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Abstract: Multi-focus image fusion is the process of combining focused regions of two or more
images to obtain a single all-in-focus image. It is an important research area because a fused image is
of high quality and contains more details than the source images. This makes it useful for numerous
applications in image enhancement, remote sensing, object recognition, medical imaging, etc. This
paper presents a novel multi-focus image fusion algorithm that proposes to group the local connected
pixels with similar colors and patterns, usually referred to as superpixels, and use them to separate
the focused and de-focused regions of an image. We note that these superpixels are more expressive
than individual pixels, and they carry more distinctive statistical properties when compared with
other superpixels. The statistical properties of superpixels are analyzed to categorize the pixels as
focused or de-focused and to estimate a focus map. A spatial consistency constraint is ensured on
the initial focus map to obtain a refined map, which is used in the fusion rule to obtain a single
all-in-focus image. Qualitative and quantitative evaluations are performed to assess the performance
of the proposed method on a benchmark multi-focus image fusion dataset. The results show that our
method produces better quality fused images than existing image fusion techniques.

Keywords: multi-focus image fusion; image enhancement; information fusion color distance models
for fusion

1. Introduction

Due to limited depth-of-field (DOF), it is not easy for cameras to capture an image that
has all focused objects. Usually, in a camera captured image, the objects that lie in the range
of the depth-of-field are sharp and the remaining objects tend to be blurred [1]. An addi-
tional cause of image blurring includes atmospheric scatter and spatial and temporal sensor
integration [2]. Images that are partially focused are not enough for sound understanding
and obtaining accurate results in different applications of computer vision such as object
recognition and extraction [3], remote sensing and surveillance [4], image enhancement [5],
medical imaging [6], etc. To resolve this issue, multi-focus image fusion algorithms are pro-
posed in which a fused image of an extended depth-of-field is constructed by integrating
the additional information of multiple images of the same scene.

In recent years, numerous multi-focus image fusion methods have been proposed.
Some of them directly operate on image pixels and regions to obtain an all-in-focus image
while others exploit the transform domains to achieve this task. The former methods
are known as spatial domain based fusion methods, and the latter are categorized as
transform domain based methods [7,8]. In transform domain based fusion, a fused image is
regenerated from fused transform coefficients of the source images. The transform domain
based fusion methods perform well for separating the discontinuities at edges, but do not
give the representation for line and curve discontinuities [9]. They are computationally
expensive techniques and may produce undesirable artifacts in fused image [10].
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In spatial domain based fusion, the rules of fusion are applied to pixels or a region of
input images directly without conversion to other representations to generate the fused
image. Most spatial domain fusion algorithms operate at the pixel level, e.g., [11–14], and
produce a fused image by weighting the corresponding pixels of source images. Some
spatial domain based fusion techniques work at the region level, e.g., [15–17]. These
methods compute focus measures for each region and construct a fused image by selecting
a region with more clarity. The spatial domain based fusion algorithms provide high
spatial resolution. However, the results might suffer from unwanted artifacts, e.g., the
ghosting effect, which mainly occurs due to incorrect categorization of the pixels or regions
as focused or de-focused. To overcome these problems, some techniques in the spatial
domain use real values instead of binary values as focus measures and use the weighted
averaging of pixel values to obtain the fused image [18,19].

In this paper, we propose a novel spatial domain based multi-focus image fusion
algorithm. The proposed method is built on the idea of grouping the neighboring pixels
with similar colors and patterns into larger pixels (also known as superpixels) to obtain
an accurate decision map. We observe that such a grouping helps reduce the false catego-
rization of pixels as focused and de-focused. The statistical properties of the computed
superpixels are analyzed to distinguish the focused and de-focused pixels, generating the
initial focus map, which is further processed to obtain a more accurate final decision map.
Different tests performed to evaluate the performance of the proposed method reveal its
effectiveness. A few of the sample fusion results achieved by the proposed method are
shown in Figure 1.

(a) (b) (c)

Figure 1. Results of the proposed algorithm on sample multi-focus images from the test dataset.
(a) Source images with foreground focused, (b) source images with background focused, and (c)
fused images using the proposed method.

The rest of this paper is organized as follows: A brief review of the literature on multi-
focus image fusion is presented in Section 2. The proposed MIFalgorithm is presented
in Section 3. The experimental evaluation through different qualitative and quantitative
tools is carried out in Section 4. The performance of the proposed algorithm with different
color distance models and the impact of other parameters is analyzed in Section 5. The
conclusions are drawn in Section 6.
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2. Background and Literature Review

The main step in any multi-focus image fusion algorithm is the detection of the focused
region in the source multi-focus images to obtain a so-called decision map, also called
the focus map. The source images are then fused to obtain an all-in-focus image. Based
on the representation and working of the focus map estimation and fusion process, the
existing MIF algorithms can be categorized into four groups: multi-scale transform based
methods, feature space transform based methods, spatial domain based methods, and
neural networks based methods [8,20].

