Estrada et al. [26] defined a walk entropy that measures the uncertainty in selecting a walk starting
at node i and finishing at the same node. It is understood as a measure of how much a walker is
localized in a few nodes. The probability distribution represents the probability of selecting at random
a closed walk among all such walks in the graph, thus pi = [exp(k−1

B T−1A)]ii/Z, where A is the
adjacency matrix, (kBT)−1 is the inverse temperature and Z = Tr[exp(k−1

B T−1A)] is the partition
function for the graph. Benzi [27] furthered Estrada et al.’s works [26] by providing mathematical
proof to a conjecture that was formulated by the latter regarding walk entropy in walk-regular graphs.

Nikolaev et al. [29] furthered Tutzauer’s work [14] by relaxing the requirement to find all paths
in graph G and using walks of length t instead. This method solves computational efficiency issues,
given that the entropy of node i for a walk of length t can be calculated exactly while using matrix
multiplication. For this, the authors defined pi = p(t)ij + p(t)ij′ , where pij are the elements of the Markov
chain transition probability matrix. Yet, it must be noted that following Borgatti’s classification of
flow [12], Nikolaev et al.’s, and Tutzauer’s work are not applicable to the same typology of flow.

Caravelli’s work [30] also introduced a walk based entropy metric for nodes. The metric aims to
determine the walk complexity that is attached to a node, given by all possible walks that originate
from it. It uses Markov trajectories in order to calculate the entropy of node i, where pi = M∗ij =

limk→∞ ∑N
j1,...,jk=1 Mij1 ...Mjk j, where Mij is the Markov operator.

4.3.5. pi Based on Closeness

As discussed previously, Serin et al. [21] proposed a combined metric that was based on
degree, betweenness, and closeness (see Sections 4.3.1 and 4.3.2). The closeness portion requires
pi = Cnorm

i / ∑N
j=1 Cnorm

j , where Cnorm
i = [Ci − Cmin]/[Cmax − Cmin] is the normalized closeness (see

Table 9). The authors claimed that closeness entropy can pinpoint the nodes that have the greatest
effect on global connectivity when removed.

Table 9. Summary of entropy metrics based on closeness centrality.

Refs. Entropy Formulation Notes

[21] H(i) = −
N

∑
i=1

Cnorm
i

∑N
j=1 Cnorm

j
log

Cnorm
i

∑N
j=1 Cnorm

j
Cnorm

i =
Ci − Cmin

Cmax − Cmin

[22,53] H(G) = −
N

∑
i=1

Ci

∑N
j=1 Cj

log
Ci

∑N
j=1 Cj

[38] H(i) = −
10

∑
k=1

pk ln pk pk = ∑j p(µj) where µj ∈ Ωk and µj = β1Cj +

β2CC(j). The range of µ is [0, 1] and is divided into
ten intervals Ωk with k = 1, 2, ..., 10.
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Dehmer et al. [22] studied the relations between existing entropy measures that are based on
information functionals (see Equation (9)). Thus, pi = Ci/ ∑j Cj (see Table 9). Their work is applicable
to simple undirected graphs. The authors focused on special classes of graphs, such as stars, paths
graphs and union and join of graphs. Similarly, Zarghami et al. [53] developed a vulnerability index to
evaluate water distribution networks. The index is based on betweenness as well as closeness and
eigenvector centrality (see Sections 4.3.2 and 4.3.7). The closeness portion makes use of information
functionals (see Equation (9)), where pi = Ci/ ∑j Cj, like in the case of [22] (see Table 9).

Finally, Wang et al. [38] developed a combined metric. The first part is calculated while using
the probability distribution that was obtained from the sum of the clustering coefficient CC and the
closeness centrality Ci values. Thus, pi = pk = ∑j p(µj), where µj ∈ Ωk and µj = β1Cj + β2CC(j).
The range of µ is [0, 1] and it is divided into ten intervals Ωk with k = 1, 2, ..., 10 (see Table 9).

4.3.6. pi Based on Distance

Chen et al. [28] proposed a graph entropy metric while using an information functional (see
Equation (9)) based on distance, which they claimed “is one of the most important graph invariants”.
Their metric considers the number of vertices with distance l to a given vertex, with 1 ≤ l ≤ D(G)

where D(G) is the diameter of graph G. Thus pi = nl(i)/ ∑N
j=1 nl(j).

Singh et al. [35] introduced an entropy metric that measures the influence of links in the network
by determining the average path length with and without the presence of an edge (i, j). For this,
pi = pij = |APL− APLij|/ ∑i 6=j |APL− APLij|, i.e., it is proportional to the absolute difference in
average path length between the original graph and after the removal of edge (i, j). In addition,
the authors extended the metric in order to determine the influence of a node i on the network while
using pi = 0.5 ∑j pij.

