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Abstract: We present a new Multiple-Observations (MO) helper data scheme for secret-key binding
to an SRAM-PUF. This MO scheme binds a single key to multiple enrollment observations of the
SRAM-PUF. Performance is improved in comparison to classic schemes which generate helper data
based on a single enrollment observation. The performance increase can be explained by the fact that
the reliabilities of the different SRAM cells are modeled (implicitly) in the helper data. We prove that
the scheme achieves secret-key capacity for any number of enrollment observations, and, therefore,
it is optimal. We evaluate performance of the scheme using Monte Carlo simulations, where an
off-the-shelf LDPC code is used to implement the linear error-correcting code. Another scheme that
models the reliabilities of the SRAM cells is the so-called Soft-Decision (SD) helper data scheme.
The SD scheme considers the one-probabilities of the SRAM cells as an input, which in practice are
not observable. We present a new strategy for the SD scheme that considers the binary SRAM-PUF
observations as an input instead and show that the new strategy is optimal and achieves the same
reconstruction performance as the MO scheme. Finally, we present a variation on the MO helper data
scheme that updates the helper data sequentially after each successful reconstruction of the key. As a
result, the error-correcting performance of the scheme is improved over time.

Keywords: secret-key agreement; Physical Unclonable Functions; helper data scheme; LDPC code

1. Introduction

The The Internet of Things (IoT) makes it possible to connect and share information
between many different devices through the Internet. This sharing of information is benefi-
cial for many applications, e.g., in healthcare or consumer electronics. At the same time, the
information may be sensitive and should not fall into the wrong hands or be tampered with.
Therefore, security is one of the main challenges of the IoT devices. Since the IoT devices
are often small and low cost, securing the devices should come at a low price.

Secure communication is often achieved through cryptographic protocols that rely
on secret keys. A low-cost alternative for secure storage of the keys is enabled by Static
Random-Access Memory Physical Unclonable Functions (SRAM PUFs). A PUF is a physical
object or device that responds to a challenge with a response that is unique and unpre-
dictable [1,2]. The SRAM-PUF functionality is based on the uninitialized values of the
SRAM. These are the values that appear in the memory cells directly after power up of the
SRAM. The corresponding binary vector is unique for each SRAM and it is the result of
small variations in the silicon material. It can be considered to be a noisy fingerprint of the
device and can be used to generate and bind secret keys [3,4].

Since the SRAM-PUF observations are noisy, additional processing is required to
ensure reliable reconstruction of the key. This can be achieved through a so-called key
binding scheme, see Figure 1. The scheme considers two phases: an enrollment phase
during which a uniformly generated key is bound to a first SRAM-PUF observation; and a
reconstruction phase during which the key is reconstructed from an additional observation
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of the SRAM-PUF. Please note that enrollment is usually performed only once, whereas
reconstruction can be repeated many times. During enrollment, besides the key s, also
some helper data w is generated. This helper data w ensures that the key can be reliably
reconstructed even though yn is a noisy version of xn. The helper data are considered
public, and therefore should not reveal information about the key s to an attacker.
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ynxn

reconstructionenrollment

Figure 1. Key binding scheme for reliable secret-key reconstruction from noisy observations.

In classic helper data schemes, a single SRAM-PUF observation is used for enrollment
and a single observation is used for reconstruction. However, it has been shown that
the mutual information between the encoder and decoder observations increases when
more observations are considered [5]. Since the secret-key capacity is equal to the mutual
information (see Section 3), it follows that the achievable secret-key rate is increased when
multiple SRAM-PUF observations are used instead of a single observation.

We introduce the Multiple-Observations (MO) helper data scheme, which enrolls a
single key after processing multiple SRAM-PUF observation vectors. The scheme is based
on a linear error-correcting code and can be seen as an extension of the fuzzy commitment
scheme [6]. Any number of enrollment observations can be used. Furthermore, the
performance of the scheme increases when more observations are used.

1.1. Related Work

A first implementation of a key binding scheme for generating and reconstructing
a cryptographic key from SRAM PUFs was presented by Guajardo et al. in [4]. There,
the fuzzy commitment scheme [6] was used to construct the helper data and later to
reproduce the key. It is known that within one SRAM-PUF, some cells are more reliable
(smaller error probability) than other cells [3]. The reliability information of the SRAM
cells can be used to improve the performance of the helper data schemes. For example, a
Soft-Decision (SD) helper data scheme [7,8] publicly shares the error probability of each
SRAM cell to improve the decoder performance. Furthermore, a Selection-based helper
data scheme [9–11] selects only the most reliable SRAM cells to reduce the average error
probability of the SRAM-PUF observations. Both schemes assume that reliability of each
SRAM cell is known during enrollment. However, in general this information is not
available. Either, special measurement techniques must be applied, or a sufficient number
of observations is required to estimate these values before enrollment. We propose a new
scheme that accepts standard SRAM-PUF observation vectors as an input, i.e., the MO
helper data scheme. In [12] multiple enrollment observations are used under various
environmental conditions. The focus of [12] is on experimental validation of new strategies
that consider multiple enrollment temperatures; however, a mathematical analysis of the
strategies is missing. Our work focuses instead on finding an optimal multiple observations
strategy. In the future, our analysis may be extended to consider temperature dependence
as well, see Section 2.

Applying multiple observations for key binding (and generation) has been studied
from information-theoretic perspective in [13–15]. It is shown that the secret-key rate can be
improved when multiple observations are used by the encoder or the decoder. Achievable
rate regions are analyzed for various multiple enrollments and multiple entities scenarios,
but no code constructions are proposed or investigated.

Multiple enrollment scenarios are studied from leakage perspective in [16,17]. In these
papers, scenarios are considered (e.g., the reverse fuzzy extractor [18]) in which enrollment
is repeated multiple times and correspondingly multiple helper data are generated. Please
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note that the additional helper data are not generated to increase performance; instead, they
are considered to be a security challenge that follows from the repeated enrollments. The
decoder performs a classic reconstruction that is based on a single helper data sequence
only, whereas an attacker may have stored all previously generated helper data. It is
shown in [17] that zero leakage is ensured in these multiple enrollment scenarios, when
the SRAM PUFs meet a certain symmetry condition. Inspired by the zero leakage results
of [17], we have developed the MO helper data scheme which produces a single helper
data sequence based on repeated enrollments. In contrast to the scenarios discussed in the
previous paragraph, the decoder now benefits from the additional observations which are
embedded in the helper data.

1.2. Contributions and Outline

In Section 3, we define secret-key capacity for multiple enrollment observations
and calculate its value for the SRAM-PUF statistical model. We show that secret-key
capacity can increase significantly when more enrollment observations are considered. This
observation is the main motivation for the results presented in this paper, which are listed
as follows.

• We introduce the MO helper data scheme in Section 4. We prove that the helper data
does not reveal any information about the key when the SRAM-PUF statistical model
meets the symmetry assumption (Section 2). Then, we prove that secret-key capacity can
be achieved with the MO helper data scheme for any number of enrollment observations.

• In Section 5, we present a code construction and evaluate performance of the scheme
through Monte Carlo simulations.

