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Abstract: Word embeddings based on a conditional model are commonly used in Natural Lan-
guage Processing (NLP) tasks to embed the words of a dictionary in a low dimensional linear space.
Their computation is based on the maximization of the likelihood of a conditional probability distri-
bution for each word of the dictionary. These distributions form a Riemannian statistical manifold,
where word embeddings can be interpreted as vectors in the tangent space of a specific reference mea-
sure on the manifold. A novel family of word embeddings, called α-embeddings have been recently
introduced as deriving from the geometrical deformation of the simplex of probabilities through a
parameter α, using notions from Information Geometry. After introducing the α-embeddings, we
show how the deformation of the simplex, controlled by α, provides an extra handle to increase the
performances of several intrinsic and extrinsic tasks in NLP. We test the α-embeddings on different
tasks with models of increasing complexity, showing that the advantages associated with the use of
α-embeddings are present also for models with a large number of parameters. Finally, we show that
tuning α allows for higher performances compared to the use of larger models in which additionally
a transformation of the embeddings is learned during training, as experimentally verified in attention
models.

Keywords: word embeddings; α-embeddings; information geometry; attention mechanism

1. Introduction

Word embeddings are used as a compact representation for the words of a dictionary.
They are learned starting from one hot encodings by maximizing the likelihood of a chosen
probabilistic model. Rumelhart et al. [1] first introduced the idea of using the internal
representation of a neural network to construct a word embedding. Bengio et al. [2]
employed a neural network to predict the probability of the next word given the previous
ones. Mikolov et al. [3] proposed the use of a recurrent language model based on recurrent
neural networks, to learn the vector representations. More recently, this approach has been
exploited further and with great success by means of bidirectional LSTM (long short-term
memory networks) [4] and transformers [5–7].

In this paper, we focus on Skip-Gram (SG), a well-known log-linear model for the
conditional probability of the context of a given central word. Together with the continuous
bag of words (predicting the central word given the context instead), SG has been shown to
be able to efficiently capture syntactic and semantic information [8,9]. Skip-Gram is at the
basis of many popular word embedding algorithms such as Word2Vec [8,9] and models
based on weighted matrix factorization of the global co-occurrences such as GloVe [10],
cf. Levy and Goldberg [11]. These methods are deeply related, Levy and Goldberg showed
how Word2Vec SG with negative sampling is effectively performing a matrix factorization
of the shifted positive pointwise mutual information [11].

Mikolov et al. [12] noted how, once the embedding space has been learned, syntactic
and semantic analogies between words translate into linear relations between the respec-
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tive word vectors. There have been numerous works investigating the reason for the
correspondence between linear properties and word relations. Pennington et al. gave a
very intuitive explanation of this behavior in their paper on GloVe [10]. More recently,
Arora et al. [13] investigated this property by introducing a hidden Markov model, under
some regularity assumptions on the distribution of the word embedding vectors, cf. [14].

Word embeddings are often used as input for other computational models, to solve
more complex inference tasks. The evaluation of the quality of a word embedding, which
ideally should encode syntactic and semantic information, is not easy to be determined, and
different approaches have been proposed in the literature. This evaluation can be in terms
of performance on intrinsic tasks such as word similarity [10,15–17] or by solving word
analogies [8,12]. However, several authors [18,19] have shown a low degree of correlation
between the quality of an embedding for word similarities and analogies on one side and
on downstream tasks on the other, for instance on classification or prediction, to which
the embeddings are given in input. This observation points out the need for a complete
experimental evaluation of word embeddings in both intrinsic and extrinsic tasks.

Several works have highlighted the effectiveness of post-processing techniques [15,16],
such as Principal Components Analysis (PCA) [14,20], focusing on the fact that certain
dominant components are not carriers of semantic nor syntactic information, and thus
they act like noise for determinate tasks of interest. Recently, we have proposed in [21,22]
a different approach which acts on the learned vectors after training, similarly to a post-
processing step, by using a geometrical framework based on Information Geometry [23,24],
in which word embeddings are represented as vectors in the tangent space of the proba-
bility simplex. A family of word embeddings called natural α-embeddings is introduced,
where α is a deformation parameter for the geometry of the probability simplex known in
Information Geometry in the context of α-connections. Noticeably, α word embeddings
include the standard word embeddings as a special case for α = 1. In this paper, we revisit
the natural α-embeddings and evaluate them over different tasks. We show how the α
parameter provides an extra handle that, by deforming the word embeddings, allows for
an improvement of the performance on different intrinsic and extrinsic tasks in Natural
Language Processing (NLP). Recently, the use of Riemannian methods has attracted con-
siderable interest in the literature of NLP, recent applications of Riemannian optimization
algorithms can be found in [25,26]. In particular, approaches learning word embeddings
on a Riemannian manifold have been devised, such as the Poincaré GloVe [27,28] on the
Poincaré disk and the Joint Spherical Embeddings (JoSE) [29] on the sphere.