Finally, Stella et al. [47] proposed a metric, called distance entropy, which quantifies node centrality
through the distribution of path lengths. In this case, pi = pi

l = nl/(N − 1), where nl is the number of
nodes at a distance l from node i. The summation in Shannon’s entropy formulation (see Equation (10))
is conducted between l = 1 and the difference between the maximum and minimum distance between
node i and any other node j in the network. Unlike most of the metrics presented in this review article,
the more central a node, the lower its entropy. This is because distance entropy measures the regularity
of paths lengths between a node and its neighbors.

A summary of these metrics can be found in Table 10.

Table 10. Summary of entropy metrics based on distance.

Refs. Entropy Formulation Notes

[28] H(G) = −
N

∑
i=1

nl(i)

∑N
j=1 nl(j)

log
nl(i)

∑N
j=1 nl(j)

nl is the number of vertices with distance l to a given
vertex.

[35] H(G) = −∑
i 6=j

|APL− APLij|
∑i 6=j |APL− APLij|

log
|APL− APLij|

∑i 6=j |APL− APLij|
APL = 2 ∑i 6=j

dij

N(N−1) where dij is the distance of the path
between i and j.

[35] H(G) = −∑
i 6=j

pi log pi pi =
1
2 ∑

j

|APL− APLij|
∑i 6=j |APL− APLij|

[47] H(i) =
−1

log(Mi −mi)

Mi−mi

∑
l=1

nl
N − 1

log
nl

N − 1
Mi = maxj dij and mi = minj dij.
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4.3.7. pi Based on Eigenvector

Jimenez et al. [40] quantified the entropy and connectivity of porous media with a particular flow
direction. They used Shannon’s entropy formulation, where the probability distribution is based on
eigenvector centrality. In this case, pi = p(xi), i.e., the probability of a node in the pore network with
eigenvector centrality value xi. The authors claimed that this metric could quantify the impact of water
saturation, given that they observed that entropy increases as saturation decreases.

Zarghami et al. [53] developed a vulnerability index in order to evaluate water distribution
networks. The index is based on eigenvector as well as closeness and betweenness centrality
(see Sections 4.3.2 and 4.3.5). The eigenvector portion makes used of information functionals
(see Equation (9)), and, thus, pi = xi/ ∑j xj.

A summary of these metrics can be found in Table 11.

Table 11. Summary of entropy metrics based on eigenvector centrality.

Refs. Entropy Formulation Notes

[40] H(G) = −
N

∑
i=1

p(xi) log p(xi) p(xi) is the probability of a node with eigenvector
centrality value xi.

[53] H(G) = −
N

∑
i=1

xi

∑j xj
log

xi

∑j xj

4.3.8. Other pi Definitions

A number of authors have proposed entropy metrics whose probability distributions do
not correspond to any of the groups discussed previously. Table 12 summarizes these metrics.
Hussain et al. [15] based the probability distribution on Bayes posterior probability, although it is
unclear how they calculate it. Sun et al. [20] used an information functional that is based on the
topological potential, which is a function of the strength of a node, the shortest paths between node
pairs, and an optimized impact factor. Weber et al. [36] localized fault producing process steps in
integrated circuit manufacturing lines. In this case, pi is defined as the probability of a fault occurring in
process step i. Wang et al. [38], as explained in Section 4.3.5, developed a combined metric. The first part
is calculated while using the sum of the closeness centrality and the clustering coefficient. Xu et al. [51]
presented the origin-destination entropy with flow to rank road intersections. Their method requires a
tripartite graph with three distinctive sets of nodes (origin-destination pairs, paths, and intersections)
and defines pi = ps(i) as the probability that the flow on node i is from the origin-destination pair s.
Zareie et al. [52] used the diversity strength ranking, which is a function of the improved k-shell
(IKS) of node i and the sum of the IKS of the neighbors of i. Thus, pi = IKS(i)/ ∑j∈Γ(i) IKS(j).
Wen et al. [58] used the fraction of nodes that are contained in a box of size l around node i giving
pi = n(i, l)/N. Finally, some authors used entropy to study complex networks that represent proteins.
Zhao et al. [55] predicted essential proteins from protein interaction networks while using Shannon’s
entropy. Bashiri et al. [61] used node annotations regarding protein functions, diseases, and drugs that
target them as the basis for identifying important proteins in protein interaction networks.
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Table 12. Summary of entropy metrics based on other probability distributions

Refs. Entropy Formulation Notes

[15] H(G) = −
N

∑
i=1

pi log pi Based on Bayes posterior probability but it is unclear how pi is obtained.

