
entropy

Article

Unifying Node Labels, Features, and Distances for Deep
Network Completion

Qiang Wei 1,2,* and Guangmin Hu 1

����������
�������

Citation: Wei, Q.; Hu, G. Unifying

Node Labels, Features, and Distances

for Deep Network Completion.

Entropy 2021, 23, 771. https://

doi.org/10.3390/e23060771

Academic Editor: Miguel A. Fuentes

Received: 9 May 2021

Accepted: 16 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information and Communication Engineering, University of Electronic Science and Technology of
China, Chengdu 611731, China; hgm@uestc.edu.cn

2 National Key Laboratory of Science and Technology on Blind Signal Processing, Chengdu 610041, China
* Correspondence: weiqiang@std.uestc.edu.cn

Abstract: Collected network data are often incomplete, with both missing nodes and missing edges.
Thus, network completion that infers the unobserved part of the network is essential for downstream
tasks. Despite the emerging literature related to network recovery, the potential information has
not been effectively exploited. In this paper, we propose a novel unified deep graph convolutional
network that infers missing edges by leveraging node labels, features, and distances. Specifically,
we first construct an estimated network topology for the unobserved part using node labels, then
jointly refine the network topology and learn the edge likelihood with node labels, node features
and distances. Extensive experiments using several real-world datasets show the superiority of our
method compared with the state-of-the-art approaches.

Keywords: network completion; graph convolutional network; node label; node feature; node
distance

1. Introduction
1.1. Background

Network structures, such as social networks, web graphs, and communication net-
works, are important to the functioning of complex systems [1,2]. Usually, a complete
network structure is a crucial prerequisite for downstream tasks, including node classifica-
tion and link prediction [3–5]. However, real-world networks tend to be partially observed,
with nodes and edges missing due to insufficient resources and privacy protection [3,6,7].
Social networks, such as Twitter and Facebook, have restrictions for crawlers, which makes
it impossible for third-party aggregators to collect complete network data. Similarly, when
an internet scientist probes the route topology using traceroute, they cannot obtain the
structure behind the non-cooperative routes [8]. Thus, the collected network structure is
often incomplete, which creates difficulties for downstream analysis.

Our work is motivated by learning the structure of communication networks from
passive measurements. In a military context, we may wish to analyze a foreign network
inconspicuously [9]. One feasible way is to monitor the packet traffic between the target
network and our controlled networks. In an internet reconstruction context, we may wish
to obtain a map of networks that have connections with our hosted one for routing strategy
optimization [10,11]. In both scenarios, we place passive traffic collectors, and we can
collect the user profile (e.g., IP address) [12], hop distance (via TTL) [9,13], and label (via a
community) [2] through continuous passive monitoring of the communication, starting
from the target network [14]. Passive monitoring provides rich information but there are
two limitations: (1) it is often impractical to collect edges or relationships between nodes
within the target networks, as their traffic does not pass through our collectors; and (2) there
is little control over which targets are measured and, therefore, some data are invariably
missing [14].

Entropy 2021, 23, 771. https://doi.org/10.3390/e23060771 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23060771
https://doi.org/10.3390/e23060771
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23060771
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23060771?type=check_update&version=2

Entropy 2021, 23, 771 2 of 13

The difficulty of collecting edges in target networks leads us to the network completion
(NC) problem [7]: given a partially observed network structure H from a underlying
network G, the goal is to infer the missing unobserved part Z. Network completion can
significantly alter our estimates of network-level statistics and node-level structure. In [7],
both nodes and edges were missing in Z; however, the nodes are known and only the edges
are missing in our scenarios. We consider this setting as a specific network completion
problem [15]. Solving the problem is particularly challenging, as all edges in Z are missing.
While intuitively similar, NC is fundamentally different from the related well-studied link
prediction problem [16]. Edges are missing at random in the link prediction; by contrast,
the nodes and edges are missing as a whole in NC, which makes traditional link prediction
algorithms unsuitable for NC.

As aforementioned, we focused on solving the specific network completion problem,
where node information is known and only edges are missing in Z. The information
of nodes, such as labels, features, and distances, is available in our settings [15,17]. It
is proven that the side information of nodes is strongly correlated with the underlying
network structure [18–22]. Therefore, it is beneficial to integrate side information for NC.

1.2. Related Methods

Model-Based NC: Kim and Leskovec developed KronEM [7], an expectation maxi-
mization approach combined with the Kronecker graphs model. They designed a scalable,
metropolized Gibbs sampling approach for the estimation of model parameters, as well
as inference of the missing part Z. KronEM suffers from three problems [16]: (1) only
network topology is considered and side information of nodes is ignored; (2) not all real-
world networks follow the Kronecker model; and (3) its speed and performance are not
yet satisfactory.

Node-Similarity-Based NC: Other than the missing edges, the node identification
and features in G may be available in real settings. Node-similarity-based network comple-
tion methods leverage the similarities between node features to infer Z. Matrix completion
with decoupled transduction (MC-DT) [15] decouples the completion from transduction to
effectively exploit the similarity information. Furthermore, joint node clustering and simi-
larity learning (JCSL) [23] handles the situation, where the node features may be partially
missing by computing the node similarities at the cluster level, then jointly co-factorizing
the observed adjacency matrix with the cluster-based similarities. However, MC-DT and
JCSL have two shortcomings: (1) choosing an appropriate similarity metric is a prerequisite
but challenging in practice [24]; and (2) the similarity matrix is exploited linearly, which
cannot reflect the nonlinearity between node features and network structures.