This article is an extended version of [30] and is organized as follows. In Section 2,
we introduce the word embeddings based on conditional models, while in Section 3, we
review the geometrical framework for α-embeddings. In Section 4, we assess the impact
of α-embeddings on the performances of different intrinsic and extrinsic tasks in NLP,
with particular emphasis on attention mechanisms, where we show that α-embeddings
(controlled by a single scalar) are able to provide better performances than transformations
of the embeddings requiring a large number of parameters. Finally, in Section 5, we
conclude the paper and present future perspectives.

2. Word Embeddings Based on Conditional Models

One of the simplest models which can be used for the unsupervised training of a set of
word embeddings are linear conditional models. The Skip-Gram conditional model [9,10]
allows the unsupervised training of a set of word embeddings by predicting the conditional
probability of any word χ to be in the context of a central word w

p(χ|w) = pw(χ) =
exp(uT

wvχ)

Zw
(1)

where Zw = ∑χ′∈D exp(uT
wvχ′) is the normalization constant. This model is defined by two

column vectors u, v ∈ Rd to each word. The set of vectors uw, vw for w ∈ D arranged by
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rows compose two n× d matrices U, V, respectively. Such matrices are typically learned
from data by maximum likelihood estimation [8,10,11].

Equation (1) represents an over-parametrized exponential family in the open n− 1
dimensional simplex Pn, parametrized by two matrices U and V of size n× d, where n is
the cardinality of the dictionary D and d is the size of the embeddings. Notice that the
number of free parameters (2dn) is greater than the number n of sufficient statistics 1χ,
corresponding to the one hot encoding of the words of the dictionary. We will refer to the
columns of the matrix V as Vk and to its rows as vχ, seen as column vectors. Analogous
notation will be used for U. It is common practice in the literature of word embeddings
to consider uw or alternatively uw + vw as embedding vectors for a word w from the
dictionary, see [8–10,16,20]. In the remaining part of this section we will review the natural
α-embeddings and limit embeddings originally proposed in [21,22] based on notions of
Information Geometry [23,24].

After the inference procedure for the estimation of the model parameters, the matrices
V and U are fixed. For each word w, the conditional model pw(χ) from Equation (1) is a d-
dimensional exponential family EV in the n− 1 dimensional open simplexPn, which models
the probability of a word χ in the context of the central word w. From this perspective,
the exponential model EV has d sufficient statistics corresponding to the columns of V,
while each row uw of U corresponds to an assignment for the natural parameters, which
identifies a probability distribution in the model. During training, both matrices U and V
are updated to maximize the likelihood of the observed data in the corpus. This implies
that both the sufficient statistics of the exponential model EV are updated, by changing the
columns of V, as well as the assignment of the natural parameters uw of each conditional
distribution pw.

Each conditional model p(χ|w) lies inside a face of the (n × n − 1)-dimensional
simplex, corresponding to the ambient space for the joint distribution p(χ, w) parametrized
by U, V. Since the conditional models are defined over the same sample space and have the
same sufficient statistics determined by V, we can identify them with a single exponential
family EV embedded in Pn, as depicted in Figure 1.

Figure 1. The Skip-Gram model is defines a joint curved model in the (n × n − 1)-dimensional
simplex. Some faces of this model correspond to the conditional models p(χ|w) for some w. The
conditional models are defined over the same sample space and have the same sufficient statistics de-
termined by V, they represent, in fact, different points on the same exponential family EV embedded
in Pn. At each training step, the model EV varies with V.
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3. α-Embeddings

In Information Geometry, a statistical model is represented as a Riemannian manifold
endowed with a Riemannian metric given by the Fisher information matrix [23,24,31]. The
Fisher matrix for the exponential family (1) corresponds to the covariance matrix of the
centered sufficient statistics

I(p0) = Ep0

[
∆vχ(p0)∆vχ(p0)

T
]
= ∆V(p0)

T diag(p0)∆V(p0) , (2)

where ∆V(p0) = (V − Epu [V]) are the centered sufficient statistics evaluated over the
dictionary and ∆vχ(p0) corresponds to a row of ∆V(p0) expressed as a column vector.

The geometry of a statistical manifold defined by a metric and a connection can
be induced by a divergence [23]. Taking two positive measures p and q, the family of
α-divergences, for α ∈ R, are defined as

D(α)[p||q] =


4

1−α2

(
1−α

2 ∑i pi +
1+α

2 ∑i qi −∑i p
1−α

2
i q

1+α
2

i

)
α 6= ±1

∑i pi −∑i qi + ∑i qi ln qi
pi

α = −1

∑i qi −∑i pi + ∑i pi ln pi
qi

α = +1 .