The multi-scale transform based methods generally split the input images into a
multi-scale domain and then fuse the transformed coefficients using some fusion rule. The
all-in-focus image is generated from these fused coefficients [21]. Multi-scale transform
methods have a wide of range of related techniques sequentially implemented in image
fusion like pyramid decomposition [22], wavelet transform [23,24], curvelet transform
(CVT) [25], and contourlet transform [26,27]. In the MIF algorithm presented in [28], the
source images are split into approximation and detail coefficients at different levels, and
the coefficients are fused by applying several fusion rules. Various level fused coefficients
are merged to obtain the desired all-in-focus image. Sheng et al. [29] proposed a support
value transform based method that uses a support vector machine to achieve the fused
image. The discrete cosine transform has also been exploited for image fusion, e.g., [30,31]

The feature space transform based fusion has emerged as another popular mean for
multi-focus image fusion [32]. These fusion methods estimate the focus map through a
single scale feature space of source images. References [1,13,33,34] are a few examples of
such MIF methods. The sparse representation based fusion method in [33] divides the
input images into patches known as sparse coefficients using a dictionary. The coefficients
are then combined, and the fused image is generated. The fusion method in [1] uses the
feature space from a robust principal component analysis technique for decomposition,
and local sparse features are used to compute the all-in-focus image. The higher order
singular-value decomposition based method [34] picks informative patches from input
images by estimating the activity level of each patch. This information helps to obtain
the fused image. Another higher order singular-value decomposition based method was
presented in [35]. Multi-focus image fusion with the dense scale-invariant feature transform
method (DSIFT) [13] uses dense descriptors to calculate the activity level in the patches of
source images to form an initial decision map. After refining and feature matching of the
initial map, it is used to form the fused image.

In spatial domain based fusion methods, fused images are computed by processing
the pixels of the input multi-focus images. Some methods operate at the pixel level,
e.g., [11,14,36]; some are block based, e.g., [37–39]; and others are region based methods,
such as [40–42]. Usually, pixel-by-pixel averaging of source images does not achieve
plausible results as it may introduce different artifacts in the fuse image [13,43]. Therefore,
the region based and block based spatial domain fusion methods have been introduced.
In these methods, the input images are divided into blocks or segmented regions, and the
sharpness of each block is calculated to form the focus map [44].

Image segmentation is a difficult task, so it is hard to maintain the quality of fused
images obtained by region based methods. However, as an image block may contain
both focused and defocused areas, the fused image computed by the block based method
may exhibit anisotropic blur and misregistration. To resolve this problem, multi-scale
image fusion methods have been introduced. The method in [45] is based on a multi-
scale structure based focus measure. In this method, a binary-scale scheme is used, which
calculates the weighted gradient of a focused region by applying small-scale focus measures.
It proves helpful in reducing the anisotropic blur and misregistration with large-scale
focus measures.

In recent years, many pixel based spatial domain methods have been proposed. These
methods include image matting based [18] and guided filtering based [46] methods, which
compute the fused image by extracting enough information from the source images and



Entropy 2021, 23, 247 4 of 22

achieve high efficiency by preserving spatial consistency. The MIF method proposed in [18]
focuses on obtaining all-in-one focus images from detected focused regions in multi-focus
images by using morphological filtering and the image matting technique. In the guided
filtering based method [46], two-scale image decomposition is done to produce focused
images from the base layer and detail layer.

Some pixel based methods, such as [47–49], solve the maximum optimization problem
by estimating a weight map. The algorithm in [47] has the benefit of a multi-spectral algo-
rithm along with spatial domain methods. The combined activity estimation of high and
low frequencies of source images is calculated, and a new smoothness term is introduced
for the alignment of the solution to the boundaries of the defocused and focused pixel.
In [48], multi-focus image fusion was proposed using edge and multi-matting models. A
multi-focus image fusion algorithm based on random walks [49] analyzes the feature area
locally and identifies nodes globally to compute connected graphs of random walks.

Multi-focus image fusion has also been achieved through deep neural networks
in several ways; the majority of these techniques rely on the detection of the focused
region [50]. In the fusion method presented in [50], features are extracted through a u-
shaped network to obtain high- and low-level frequency texture information. It directly
maps multi-focus images to fused images instead of detecting focused regions. The pulse
coupled neural network (PCNN) is also explored for image fusion, e.g., [16]. In these
methods, the source multi-focus images are decomposed into fixed-size blocks, and the
image Laplacian of each block is computed to obtain the feature maps. These feature maps
are used as the input of the PCNN as in [16].

Recently, deep learning has also been explored for efficient image fusion [51]. A
number multi-focus image fusion techniques based on deep learning (DL) have been
presented using convolutional neural networks (CNNs), such as in [52–56]. The method
in [52] proposes a pixel-wise convolution neural network for image fusion, and the deep
convolutional neural network (CNN) based method [54] uses the Siamese network for
feature extraction and activity level measurement in source images to obtain a focus
map. The CNN based MIF method presented in [53] also uses Siamese multi-scale feature
extraction. In [55], a multi-level dense network was presented for fusing multi-focus
images. It extracts shallow and dense features from images from a mixture of many
distributions. The convolutional sparse representation (CSR) is used for multi-focus image
fusion, e.g., [57–59]. The algorithm in [59] uses Taylor expansion and convolutional sparse
representation for fusing multi-focus images. Morphological component analysis and
convolutional sparse representation were used in [58] to obtain texture features using pre-
learned dictionaries. The obtained sparse coefficients of the source images were merged,
and a fused image was obtained. Generative adversarial networks (GANs) have also been
exploited for increasing the depth of field, e.g., [60–62].