[20] H(G, σ) = −
N

∑
i=1

ϕi

∑N
j=1 ϕj

log
ϕi

∑N
j=1 ϕj

ϕi =
N

∑
j=1

sj exp(
−dij

σ
)2 is the topological potential which is a function of

the strength sj, the shortest path between all pairs of nodes dij and an
optimized impact factor σ.

[36] H(i) = −
N

∑
i=1

P(Xi) log P(Xi) i is a process step, Xi is the event that the fault is produced in step i and
P(Xi) is the probability of this fault occurring in Xi.

[38] H(i) = −
10

∑
k=1

pk ln pk pk = ∑j p(µj) where µj ∈ Ωk and µj = β1Cj + β2CC(j). The range of µ

is [0, 1] and is divided into ten intervals Ωk with k = 1, 2, ..., 10.

[51] H(i) = −
|S|

∑
s=1

ps(i) log ps(i) |S| is the total number of origin-destination pairs, ps(i) is the probability
that the flow on node i is from origin-destination pair s.

[52] H(i) = − ∑
j∈Γ(i)

IKS(j)
∑l∈Γ(i) IKS(l)

log
IKS(j)

∑l∈Γ(i) IKS(l)
IKS is the improved k-shell index.

[55] H(i) = −
nc

∑
j=1

ComInfi(j)p(cj) log p(cj) ComInfi(j) is an nc dimensional vector representing the protein
associated complex information (ComInfi(j) = 1(i f )vi ∈ cj, else0. The
probability of a protein complex p(cj) = |cj|/|C|where |cj| is the number
of proteins contained in the protein complex cj and |C| is the number of
proteins in the standard protein complex C.

[55] H(i) = −
ns

∑
k=1

SubInfi(k)p(sk) log p(sk) SubInfi(k) is an ns dimensional vector representing the protein associated
subcellular localization information (SubInfi(k) = 1(i f )vi ∈ sk, else0. The
probability of a protein complex p(sk) = |sk|/|C|where |sk| is the number
of proteins contained in the protein complex sk and |C| is the number of
proteins in the standard protein complex C.

[58] I(i, l) = −n(i, l)
N

ln
n(i, l)

N
Note that this is the information of a box of size l around node i, not the
entropy.

[61] H(i) = −
N

∑
j=1

pi log pi pi =
AnnContxj

i

∑
|AnnContx|
l=1 AnnContxl

i

where i is a node or protein, N is

the number of annotations in the annotation list and AnnContxj
i =

∑l∈NB(i) AnnListj
l where the value of AnnListj

l is 1 or 0 depending on i
being annotated by annotation aj.

4.4. Metric Applicability

Complex networks can be either directed, where (vi, vj) 6= (vj, vi) for (vi, vj), (vj, vi) ∈ E,
or undirected where (vi, vj) ≡ (vj, vi), as explained in Section 2. Furthermore, graphs can be binary or
unweighted if described by an adjacency matrix A of elements aij ∈ {0, 1}; or, weighted if described
by a weight matrixW of elements wij > 0. The records included in this literature review propose
entropy based metrics mostly for unweighted (65% of records) and undirected (69% of records) graphs,
as shown in Table 13. Only a small portion of records specify other network characteristics, such
as requiring the graph to be acyclic (two records), aperiodic (one record), connected (two records),
or strongly connected (one record), as well as prohibiting the existence of self-loops (three records).
This result highlights the necessity to extend existing network entropy metrics to weighted, directed
graphs, and/or to develop appropriate methods for them.
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Table 13. Graph types to which the entropy metric is applicable.

Refs. Undirected Directed Unweighted Weighted Other Requirements

[14] X X X X
[15] X X acyclic
[16] X X acyclic
[17] X X X X
[18] X X
[19] X X strongly connected, aperiodic
[20] X X connected
[21] X X
[22] X X
[23] X X
[24] X X no self-loops
[25] X X
[26] X X
[27] X X
[28] X X no self-loops
[29] X X X
[30] X X
[31] X X
[32] X X
[33] X X
[34] X X
[35] X X
[36] X X
[37] X X
[38] X X
[39] X X
[40] X X
[41] X X
[42] X X no self-loops
[43] X X
[44] X X
[45] X X
[46] X X
[47] X X connected
[48] X X
[49] X X X X
[50] X X
[51] X X
[52] X X
[53] X X X
[54] X X
[55] X X
[56] X X
[57] X X
[58] not specified
[59] X X
[60] X X
[61] X X
[62] X X
[63] X X