Network Structure Learning: Instead of using a similarity graph based on the initial
features, another approach in this category is to learn a network structure. Graph neural
networks (GNNs) have become the standard toolkit for learning from networks [25,26].
However, most GNNs are designed for a relatively complete network structure, which
makes them unsuitable for the network completion problem. Franceschi et al. sampled
graph structures from a learnable fully connected structure and employed a bi-level opti-
mization setup for simultaneously learning the GNN parameters and the structure [27].
Chen et al. proposed an iterative method to search for a hidden graph structure that aug-
ments the initial graph structure toward an optimal graph for (semi-)supervised prediction
tasks [28]. Yu et al. introduced a GCN-based graph revision module for predicting missing
edges and revising edge weights via joint optimization [29]. Hao et al. embedded the
graph nodes into latent space, and then computed an embedding vector for the unobserved
node, with attributes compared to another node’s embedding for link prediction [30]. Shin
et al. presented Edgeless-GNN for attributed network embedding with edgeless nodes by
utilizing a k-nearest neighbor graph based on the similarity of node attributes. However,
the existing network structure learning works ignore node labels and distances.

Deep Generative Graph Models: Recent advances in deep generative graph models
have furthered progressed in network completion. Inspired by GraphRNN [31], DeepNC

Entropy 2021, 23, 771 3 of 13

infers the missing parts of a network via deep learning for solving NE-NC [16]. DeepNC
first learns a likelihood over the edges via an RNN-based generative graph model by using
structurally similar graphs as training data, then inferring the missing parts by applying
an imputation strategy for the missing data. Similar to KronEM, DeepNC does not take
advantage of the side information of nodes. In addition, DeepNC requires structurally
similar graphs for training, which are often difficult to collect in reality; for example, route-
level networks are hard to obtain as privacy protection within autonomous systems [32].
Graphite [33] parameterizes variational autoencoders with GNN and uses an iterative
graph-refinement strategy inspired by low-rank approximations for decoding. G-GCN [34]
produces a unified generative graph convolutional network that learns node embeddings
for all nodes by sampling graph generation sequences constructed from H. Graphite and
G-GCN are designed for edgeless NC, but neither of them considers node label or distance
information, which leaves room for further improvement.

1.3. Present Work

In this work, we address the challenge of network completion using side information.
We propose a node-label-, feature-, and distance-based network completion method (LFD-
NC), a novel unified deep graph convolutional network that infers the missing edges by
leveraging the node label, feature, and distance information. Specifically, we first construct
an initial network topology for Z by node labels using a stochastic block model, and then
we adopt GNN to obtain a refined estimation of Z using node features; after that, distance
constraints are used for pruning the refined network. Lastly, we learn a joint distribution
over Z by iteratively performing refinement and pruning.

The contributions of this paper are threefold:

• We formalize NC with side information as a graph refinement problem;
• We propose LFD-NC, a deep graph convolutional-network-based completion method

by unifying the observed structure with node label, feature, and distance information;
• We validate LFD-NC through extensive experiments on several real-world networks.

2. Methods

We begin by introducing the network completion problem with side information;
then, we propose LFD-NC, a deep graph convolutional-network-based algorithm, to solve
the problem.

2.1. Problem Formulation

We assume that there is a true undirected and unweighted network G(V, E, X, Y),
where V = {v1, v2, . . . vN} denotes the node set with |V| = N, E ⊂ V × V denoting the
edge set, X ∈ RN×F is the feature matrix for each node in V, and Y ∈ {1, 2, . . . , C}N

represents the node labels of C classes or communities.
We consider the NC task with node side information over G, where only a part

of the topology of G is observed. As illustrated in Figure 1, we have complete knowl-
edge of X, Y, as well as an observed induced subgraph O(VO, EO) of G. We denote
AO = [wO(u, v)] ∈ {0, 1}N×N as the observed adjacency matrix, where wO(u, v) = 1
if (u, v) ∈ EO; otherwise, wO(u, v) = 0. We also know the shortest-path distance
set D = {(u, v, duv)|u ∈ VOD, v ∈ VZD} for some node pairs between VOD ⊆ VO and
VZD ⊆ V\VO, and we denote Du = {v|(u, v, duv) ∈ D} as the observed destination nodes
set from source node u. Let VZ = V\VO be the node set of the unobserved topology, and
let MZ = {VO ×VZ} ∪ {VZ ×VZ} represent all possible edges with at least one endpoint
in VZ. The task of NC is to infer the missing edges and non-edges in the unobserved part
Z(VZ, EZ) where EZ ⊂ MZ.