• We propose a new variation on the Soft-Decision (SD) helper data scheme from [7] in
Section 6. In contrast to the original scheme, this scheme considers binary SRAM-PUF
observations as an input. We prove that the new SD strategy is optimal (achieves
secret-key capacity) and that it can achieve the same reconstruction performance as
the MO helper data scheme.

• In Section 7, we present a variation on the MO helper data scheme that can update the
helper data sequentially. The error-correcting performance of the scheme improves
after each successful key reconstruction, and therefore the performance improves
over the lifetime of the device. This enables usage of less observations during the
enrollment phase, when allowing worse initial reconstruction performance that is
improved over time.

We conclude with a summary of our results. In the following, we first introduce the
notation and the statistical model that we use for SRAM PUFs.

2. Notation and SRAM-PUF Statistical Model

In the following, we first introduce the notation that is used. Then, we present the
statistical model that we use for SRAM PUFs which is based on the commonly used model
introduced in [7]. We introduce a symmetry assumption which is required for the security
of the MO helper data scheme. We derive several properties that are needed for the proofs
later in this work.

2.1. Notation and Definitions

We use uppercase symbols to denote random variables and lowercase symbols to de-
note their realizations. We consider t enrollment observations of n SRAM cells, correspond-
ing to t binary observation vectors of length n, i.e.,

(
xn

1 , xn
2 , . . . , xn

t
)
. The ith observation of

the jth SRAM cell is represented by xi,j, and assumes a value in {0, 1}. We often analyze
the behavior of a single SRAM cell, in which case we omit the cell index j and we have
(x1, x2, . . . , xt), corresponding to t observations of one SRAM cell.

The reconstruction observation vector is represented as yn, with yj the reconstruction
observation of the jth SRAM cell. We use a distinct symbol for the reconstruction obser-
vation to emphasize its different functionality in the helper data scheme. Note, however,
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that the reconstruction observations have the same statistical behavior as the enrollment
observations, and they may as well have been represented as xn

t+1, the (t+ 1)th observation
of the SRAM cells.

Calligraphic letters are used for finite sets and |S| denotes the cardinality of the set S .
Finally, (conditional) entropy and mutual information are defined as in [19,20], with the
base of the log equal to 2 and the units are bits. We define the binary entropy function as

h2(p) ∆
= −p log2(p)− (1− p) log2(1− p). (1)

2.2. Sram-Puf Statistical Model
2.2.1. One-Probability of a Cell

Each SRAM cell has a one-probability θ ∈ [0, 1] that defines the probability that a one
is observed for this cell, i.e.,

Pr(X = 1|Θ = θ) = θ. (2)

In practice, we do not know the one-probability θ of each SRAM cell. Instead, the
one-probability is a random variable, independent and identically distributed over the
cells according to some known distribution pΘ(θ). And we can calculate the average
one-probability

Pr(X = 1) =
∫ 1

0
θpΘ(θ) dθ. (3)

The currently most used model for PUFs [7] adopts the following Θ-distribution

pΘ(θ) =
λ1φ

(
λ2 − λ1Φ−1(θ)

)
φ(Φ−1(θ))

. (4)

Here φ(x) and Φ−1(x) are the probability density function and the inverse of the cumulative
distribution function of the normal distribution. Furthermore, λ1 and λ2 are parameters
that determine the average reliability and average one-probability of the SRAM cells,
respectively.

It has been observed on several occasions [3,4,21] that the SRAM PUFs are unbiased, i.e.,

Pr(X = 1) = Pr(X = 0) = 1/2, (5)

the average probability of observing a one is equal to the probability of observing a zero.
This is a desirable property for PUFs as it ensures that the observations are completely
unpredictable for an attacker. In [7], Maes et al. showed that the model (4) well represents
their empirical data for λ1 = 0.065, λ2 = 0.000, which indeed corresponds to unbiased
SRAM PUFs. In this paper, we assume an unbiased SRAM-PUF and set λ2 = 0. It follows
that the distribution of the one-probabilities is symmetric, i.e.,

pΘ(θ) = pΘ(1− θ). (6)

This symmetry of the one-probability distribution is a property of the SRAM-PUF model
that is key for the zero-secrecy leakage of the multiple observation schemes discussed in
this paper.

2.2.2. Multiple Observations

First, we consider multiple observations of a single SRAM cell. The probability of ob-
serving t observations (x1, x2, . . . , xt) of an SRAM cell with Hamming weight
k = wH(x1, x2, . . . , xt) (where the Hamming weight is defined as the number of non-zero
symbols in the sequence), is defined as

πt(k)
∆
= Pr(X1 = x1, . . . , Xt = xt) =

∫ 1
0 Pr(X1 = x1, . . . , Xt = xt|Θ = θ)pΘ(θ) dθ

=
∫ 1

0 θk(1− θ)t−k pΘ(θ) dθ
(a)
=
∫ 1

0 (1− θ′)k(θ′)t−k pΘ(θ
′) dθ′ = πt(t− k),

(7)
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where in (a) we substituted with θ′ = (1− θ) and applied the symmetry property (6).
Please note that the probability only depends on the number of observed ones k, and the
order of the observations is irrelevant. Furthermore, the probability of observing a length t
sequence containing k ones is equal to the probability of observing a length t sequence
containing k zeros. Similarly, the conditional probability of observing a value y given a
previously observed sequence (x1, x2, . . . , xt), only depends on the number of previously
observed ones k, i.e.,

Pr(Y = y|X1 = x1, . . . , Xt = xt)
(a)
=

Pr(Y=y,X1=x1,...,Xt=xt)
Pr(X1=x1,...,Xt=xt)

=
πt+1(k+y)

πt(k)

= Pr(Y = y|wH(X1, . . . , Xt) = k)
(b)
=

πt+1(t+1−(k+y))
πt(t−k)

= Pr(Y = y⊕ 1|wH(X1, . . . , Xt) = t− k),

(8)

where in (a) we used Bayes’ theorem and in (b) we used (7). Finally, the last step follows
from the fact that (1− y) ≡ (y⊕ 1) for y ∈ {0, 1}.

2.2.3. Multiple SRAM Cells

All the equations that were derived for a single SRAM cell can be easily generalized
to multiple SRAM cells. Since the one-probabilities are independent and identically dis-
tributed over the SRAM cells, the observations of different cells are also independent and
the joint probability of t observations for n cells is

Pr(Xn
1 = xn

1 , Xn
2 = xn

2 , . . . , Xn
t = xn

t ) =
n

∏
j=1

Pr
(
X1 = x1,j, . . . , Xt = xt,j

)
=

n

∏
j=1

πt
(
k j
)
, (9)

with k j = wH
(

x1,j, . . . , xt,j
)

the number of observed ones after t observations of the jth cell.

2.2.4. Θ-Distribution

Until now, we have assumed that λ2 = 0 and thus the SRAM-PUF is unbiased. This
assumption is sufficient for the security and achievability proofs in Section 4. However, to
predict the performance of our scheme in a practical setting, we also need to set a value for
λ1. In correspondence with previous works [7,11] we choose λ1 = 0.51 for our simulations,
which corresponds to average error probability regarding dominant (most likely) value of
a cell

ψ
∆
=
∫ 1

0
min(θ, (1− θ))pΘ(θ) dθ ≈ 0.15. (10)

In Figure 2, we plot the Θ-distribution that is used for the calculations later in the
paper. Please note that stable cells (one-probability close to 0 or 1) are more likely than
unstable cells. We will see later that knowledge about the stability (error probability) of
specific cells can improve the performance of helper data schemes.