3. Proposed Method

We propose a spatial domain based multi-focus image fusion algorithm that builds on
the idea that pixels in a small locality in an image are highly autocorrelated—having similar
colors and textures—and thus can be merged into larger patches known as superpixels to
improve the speed and quality of different tasks. These superpixels are more expressive
than single pixels as they carry more distinctive statistical properties when compared
with other superpixels. Moreover, we observe that they have a greater tendency to be
distinguished as focused and out-of-focused compared to single pixels. We exploit this
important characteristic to design a novel and efficient image fusion algorithm. The
proposed method works in three steps. First, superpixels in the source multi-focus images
are computed. Second, using the statistical properties of superpixels, they are categorized
as focused and de-focused, from which initial focus maps are constructed. The initial focus
map is refined using a spatial consistency constraint. Third, the refined focus map is used
to obtain the fused image from source multi-focus images with the help of a fusion rule. A
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schematic diagram of the proposed method is shown in Figure 2. These steps are described
in detail in the following sections.

Focus Map 

Estimation 

Fusion 

Rule
𝐼1

𝐼2 𝑆2

𝑆1

 𝑀 M

𝐼𝑓

𝐼1,𝐼2: Input source images 𝑆1,𝑆2: Superpixel of images  𝑀 : Initial Focus Map

M: Final Focus Map 𝐼𝑓: Fused image 

Focus Map 

Refinement

Figure 2. Schematic diagram of the proposed multi-focus image fusion algorithm.

3.1. Superpixels Computation

Several algorithms have been proposed to obtain superpixels from an image, e.g., [63–65].
Like most existing superpixel algorithms, the proposed technique also uses pixel color
and its spatial position in deciding their merging. Our method extends the simple linear
iterative clustering (SLIC) algorithm [65], which uses k-means clustering to generate super-
pixels, to obtain superpixels better suited for image fusion. In particular, similar to [65],
we divide the image pixels into k number of clusters based on their color and location.
Superpixels are computed based on the mean color values of pixels. For an image with N
pixels, the size of each superpixel is approximately N/k pixels. Regular spaced grid pixels
S are computed where S =

√
N/K. Every initial cluster center is then sampled based on S

to produce equally sized superpixels. After the comparison, these centers are then moved
forward to the lowest gradient position. Then, each pixel of the image is associated with
the nearest cluster center through a distance measure Ds. Ds is computed considering the
pixel spatial distance ds and the color difference dc.

The spatial distance of the pixel located at (xi, yi) and a cluster center (xk, yk) is
computed using the Euclidean distance metric.

ds =
√
(xk − xi)2 + (yk − yi)2 (1)

For color distance measure, unlike the method in [65], we use the CIEDE2000color
difference model, which produces better superpixels for image fusion. We performed
numerous experiments and tested different color distance models to evaluate their effec-
tiveness for pixel focus detection, which favored the CIEDE2000 metric. It is a complicated,
but accurate color distance measure [66]. In this model, the color difference between two
pixels with color in the L∗a∗b∗ model (L∗1 a∗1b∗1 ) and (L∗2 a∗2b∗2) is computed as:

dc =

√√√√( ∆L′

kLSL

)2

+

(
∆C′

kCSC

)2

+

(
∆H′

kHSH

)2

+ RT
∆C′

kCSC

∆H′

kHSH
(2)
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where ∆L′ is the difference in luminance components and ∆C′ and ∆H′ are computed from
the chroma components a∗, b∗.

∆L′ = L∗2 − L∗1
∆C′ = C

′
2 − C

′
1

with C
′
1 =

√
(a′1)

2 + (b∗1)
2, C

′
2 =

√
(a′2)

2 + (b∗2)
2 and ∆H

′
=
√

C′1C′2 sin(∆h′/2).
The weighting factor KL, KC, and KH in (2) are usually set to unity. SL, SC, and SH

are the compensation of lightness, chroma, and hue. To keep the discussion simple, the
complete details of the metric are not presented here, and they can be found in [66].

Finally, the two distance measures are combined as in [65] to obtain Ds. It is the sum
of the spatial distances (1) and color distances (2), which are normalized by gird interval S.
The factor m in (3) is used to control the compactness of the superpixels.

Ds = dc +
m
S

ds (3)

Let I1 and I2 be two source multi-focus images. In the rest of the text, they are simply
referred to as source images. Using the proposed algorithm, the superpixels in I1 are
computed, which are mapped to I2 to divide I2 into the corresponding set of superpixels.
That is, the superpixels in I2 are not computed; instead, the superpixel labels computed
in I1 are assumed for I2 as well, and the values of their centers are updated with respect
to I2. This helps to establish the correspondence between the superpixels in I1 and I2. We
recall that both images are complementary and represent the same scene, but with different
focused regions. Therefore, the superpixel structure of the two images is kept the same so
that the correspondence between them can be established. Figure 3 shows the superpixels
computed using the proposed strategy on a sample multi-focus image pair (shown in
Figure 1).

(a) S1 (b) S2

Figure 3. Superpixel computation using the proposed strategy. (a) Superpixels of I1 (foreground
focused). (b) Superpixels of I2 (background focused).