Entropy 2021, 23, 771 4 of 13

Figure 1. The NC problem with node side information. All nodes {v1, v2, . . . , v9}, node feature matrix X, and node label
vector Y are known. Edges (black solid lines) in O are observed, but edges (black dashed lines) in the unobserved part Z are
missing. Some shortest-path distances (red solid lines) between O and Z are known in addition. To solve NC is to infer the
missing edges and non-edges in Z, e.g., edge (v3, v6) and non-edge (v6, v9).

It is worth mentioning that the observed distance set D considered here is retrieved
from passive measurements; therefore, we cannot control the observed shortest-path
destination nodes Du for a given source node u ∈ VOD. In this paper, we further assume
that for any source node u ∈ VOD, the destination node set Du satisfies Du ⊂ VZ; that is,
we cannot detect all the shortest-path distances from u. Although D indicates deterministic
edges and non-edges in Z (see Section 2.5), we treat them as unobserved for the simplicity
of the NC problem definition.

Let us model EZ through the following probability distribution:

EZ ∼ PG(EZ|O, X, Y, D, Θ), (1)

which is parameterized by Θ. Then, the objective of E-NC is to find the most likely
configuration of EZ.

2.2. Overview of LFD-NC

LFD-NC is motivated by the fact that network topology, node labels, and node features
are correlated. Thus, we aimed to find the optimized network topology EZ that is most
consistent with the observed O, X, Y, and D. As there is no closed form for the poste-
rior distribution PG(EZ|O, X, Y, D, Θ) in Equation (1), LFD-NC models it by iteratively
refining the network topology. It requires four phases in our computing framework: label-
based topology initialization, edge probability learning, distance pruning, and topology
refinement. The LFD-NC architecture is shown in Figure 2.

Figure 2. Overview of our LFD-NC. Dashed lines are learned edge probabilities. Nodes with the same color have the same
label in GL.

Entropy 2021, 23, 771 5 of 13

.
In the label-based topology initialization phase, LFD-NC computes an estimated

topology GL for Z, using only node label information Y. Then, in the edge probability
learning phase, we take GL, node feature X and node label Y as the inputs to learn a
new edge probability PX(u, v) for (u, v) ∈ MZ, which leads to a better topology GX.
Notably, learning PX is a typical link-prediction task, where standard methods such as
GNN [35,36] or improved methods with label propagation [37–39] can be directly applied
as aforementioned.

We then prune edges that should not exist on the basis of node distance constraints
D. Lastly, we refine the estimated topology GX by iteratively performing edge probability
learning and distance pruning.

From a node-embedding perspective, we first map each node in G to a low-dimensional
vector in LFD-NC’s first two phases, then we learn a pairwise decoder to predict the edges
and non-edges in Z in the edge probability learning phase. Lastly, we refine the network
topology in the distance pruning phase, and recalculate the node embeddings correspond-
ingly using topology refinement.

Next, we elaborate the details of each step.

2.3. Label-Based Topology Initialization

NC suffers from the cold start problem [15,34], i.e., there are no prior connections for
the nodes in Z. Therefore, standard GNN methods, such as GCN [35] and GAT [40], cannot
be directly applied for NC since the missing edges block message passing and aggregation
between O and Z.

We present node-label-based topology initialization to overcome the cold start problem
in NC, which is motivated by two insights. Firstly, the community structure is positively
correlated with the underlying network topology [21]. Most complex networks show a
community structure, i.e., blocks of nodes that have a high density of edges within them,
and a lower density of edges between them. Community structure is often detected on the
basis of the known underlying network topology. Here, we take the opposite direction
and treat the community structure as a good initial estimation of the unobserved network
topology. Secondly, the label information can be integrated to improve the performance
of node embedding. It is proven that unifying label propagation and GNN overcomes
the over- or under-smoothing issue of GNN [37,38,41]. In this paper, we treat the known
labels Y as the optimized result of the label propagation procedure, and then find the
corresponding topology.

We initialize edges in MZ using the stochastic block model (SBM) [3,42,43], which
is widely used to model communities in complex networks by modulating the intra-
and extra-block connections. Specifically, the edge probability in MZ is determined by
the following:

PL(u, v) = pY(u),Y(v), (2)

where
[

pY(u),Y(v)

]
∈ [0, 1]C×C is the probability of an edge between communities. The

estimated edge weight in MZ is calculated as follows:

wL(u, v) = αLPL(u, v), (3)

where αL is a parameter that controls the strength of PL in the estimated graph GL. If we set
wL(u, v) = 0 for u, v ∈ VO, and denote WL = [wL(u, v)] ∈ RN×N as the SBM-estimated
matrix, then the adjacency matrix of GL can be represented by the following:

AGL = AO + WL. (4)

Entropy 2021, 23, 771 6 of 13

We show that AGL can be the underlying topology for label propagation. The label
propagation procedure in iteration k can be formulated as follows [37]:

Y(k+1) = D̃−1 AGY(k), (5)

where AG =
[
aij
]
∈ [0, 1]N×N is the partial unknown adjacency matrix of G, and D̃

is a diagonal matrix with D̃ii = ∑j Ãij. We have Y(k+1) = Y(k) = Y in our settings;
hence Equation (5) holds when AG = AGL , which indicates that AGL is a valid solution of
Equation (5). Therefore, AGL is consistent with the label propagation.