0 0.2 0.4 0.6 0.8 1

100

101

θ

p Θ
(θ
)

Figure 2. Distribution of the one-probability Θ as used for the simulations in this work. Generated
according to the statistical model for SRAM-PUF [7] with λ1 = 0.51, and λ2 = 0.
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Finally, note that temperature and voltage ramp-up time of the power up may influ-
ence the behavior of the SRAM PUFs [21]. Here, we do not model this behavior and only
assume a worst-case average error probability of 0.15 (see (10)). However, it is worthwhile
mentioning that the model (4) can be extended to also model the temperature dependence,
see [22]. Knowledge about the temperature behavior can be exploited to improve the
performance of the helper data schemes, especially when the temperature is known [23].
Therefore, in the future, it may be beneficial to extend the current work to also consider
temperature dependent behavior of the SRAM PUFs.

3. Multiple Enrollment Observations for Increased Secret-Key Capacity

In this section, we describe a secret-key binding scheme with multiple enrollment
observations, see Figure 3. We derive the achievable secret-key rate for the used statistical
model and show that the rate can improve significantly when more enrollment observations
are considered. These results motivate us to design a helper data scheme that can approach
such rates in Section 4.

As in the classic (single enrollment) key binding scheme in Figure 1, we distinguish
between an enrollment and a reconstruction phase.

E D
ws ŝ

ynxn
1 , xn

2 , . . . , xn
t

Figure 3. Secret-key binding with t observations by the encoder and a single observation by
the decoder.

During enrollment, the secret key s ∈ {1, 2, . . . , |S|} is generated uniformly at random.
An encoder obtains the secret key s and t observation vectors

(
xn

1 , xn
2 , . . . , xn

t
)
, and generates

corresponding helper data w ∈ W . The helper data alphabetW is specified by the encoding
function that is used, see Section 4. We assume that the helper data w is stored and/or
communicated in the public domain. Therefore, the helper data by itself should not reveal
any information about the key. During reconstruction, a decoder observes a reconstruction
vector yn as well as the helper data w and maps this input to an estimate ŝ of the secret key.
Reconstruction is successful when the estimate is equal to the original key, i.e., when ŝ = s.

We are now interested in the achievable secret-key rate of the scheme when enrollment
is performed using t observation vectors of the SRAM-PUF, and where achievable rate is
defined as follows.

Definition 1. A secret-key rate Rt is called achievable after t enrollment observations, if for all
δ > 0 and for all n large enough, there exist encoders and decoders such that

Pr
(
Ŝ 6= S

)
≤ δ, (11)

1
n

H(S) =
1
n

log2 |S| ≥ Rt − δ, (12)

1
n

I(S; W) ≤ δ. (13)

The secret-key capacity Ct is the maximum achievable secret-key rate with t enrollment observations.

Here (11) requires that the key reconstruction is reliable, (12) that the key is uniformly
distributed, and (13) limits the information leakage by the helper data about the key.
Theorem 1 gives the fundamental limit on achievable secret-key rate for key binding
schemes with t enrollment observations, and it follows from the results presented in [24,25].
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Theorem 1. A secret-key rate Rt is achievable after t enrollment observations if and only if

Rt ≤ I(Y; X1, X2, . . . , Xt). (14)

The secret-key capacity Ct = I(Y; X1, X2, . . . , Xt).

In Figure 4, we plot the secret-key capacity for an example SRAM-PUF. Here, we have
assumed a symmetric distribution of the one-probabilities, and average error probability
ψ ≈ 0.15, see Figure 2 for the Θ-distribution. The mutual information increases from
0.26 for a single enrollment observation, to 0.50 after 20 enrollment observations. This
corresponds to almost doubling the secret-key rate regarding single enrollment.

1 5 10 15 20
0.25

0.30

0.35

0.40

0.45

0.50
0.529

t-enrollment observations

I(
Y

;X
1,

..
.,

X
t)

Figure 4. Secret-key capacity in bits per SRAM cell for the secret-key binding scheme with t enroll-
ment observations, evaluated for SRAM PUFs given the Θ-distribution shown in Figure 2. The curve
is approaching a limit that is represented by the dashed horizontal line.

In the plot, we also visualize an upper bound to the secret-key capacity, given by

I(Y; X1, X2, . . . , Xt) ≤ I(Y; X1, X2, . . . , Xt, Θ) = I(Y; Θ) + I(Y; X1, X2, . . . , Xt|Θ)

(a)
= I(Y; Θ) = H(Y)−

∫ 1

0
H(Y|Θ = θ)pΘ(θ) dθ, (15)

where (a) follows from the Markov chain Y ↔ Θ↔ (X1, X2, . . . , Xt). From the weak law
of large numbers, i.e., limt→∞ Pr

(
| 1t ∑t

i=1 xi − E[Xi]| > ε
)
= 0 for any ε > 0, it follows that

1
t ∑t

i=1 xi converges (in probability) to θ for t→ ∞. Therefore, the upper bound (15) can be
achieved and we say

C∞ = I(Y; Θ) = H(Y)−
∫ 1

0
h2(θ)pΘ(θ) dθ. (16)

4. Multiple-Observations Helper Data Scheme

We introduce the Multiple-Observations (MO) helper data scheme for binding a secret
key to multiple observations of an SRAM-PUF, see Figure 5. First, we give a step-by-step
description of the scheme. Then, we prove that it is secure. Finally, we prove that the
scheme achieves the secret-key capacity Ct (see Theorem 1) for t enrollment observations
and, therefore, that the MO helper data scheme is optimal. Please note that all derivations
are under the symmetric Θ-distribution assumption (6).
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E D
ŝs cn

xn
1 yn

xn
2

xn
t

Σ

wn
1

wn
2

wn
t

mn
t

Figure 5. MO helper data scheme: t observations of the SRAM-PUF are used to generate a helper data
mn

t that is published and that can be used by the decoder (together with an additional SRAM-PUF
observation) to reconstruct the key.

4.1. Description of the Scheme

First, a binary secret key s ∈ {0, 1}log2 |S| is generated uniformly at random, such
that H(S) = log2 |S|, with log2 |S| an integer. The key s is then encoded using a linear
error-correcting code into a codeword cn. The codeword is XORed with all t enrollment
vectors

(
xn

1 , xn
2 , . . . , xn

t
)
, resulting in t sequences

(
wn

1 , wn
2 , . . . , wn

t
)
, with

wn
i = cn ⊕ xn

i , for i = 1, 2, . . . , t. (17)

Please note that wn
i corresponds to a helper data sequence of the classic fuzzy commitment

scheme [6]. The helper data of the MO helper data scheme is constructed by adding all
these sequences together, i.e., the helper data are

mn
t

∆
= wn

1 + wn
2 + · · ·+ wn

t =
t

∑
i=1

(cn ⊕ xn
i ). (18)

The helper data are stored on the device or in a database, and they are considered
public information.

When the key must be recovered, the decoder observes the helper data mn
t and another

observation vector yn of the SRAM-PUF. A decoder function maps each pair (mn
t , yn) to a

corresponding estimate ŝ of the original secret. Ideally, the reconstructed secret ŝ is equal to
the original secret. Furthermore, an attacker who can observe the helper data mn

t should
not obtain information about the secret.