(3)

It is a known fact that α-divergences are also f-divergences and thus induce the same
metric on the manifold, which is the Fisher metric [32], indeed by taking the Hessian
of an α-divergence between infinitesimally close probability distributions, we obtain the
Fisher information matrix I(p0) for any α. The exponential family, endowed with the
family of α-divergences is a dually-flat manifold, meaning that the α-divergences define a
corresponding family of α-connections [23], which are dually coupled with respect to the
metric. For α = 0, we obtain the Levi–Civita connection, which is by definition compatible
with the metric and thus self-dual. It is possible to prove that the hα-representation

hα(p) =

{
2

1−α p
1−α

2 α 6= 1
log p α = 1 ,

(4)

provides a parametrization in which the corresponding α-connection is flat.
In our previous papers [21,22], using an information geometric framework, we have

introduced a novel family of embeddings called natural α-embeddings. Given a reference
measure p0 in the exponential family EV , the natural α-embedding of a given word w
from the dictionary is defined as the α-projection Π(α)

p0 of the α-logarithmic map Log(α)
p0 w

onto the tangent space Thα(p0)
E (α)V of the model E (α)V = hα(EV) represented by means of the

hα-representation, used to deform probability distributions in the simplex [23,32]. The main
intuition behind this definition is that a word embedding for w corresponds to the vector in
the tangent space of p0 that allows to reach pw starting from p0. Since the hα-representation,
the logarithmic map and the projection are expressed as a function of the same parameter
α, a family of natural α-embeddings W(α)

p0 (w) ∈ Thα(p0)
hα(EV) can be defined depending

on α. In the following, we report the main formula for the computation of the natural
α-embeddings, all the detailed derivations can be found in [21,22]. By combining the
formula for the α-projection and the α-logarithmic map, we obtained the following formula
for the natural α-embeddings

W(α)
p0 (w) = Π(α)

0

(
Log(α)

p0
pw

)
= I(p0)

−1 ∑
χ

l(α)p0 w(χ) p0(χ)∆vχ(p0)

= I(p0)
−1∆V(p0)

T diag(p0) l(α)p0 w

(5)

where, employing a slight abuse of notation, p0 is a vector, diag(p0) is a diagonal matrix
with diagonal p0, and the vector l(α)p0 w is defined with components
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l(α)p0 w(χ) =


ln pw(χ)− ln p0(χ) α = 1 ,

2
1−α

((
pw(χ)
p0(χ)

) 1−α
2 − 1

)
α 6= 1

. (6)

We summarize the α-embeddings calculation with the following pseudo-code (see in
Algorithm 1).

Algorithm 1: α-embeddings.
Data: U, V matrices obtained from the training of GloVe
Data: p0(χ) the reference distribution
Data: α ∈ R
Compute the matrix ∆V(p0) = V − Ep0 [V]

Compute the Fisher matrix I(p0) = ∆V(p0)
T diag(p0)∆V(p0)

if α = 1 then
lα
p0 w(χ) = ln pw(χ)− ln p0(χ)

else

lα
p0 w(χ) =

2
1−α

((
pw(χ)
p0(χ)

) 1−α
2 − 1

)
end

Result: W(α)
p0 (w) = I(p0)

−1∆V(p0)
T diag(p0) l(α)p0 w

α-embeddings can be used both for downstream tasks and also to evaluate similarities
and analogies in the tangent space of the manifold [21,22]. Given two words a and b, a
measure of similarity is defined by the geometric cosine similarity between α-embeddings

sim(α)
p0 (a, b) =

〈
W(α)

p0 (a), W(α)
p0 (b)

〉
I(p0)∣∣∣∣∣∣W(α)

p0 (a)
∣∣∣∣∣∣

I(p0)

∣∣∣∣∣∣W(α)
p0 (b)

∣∣∣∣∣∣
I(p0)

, (7)

Moreover, analogies of the form a : b = c : d can be solved by minimizing an analogy
measure κ

(α)
p0 (pa, pb, pc, pd) reducing to the difference between the vectors Wα

p0
(b)−Wα

p0
(a)

and Wα
p0
(d)−Wα

p0
(c) computed in p0 with respect to the metric∥∥∥W(α)

p0 (b)−W(α)
p0 (a)−W(α)

p0 (d) + W(α)
p0 (c)

∥∥∥
I(p0)

. (8)

It has been shown in [21,22] that for α = 1, if p0 equals the uniform distribution over the
dictionary, the embeddings of Equation (5) reduce to the standard vectors uw. Furthermore,
by substituting the Fisher information matrix I(p0) with the identity matrix, Equations (7)
and (8) reduce to the standard formulas used in the literature for similarities and analo-
gies [8–10]. Proposition 3 in [21] or equivalently Proposition 1 in [22] provides conditions
under which the Fisher information matrix is isotropic, i.e., proportional to the identity.