2.4. Edge Probability Learning

Edge probability learning aims to obtain a better network topology from GL, X and Y,
and we treat it as a link prediction task. After the label-based topology initialization phase,
we directly exploit network embedding techniques to find the proper function f as follows:

H = f
(

AGL , X, Y
)
, (6)

where H is the node embedding matrix.
Many existing methods can be used to obtain H [35–39]. In this paper, we adopt

GCN [35] to model f . In GCN, the hidden representations for each layer can be obtained
by the following:

H(l+1) = σ
(

D̃−
1
2 Ã D̃−

1
2 H(l)W(l)

)
, (7)

where Ã = AGL + IN is the adjacency matrix of GL with added self-loops, IN is the identity

matrix, D̃ is a diagonal matrix with D̃ii = ∑j Ãij, W(l) ∈ RF(l)×F(l+1)
is a layer-wise learnable

weight matrix, σ(·) denotes an activation function such as ReLU [44], and H(l) is the node
embedding of layer l with H(0) = [X

∣∣∣Y] , where [X|Y] is a concatenation of X and one-hot
label indicators.

We consider a two-layer GCN as our forward model, and the final embedding is
the following:

H = Â ReLU(Â[X
∣∣∣Y]W(0))W(1), (8)

where Â = D̃−
1
2 Ã D̃−

1
2 . The weight matrices W(0) and W(1) are calculated by minimizing

the cross-entropy errors of labeled edges in O:

Lcross−entropy = − ∑
(u,v)∈EO

log(PX(u, v))− ∑
(u,v)/∈EO

log(1− PX(u, v)). (9)

Due to the sparse nature of real-world networks, there are only a small number of
edges in all node pairs; thus, we generate |EO| non-edges via random sampling.

The edge probability in MZ then takes the following simple form:

PX(u, v) = sigmoid
(

HuHT
v

)
. (10)

As a function Equation (10), we provide the realization of Equation (1) as follows:

PG(EZ

∣∣∣∣∣∣O, X, Y, D, Θ) = ∏
(u,v)∈EZ

PX(u, v) ∏
(u,v)/∈EZ

(1− PX(u, v)). (11)

We denote PX = [pX(u, v)] ∈ RN×N as the link likelihood matrix, and set pX(u, v) = 0
for u, v ∈ VO; then, the adjacency matrix of GX can be represented by the following:

AGX = AO + PX . (12)

Entropy 2021, 23, 771 7 of 13

2.5. Distance Pruning and Topology Refinement

Distance pruning and topology refinement aim to further improve the performance of
node embedding. The distance constraint D indicates the existence of edges and non-edges
between some node pairs, whereby clamping the edge probability of these node pairs leads
to a clearer network topology GD. Then, we take GD instead of GL, and repeat the edge
probability learning process to gradually refine the node embedding matrix H.

Given the distance constraint D, we may calculate two deterministic sets: an edge set
ED ⊂ MZ and a non-edge set E∅

D ⊂ MZ. The calculation is based on Observation 1 and
Observation 2 [11].

Observation 1. For any given nodes u, v and w in an undirected and unweighted graph G(V, E),
if |duv − duw|≥ 2 , then (w, v) /∈ E holds.

Observation 2. Let Li
u = {v|duv = i, v ∈ N} be the sets of nodes with the same distance i from

u. For two given nodes v ∈ Li
u and w ∈ Li+1

u , if for any node x ∈ Li
u\{v}, (x, w) /∈ E, then

(v, w) ∈ E holds.

Note that Observation 2 needs u observed distances to all the other nodes in G, which
cannot be met under our assumption. Therefore, ED only contains the observed direct
neighbors of the distance monitor nodes VOD.

After the calculation of ED and E∅
D , we clamp the probability of edges in ED to 1, and

the probability of non-edges in E∅
D to 0. Let Mnon−edge = [m(w, v)] ∈ {0, 1}N×N denote

the non-edge mask matrix where m(w, v) = 1 if (w, v) ∈ E∅
D. Then, the distance pruning

process can be represented as follows:

AGX

[
Mnon−edge

]
= 0. (13)

Then, we assign the adjacency matrix AGD of GD as the masked AGX . We ignore ED in
LFD-NC as

∣∣ED|�|E∅
D

∣∣.
We summarize our algorithm in Algorithm 1.
The time complexity of LFD-NC is the same as that of GCN. The complexity of line 1

in Algorithm 1 is O(|MZ|) . In GCN, it is usually satisfied that F > F(1) ≥ F(2); thus, the
complexity of line 3 is O

(
N2F + NF2). The complexity of lines 4 and 5 is O(|MZ|) . Since∣∣MZ

∣∣< N2 , the total complexity of LFD-NC is dominated by GCN.

Algorithm 1. LFD-NC

Input: node features X, non-edge mask Mnon−edge, observed graph matrix AO, SBM estimated
matrix WL, and topology refinement round R.
Output: estimated graph AGD .