4.2. Uniformity and Zero Leakage

First, by definition of the MO helper data scheme, the secret key is generated uniformly
at random and therefore the uniformity condition of Definition 1, 1

n H(S) = 1
n log2 |S|, is

satisfied. Second, it has been shown in [17] that, for symmetric SRAM PUFs, zero leakage
occurs by all the helper data after repeated enrollments, i.e., I(S; Wn

1 , . . . , Wn
t ) = 0. It

follows that

I(S; Mn
t )

(a)
≤ I(Cn; Wn

1 , Wn
2 , . . . , Wn

t ) = 0, (19)

where (a) follows from the data processing inequality (see [19] Chapter 2) for the Markov Chain

S↔ Cn ↔ (Wn
1 , Wn

2 , . . . , Wn
t )↔ Mn

t . (20)

By (19) the MO helper data scheme achieves strong secrecy, i.e., I(S; Mn
t ) ≤ δ.

4.3. Achievable Secret-Key Rate

Third, we derive the achievable rate over the channel from the encoder to the decoder.
The channel is described by the conditional distribution Pr(Mt = mt, Y = y|C = c), and
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it follows from the channel coding theorem (see, e.g., [20], Chapter 3) that the maximum
achievable rate is given by the mutual information maximized over the input distribution.
Furthermore, C is uniform here, since we are using a linear code. We therefore evaluate
this mutual information next

R∗MO,t
∆
= I(C; Mt, Y) = I(C; Mt) + I(C; Y|Mt)
(a)
= H(Y|Mt)− H(Y|Mt, C)
(b)
= H(Y|Mt)− H(Y|wH(X1, X2, . . . , Xt), C)
(c)
= 1− H(Y|wH(X1, X2, . . . , Xt))
(d)
= H(Y)− H(Y|X1, X2, . . . , Xt)
= I(Y; X1, X2, . . . , Xt).

(21)

Please note that (a) follows from zero leakage (see (24)), and (b) holds since (by (18)) the
Hamming weight wH(x1, x2, . . . , xt) is uniquely determined by mt given c and vice-versa.
Furthermore, (c) follows from (22) below and since the key and thus codebit c are generated
independently from the SRAM-PUF observations. Finally, (d) follows from the fact that
the symmetric SRAM-PUF is unbiased (5), and by the fact that the conditional probability
of the next observation given t previous observations (x1, x2, . . . , xt) only depends on the
number of observed ones (7). The following derivation shows that the helper data integer
mt by itself does not reveal any information about the reconstruction observation y, and
thus H(Y|Mt) = 1.

Pr(Y = 1|Mt = mt)
(a)
= ∑c∈{0,1} Pr(C = c)Pr(Y = 1|Mt = mt, C = c)
(b)
= 1

2 Pr(Y = 1|wH(X1, . . . , Xt) = mt, C = 0)
+ 1

2 Pr(Y = 1|wH(X1, . . . , Xt) = t−mt, C = 1)
(c)
= 1

2 Pr(Y = 1|wH(X1, . . . , Xt) = mt)
+ 1

2 Pr(Y = 0|wH(X1, . . . , Xt) = mt) =
1
2 ,

(22)

where (a) follows from (23), (b) follows from the definition of the helper data (18), and in
(c) we use the fact that the key and codebit c is generated independently from the SRAM-
PUF observations, and furthermore we use the symmetry property for the conditional
distribution (8) that we have derived for symmetric SRAM-PUF in Section 2. In the above
derivation we use that

Pr(C = c|Mt = mt) = Pr(C = c), (23)

which can be derived from (19) by observing that

I(C; Mt)
(a)
≤ I(S; Mn

t ) = 0, (24)

where (a) follows from the data processing inequality (see [19], Chapter 2) for the Markov Chain

C ↔ Cn ↔ S↔ Mn
t ↔ Mt. (25)

It follows from the derivations in Sections 4.2 and 4.3 that the MO helper data scheme
achieves secret-key rate R∗MO,t, where achievable secret-key rate is defined in Definition 1.
Furthermore, R∗MO,t = Ct is equal to the secret-key capacity for t enrollment observations
as given by Theorem 1, which shows that the MO helper data scheme is optimal.

5. Code Construction and Simulation Results

In the previous section, we have proved that secret-key capacity for t enrollment
observations is achievable with the MO helper data scheme. However, the performance
that is achieved in practice depends on the error-correcting code that is implemented by
the encoder and decoder function. Here, performance is evaluated in terms of secret-key
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rate (R) and reconstruction error probability (FER). Until now, we have not specified an
error-correcting code. Please note that a Soft-Decision decoder should be used that can
benefit from the reliability information of the SRAM cells. Furthermore, we are looking for
codes that have a low rate and that perform well for relatively short blocklengths (128 key
bits). Here, we use an off-the-shelf LDPC code to evaluate the expected performance of the
scheme in a practical setting.

5.1. Encoder

First, a key s of 128 bits length is generated uniformly at random. The secret-key is then
encoded using an error-correcting code, resulting in codeword cn. As the error-correcting
code we use a CRC (cyclic-redundancy check) code concatenated with an LDPC code
as defined in the 5G NR (fifth generation new radio) standard [26]. For our simulations,
we use the LDPC coding-chain implementation from the MATLAB 5G Toolbox [27]. The
codeword cn is XORed with t SRAM-PUF observation vectors of length n and the results are
added together, resulting in helper data mn

t . This concludes the encoder part of the scheme,
where the helper data mn

t is stored for later usage and all other variables are discarded.
The secret-key rate of our implementation is

R =
128
n

key bits per SRAM cell. (26)

Furthermore, for t enrollment observations of n SRAM cells the required number of bits for
storage of the helper data are ndlog2(t + 1)e, and thus the helper data rate is

Rhd =
dlog2(t + 1)e

R
helper data bits per key bit. (27)

5.2. Decoder

The decoder uses an SRAM-PUF observation yn and the previously stored helper data
mn

t to reconstruct the key ŝ. First, the log-likelihood ratios (LLR) of the received code bits
are calculated. Since the SRAM cells are independently distributed, we can calculate the
LLR of each bit separately. The LLR of a code bit c, after observing the corresponding
helper data mt and SRAM-PUF observation y, is

LLR(y, mt) = log
πt+1(y + mt)

πt+1(y + t−mt)
. (28)

See the Appendix A.1 for a derivation of the above equation. Please note that there are
2(t + 1) possible combinations of (y, mt). However, due to the symmetry properties of
the LLR function (see Appendix A.1), we only need to store (t+2)

2 LLRs in a look-up table.
Finally, the LDPC decoder uses an iterative Soft-Decision decoder (belief propagation
algorithm), combined with CRC for error detection, to reconstruct the 128 bit secret ŝ from
the received LLRs.

5.3. Simulation Results

We have simulated the MO helper data scheme using Monte Carlo simulations and
the statistical model for SRAM PUFs that was presented in Section 2, with λ1 = 0.51 and
λ2 = 0 and average error probability ψ ≈ 0.15. We plot the resulting error probability of the
key reconstruction (FER) for various key rates R and number of enrollment observations t
in Figure 6.
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Figure 6. Reconstruction error probability FER for the MO helper data scheme, with 128 bit key and
128/R SRAM cells.