5. Discussion

This narrative review has identified a number of ways to classify information entropy metrics
for complex networks. In Section 4.1, entropy metrics were grouped, depending on whether they
constituted a graph H(G) or a node H(i) property. Graph entropy metrics provide a single value in
order to characterize the full graph. On the other hand, node entropy metrics share characteristics with
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traditional centrality metrics in graph theory, facilitating the generation of rankings that are typically
used to identify important nodes. However, it was shown in Section 4.2 that graph entropy metrics
have been indirectly used in order to also produce node rankings. This is generally accomplished by
calculating the difference between the entropy of the full graph and the entropy of the graph when
a node and its adjacent edges are removed. The procedure is followed for all nodes in the graph in
order to identify the node that generates the biggest change in entropy. Consequently, a ranking is
indirectly produced.

Section 4.3 explores a different way to classify information entropy metrics for complex networks,
where the focus was on the underlying probability distributions. This section demonstrated that
most of the research efforts have been allocated to degree (or strength) based entropy metrics.
The use of other probability distributions trails greatly behind with betweenness centrality, paths,
and walks in second place. However, it must be noted that betweenness and paths suffer from
computational complexity for moderate and big graphs, making them less attractive. While algorithms
for calculating betweenness centrality required originally O(|V|3) time and O(|V|2) memory space,
Brandes revolutionary work [65] reduced these requirements to O(|V||E|) time and O(|V| + |E|)
memory space for unweighted graphs and to O(|V||E|+ |V|2 log |V|) time and O(|V|+ |E|) memory
space for weighted ones. Yet, path-based entropy centrality metrics still require the search of all
paths in G (or, at least, the search for paths with a probability above a certain user defined threshold)
hindering adoption [14,17,29,46,54]. Thus, the best alternative to paths up to date, at least in terms
of computational complexity, is to use walks given that the entropy can be calculated exactly while
using matrix operations [29]. Other probability distributions, such as those that are based on closeness
centrality, distances in graphs, eigenvector centrality, k-shells, and/or clustering coefficient, among
others, have been seldom explored leaving space for further development.

Finally, information entropy metrics for complex networks can be classified based on the types of
graphs to which they are applicable, as in Section 4.4. This narrative literature review showed that
research efforts have mostly focused on undirected, unweighted networks. The biggest downside
(as well as the biggest opportunity for further research) is that many interesting complex interactions
are represented as either directed and/or weighted graphs. Thus, it is evident that further development
of existing metrics to extend their applicability is necessary.

In conclusion, it must be recognized that, although the development of information entropy
metrics for complex networks has been ongoing for 15 years, the existing body of research is limited.
Thus, it can be fairly argued that the field is in its infancy. This feeling is shared by other authors.
In fact, Ni et al. [60] stated, as recently as 2020, that, in particular, "research on entropy based centrality
is still in a nascent stage". It is also opportunely to add that research on the underlying assumptions of
entropy metrics and the context in which they are applicable also requires more thorough studies.
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Abbreviations

The following abbreviations and symbols are used in this manuscript:

Greek Letters
β Tunable parameter called confidence strength used in [60]
Γ(i) Neighbors of node i
ηi Betweenness centrality of node i
λ Largest eigenvalue of A = aij
σ(i, j) Total number of geodesic paths between nodes i and j
σ(i, j|v) Number of geodesic paths between nodes i and j that pass through v
Roman Letters
A = [aij] Adjacency matrix of elements aij used to describe graph G
Ci Closeness centrality of node i
d(i, j) Distance between nodes i and j
E Set of edges in graph G
f Abstract information function of G
G Graph
Gi Subgraph where node i is the central node
H Information or Shannon’s entropy
IKS(i) Improved k-shells of node i
ki Degree of node i
kin

i In-degree of node i
kout

i Out-degree of node i
kmax Maximum degree in graph G
kmin Minimum degree in graph G
kq

i q degree power of node i
k1

i Sum of the degree of the neighbors of i, i.e., k1
i = ∑j∈Γ(i) kj

k2
i Sum of the degree of the neighbors of i’s neighbors, i.e., k2

i = ∑j∈Γ(i) k1
j

kGi
j Degree of node j in the subgraph that has node i as central node

N Number of nodes in G, N = |V|
pi Probability of an outcome
si Strength of node i
sin

i In-strength of node i
sout

i Out-strength of node i
V Set of edges in graph G, V 6= ∅, V = {v0, v1, ..., vN}
W = [wij] Weight matrix of elements wij used to describe G
xi Eigenvector centrality of node i
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