1. AGL = AO + WL //label-based topology initialization by Equation (4)

2. forrin [1, 2, . . . , R] //topology refinement

3. H = f (AGL , X) //node embedding by Equation (6)

4. AGX = AO + PX //link prediction by Equation (12)

5. AGX

[
Mnon−edge

]
= 0 //distance pruning by Equation (13)

6. AGL = AGD = AGX //update AGL

7. end for

8. outputAGD

3. Experiments

We conducted a series of experiments. First, we evaluated the performance of LFD-NC
and compared it with the state-of-the-art network completion methods. Then, we analyzed
the impacts of the four phases.

Entropy 2021, 23, 771 8 of 13

3.1. Experimental Settings
3.1.1. Datasets

We evaluated the performance of LFD-NC on eight real-world network datasets. The
details of the eight datasets are presented below.

Actor is a film actor network [45]. Each node corresponds to an actor, and the edge
between two nodes denotes co-occurrence on the same Wikipedia page. Node features
correspond to some keywords in the Wikipedia pages. Nodes are classified into five
categories in terms of words in the actor’s Wikipedia entry.

Cornell, Texas, and Wisconsin are three small local web networks from WebKB [45],
which is a webpage dataset collected by Carnegie Mellon University from computer
science departments at various universities. Nodes and edges represent web pages and
hyperlinks, respectively. The feature of each node is the bag-of-words representation of the
corresponding page, and the label of each node is manually classified into five categories:
student, project, course, staff, and faculty.

Cora, Citeseer, and PubMed are three classic citation networks [46]. Nodes represent
scientific papers, and edges represent citation relationships. Node features correspond to
the bag-of-words representation of the paper and the label of each node represents one of
the academic topics.

WikiCS is a Wikipedia web network [47]. It consists of nodes corresponding to
computer science articles, with edges based on hyperlinks. Node features are derived
from the text of the corresponding articles. Nodes are labeled into 10 classes representing
different branches of the field.

The dataset statistics are shown in Table 1. We only focused on the largest connected
component for each network in this paper.

Table 1. Dataset statistics.

Dataset Nodes Edges Classes Features

Actor 7600 33,544 5 931
Cornell 183 295 5 1703
Texas 183 309 5 1703

Wisconsin 251 499 5 1703
Cora 2708 5429 7 1433

Citeseer 3327 4732 6 3703
PubMed 19,717 44,338 3 500
WikiCS 11,701 216,123 10 300

3.1.2. Baselines and Evaluation Metrics

The baselines were chosen from five different types of network completion algorithm
for comparison:

• SBM [42] only uses node labels, whereby the symmetric C× C matrix of edge proba-

bility
[

pY(u),Y(v)

]
is estimated from the observed O;

• KronEM [7] only uses the network graph structure and ignores node features, node
labels, and node distances;

• MC-DT [15] employs both the pairwise similarity of node features and the network
graph structure, as well as ignores node labels and node distances. The similarity
information is utilized by matrix factorization in a linear way;

• MLP-NC [48] considers node features and the network graph structure, as well as
ignores node labels and node distances. Unlike MC-DT, MLP-NC directly learns a
non-linear similarity metric;

• G-GCN [34] also considers node features and the network graph structure, as well as
ignores node labels and node distances. Unlike MLP-NC, G-GCN adopts a generative
graph convolution model.

Entropy 2021, 23, 771 9 of 13

We treated the prediction of missing edges in Z as a binary classification, and we
evaluated the performance of LFD-NC on the basis of two metrics: the area under the
ROC curve (AUC) and average precision (AP). We randomly sampled equal numbers of
negative and positive edges when evaluating AUC and AP.

3.1.3. Implementation Details

We generated O(VO, EO) by breadth-first search (BFS) traversal from a randomly
selected node and split E\EO equally for validation and testing. Before training, node
features X were normalized, and then extended by concatenating the one-hot encoding of
Y for a fair comparison with MC-DT, MLP-NC and G-GCN.

We adopted the realization of KronEM in SNAP [49] and kept all parameters as
the default, except for the initial Kronecker matrix, which we set to [0.9, 0.7; 0.7, 0.2] for
symmetry. We implemented MC-DT, using the SciPy Python library, while the feature
similarity matrix was computed by the cosine metric, and we set the number of eigenvectors
s to 20. We executed G-GCN from the officially released code, and kept all parameters as
the default, except for F(1) and F(2). We implemented MLP-NC and LFD-NC in PyTorch
and open-sourced them at https://github.com/weiqianglg/LFD-NC.

For LFD-NC, we constructed D by randomly selecting a fixed number of source
nodes for VOD; then, we randomly split VZ into |VOD| disjoint subsets, where each subset
corresponded to one source node. The topology refinement round was set to R = 4. We
adopted the planted partition model in SBM initialization, and we fixed pY(u),Y(v) = 1
if nodes u, v had the same label; otherwise, pY(u),Y(v) = 0 in Equation (2). For G-GCN,
MLP-NC, and LFD-NC methods, we set the hidden dimension as F(1) = 64 and the final
dimension as F(2) = 32, and we used the Adam optimizer with a learning rate of 0.01 to
train the three deep-learning models for all the datasets. We also applied an early stop
strategy over AUC for the validation set, with the patience set to 20 epochs.