Observe that the error probability can be reduced by decreasing the secret-key rate R
and by increasing the number of enrollment observations t. We choose FER ≤ 10−6 as the
target error probability and find that R = 1/6 is the best (highest) achievable secret-key rate
that achieves the target FER. Furthermore, at least 5 enrollment observations are required
to achieve the target FER with this key rate, and the corresponding helper data rate is
Rhd ≈ 15.5. Another rate-enrollment pair that achieves the target FER is R = 1/7 for t = 3
enrollment observations, with corresponding helper data rate Rhd ≈ 14. Please note that
the classic single enrollment scheme (corresponding to MO scheme for t = 1) achieves the
target FER for R = 1/11 or worse key rates. Furthermore, the helper data rate Rhd = 11
bits per key bit in this case. Therefore, the MO helper data scheme achieves a secret-key
rate that is 11/6 ≈ 1.8 times higher than the single enrollment scheme. However, the
improved secret-key rate comes at a cost since the helper data rate is 15.5

11 ≈ 1.4 times as
high in comparison to the classic scheme.

We conclude that a trade-off must be considered between the required enrollment
time, helper data storage, and the number of SRAM cells, when selecting the parameters
(enrollment observations and secret-key rate) for a given setting.

6. The Soft-Decision Helper Data Scheme

The performance increase of the MO helper data scheme, regarding the traditional
single enrollment scheme, is mostly due to the fact that it can distinguish between reli-
able and unreliable SRAM cells. A well-known helper data scheme that also considers
the reliability information of the SRAM cells is the Soft-Decision scheme introduced by
Maes et al. [7]. In this section, we first describe the SD scheme and derive its achievable
performance. We note that the SD scheme assumes that the one-probabilities of the SRAM
cells are observable which in practice is often not the case. Therefore, a pre-processing step
is required that estimates the one-probabilities of the SRAM cells. Based on this observa-
tion, we propose a variation on the SD scheme that instead directly considers the binary
SRAM-PUF observations as an input. We show that the newly proposed strategy results in
the same decoder LLRs as the MO scheme (for equal key and SRAM observations). This
implies that both schemes achieve the same reconstruction performance, and thus, since
the MO scheme is provably optimal, the newly proposed strategy for the binary SD scheme
is optimal as well.

To the best of our knowledge, we are the first to propose an optimal strategy for the
SD scheme with binary enrollment observations. Furthermore, we show that very few
observations (less than 10) are sufficient to achieve an acceptable performance, whereas
in the literature 64 observations are used [8] for the same statistical model and parameter
settings that are used in the current work.
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6.1. Description of (Regular) SD Helper Data Scheme

The SD helper data scheme, see Figure 7, observes the one-probability vector θn of all
the cells, and derives the dominant values un, defined as

u ∆
=

{
0 if 0 ≤ θ ≤ 1/2,
1 if 1/2 < θ ≤ 1,

(29)

and the error probability ψn (regarding the dominant value of the cell), defined as

ψ
∆
= min(θ, (1− θ)) =

{
θ if 0 ≤ θ ≤ 1/2,
1− θ if 1/2 < θ ≤ 1,

(30)

with ψ ∈ [0, 1/2]. As in the MO helper data scheme, a key is generated uniformly at
random, and encoded using a linear error-correcting code into a codeword cn. Then the
codeword is XORed with the dominant values un to create the helper data sequence

wn = cn ⊕ un. (31)

E D
s cn wn rn ŝ

SDθn

un

ψn yn

Figure 7. The Soft-Decision helper data scheme, with public information the helper data sequence
wn and error probabilities ψn.

Besides the helper data sequence wn, also the reliability values ψn of the SRAM cells
are stored publicly. For reconstruction, another observation yn of the SRAM-PUF is XORed
with the helper data, resulting in a noisy codeword

rn = wn ⊕ yn = cn ⊕ (un ⊕ yn), (32)

where (un ⊕ yn) is an error vector, and an error (rj = cj⊕ 1) occurs when the reconstruction
observation yj is flipped regarding the dominant value uj of a cell. The decoder reconstructs
the key ŝ based on the received noisy codeword rn and the error probabilities of the cells ψn.

6.2. Achievable Performance

We are interested in the maximum achievable secret-key rate of the SD scheme. As
for the MO scheme (Section 4.2) we should first show that the SD scheme is secure, i.e.,
the uniformity condition of Definition 1 is satisfied since the key is generated uniformly
at random. Furthermore, the leakage condition is satisfied as I(S; Wn, Ψn) = 0 as is
shown in Appendix A.2. Now, we can derive the achievable rate over the channel from
the encoder to the decoder. The channel is described by the conditional distribution
Pr(R = r, Ψ = ψ|C = c), and it follows from the channel coding theorem (see, e.g., [20],
Chapter 3) that the maximum achievable rate is given by the mutual information maximized
over the input distribution. Furthermore, C is uniform here, since we are using a linear
code. We therefore evaluate this mutual information next

R∗SD,∞
∆
= I(C; R, Ψ)

(a)
= I(C; R|Ψ)

(b)
= 1−

∫ 1/2

0
h2(ψ)pΨ(ψ) dψ. (33)

In (a) we used the fact that the key is generated independently from the SRAM-PUF
observations and thus I(C; Ψ) = 0. In (b) we used the fact that r = c ⊕ (u ⊕ y) so the
channel from encoder to decoder can be modeled as a binary symmetric channel with
cross-over probability ψ (the probability that u 6= y). Please note that R∗SD,∞ = C∞ (for
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symmetric SRAM-PUF) this rate is equal to the limit (for t to infinity) of the secret-key
capacity for multiple enrollment observations, see (16). Therefore, the SD helper data
scheme is optimal, and furthermore the MO helper data scheme approaches the same key
rate as the SD helper data scheme when sufficient enrollment observations are used.

6.3. New SD Strategy for Binary Enrollment Observations

In practice, the one-probabilities θn are non-observable and therefore, they must be
estimated based on the binary observation vectors

(
xn

1 , xn
2 , . . . , xn

t
)

before the SD scheme
can be applied. Instead of applying a pre-processing step for estimation, we propose to
adjust the SD scheme s.t. the dominant values and error probabilities are directly estimated
based on t binary observations. The dominant value of an SRAM cell is then estimated as

ût
∆
=

{
0 if wH(x1, . . . , xt) ≤ t/2,
1 otherwise.

(34)

And furthermore, the error probability (regarding the dominant value) is

ψ̂t
∆
=

πt+1(1 + mSD
t )

πt(mSD
t )

, (35)

with

mSD
t

∆
= min(wH(x1, . . . , xt), t− wH(x1, . . . , xt))

=

{
wH(x1, . . . , xt) if wH(x1, . . . , xt) ≤ t/2,
t− wH(x1, . . . , xt) otherwise.

(36)

In Appendix A.3 we show that (36) indeed is equal to the error probability (regarding the
dominant value) of a cell given the t binary enrollment observations.

The helper data and noisy codeword are constructed as before, so wn = cn ⊕ ûn
t

and rn = cn ⊕ (ûn
t ⊕ yn). The decoder reconstructs the key ŝ based on the received noisy

codeword rn and the error probabilities of the cells ψ̂n
t .