It is quite common practice in the literature to use the embedding vectors u + v,
which have been shown to provide better results [10] than simply u vectors. In the context
of natural α-embeddings, the vectors u + v can be interpreted as a shift of the natural
parameters u of the exponential family. It can be demonstrated [21,22] that this corresponds
to a reweighting of the probabilities in Equation (1)

p(+)(χ|w) =
1

Nw
exp(vT

wvχ)p(χ|w) , (9)

in which Nw is an additional factor emerging from the normalization. Equation (9) repre-
sents a change of reference measure proportional to exp(vT

wvχ), i.e., giving more importance
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to those words χ whose v vectors are aligned to that of the central word w. This defines an
analogous notion of u + v embeddings (popularly used in the literature) in the context of
α-embeddings

W̃(α)
p0 (w) = Π(α)

p+0

(
Log(α)

p0
p(+)(·|w)

)
. (10)

Limit Embeddings

The behavior of the α-embeddings for α progressively approaching minus infinity
turns out to be of particular interest. Indeed, in this case, lα

p0 w(χ) is progressively more
and more peaked on the words χ which have larger ratio pw(χ)/p0(χ), up to the point of
corresponding to a delta distribution over the set

χ∗w = arg max
χ

pw(χ)

p0(χ)
. (11)

Notice that the norm of lα
p0 w(χ) tends to infinity as α tends to minus infinity, since 1− α

tends to infinity and thus the maximum of the probability ratio (which is always greater
or equal to 1 for any two distributions) is progressively predominant, see Equation (6).
Since for all tasks of interest, we always use normalized α-embeddings (either with the
identity matrix or with the Fisher metric), this allows us to consider only the direction
of the tangent vectors. In the limit of α going to minus infinity, the un-normalized limit
embeddings simplify to

LW(α)
p0 (w) = lim

α→−∞
W(α)

0 (w)

= I(p0)
−1∆V(p0)

T diag(p0) 1χ∗w .
(12)

where 1χ∗w is the indicator function for the words in χ∗w from the dictionary. Notice that
diag p0 weights the rows of ∆V, while the indicator function 1χ∗w selects only a restricted
number of rows of the matrix, which are then premultiplied by the inverse of the Fisher in-
formation matrix. In most cases, the ratio has a unique argmax, hence the limit embeddings
depend on one single row of ∆V

LW(α)
p0 (w) = p0(χ

∗
w)I(p0)

−1∆vχ∗w(p0) . (13)

This simple formula allows the straightforward implementation of geometrical methods
which are based on un-normalized α-embeddings in the limit case of α going to minus
infinity. Additionally, let us notice that in the case for two words w′ and w′′, we have
χ∗w′ = χ∗w′′ , then the associated α-embeddings will tend to correspond as α → −∞, thus
limit embeddings also naturally induce a clustering in the embedding space.

4. Experiments

We considered two corpora: the English Wikipedia dump October 2017 (enwiki), with
1.5B words, and its augmented version composed by Gutenberg [33], English Wikipedia
and Book-Corpus [34–36] (geb), with 1.8B words. We used the WikiExtractor Python
script [37] to parse the Wikipedia dump xml file. A minimal preprocessing was performed,
by lowercasing all the letters and removing stop-words and punctuation.

For each corpus, we trained a set of word embeddings with vector sizes of 50 and 300.
We employed a cut-off minimum frequency (m0) of 1000, obtaining a dictionary of about
67 k words for both enwiki and geb. For GloVe, we used the code at [38], the window size
was set to be 10 as in [10], with a decaying weighting rate from the central word of 1/d for
the calculation of co-occurrences. We trained the models for a maximum of 1000 iterations.
For Word2Vec SG, we used the code at [39] with window 10 and negative sampling 5. We
trained the models for 100 epochs.
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The embeddings in Equation (5) will be denoted with E in all the figures and tables
from this section, while the limit embeddings in Equation (12) will be denoted with LE.
Embeddings have been normalized either with the Fisher information matrix (F) or the
identity matrix (I). Similarly, scalar products will be computed either with the Fisher
information matrix (F) or the identity matrix (I). In the following, in case both inner product
and normalization are used in the same experiment, they will be computed with respect to
the same metric (either F or I). For the reference distribution needed for the computation of
the α-embeddings, we have chosen the uniform distribution (0), the unigram distribution
of the model (u) obtained by marginalization of the joint distribution learned by the model

p(w) = ∑
χ

exp(uT
wvχ)

Z
,

or the unigram distribution estimated from the corpus (ud). Embeddings are denoted by
U if in the computation of Equations (5) and (12) the formula used for pw is Equation (1),
while they will be denoted by U+V if Equation (9) is used instead.

We evaluate the α-embeddings on intrinsic tasks such as similarities, analogies, and
concept categorization, as well as on extrinsic ones like document classification, sentiment
analysis, and sentence entailment. We consider α with step 0.1 between (–10, 10) for
similarities and analogies. We perform experiments with step 0.1 for α ∈ (–2, 2), step 0.2
for α ∈ (–10, –2) ∪ (2, 10) and step 1 for α ∈ (–30, –10) ∪ (10, 30) for concept categorization,
document classification, sentiment analysis, and sentence entailment.