3.2. Completion Performance
3.2.1. Comparison with State-of-the-Art Methods

Tables 2 and 3 summarize the comparison results for the eight real-world network
datasets. We kept |VOD|= 16 and |EO|/|E| = 0.8, and we set αL = 10−4 for Cornell,
Cora, Pubmed, and WikiCS, αL = 6 × 10−2 for Actor and Texas, αL = 8 × 10−2 for
Wisconsin, and αL = 1× 10−1 for Citeseer. The mean and the confidence interval of AUC
and AP were measured by 10 random BFS samplings. LFD-NC outperformed all other
comparative models in the eight datasets. These results demonstrate that incorporating
node label and distance constraints into GNN models significantly improves the solution
of an NC problem.

Table 2. Comparison of test set AUC score (%) with state-of-the-art methods. The best results are marked in bold.

Method Actor Cornell Texas Wisconsin Cora Citeseer PubMed WikiCS

SBM 49.7 ± 0.6 45.1 ± 5.8 65.2 ± 8.0 52.7 ± 7.0 88.9 ± 1.5 80.7 ± 2.0 76.1 ± 1.6 83.1 ± 0.8
KronEM 54.0 ± 1.2 52.0 ± 12.3 59.3 ± 9.7 51.5 ± 9.2 50.9 ± 1.4 49.3 ± 2.1 57.6 ± 1.7 62.2 ± 2.9
MC-DT 50.6 ± 0.7 48.9 ± 9.4 58.8 ± 10.5 72.7 ± 2.9 91.6 ± 1.6 87.7 ± 1.6 89.4 ± 0.8 92.3 ± 0.9

MLP-NC 51.6 ± 1.1 43.1 ± 9.1 41.8 ± 9.4 66.7 ± 8.0 90.1 ± 0.9 85.6 ± 1.6 88.6 ± 1.2 92.3 ± 1.2
G-GCN 50.4 ± 0.7 53.8 ± 4.5 38.9 ± 7.8 60.0 ± 6.0 93.2 ± 0.2 88.7 ± 0.2 88.7 ± 0.2 90.7 ± 0.5
LFD-NC 72.1 ± 1.0 85.7 ± 2.3 88.4 ± 2.8 89.4 ± 4.2 97.1 ± 0.6 96.0 ± 0.7 93.7 ± 0.9 92.5 ± 0.9

KronEM uses only the observed network topology for completion, and SBM uses
only node labels, which led to them performing the worst. MC-DT, MLP-NC, and G-GCN
performed similarly to each other in general, but they consider neither node labels nor
distance constraints; therefore, LFD-NC outperformed almost all of them. For example,
LFD-NC achieved about 21.9–23.2% AUC and 16.1–22.5% AP absolute improvements,
compared with the second-best methods in Cornell and Texas. These improvements were
contributed by both node label information and distance constraints; in Cora and Citeseer,

https://github.com/weiqianglg/LFD-NC

Entropy 2021, 23, 771 10 of 13

LFD-NC achieved 5.5–7.3% AUC and 5.2–8.4% AP absolute improvements, compared
with the second-best methods. These improvements were mainly contributed by distance
constraints. We systematically studied the impact of node labels and distance constraints,
as presented below.

Table 3. Comparison of test set AP score (%) with state-of-the-art methods. The best results are marked in bold.

Method Actor Cornell Texas Wisconsin Cora Citeseer PubMed WikiCS

SBM 49.9 ± 0.5 49.4 ± 3.9 68.7 ± 8.3 56.7 ± 4.5 85.8 ± 2.1 79.2 ± 1.8 71.3 ± 1.7 81.6 ± 0.9
KronEM 53.0 ± 1.3 56.0 ± 11.4 59.9 ± 7.6 55.0 ± 7.9 51.5 ± 1.4 50.0 ± 1.6 55.3 ± 1.6 59.9 ± 2.5
MC-DT 51.1 ± 0.7 54.6 ± 7.3 57.3 ± 7.3 73.4 ± 4.0 89.0 ± 2.3 86.3 ± 1.9 88.3 ± 0.8 91.5 ± 1.1

MLP-NC 52.2 ± 1.2 52.6 ± 8.9 47.5 ± 6.2 67.1 ± 8.1 87.3 ± 1.3 81.5 ± 2.3 86.5 ± 1.4 92.0 ± 1.3
G-GCN 51.4 ± 0.9 60.8 ± 5.4 46.2 ± 4.8 59.6 ± 5.8 91.4 ± 0.2 86.2 ± 0.2 86.2 ± 0.2 90.6 ± 0.5
LFD-NC 66.7 ± 1.4 83.3 ± 3.5 84.8 ± 5.4 87.5 ± 6.4 96.6 ± 0.7 94.6 ± 1.2 92.3 ± 1.2 92.3 ± 1.0

3.2.2. Impact Analysis of Node Labels

Node labels are integrated into the initial topology by the SBM-estimated matrix,
which is controlled by the parameter αL, as shown in Equations (3) and (4). The SBM
estimation enhances the connections for nodes in the same class, but it creates noisy edges
that do not actually exist. Therefore, we need to properly set the parameter αL.

Figure 3 shows the impact of parameter αL on AUC and AP in Actor and Cora. The
importance of αL clearly varied with the dataset. A properly chosen αL produced 5%
absolute AUC and AP improvements, compared with αL = 0 in Actor, whereas there was
no improvement in Cora.