6.4. Achievable Performance

We are interested in the maximum achievable secret-key rate of the binary SD scheme.
As before we should first show that the scheme is secure, i.e., the uniformity condition of
Definition 1 is satisfied since the key is generated uniformly at random. Furthermore, the
leakage condition is satisfied as I(S; Wn, Ψ̂n

t ) = 0 as is shown in Appendix A.4. Now, we can
derive the achievable rate over the channel from the encoder to the decoder. The channel
is described by the conditional distribution Pr

(
R = r, Ψ̂t = ψ̂t|C = c

)
, and it follows from

the channel coding theorem (see, e.g., [20], Chapter 3) that the maximum achievable rate
is given by the mutual information maximized over the input distribution. Furthermore,
C is uniform here, since we are using a linear code. We therefore evaluate this mutual
information next

R∗SD,t
∆
= I

(
C; R, Ψ̂t

) (a)
= I

(
C; R|Ψ̂t

)
= H

(
R|Ψ̂t

)
− H

(
R|Ψ̂t, C

)
(b)
= 1− H

(
Ût ⊕Y|Ψ̂t

) (c)
= 1− H

(
Ût ⊕Y|MSD

t , Ût
)
= 1− H

(
Y|MSD

t , Ût
)

(d)
= 1− H(Y|wH(X1, X2, . . . , Xt))

(e)
= H(Y)− H(Y|X1, X2, . . . , Xt)

= I(Y; X1, X2, . . . , Xt).

(37)

In (a) we used the fact that the key is generated independently from the SRAM-PUF
observations and thus I

(
C; Ψ̂t

)
= 0. In (b) we used that r = c⊕ (ût ⊕ y) and furthermore

the key (and codebit) is generated uniformly and independently from the SRAM-PUF
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observations (and thus also independently from ψ̂t). Furthermore, (c) follows by the
Markov Chain

Y⊕ Ût ↔ Ψ̂t ↔ (MSD
t , Ût), (38)

and (d) holds since (by (18)) wH(x1, x2, . . . , xt) is uniquely determined by the tuple (mSD
t , ût)

and vice-versa. Finally, (e) follows from the fact that the symmetric SRAM-PUF is
unbiased (5), and by the fact that the conditional probability of the next observation given
t previous observations (x1, x2, . . . , xt) only depends on the number of observed ones (7).

It follows from the derivations above that the binary SD scheme achieves secret-
key rate R∗SD,t, where achievable secret-key rate is defined in Definition 1. Furthermore,
R∗SD,t = Ct is equal to the secret-key capacity for t enrollment observations as given by
Theorem 1, which shows that the binary SD scheme is optimal.

6.5. Code Construction and Simulations

As with the MO scheme we can now define a code construction, with a uniformly
generated secret s, an encoder based on an off-the-shelf LDPC code, and where the helper
data wn and reliability information ψ̂n

t are constructed as explained in Section 6.3.
The decoder observes rn and the error probabilities ψ̂t which can be used to calculate

the log-likelihood ratios needed for reconstruction of the secret. Since the SRAM cells are
independently distributed, we can calculate the LLR of each bit separately. The LLR for a
codebit c, after observing the noisy codebit r and the error probability ψ̂t for t enrollment
observations, is

LLRSD
(
r, ψ̂t

)
=

log ψ̂t
1−ψ̂t

if r = 1,

log 1−ψ̂t
ψ̂t

otherwise.
(39)

See Appendix A.5 for a derivation.
It is shown in Appendix A.5 that the LLRs for the SD scheme are equal to the LLRs

for the MO scheme when the same enrollment observations (x1, . . . , xt) and reconstruction
observation y are generated by the SRAM-PUF. Therefore, simulations for the SD scheme
would give the same FER results as for the MO scheme, and we can use the plots in Figure 6
to predict the performance of the SD scheme.

7. Sequential MO Helper Data Scheme

We have seen in Section 5 that a better performance (smaller reconstruction error
probability) is often achieved when the number of enrollment observations is increased.
However, each enrollment observation requires a full reset (power off and power up) of the
SRAM-PUF. Therefore, considering more enrollment observations results in an increased
duration of the enrollment phase of the MO helper data scheme. This may be undesirable
in practice as the enrollment phase must be completed in a secure environment and limited
time is available.

In this section, we present a variation on the MO helper data scheme that we call
the Sequential Multiple-Observations (SMO) helper data scheme. We exploit the fact
that a new SRAM-PUF observation is required for each key reconstruction, and, after the
reconstruction, we use this additional observation to update the helper data. As a result, the
helper data are updated (sequentially) after each reconstruction, and thus the reconstruction
error rate is reduced over time. The SMO scheme improves the efficiency regarding the MO
scheme, since observations are used both for reconstruction and enrollment. Furthermore,
the SMO scheme enables the usage of a reduced number of observations during the
enrollment phase. The reduced number of enrollment observations comes at an initial
cost of larger reconstruction error probability (FER); however, this is quickly reduced (see
Figure 8) during the lifetime of the device.
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7.1. Description

The enrollment phase of the Sequential MO helper data scheme is the same as for the
MO helper data scheme, i.e., a key s is generated uniformly at random, and the helper data
are constructed according to (18), with t = t0 enrollment observations. Therefore, after the
initial enrollment, a helper data mn

t0
is stored that is based on t0 enrollment observations.

The reconstruction phase, however, is different than before and it is visualized in Figure 8.
In the reconstruction phase of the SMO scheme, the helper data mn

t (corresponding to
t SRAM-PUF observations) and an SRAM-PUF observation yn are used to reconstruct the
key ŝ. If reconstruction is successful (We assume that correctness of the key can be verified,
for example, by feedback from other protocols that apply the key for decryption, or by
a failed authentication.), the SRAM-PUF observation is XORed with the encoded secret
and is added to the existing helper data, which results in a new (improved) helper data
corresponding to t + 1 SRAM-PUF observations. If, on the other hand, reconstruction has
failed, it is not possible to reconstruct the original codeword cn which is required for the
helper data update. Therefore, the helper data remains the same as before in this case.

D E Σ
mn

t ŝ cn mn
t+1

xn
t+1yn

updatereconstruction

Figure 8. Reconstruction phase of the Iterative MO helper data scheme: the helper data mn
t is updated

to mn
t+1 after each successful reconstruction.

7.2. Security and Achievable Rate

The main difference between the Sequential MO helper data scheme and the original
MO helper data scheme is that the helper data are now updated sequentially in the field.
Therefore, an attacker may have access to multiple helper data

(
mn

1 , mn
2 , . . . , mn

t
)
, instead of

only the final helper data mn
t . However, despite the reveal of multiple helper data, we can

show that zero-secrecy leakage is still guaranteed. In particular, a similar Markov Chain as
defined in (20) holds in this case

S↔ Cn ↔ (Wn
1 , Wn

2 , . . . , Wn
t )↔ (Mn

1 , Mn
2 , . . . , Mn

t ). (40)

Therefore, we can repeat the same derivations as in Section 4.2 to show that

I(S; Mn
1 , Mn

2 , . . . , Mn
t ) ≤ I(Cn; Wn

1 , Wn
2 , . . . , Wn

t ) = 0, (41)

and thus, there is no information leakage about the key by all the revealed helper data.
Please note that only the helper data are updated, whereas the key that has been

generated during the enrollment phase remains the same. Since the key should be recon-
structable already after the initial enrollment (since successful reconstruction is required
for each update), the maximum achievable rate of the Sequential MO scheme is limited by
the number of observations t0 that is used for the initial enrollment, i.e.,

R∗SMO,t0
= R∗MO,t0

= I(Y; X1, X2, . . . , Xt0). (42)

Nevertheless, as we show in the next subsection, the main advantage of the SMO scheme
is that the reconstruction observations are exploited to improve the reconstruction error
probability over time.