3.2. Focus Map Estimation

A superpixel carries various statistical properties, e.g., mean, standard deviation,
variance, and kurtosis, which can be used to draw different characteristics of the superpixel.
The standard deviation is considered to be an important and widely used index to measure
information diversity and variability in an image [67,68]. It has been shown in different
studies, e.g., [69], that the variance (or standard deviation) of the de-focused regions is
generally less than the sharp regions. In the proposed method, we exploit this property to
designate the superpixels as focused and de-focused. We calculate the standard deviation
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of each superpixel in the source images and use it to estimate the focus map. We found
that the standard deviation of L channel serves as a better discriminant than the standard
deviation computed over all three channels, i.e., l, a, and b. Therefore, for each superpixel,
s, the standard deviation σ of the L values of its constituent pixels is computed.

σ1,i =

√√√√ 1∣∣s1,i
∣∣ ∑
(x,y)∈s1,i

(
I1
(

x, y
)
− µ1,i

)2
(4)

where s1,i is the i-th superpixel in image I1,
∣∣s1,i

∣∣ is the number of pixels in s1,i, and µ1,i is
the mean of the pixels in superpixel s1,i.

µ1,i =
1
|si| ∑

(x,y)∈si

I1
(
x, y
)

The standard deviation of each superpixel in I2, σ2,i, is computed analogously. The
standard deviations of the corresponding superpixels in I1 and I2 are compared, and the
focus map M̄ is constructed. If σ1,i is greater than σ2,i, this means s1,i is focused in I1 and
the same region s2,i is de-focused in I2. In the focus map M̄, the focus value of pixels
corresponding to s1,i is set to one, and it is set to zero if σ1,i ≯ σ2,i. That is,

M̄(x, y)
∀(x,y)∈si

=

1 if σ1,i > σ2,i

0 if σ1,i ≤ σ2,i
(5)

Figure 4 shows the focus map constructed from the superpixels shown in Figure 3 using
Equation (5).

It is possible that in the initial focus map obtained through the proposed algorithm,
a few superpixels are incorrectly categorized, as can be noted in Figure 4. Some focused
superpixels are falsely marked as de-focused, and a few de-focused patches are incorrectly
marked as focused. These false positives and false negatives should be resolved to obtain a
high-quality fused image. To this end, a neighbor constraint technique is proposed. We
observed from experiments that the incorrectly categorized superpixels usually appear as
a single entity, and most of its neighbors are correctly identified. Based on this observation,
we form a neighbor constraint rule to eliminate the false positives and negatives from
the map. The rule examines each superpixel in the map, investigates all its neighboring
superpixels, and assigns the category that most of its neighbors have. Specifically, it is
marked as focused if more than half of its neighbors are marked as focused, and vice versa.

Figure 4. Initial focus map generated using the proposed strategy for the images shown in Figure 3.
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Figure 5 shows the results of the proposed refinement process. Figure 5a shows a
source image with superpixels overlaid on it; two sample focused and de-focused regions
magnified to ease the inspection are shown below it. Figure 5b shows the initial focus
map; superpixels structures are also overlaid to highlight the details, and selected regions
are also shown below this figure. The results of the refinement procedure are shown in
Figure 5c. The results show that most incorrectly marked regions were successfully recov-
ered by the proposed refinement strategy.

(a) (b) (c)

Figure 5. Initial focus map refinement: (a) a sample multi-focus image with superpixels structures
overlaid on it, (b) the obtained focus map, and (c) the refined focus map.

3.3. Fusion Rule

The final focus map M obtained after refinement is used to fuse the contents of the
source images I1 and I2 to generate the all-in-focus image I f . The fusion rule simply takes
the pixel value from I1 if the focus map value is one and from I2 otherwise. Figure 6 shows
the fused image generated from the source images shown in Figure 3.

I f (x, y) =

I1(x, y) if M(x, y) = 1
I2(x, y) if M(x, y) = 0

(6)

(a) I1 (b) I2 (c) I f

Figure 6. Fusion results using the refined focus map: (a) first source image I1, (b) second source
image I2, and (c) fused image I f .
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4. Experiments and Results

In this section, we evaluate the performance of the proposed multi-focus image fusion
method and compare it with the existing MIF techniques. The performance was assessed
both qualitatively and quantitatively, and various analyses were also performed to evaluate
the robustness of the proposed method. The experiments were performed on the recent
widely used Lytro multi-focus dataset [43,70]. The dataset contains 20 color multi-focused
image pairs, each of size 520× 520. Sample image pairs from the dataset are shown in
Figure 7.

Figure 7. Sample multi-focus image pairs from the Lytro dataset.

4.1. Compared Methods

To evaluate the effectiveness of the proposed method, its performance was compared
with existing well-known multi-focus image fusion (MIF) algorithms. In particular, nine
representative methods were selected for the comparison. The discrete cosine harmonic
wavelet transform (DCHWT) based method [24] reduces the fusion complexity by using
the discrete cosine transform (DCT) and discrete harmonic wavelet coefficients. The
wavelet based statistical sharpness measure (WSSM) [71] utilizes the spreading of the
wavelet coefficient distribution as a sharpness measure and evaluates it by the adaptive
Laplacian mixture model. The pulse coupled neural network (PCNN) method [26,72] uses
the orientation information to obtain the fused image. The source images are decomposed
into fixed-size blocks, and the image Laplacian of each block is computed to obtain feature
maps that are used in PCNN for fusion. The DCTLP method [31] uses DCT coefficients
and Laplacian pyramids to achieve fusion. The method presented in [73] uses Independent
Component Analysis (ICA) and topographic independent component analysis bases for
fusion.