Figure 3. Impacts of the parameter αL on AUC and AP with |EO|/|E| = 0.8 for (a) Actor and (b) Cora.

The effectiveness of the label-based topology initialization was affected by the correla-
tion between the node features and edges. When αL was close to zero, LFD-NC degenerated
into a MLP model, which did not use label information; when αL became large, more noisy
edges were added into the initial topology AL, which eventually degraded the performance.
Therefore, a small αL produced good results in Cora, where the edge likelihood was mainly
determined by the node features; however, in Actor, neither small nor large αL produced
the best results.

Entropy 2021, 23, 771 11 of 13

3.2.3. Impact Analysis of Distance Constraints

Figure 4 presents the impacts of the distance constraints on AUC and AP. A higher
deterministic edge rate

∣∣E∅
D |/|MZ

∣∣ achieved about 5.3–14.4% AUC and 5.5–12.6% AP
absolute improvements, compared with zero monitors (

∣∣E∅
D |/|MZ

∣∣= 0). Distance pruning
restricted the probability of edges in Z and reduced the uncertainty of the estimated
topology; therefore, the AUC and AP of LFD-NC increased with

∣∣E∅
D |/|MZ

∣∣.

Figure 4. Impacts of the distance monitor number on AUC and AP with |EO|/|E| = 0.5 for (a) Actor and (b) Cora.

3.2.4. Ablation Study

LFD-NC solves the NC problem in four sequential phases; here, we performed an
ablation study in LFD-NC on Actor and Texas datasets, as shown in Table 4. Compared
with the standard LFD-NC, removing the label-based topology initialization phase resulted
in the highest decrease in AUC and AP (6%); removing the topology refinement phase
resulted in the highest decrease in AUC and AP (11%); and removing the distance pruning
phase resulted in the highest decrease in AUC and AP (>26%). The experiments show
that the four phases are all necessary for LFD-NC, and the distance pruning phase is
particularly important.

Table 4. An ablation study of LFD-NC (%). LTI indicates label-based topology initialization, EPL indicates edge probability
learning, DP indicates distance pruning, and TF indicates topology refinement.

LTI EPL DP TF AUC on Actor AP on Actor AUC on Texas AP on Texas

X X X X 72.1 ± 1.0 66.7 ± 1.4 88.4 ± 2.8 84.8 ± 5.4
X X X 66.4 ± 1.7 60.1 ± 1.6 86.7 ± 6.7 81.3 ± 8.9

X X X 70.7 ± 1.4 65.4 ± 2.1 79.1 ± 8.0 74.1 ± 10.8
X X X 60.4 ± 0.8 57.3 ± 0.9 50.9 ± 3.3 58.3 ± 6.5

4. Conclusions and Future Work

We presented LFD-NC, a unified deep graph convolutional network for network
completion. LFD-NC integrates node label, feature, and distance information through a
graph refinement framework. Experiments on eight datasets demonstrated that our model
outperforms state-of-the-art baseline methods.

Our work can be easily extended to directed graphs and multigraphs. To treat di-
rected graphs, the only necessary change is to perform directed node embedding in the
edge probability learning phase. To treat multigraphs, we take each type of relationship
individually, and then combine all the inferred results to achieve a final completion.

Entropy 2021, 23, 771 12 of 13

We note three possible directions for future work. Firstly, our proposed model as-
sumes that node labels Y and node features X are completely known. An interesting
direction would be to perform completion when parts of X and Y are missing and noisy.
Secondly, LFD-NC has a long training time for large-scale networks; thus, reducing the
time complexity is also a possible future research direction. Thirdly, we integrated distance
constraints from randomly selected monitors; therefore, an effective monitor placement
strategy can be designed for further performance improvement.

Author Contributions: Conceptualization, Q.W.; methodology, Q.W.; software, Q.W.; writing—
original draft preparation, Q.W.; writing—review and editing, Q.W. and G.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barabási, A.-L. Networks at the heart of complex systems. In Network Science; Cambridge University Press: Cambridge, UK, 2016.
2. Newman, M.E.J. Communities, modules and large-scale structure in networks. Nat. Phys. 2012, 8, 25–31. [CrossRef]
3. Hanneke, S.; Xing, E.P. Network completion and survey sampling. In Proceedings of the 12th International Conference on

Artificial Intelligence and Statistics, Clearwater Beach, FL, USA, 16–19 April 2009; PMLR: Clearwater Beach, FL, USA, 2009;
Volume 5, pp. 209–215.

4. Hric, D.; Peixoto, T.P.; Fortunato, S. Network structure, metadata, and the prediction of missing nodes and annotations. Phys. Rev.
X 2016, 6. [CrossRef]

5. Newman, M.E.J. Network structure from rich but noisy data. Nat. Phys. 2018, 14, 542–545. [CrossRef]
6. Huisman, M.; Krause, R.W. Imputation of missing network data. In Encyclopedia of Social Network Analysis and Mining; Springer:

New York, NY, USA, 2018; pp. 1044–1053.
7. Kim, M.; Leskovec, J. The network completion problem: Inferring missing nodes and edges in networks. In Proceedings of the

2011 SIAM International Conference on Data Mining, Mesa, AZ, USA, 28–30 April 2011; Society for Industrial and Applied
Mathematics: Philadelphia, PA, USA, 2011; pp. 47–58.