7.3. Simulation Results

We evaluate the performance of the Sequential MO helper data scheme through Monte
Carlo simulations. The encoder and decoder constructions and LLR calculations are similar
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to the construction presented in Section 5. We evaluate two key rates, R = 1/6 and
R = 1/7 with t0 = 4 and t0 = 2 enrollment observations, respectively. We have chosen
the number of enrollment observations s.t. the achieved initial error probability is larger
than, but close to, the target FER < 10−6 (based on the previous results in Figure 6). We
simulate 4 consecutive reconstruction attempts of the SMO scheme and plot the FER as
function of the number of reconstruction attempts (time) in Figure 9. Please note that the
helper data are only updated when the reconstruction attempt is successful. Therefore, the
’reconstructions’ in the current simulation are different from ’t enrollment observations’
plotted on the x-axis in Figure 9.

First, we can directly observe that the FER reduces with each reconstruction attempt.
Therefore, indeed the SMO scheme supports an improved reconstruction performance over
the lifetime of the devices. More specifically, for the simulated rates and selected number of
enrollment observations, we see that the average error probability already reduces below
the required threshold FER < 10−6 after the first reconstruction attempt. Therefore, in both
cases, the initial cost (larger FER) of reducing the number of enrollment observations by
one, was already nullified after one reconstruction.

1 2 3 4
10−8

10−7

10−6

10−5

reconstructions

FE
R

R=1/6, t0 = 4
R=1/7, t0 = 2

Figure 9. Reconstruction error probability FER for consecutive reconstructions for the Sequential MO
helper data scheme, with 128 bit key.

8. Conclusions

We have presented the Multiple-Observations (MO) helper data scheme for binding a
secret key to multiple observations of an SRAM-PUF. We have shown that the MO helper
data scheme can achieve secret-key capacity corresponding to t enrollment observations,
and therefore the scheme is optimal in information-theoretic sense. Furthermore, we
have evaluated performance of the scheme with Monte Carlo simulations for a standard
statistical model for SRAM PUFs with average error probability ψ ≈ 0.15. Secret-key rate
R = 1/6 is sufficient to achieve FER ≤ 10−6 after t = 5 enrollment observations. This is a
key rate that is 11/6 ≈ 1.8 times higher (better) than for the single enrollment scheme with
comparable FER.

The MO helper data scheme is very similar to the Soft-Decision (SD) helper data
scheme; however, the SD scheme assumes one-probabilities as an input, which in practice
are non-observable. Therefore, we proposed a new strategy that considers binary obser-
vations instead. We have shown that this new strategy is optimal and achieves the same
reconstruction performance as the MO scheme.

We have introduced a variation on the MO scheme, which we call the Sequential
Multiple-Observations helper data scheme. The scheme supports a sequential update of
the helper data after each successful reconstruction of the key, resulting in a reduced FER
over the lifetime of the device. The SMO scheme enables the usage of less enrollment
observations, by accepting a (slightly) worse initial FER that is quickly improved upon.



Entropy 2021, 23, 590 17 of 21

Author Contributions: Conceptualization, L.K. and F.M.J.W.; Formal analysis, L.K. and F.M.J.W.;
Software, L.K.; Writing—original draft, L.K.; Writing—review & editing, F.M.J.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Eurostars-2 joint program with co-funding from the EU
Horizon 2020 program under the E! 11897 RESCURE project.

Data Availability Statement: The plots in Figures 2, 4 6 and 9 are based on calculations and sim-
ulations performed in MATLAB. The scripts can be found at https://github.com/TUe-ICTLab/
Multiple-Observations-for-Secret-Key-Binding-with-SRAM-PUFs (accessed on 7 April 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SRAM Static Random-Access Memory
PUF Physical Unclonable Function
MO Multiple Observations
SMO Sequential Multiple Observations
SD Soft Decision
LDPC Low-density Parity-check
LLR Log-likelihood ratio
CRC cyclic-redundancy check

Appendix A.

Appendix A.1. Log-Likelihood Ratio for MO Helper Data Scheme

We give the derivation that leads to (28) the log-likelihood ratio for a codebit c, after
observing the current observation y and the helper data mt for t enrollment observations.
We start by deriving the likelihood for c = 0,

Pr(Y = y, Mt = mt|C = 0)
(a)
= Pr(Y = y, wH(X1, . . . , Xt) = mt|C = 0)
(b)
= Pr(Y = y, wH(X1, . . . , Xt) = mt)

= ( t
mt
)πt+1(y + mt),

(A1)

where (a) follows from the definition of the helper data (18), and in (b) we used the fact
that the code bit c is generated independently from the SRAM observations. We can repeat
a similar derivation to find the likelihood for c = 1,

Pr(Y = y, Mt = mt|C = 1) =
(

t
t−mt

)
πt+1(y + t−mt), (A2)

and the log-likelihood ratio is then

LLR(y, mt)
∆
= log Pr(Y=y,Mt=mt |C=0)

Pr(Y=y,Mt=mt |C=1)

= log πt+1(y+mt)
πt+1(y+t−mt)

.
(A3)

Please note that we can derive the following two symmetry properties for the LLR function

LLR(y, mt) = − log πt+1(y+t−mt)
πt+1(y+mt)

= −LLR(y, t−mt),

LLR(y, mt)
(a)
= log πt+1(t+1−y−mt)

πt+1(t+1−y−t+mt)

= log πt+1((y⊕1)+t−mt)
πt+1((y⊕1)+mt)

= LLR(y⊕ 1, t−mt),

(A4)

where (a) follows from (7) which follows from the symmetry assumption for SRAM PUFs.

https://github.com/TUe-ICTLab/Multiple-Observations-for-Secret-Key-Binding-with-SRAM-PUFs
https://github.com/TUe-ICTLab/Multiple-Observations-for-Secret-Key-Binding-with-SRAM-PUFs
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Appendix A.2. Zero Leakage Proof for Traditional SD Helper Data Scheme

We show that for the SD helper data scheme zero leakage occurs about the secret s, by
the helper data wn and error probability information ψn, i.e.,

I(S; Wn, Ψn)
(a)
≤ I(Cn; Wn, Ψn) = I(Cn; Ψn) + I(Cn; Wn|Ψn)
(b)
= H(Wn|Ψn)− H(Wn|Ψn, Cn)

(c)
= H(Wn|Ψn)− H(Un|Ψn)

(d)
≤ n− n = 0.