4.1. Similarities, Analogies, and Concept Categorization

In Figure 2, we report results for similarities and analogies with embeddings of size 300.
For similarities, we consider the following datasets: ws353 [40], mc [41], rg [42], scws [43],
men [44], mturk287 [45], rw [46], and simlex999 [47]. For analogies, we use the Google
analogy dataset [8] split, as is common practice in the literature, in semantic analogies
(sem) and syntactic analogies (syn), or alternatively considering all of them (tot). The limit
embeddings (colored dotted lines) achieve good performances on both tasks, above the
competitor methods from the literature U and U+V based on GloVe vectors centered and
normalized by column, as described in Pennington et al. [10]. Comparison with baseline
methods from the literature on word similarity is presented in Table 1, we compared with
the limit embeddings since they usually seem to perform well on the similarity task, see
Figure 2 top row. The limit embeddings methods reported in the table outperform the Wiki
Giga 5 pretrained vectors [10] (6B words corpus) and other comparable baselines from
the literature.

In Table 2, we report the best performances for the analogy task on α-embeddings,
where α is selected with cross-validation. For the syn dataset, using the embeddings trained
on the enwiki corpus, the limit embeddings have been found to work better instead. The
standard deviations reported are obtained by averaging the performances on test of the
top three α selected on the basis of the best performances on validation. The standard
deviations obtained are relatively small, which indicates that tuning α is easy also on
tasks with small amounts of data in cross-validation. The best tuned α on the geb dataset
outperform the baselines for all experiments.



Entropy 2021, 23, 287 8 of 17

Figure 2. Word similarities expressed in Spearman correlation × 100 (top) and word analogies
accuracies (bottom) for different values of α. The left column reports experiments on enwiki, while
the right column reports experiments on geb. U, U+V, and WG5-U+V are the GloVe vectors of size
300 described in the text, centered and normalized. Figure from [30].

Table 1. Spearman correlations for the similarity tasks. WG5 denotes the wikigiga5 pretrained vectors on 6B words [10] tested for
comparison on the dictionary of the smaller corpora enwiki and geb. U and U+V are the standard methods either for GloVe or
Word2Vec. PSM refers to the accuracies reported by Pennington et al. [10] on enwiki, BDK is the best setup across tasks (as a result of
hyperparameters tuning) reported by Baroni et al. [48], and LGD are the best methods in cross-validation with fixed window sizes of 5
and 10 (as a result of hyperparameters tuning) reported by Levy et al. [17].

Method ws353 mc rg scws ws353s ws353r Men mturk287 rw simlex999 All

en
w

ik
i

LE-U+V-ud-F (our) 75.5 83.4 81.5 63.5 77.8 69.2 75.6 60.1 55.6 41.6 62.6
GloVe WG5-U+V 65.1 73.8 77.6 62.2 71.3 60.7 77.2 65.7 51.5 41.0 61.3

GloVe U 60.2 69.3 69.8 58.3 67.1 56.4 69.2 67.2 47.1 31.4 53.6
GloVe U+V 63.8 74.5 75.2 58.7 69.5 60.9 71.6 67.3 45.5 32.2 55.1
Word2Vec U 64.7 73.5 78.4 63.6 73.7 56.1 72.9 65.4 47.3 34.5 59.1

Word2Vec U+V 66.1 75.3 76.1 64.1 75.2 57.3 72.5 63.8 46.1 33.4 58.7

ge
b

LE-U+V-ud-F (our) 77.0 81.2 83.5 65.0 80.3 68.7 79.6 62.4 59.3 46.9 65.2
GloVe WG5-U+V 65.1 73.8 77.9 61.8 71.3 60.7 77.2 65.7 53.2 40.6 60.4

GloVe U 61.3 73.0 76.3 58.7 68.6 54.0 68.7 68.1 48.9 30.6 51.9
GloVe U+V 64.9 77.4 79.9 59.1 71.5 58.8 71.4 68.1 48.5 32.5 53.7
Word2Vec U 65.5 77.8 74.7 62.6 73.2 58.5 73.1 67.5 48.3 32.9 59.0

Word2Vec U+V 69.4 77.4 78.2 63.5 76.0 62.5 73.9 65.3 49.0 32.9 59.6

GloVe PSM 6B [10] 65.8 72.7 77.8 53.9 - - - - 38.1 - -
Word2Vec BDK [48] 73 - 83 - 78 68 80 - - - -

GloVe LGD win5 [17] - - - - 74.5 61.7 74.6 63.1 41.6 38.9 -
GloVe LGD win10 [17] - - - - 74.6 64.3 75.4 61.6 26.6 37.5 -

Poincaré GloVe 100D [28] 62.3 80.5 76.0 - - - - - 42.8 31.8 -
JoSE 100D [29] 73.9 - - - - - 74.8 - - 33.9 -
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Table 2. Accuracy on analogy tasks for the different methods for enwiki and geb corpora. The best α is selected with a
3-fold cross validation (α between −10 and 10, with step 0.1), unless the limit embeddings is the one performing best. The
best α values are reported in parentheses. PSM are the accuracies reported by Pennington et al. [10] on enwiki, BDK is the
best setup across tasks (as a result of hyperparameters tuning) reported by Baroni et al. [48].