In image fusion using luminance gradients (IFGD) [74], the highest gradients of each
pixels’ locations of the source images are blended, and then, fused luminance is obtained
by the reconstruction technique. In the nonsubsampled contourlet transform (NSCT) based
MIF algorithm [27], NSCT decomposition is used to obtain the selection rules for sub-band
coefficients. In the PCA method [75], the fused image is obtained using wavelets and
principal component analysis (PCA). The CSR fusion algorithm [76] decomposes each
source image into base and detail layers with the help of convolution sparse representation.
It performs different fusion techniques on both layers and then merges the results. A
deep convolutional neural network (CNN) based MIF method was presented in [54]. In
particular, it uses the Siamese network for feature extraction and activity level measurement
in source images.

4.2. Qualitative Performance Evaluation

The qualitative performance analysis was performed by analyzing the quality of fused
images visually. For the visual inspection, we present the fusion results obtained by the
compared methods and our algorithm. For comparison, “Swimmer” and “Cookie” image
pairs are selected from the test dataset. The visual inspection is difficult to perform and
generalize as each multi-focus image pair has different information about focused and
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de-focused regions. Nevertheless, it can certainly provide some insight into the quality of
fused images obtained from different algorithms.

Figure 8 presents the fused images of the “Swimmer” image pair obtained by our
algorithm and the compared methods. One can note that the results of the DCTLP method
suffer from undesirable ringing artifacts: the fused image has lost most of the sharpness
around the strong edges. Some blurred regions can be spotted in the results of the PCNN
and NSCT methods. The fused image obtained by IFGD has lost some fine details due
to extra brightness. The ghosting and ringing artifacts can be seen in the results of the
PCA and NSCT algorithms as well. The ghosting artifact is also visible around the edges
in the fused image produced by the ICA method. The fused images produced by WSSM,
CNN, CSR, and our method are of good quality and are hard to visually differentiate.
Similar observations can be made from the visual inspection of the results of ours and the
compared methods on the “Cookie” image pair shown in Figure 9.

(a) Source
Image A

(b) Source Image B (c) DCHWT (d) WSSM (e) PCNN

(f) DCTLP (g) IFGD (h) ICA (i) NSCT (j) PCA

(k) CNN (l) CSR (m) Ours

Figure 8. Visual quality assessment of the fusion results achieved by the proposed and the compared
methods on the “Swimmer” multi-focus image pair from the test dataset. WSSM, wavelet based
statistical sharpness measure; PCNN, pulse coupled neural network; DCTLP, discrete cosine trans-
form Laplacian pyramid; IFGD, image fusion using luminance gradients; CSR, convolutional sparse
representation.
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(a) Source image A(b) Source Image B (c) DCHWT (d) WSSM (e) PCNN

(f) DCTLP (g) IFGD (h) ICA (i) NSCT (j) PCA

(k) CNN (l) CSR (m) Our

Figure 9. Visual quality assessment of the fusion results achieved by the proposed and the compared
methods on the “Cookie” multi-focus image pair from the test dataset.

The visual quality inspection shows that the results produced by our method are crisp
and are free of ghosting and ringing artifacts. A qualitative analysis, however, is difficult to
perform due to various reasons including viewing conditions, trained subjects, etc., and
it is particularly laborious on large datasets. Therefore, to truly assess the performance
of an algorithm, along with the visual inspection, an objective fusion quality assessment
is necessary.

4.3. Quantitative Performance Evaluation

The objective quality assessment of fused images is a tough task as the ground truth
images of multi-focus images cannot be acquired. To objectively evaluate the performance
of MIF algorithms, many metrics have been introduced, but none of them are certainly
better than the others. Therefore, to evaluate the performance of fusion methods, it is
desirable to use multiple metrics. These metrics evaluate the quality of the fused image with
reference to the source multi-focus images. To perform an extensive objective performance
evaluation of the proposed method and other competing techniques, we chose 12 fusion
quality assessment metrics and computed the results over the whole dataset. These metrics
assess the quality of a fused image using its different characteristics and modalities. Based
on these characteristics, the metrics are generally grouped into four categories [8,77]:
information theory based metrics, image structural similarity based metrics, image feature
based metrics, and human perception based metrics. These metrics are summarized in
Table 1.
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Table 1. Objective image fusion quality assessment metrics used in the performance evaluation.

Metric Metric Description and Reference

Information theory based metrics

NMI Normalized mutual information [78,79]
QNCIE Non-linear correlation metric [80]
VIFF Visual information fidelity metric [81]

Feature based metrics

QAB/F Gradient based metric [82]
QG Gradient based metric [83]
QSF Spatial frequency based metric [84]
QM Multi-scale scheme metric [85]
QP Phase congruency based metric [86]

Structural similarity based metrics

QS Piella’s metric [87]
QC Cvejie’s metric[88]
QY Yang’s metric [89]

Human perception based metrics

QCB Chen Blum’s metric [90]

• Information theory based metrics analyze the quality of the fused images by checking
the amount of information transferred from the source images to the fused image.
These metrics include: normalized mutual information (NMI) [79], visual informa-
tion fidelity (VIFF) [81], and the nonlinear correlation information entropy metric
(QNCIE) [80].