(A5)

Where (a) follows from the data processing inequality (see [19], Chapter 2) with Cn = g(S)
a function of S, and (b) follows since the secret is generated independently from the SRAM-
PUF observations. Furthermore, (c) follows since wn = un ⊕ cn (31) and since the secret is
generated independently from the SRAM-PUF observations. Finally, (d) follows from the
upperbound of entropy, by the fact that the SRAM cells are independently distributed, and
by the derivations below.

Pr(U = 0|Ψ = ψ) =
∫ 1/2

0 pΘ|Ψ(θ|ψ) dθ
(a)
= 1

2
∫ 1/2

0 δ(θ − ψ) + δ(θ − (1− ψ)) dθ

= 1
2 = Pr(U = 1|Ψ = ψ),

(A6)

where δ(·) is the Dirac delta function, and in (a) we used symmetry of the SRAM-PUF (6)
and definition (30).

Appendix A.3. Reliability Estimate for Binary SD Helper Data Scheme

We show that indeed the error probability of the SRAM cells can be estimated as (35),
i.e.,

ψ̂t = Pr
(
Y 6= Û|X1, . . . , Xt

) (a)
=

Pr
(
Y 6= Û, X1, . . . , Xt

)
Pr(X1, . . . , Xt)

(b)
=

πt+1(1 + mSD
t )

πt(mSD
t )

(c)
=

πt+1(t−mSD
t )

πt(mSD
t )

. (A7)

Here (a) follows from Bayes’ theorem and (b) and (c) both follow from (A8) and (A9)
below.

Pr
(
Y 6= Û, X1, . . . , Xt

)
=

Pr(Y = 1, X1, . . . , Xt) if wH(x1, x2, . . . , xt) ≤ t/2,

Pr(Y = 0, X1, . . . , Xt) otherwise,

=

πt+1(1 + wH(x1, x2, . . . , xt)) if wH(x1, x2, . . . , xt) ≤ t/2,

πt+1(wH(x1, x2, . . . , xt)) otherwise,

(a)
=

πt+1(1 + mSD
t ) if wH(x1, x2, . . . , xt) ≤ t/2,

πt+1(t−mSD
t ) otherwise,

(b)
= πt+1(1 + mSD

t ) = πt+1(t−mSD
t ),

(A8)

where (a) follows from definition (36) and (b) follows from (7). Furthermore,

Pr(X1, . . . , Xt) = πt(wH(x1, x2, . . . , xt))
(a)
= πt(t− wH(x1, x2, . . . , xt))

(b)
= πt(mSD

t ) (A9)

where (a) follows from (7) and (b) follows from (36).

Appendix A.4. Zero Leakage Proof for Binary SD Helper Data Scheme

We show that the strategy presented in Section 6.3 ensures zero leakage about the
key by the published helper data wn and error probabilities ψ̂n

t . Since this is a variation
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on the standard SD helper data scheme, we can repeat similar derivations to (A5) to show
that indeed

I
(
S; Wn, Ψ̂n

t
)
≤ H

(
Wn|Ψ̂n

t
)
− H

(
Ûn|Ψ̂n

t
)
≤ n− n = 0. (A10)

In the last step we used that

H(Ûn
t |Ψ̂n

t ) ≥ H(Ûn
t |Ψ̂n

t , MSD
t

n) = n, (A11)

which follows from

Pr
(
Ût = 0|Ψ̂t = ψ̂t, MSD

t = mSD
t
)
= Pr(wH(X1, . . . , Xt) ≤ t/2|MSD

t = mSD
t )

(a)
=

Pr(wH(X1, . . . , Xt) = mSD
t )

Pr(wH(X1, . . . , Xt) = mSD
t ) + Pr(wH(X1, . . . , Xt) = t−mSD

t )
(A12)

=
πt(mSD

t )

πt(mSD
t ) + πt(t−mSD

t )
=

1
2
= Pr

(
Ût = 1|Ψ̂t = ψ̂t, MSD

t = mSD
t
)
.

Appendix A.5. Log-Likelihood Ratio for Binary SD Helper Data Scheme

We give the derivation that leads to (39) the log-likelihood ratio for a codebit c, after
observing the noisy codebit r and the error probability ψ̂t for t enrollment observations.
First, we note that

1− ψ̂t = 1− πt+1(1 + mSD
t )

πt(mSD
t )

=
πt(mSD

t )− πt+1(1 + mSD
t )

πt(mSD
t )

(a)
=

πt+1(mSD
t )

πt(mSD
t )

(b)
=

πt+1(1 + t−mSD
t )

πt(mSD
t )

(A13)

in (a) we used that πt(mSD
t ) = πt+1(mSD

t ) + πt+1(1 + mSD
t ) and (b) follows from (7). The

log-likelihood ratio at the encoder, for a received value r and given an estimated error
probability ψ̂t, is

LLRSD
(
r, ψ̂t

) ∆
= log

Pr( R=r,Ψ̂t=ψ̂t|C=0)
Pr( R=r,Ψ̂t=ψ̂t|C=1)

= log
Pr( Ût⊕Y=r|Ψ̂t=ψ̂t)
Pr( Ût⊕Y=r,|Ψ̂t=ψ̂t)

=


log

Pr( Ût 6=Y|Ψ̂t=ψ̂t)
Pr( Ût=Y,|Ψ̂t=ψ̂t)

if r = 1,

log
Pr( Ût=Y|Ψ̂t=ψ̂t)
Pr( Ût 6=Y,|Ψ̂t=ψ̂t)

otherwise,

=

log ψ̂t
1−ψ̂t

if r = 1,

log 1−ψ̂t
ψ̂t

otherwise.

(A14)

In the following, we show that the LLR of the SD scheme is equal to the LLR for
the MO scheme when the same enrollment observations (x1, . . . , xt) and reconstruction
observation y are generated by the SRAM-PUF.

First, we can express the log-likelihood ratio (A14) as a function of mSD
t

LLR’SD(r, mSD
t )

∆
=


log πt+1(1+mSD

t )

πt(1+t−mSD
t )

if r = 1,

log πt(mSD
t )

πt+1(t−mSD
t )

otherwise.

= log πt+1(r+mSD
t )

πt(r+t−mSD
t )

.

(A15)
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Furthermore,

mSD
t =


mt if c = 0 and wH(x1, . . . , xt) ≤ t/2,

or if c = 1 and wH(x1, . . . , xt) > t/2,
t−mt otherwise,

=

{
mt if r = y,
t−mt r = y⊕ 1,

(A16)

where in the last step we used the definition of ût (29) and the fact that r = c⊕ ût ⊕ y.
Combining (A15) and (A16) we find that the log-likelihood ratio for the SD scheme is

LLR’SD(r, mSD
t ) =

{
LLR’SD(y, mt) if r = y,
LLR’SD(y⊕ 1, t−mt) if r = y⊕ 1,

=

log πt+1(y+mt)
πt(y+t−mt)

if r = y,

log πt+1((y⊕1)+t−mt)
πt((y⊕1)+mt)

if r = y⊕ 1,

= log πt+1(y+mt)
πt(y+t−mt)

.

(A17)

In the last step we used (7). Now the last expression in (A17) is equal to the log-likelihood
ratio for the MO helper data scheme (28). Therefore, we conclude that the LLRs of both
schemes are equal when the same enrollment observations (x1, . . . , xt), codebit c and
reconstruction observation y are used.
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