Method Sem Syn Tot

en
w

ik
i

E-U+V-0-I (our) 84.5 ± 0.4 (1.8± 0.1) 67.33 (−∞) 74.4 ± 0.1 (1.7± 0.1)
GloVe WG5-U+V 79.4 67.5 72.6

GloVe U 77.8 62.1 68.9
GloVe U+V 80.9 63.4 70.9
Word2Vec U 74.58 54.96 63.39

Word2Vec U+V 75.44 55.03 63.81

ge
b

E-U+V-0-I (our) 83.8± 0.4 (1.7± 0.1) 72.2± 0.4 (1.3± 0.1) 76.7± 0.3 (1.3± 0.1)
GloVe WG5-U+V 78.7 65.2 70.7

GloVe U 75.7 66.8 70.4
GloVe U+V 80.0 68.5 73.2
Word2Vec U 71.20 52.62 60.15

Word2Vec U+V 71.59 51.88 59.87

GloVe PSM 1.6B [10] 80.8 61.5 70.3
GloVe PSM 6B [10] 77.4 67.0 71.7
Word2Vec BDK [48] 80.0 68.5 73.2

Poincaré GloVe 100D [28] 66.4 60.9 63.4

The last intrinsic tasks considered are cluster purity for concept categorization datasets
AP [49] and BLESS [50]. For each dataset and for each set of embeddings, we run a
spherical k-means algorithm with the help of the Python package spherecluster [51,52].
More specifically, we normalize the embeddings in the tangent space Thα(p0)

E (α)V to obtain
points on a sphere embedded in the tangent space itself, and then we compute distances on
such sphere with the arccosine of the cosine similarity in Equation (7). We set n_init = 300,
n_clusters equal to the number of groups of the dataset, and use default parameters
otherwise. We run the clustering algorithms 10 times and we select the best results. In
Table 3, we report clusters purity on the geb word embeddings of dimension 300. Tuning
the value of α allows us to obtain a considerable cluster purity improvement with respect to
the standard GloVe baseline (GloVe U+V). Interestingly, we notice how the purity values are
superior to the values reported in the literature and comparable only with Baroni et al. [48],
where the authors employ a hyperparameter tuning for the training of GloVe. The purity
curves (Figure 3) are more noisy w.r.t. similarities and analogies, this is because the datasets
available for this task are quite limited in size. Almost all curves exhibit a peak, which
is relatively more pronounced for smaller embedding sizes, while the limit behavior for
large negative α performs better for a larger embedding size. This points to the fact that
clustering induced by the limit embeddings of Equation (12) is better behaved when the
dimension of the embeddings, and the number of sufficient statistics, is larger.
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Table 3. Clustering purity (×100) with the spherical clustering method described in the main text,
compared with numbers from literature. The max, average, and standard deviation are obtained
over 10 runs. BDK is the best setup across tasks (as a result of hyperparameter tuning) reported
by Baroni et al. [48].

Dataset Method Max Purity Avg Purity

AP

E-U+V-u-F (α = −4) 70.9 66.2 ± 2.1
GloVe U+V 64.3 61.4 ± 2.5

Word2Vec U+V 63.5 61.0 ± 1.6
GloVe [53] 61.4 -

Word2Vec [53] 68.2 -
Word2Vec BDK [48] 71.0 -

BLESS

E-U+V-ud-I (α = 1.1) 89.0 83.5 ± 2.6
GloVe U+V 86.0 83.4 ± 2.5

Word2Vec U+V 80.0 77.3 ± 2.5
GloVe [53] 82.0 -

Word2Vec [53] 81.0 -

Figure 3. Cluster purity on concept categorization task (plotted with 3-point average). Figure
from [30].

4.2. Document Classification and Sentiment Analysis

In this subsection, we present results on the 20 Newsgroup multi-classification [54]
and the IMDBReviews sentiment analysis [55]. The α-embeddings are normalized before
training either with I or F. We use a linear architecture (BatchNorm+Dense) for both tasks,
while for sentiment analysis we also use a recurrent architecture (Bidirectional LSTM 32
channels, GlobalMaxPool1D, Dense 20 + Dropout 0.05, Dense). When using the linear
architecture, a continuous bag of words representation is used. In Tables 4 and 5, we
report the best α chosen with respect to the validation set and the best performance for the
limit embeddings of size 300. Limit embeddings have been generalized, by considering
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the words associated to the t largest values for the probabilities ratio in Equation (11),
instead of a single one. We denote this modification by -t1/3/5. Furthermore, we indicate
with -w the experiments in which the χ∗ rows of ∆V in Equation (12) are weighted with
pw(χ)/p0(χ), instead of p0(χ)). The improvements reported in Tables 4 and 5 are small but
appear on every task (at least 0.5% in accuracy) on both Newsgroups and IMDBReviews,
such increase of performance are present also when network architectures of increased
complexity are used, such as for bidirectional LSTM.