• Image feature based metrics calculate the quality of fused image by analyzing the
transferred features from the source images to the fused image. Gradient based fusion
performance metrics QAB/F [82], (QG) [83], image fusion metric based on multiscale
scheme (QM) [85], image fusion metric based on spatial frequency (QSF) [84], and
image fusion metric based on phase congruency (Qp) [86,91] are examples of these
metrics.

• Image structural similarity based metrics: The measurement of image similarity de-
pends on the proof that the human visual system is profoundly adjusted to structural
information, which is exploited in these metrics to assess the quality of a fused image.
The loss of structural information is very important to estimate the image distortion.
These metrics include Piella’s metric [87], Cvejie’s image fusion metric (QC) [88], and
Yang’s image fusion metric (QY) [89].

• Human perception inspired fusion metrics, e.g., Chen Blum metric QCB [90], measure
the quality of fused images on the basis of the saliency map, which is generated by
filtering and calculating the preservation of contrast.

The objective performance analysis of the proposed and the compared methods was
carried out using all twelve metrics described in Table 1. Each metric’s scores was computed
over the whole dataset using the implementation presented in [77], and the results were
averaged to obtain an overall quality score. The comparison is presented in Table 2, and
the best performing algorithm on each metric is marked in bold. The results show that for
the widely used QAB/F metric, our method performed the best, achieving the highest score
0.7539. The proposed method outperformed all competing techniques in most metrics
including QAB/F, QG, QM, QSF, QY, and QC. The performance of our method in the rest
of the metrics was also appreciative, where it was the second or the third best algorithm.
These statistics reveal that the proposed algorithm overall produces better quality fused
images than most compared methods. Both qualitative and quantitative analyses reflect
the effectiveness of the proposed method.
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Table 2. Objective performance evaluation of the proposed and the compared methods on the Lytro dataset. The best scores
for each metric are highlighted in bold.

Metrics DCHWT WSSM PCNN DCTLP IFGD ICA NSCT PCA CNN CSR Proposed

QAB/F 0.7212 0.7305 0.7036 0.6526 0.7174 0.7445 0.2314 0.5992 0.7514 0.7366 0.7539
VIFF 0.9021 0.9333 0.8565 0.8388 1.0456 0.9386 0.5851 0.7809 0.9548 0.9329 0.9344
NMI 0.9176 0.9748 1.2068 0.8296 0.5223 0.9374 0.5645 0.8939 1.0725 0.9921 1.1972
QG 0.6153 0.6758 0.6745 0.5390 0.6181 0.6787 0.2070 0.5340 0.7029 0.6447 0.7291
QNCIE 0.8291 0.8321 0.8497 0.8252 0.8145 0.8301 0.8159 0.8277 0.8384 0.8341 0.8472
QM 0.8821 0.9331 2.2555 0.6983 0.5633 1.0264 0.1796 0.4820 2.3431 1.3400 2.5074
QSF −0.0900 −0.0899 −0.1050 −0.0941 −0.0744 −0.0684 −0.1522 −0.3890 −0.0321 −0.0490 −0.0314
QP 0.7839 0.8201 0.7483 0.6892 0.7632 0.8197 0.0486 0.7500 0.8428 0.8283 0.8289
QS 0.9477 0.9438 0.9133 0.9298 0.8901 0.9547 0.5802 0.9217 0.9485 0.9467 0.9463
QC 0.8019 0.8097 0.8183 0.7698 0.7485 0.8334 0.3853 0.7978 0.8253 0.7980 0.8258
QY 0.9219 0.9567 0.9672 0.8747 0.8526 0.9515 0.3792 0.8490 0.9653 0.9340 0.9838
QCB 0.6977 0.7887 0.7476 0.6185 0.6118 0.7130 0.4778 0.6325 0.7816 0.7638 0.8054

4.4. Computational Complexity

We also analyzed the computational complexity of the proposed and the compared
methods. All MIF algorithms were executed over the whole dataset, and their average
execution time was computed and is reported in Table 3. These times also include the file
I/O time, if any, and were computed on an Intel® Core™ i7 2.5 GHz processor with 8 GB
RAM and 64 bit operating system. The results show that the PCA algorithm is the fastest
among all approaches; the proposed method takes an average 122.61 seconds to generate a
fused image. The main contributor to this time is the complex computation involved in
estimating the superpixels and using the CIEDE2000 color distance model. An efficient
implementation can help reduce its computational complexity.

Table 3. Execution time (seconds) comparison of the proposed and the compared MIF algorithms.

Method DCHWT WSSM PCNN DCTLP IFGD ICA NSCT PCA CNN CSR Proposed

Time 9.39 215.49 1.31 0.33 1.01 11.30 174.00 0.04 106.32 345.76 122.61

4.5. Summary

The performance of the proposed MIF method was evaluated using different tools and
techniques. To appreciate the performance of the proposed method, visual results achieved
by the proposed and the compared MIF algorithms were presented in the preceding sections.
From the visual inspection of the results presented in Figures 8 and 9, we see that the results
of most compared methods suffer from different impairments such as the ghosting effect,
ringing artifacts, and blurry regions. In contrast, the results of the presented methods are
crisp and free from these artifacts. The objective performance evaluation metrics confirm
this. The advantages of the proposed method lie in its simplicity and ability to compute an
accurate focus map. Unlike other competing methods that employ complex mechanisms to
estimate the focus map and fusion strategies, the proposed method uses a simple fusion
rule. We recall that the proposed MIF algorithm is built on the fact that the pixels in a
small locality in an image are highly autocorrelated—having similar colors and textures.
Based on this phenomenon, the pixels in the image are merged into larger patches, which
provide the grounds for an accurate focus map, resulting in good fusion results. One
limitation of the present proposed method is its inability to work with grayscale images.
Since pixel color is an important clue in our focus map estimation method, its absence can
degenerate its performance. However, extending it to grayscale images would certainly be
an interesting investigation that we plan to carry out in the future.
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5. Performance Analysis Using Different Color Distance Models and the Impact of
other Parameters

In this section, we report different experiments and analyses that we performed
to investigate the performance of the proposed image fusion algorithm. We performed
three sets of experiments, first to evaluate the different color distance models for efficient
superpixel estimation for fusion. The second set of experiments analyzed the impact of the
number of superpixels on the performance of the proposed algorithm. In the third set of
experiments, the contribution of color distance and spatial distance towards the overall
distance measure was analyzed, and their impact on the performance of the proposed
method was investigated.

5.1. Fusion Performance with Different Color Distance Models

We recall that determining the clusters to which the pixels are assigned to (Section 3.1)
is decided using a distance measure Ds Equation (3). Ds is formed from the spatial distance
ds and the color distance dc of the pixel and the cluster centers. The former measure
Equation (1) is simple the Euclidean distance between the two coordinates, and the latter is
the Euclidean distance between the lab colors of the two points Equation (2). We tested
different color distance models to find the distance measure most suited for image fusion
applications. In addition to the CIEDE2000 model (Section 3.1), the following color distance
models are explored.

1. Euclidean color distance in the RGB color space: The simplest and the most well-
known way to compute the distance between two colors is using the Euclidean
distance in the RGB color space. The distance between two pixel colors C1(R1, G1, B1)
and C2(R2, G2, B2) is computed as,

d =
√
(R2 − R1)2 + (G2 − G1)2 + (B2 − B1)2 (7)

2. Color approximation distance (CAD): The perception of brightness by the human
eye is non-linear, and for each color, non-linearity is not the same, as proven by
different experiments [92–94]. Therefore, there have been many attempts to weight
the RGB values to better fit human perception so that the color approximation would
be more appropriate. The CAD between two colors C1(R1, G1, B1) and C2(R2, G2, B2)
is computed as:

d =

√(
2 +

r
256

)
∆R2 + 4∆G2 +

(
2 +

255− r
256

)
∆B2 (8)

where r is the average of R1 and R2; ∆R, ∆G, and ∆B are the differences between the
red, green, and blue channels of the two colors, respectively.

3. CIEXYZ: The visualization of the RGB color space was not perfect because the color
space of the human eye is greater than the experiment results of CIERGB, and an
updated color difference model, CIEXYZ, was introduced by Commission Interna-
tionale de L’éclairage (CIE) [95]. It was mathematically designed to avoid the negative
numbers known as tristimulus values. It consists of three parameters: non-negative
cone response curve (X), luminance (Y), and partially-equal to blue color (Z).X

Y
Z

 =

0.431 0.342 0.178
0.222 0.707 0.071
0.020 0.130 0.939

×
R

G
B


The normalized tristimulus values x, y, and z were calculated from X, Y, and Z as:
[x y z] = [X

S
Y
S

Z
S ], where S = X + Y + Z. The difference between the tristimulus

values of two colors was then computed using the Euclidean distance formula.
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4. CIE76: In the CIE76 color distance model, the CIELAB color space was used as
it is considered to be the most exact means of representing color [96]. The color
difference between two colors C1(L1, a1, b1) and C2(L2, a2, b2) in the CIELAB color
space is calculated by following formula:

d =
√
(L1 − L2)2 + (a1 − a2)2 + (b1 − b2)2 (9)

where ∆L∗ = L1 − L2, ∆a∗ = a1 − a2, and ∆b∗ = b1 − b2
5. CIE94: The CIE94 color model retains the CIELAB color space, and it addressed the

non-uniformities in CIE76 [97,98]. CIE94 was defined in the lightness, chroma, and
hue (LCh) color space, and they are calculated from the Lab-coordinates.

6. CMC l:c: The color difference CMC (Colour Measurement Committee of the Society
of Dyes and Colourists of Great Britain) l:c is calculated in the LCh color space and
has two parameters: lightness (l) and chroma (c). For the application, it allows the
users based on the ratio of l : c to weight the difference that is deemed appropriate.

7. CIEDE2000: The CIE Delta E (CIEDE2000) color distance model was introduced by
CIE and provides an improved method for the calculation of color differences. A
detailed discussion is presented in Section 3.1.

The proposed algorithm with each of these distance measures was executed on the
whole test dataset. The quality of the fused images was evaluated using all 12 fusion
quality assessment metrics, and the average results are presented in Table 4. The best
scores for each metric are highlighted in bold. The results show that most fusion quality
assessment metrics rate the fusion results of the proposed method with the CIEDE2000
color distance model as the best. In these experiments, all other parameters were kept
fixed. Moreover, we also computed the average execution time of the proposed method
with each color distance model, and the results are reported in Table 4. One can note that
CIEDE2000 takes the maximum time of 122.61 seconds per image pair due to its complex
computations. However, it produces better decision maps for fusion and therefore is
preferred over other measures.