Figure 4 reports the curves for the values on test with early stopping based on the
validation for embedding sizes of 50 and 300. The improvements when α is tuned are higher
on size 50, exhibiting a more evident peak. For size 300 the improvements are smaller but
consistent. In particular, a peak performance for α can be always easily identified for a
chosen reference distribution and a chosen normalization.

Figure 4. Accuracy and AUC on 20 Newsgroups and IMDB Reviews datasets for varying α. The met-
rics I and F refer to the normalization of the embeddings before training. Figure from [30].
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Table 4. AUC and accuracy on test of 20 Newsgroups multiclass classification (BatchNorm + Dense),
compared to baseline vectors. Best α and best limit method (on validation) are reported in parentheses.

Method
20 Newsgroups

AUC acc

Word2Vec U+V 95.66 63.17
GloVe U+V 96.34 65.06

E-U+V-0-F 96.76 (0.2) 65.86 (0.4)
E-U+V-u-F 96.79 (0.2) 66.30 (0.2)

E-U+V-ud-F 96.79 (0.4) 65.24 (0.6)

LE-U+V-0-F 96.65 (t3-w) 64.47 (t1)
LE-U+V-u-F 96.65 (t3-w) 64.54 (t1)

LE-U+V-ud-F 96.38 (t5-w) 64.76 (t3-w)

Table 5. Accuracy on test of IMDB Reviews sentiment analysis binary classification, with linear
(BatchNorm + Dense) and with BiLSTM architecture (Bidirectional LSTM 32 channels, GlobalMaxPool1D,
Dense 20 + Dropout 0.05, Dense), compared to baseline vectors. Best α and best limit method (on
validation), are reported in parentheses.

Method
IMDB Reviews

acc lin acc BiLSTM

Word2Vec U+V 82.84 87.61
GloVe U+V 83.76 88.00

E-U+V-0-F 83.58 (2.4) 88.12 (−4.0)
E-U+V-u-F 83.72 (−3.0) 88.56 (−4.0)

E-U+V-ud-F 84.23 (−3.0) 88.48 (−2.2)

LE-U+V-0-F 84.00 (t1) 88.36 (t1)
LE-U+V-u-F 84.29 (t1) 88.66 (t1)

LE-U+V-ud-F 84.00 (t3-w) 88.49 (t3-w)

4.3. Sentence Entailment

In this subsection, we evaluate the impact on the performance of α-embeddings
on the task of sentence entailment, solved by a neural network with a more complex
architecture. We consider the Stanford Natural Language Inference (SNLI) dataset [56],
constituted of pairs of sentences (a, b). The task is to predict whether a is entailed by b,
b contradicts a, or whether their relationship is neutral. To perform the task, we choose
the decomposable attention model from Parikh et al. [57], implementing the attention
mechanism from Bahdanau et al. [58]. The decomposable attention model breaks the
sentence apart into subsections and aligns them to check their similarity or differences,
thus determining whether the sentences are entailed or not. The model consists of three
trainable components along with a part for input representation: Attend, Compare, and
Aggregate. All three components consists of separate neural networks (with attention
mechanisms) which are trained jointly. Intra-sentence attention is used in the case we
implemented.

The model was trained as follows. The batch size was set to 32 and the dropout ratio
used before all the was ReLU layers fixed to 0.2. Batch normalization was used in the
attention layers to ensure robustness and faster convergence. The learning rate was set to
0.05, along with a decay rate of 0.1 after every 20 epochs. The experiments were run for
200 epochs, with the Adagrad optimizer. The weights of the network were initialized with
a Gaussian distribution with a mean of 0 and a standard deviation of 0.01. We implemented
the attention model in PyTorch [59], starting from the code by Kim [60] and Li [61]. In the
first step of preprocessing, we removed punctuation and stop-words from the sentences
in the dataset. During training, we used a maximum sentence length of 50 words. While
using the embeddings, each sentence was tokenized and tokens for padding and unknown
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words were added. The 300 dimensional geb α-embeddings were used. Each vector was
normalized with either the Fisher or the identity matrix. All embeddings remained fixed
while training.

Two types of experiments were performed. In one set of experiments, the embedding
vectors were linearly transformed by means of a matrix whose entries are learned during
training. In the original paper by Parikh et al. [57] such a linear transformation projects the
word embeddings to a 200 dimension space, however, we decided to keep the dimensions
fixed to 300 to compare the performance with those of the next set of experiments, where
no projection matrix is used. In the following, we refer to the linear transformation as a
projection matrix.