Table 4. Comparison of different color distance models for the proposed multi-focus image fusion
algorithm. The best values are in bold. Time (in seconds) is the average execution time of the
proposed method with each color distance model. CAD, color approximation distance.

Metric Euclidean CAD CIE76 CIE94 CIEXYZ CMC CIEDE2000

QAB/F 0.7483 0.7477 0.7520 0.7510 0.7491 0.7533 0.7539
VIFF 0.9192 0.9182 0.9256 0.9240 0.9182 0.9287 0.9344
NMI 1.1919 1.1919 1.1945 1.1953 1.1953 1.1946 1.1972
QG 0.7252 0.7242 0.7291 0.7287 0.7287 0.7295 0.7291
QNCIE 0.8478 0.8479 0.8476 0.8478 0.8479 0.8472 0.8472
QM 2.4243 2.4406 2.4445 2.4363 2.3985 2.4603 2.5074
QSF −0.0403 −0.0387 −0.0393 −0.0412 −0.0457 −0.0335 −0.0314
QP 0.8085 0.8077 0.8239 0.8239 0.8214 0.8224 0.8289
QS 0.9449 0.9449 0.9465 0.9463 0.9456 0.9467 0.9463
QC 0.8199 0.8190 0.8240 0.8238 0.8226 0.8250 0.8258
QY 0.9803 0.9796 0.9827 0.9825 0.9822 0.9826 0.9838
QCB 0.7904 0.7881 0.8006 0.7994 0.7950 0.8005 0.8054

Time 52.08 56.87 44.71 45.31 40.94 53.67 122.61

5.2. Impact of the Number of Superpixels on the Fusion Quality

The parameter that is important in the computation of superpixels is k (Section 3.1), the
desired number of approximately equally-sized superpixels. For an image with N pixels,
the size of each superpixel is approximately N/k pixels. In this experiment, we analyzed
the impact of the number of superpixels on the performance of the proposed algorithm.
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We computed the fusion results with the proposed method using different values of k, and
the results were evaluated using all 12 objective fusion quality metrics to get a general
indicator. In particular, we tested the performance with k ∈ {1000, 1500, 2000, 2500,
3000, 3500, 4000}. From the results shown in Figure 10, one can note that most metrics
show negligible or no change in the quality of the fused images; therefore, the impact of k
on the fusion performance of our method is negligible. However, using a larger value of k
certainly increases the execution time of the method due to the extra computation needed
in computing the superpixels and their subsequent steps. The average execution times for
different k are reported in Table 5. In our method, k = 3000 was set as the default.
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Figure 10. Impact of the number of superpixels k on the fusion quality of the proposed method. In all graphs, the x-axis
represents k and the y-axis the quality score. The x-axis labels are coded as 103.

Table 5. Execution time of the proposed method with different numbers of superpixels k. Time (in
seconds) is the average execution time. The best time is marked in bold.

k 1500 2000 2500 3000 3500 4000 4500

Time 97.86 109.16 118.69 122.61 119.98 132.39 131.43
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5.3. Analysis of the Relative Contribution of Spatial and Color Distances

The parameter m in Equation (3) is used to control the compactness of the superpixels:
it weights the relative information between the spatial and the color proximity. The
recommended range of the value of m in the CIELAB color space is [1, 40]. We performed
a set of experiments using different values of weighting factor m. We note that for small
values of m, the shape and size of the superpixels become less regular and more tightly
adhere to the image boundaries. For a large value of m, the superpixels are more compact,
and spatial proximity becomes more important. The results of superpixel estimations with
different values of m on a sample image are shown in Figure 11.

(a) (b)

Figure 11. Superpixels estimated with the proposed algorithm using (a) m = 15 and (b) m = 40.

The fusion results were assessed using all 12 quality metrics, and their average scores
are graphed in Figure 12. The results clearly show that m does not contribute to the
quality enhancement of the fused image. Since for large values of m, the superpixels are
more compact, the execution time of the method is reduced, as shown in Table 6. In the
implementation of our method, the default value of m was set to 25.

Table 6. Impact of weight factor m on execution time. Time (in seconds) is the average execution time
of the proposed method with different values of m. The best values are in bold.

m 10 15 20 25 30 35 40

Time 151.72 141.16 125.76 122.61 110.32 110.32 98.54
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Figure 12. Cont.
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Figure 12. Impact of the weight factor m on the fusion quality of the proposed method. In all graphs, the x-axis represents
m and the y-axis the quality score.

6. Conclusions

In this paper, a novel multi-focus image fusion technique is presented. The proposed
technique merges similar pixels into larger groups termed superpixels. The spatial and
color properties of the pixels are exploited to estimate the superpixels in the source multi-
focus images. Moreover, different color distance models are tested to obtain high quality
fused images. Different statistical properties of the computed superpixels are analyzed to
categorize them as focused and de-focused, and based on this information, a focus map
is generated. Moreover, the wrongly categorized superpixels are corrected by a spatial
constraint rule. The qualitative and quantitative experiments worked out on a benchmark
multi-focus image dataset reveal that our method produces better quality images than
existing similar techniques. The source code of the proposed method is released publicly at
the project website (http://www.di.unito.it/~farid/Research/SBF.html, accessed on 18
February 2021).
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