The results of the prediction accuracy for the sentence entailment task as a function of
α are reported in Figures 5 and 6. For the case with a trainable projection matrix (Figure 6),
we observe that the baseline accuracy is higher and the gain deriving from the use of
α-embeddings is smaller. This is expected, as the projection matrix already provides a
linear transformation of the embedding (task-dependent fine-tuning) before the attention
mechanism. It should be noted that using a projection matrix of dimension 300× 300 adds
about 12.4 percent more trainable parameters to the architecture (which has ≈7.25× 105

parameters without the projection layer). For the case where α-embeddings are used
without the projection matrix, we can see that there is a larger improvement to the accuracy,
but the baseline is lower in this case. The projection matrix already provides a linear
transformation of the word-vectors limiting the improvement that α-embeddings can have
over the baseline. It is worth noticing that α-embeddings always provide an improvement
compared to regular embeddings given by α = 1, even on the more complex attention
model with projection. Interestingly enough, for certain values of α, we can see that the
accuracy of the α-embeddings without projection surpasses the baseline values for the same
task when the projection is used (and are even comparable with the best α), see Table 6. This
points to the fact that using α-embeddings and tuning the value of α can be an alternative to
the use of more complicated architectures where a linear transformation of the embeddings
is used, reducing the computational efforts and obtaining better performances.

Table 6. Accuracy of α-embeddings on test for the Stanford Natural Language Inference (SNLI)
sentence entailment task, compared to GloVe and Word2Vec baseline vectors. We report experiments
both with and without a projection matrix. The best values for α are reported in parentheses.
The values presenting the largest improvement over the baselines are marked in bold.

Method No Projection Projection

GloVe U+V
Word2Vec U+V

83.2
76.1

83.4
81.7

E-U+V-0-I 83.6 (−7) 84.2 (−4)
E-U+V-0-F 84.1 (−4) 84.2 (−1)
E-U+V-u-I 84.0 (−4) 84.0 (−4)
E-U+V-u-F 84.6(−8) 84.5(−8)
E-U+V-ud-I 83.8 (−1) 84.0 (−1)
E-U+V-ud-F 84.1 (−2) 84.5(−1)

GloVe U
Word2Vec U

83.7
74.6

84.1
76.1

E-U-0-I 83.7 (+1) 84.1 (+1)
E-U-0-F 84.0(+3) 84.3(+1)
E-U-u-I 83.5 (−6) 84.0 (+1)
E-U-u-F 83.9 (−5) 84.2 (−10)
E-U-ud-I 82.8 (−6) 84.0 (+1)
E-U-ud-F 83.1 (−5) 84.0 (+1)
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Figure 5. Accuracy of the decomposable attention model over the sentence entailment task without
projection matrix. (top row) Test accuracies at best validation point during training; (bottom row) test
accuracies averaged over the last 10 epochs of training. (Left column) U embeddings, (right column)
U+V embeddings. The vectors have been normalized either with the Fisher information matrix (F)
or with the identity matrix (I). The limit embeddings are represented by the dashed lines of the
corresponding color.

Figure 6. Accuracy of the decomposable attention model with an additional trainable projection
matrix. (top row) Test accuracies at best validation point during training; (bottom row) test accuracies
averaged over the last 10 epochs of training. (left column) U embeddings, (right column) U+V
embeddings. The vectors have been normalized either with the Fisher information matrix (F)
or with the identity matrix (I). The limit embeddings are represented by the dashed lines of the
corresponding color.
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5. Conclusions

In this paper, we have evaluated experimentally the performance of α-embeddings
on several intrinsic and extrinsic tasks in NLP. For word similarities and analogies, the
α-embeddings provide significant improvements over standard embedding methods corre-
sponding to α = 1 and over baselines from the literature. Improvements are present on all
the tasks tested with different margins, depending on the value of α on the chosen reference
distribution (0, u, ud) and the normalization method (I, F). We observe that the best value
of α depends both on the task and on the dataset. Thus, α-embeddings provide an extra
hyperparameter on the optimization problem when solving the specific task, allowing
to choose the best deformation of the space based on data. Values of α lower than 1 and
negative seem to be preferred across most tasks. Limit embeddings provide a simple
alternative that does not require validation over α but can still offer an improvement on
several tasks of interest. Furthermore, limit embeddings induce a clustering in the space of
the representations learned by the SG model during training. Performances of the limit
embeddings grow with the increasing dimension of the embedding on Newsgroups and
IMDB Reviews, pointing to the possibility that limit embeddings show better performances
than α-embeddings on higher dimensional spaces.

On the decomposable attention model, the accuracy of α-embeddings without projec-
tion surpasses the baseline values for the same task with projection and is also comparable
with the best α with projection. This is an indication that using α-embeddings and tuning
the value of α can allow to save the extra parameters used to learn a transformation of
the embeddings during training, which is costly, reducing the computational efforts and
obtaining better performances.

In the present work, α is chosen on the basis of the performance on the validation set.
As a future work, we advocate for the design of an automated mechanism optimizing α
during training, leading to the definition of an α GloVe loss function and an α attention
mechanism. As a future work, we advocate for the design of training algorithms based
on α, which are able to automatically tune such hyperparameter and thus learn the best
geometry for the task at hand.
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