8. Ouédraogo, F.; Magnien, C. Impact of sources and destinations on the observed properties of the internet topology. Comput.
Commun. 2011, 34, 670–679. [CrossRef]

9. Chung, F.; Garrett, M.; Graham, R.; Shallcross, D. Distance realization problems with applications to internet tomography. J.
Comput. Syst. Sci. 2001, 63, 432–448. [CrossRef]

10. Kannan, S.; Mathieu, C.; Zhou, H. Graph reconstruction and verification. ACM Trans. Algorithms 2018, 14, 1–30. [CrossRef]
11. Erlebach, T.; Hall, A.; Hoffmann, M.; Mihal’ák, M. Network discovery and verification with distance queries. In Proceedings of

the 2006 Conference on Algorithms and Complexity, Rome, Italy, 29–31 May 2006; pp. 69–80.
12. Vasanthakumar, G.U.; Sunithamma, K.; Deepa Shenoy, P.; Venugopal, K.R. An overview on user profiling in online social

networks. Int. J. Appl. Inf. Syst. 2017, 11, 25–42. [CrossRef]
13. Wei, Q.; Hu, G.; Shen, C.; Yin, Y. A fast method for shortest-path cover identification in large complex networks. Comput. Mater.

Contin. 2020, 63, 705–724. [CrossRef]
14. Eriksson, B.; Barford, P.; Crovella, M.; Nowak, R. Learning network structure from passive measurements. In Proceedings of the

7th ACM SIGCOMM Conference on Internet Measurement, San Diego, CA, USA, 24–26 October 2007; pp. 209–214.
15. Forsati, R.; Barjasteh, I.; Ross, D.; Esfahanian, A.H.; Radha, H. Network completion by leveraging similarity of nodes. Soc. Netw.

Anal. Min. 2016, 6, 1–22. [CrossRef]
16. Tran, C.; Shin, W.-Y.; Spitz, A.; Gertz, M. DeepNC: Deep generative network completion. IEEE Trans. Pattern Anal. Mach.

Intell. 2020. [CrossRef]
17. Cui, P.; Wang, X.; Pei, J.; Zhu, W. A Survey on Network Embedding. IEEE Trans. Knowl. Data Eng. 2019, 31, 833–852. [CrossRef]
18. Bianconia, G.; Pinb, P.; Marsilia, M. Assessing the relevance of node features for network structure. Proc. Natl. Acad. Sci. USA.

2009, 106, 11433–11438. [CrossRef]
19. Kim, M.; Leskovec, J. Modeling social networks with node attributes using the Multiplicative Attribute Graph model. In

Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, 14–17 July 2011; AUAI Press:
Arlington, VA, USA, 2011; pp. 400–409.

20. Yang, L.; Kang, Z.; Cao, X.; Jin, D.; Yang, B.; Guo, Y. Topology optimization based graph convolutional network. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 4054–4061. [CrossRef]

21. Newman, M.E.J. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [CrossRef]
22. Shi, M.; Tang, Y.; Zhu, X. Topology and content co-Alignment graph convolutional learning. arXiv 2020, arXiv:2003.12806.

http://doi.org/10.1038/nphys2162
http://doi.org/10.1103/PhysRevX.6.031038
http://doi.org/10.1038/s41567-018-0076-1
http://doi.org/10.1016/j.comcom.2010.05.009
http://doi.org/10.1006/jcss.2001.1785
http://doi.org/10.1145/3199606
http://doi.org/10.5120/ijais2017451639
http://doi.org/10.32604/cmc.2020.07467
http://doi.org/10.1007/s13278-016-0405-2
http://doi.org/10.1109/TPAMI.2020.3032286
http://doi.org/10.1109/TKDE.2018.2849727
http://doi.org/10.1073/pnas.0811511106
http://doi.org/10.24963/ijcai.2019/563
http://doi.org/10.1137/S003614450342480

Entropy 2021, 23, 771 13 of 13

23. Rafailidis, D.; Crestani, F. Network completion via joint node clustering and similarity learning. In Proceedings of the 2016
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), San Francisco, CA,
USA, 18–21 August 2016; pp. 63–68.

24. Kaya, M.; Bilge, H.Ş. Deep Metric Learning: A Survey. Symmetry 2019, 11, 1066. [CrossRef]
25. Zhang, Z.; Cui, P.; Zhu, W. Deep learning on graphs: A Survey. IEEE Trans. Knowl. Data Eng. 2020. [CrossRef]
26. Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and

applications. AI Open 2020, 1, 57–81. [CrossRef]
27. Franceschi, L.; Niepert, M.; Pontil, M.; He, X. Learning discrete structures for graph neural networks. In Proceedings of the The

36th International Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 1972–1982.
28. Chen, Y.; Wu, L.; Zaki, M.J. Deep Iterative and Adaptive Learning for Graph Neural Networks. arXiv 2019, arXiv:1912.07832.
29. Yu, D.; Zhang, R.; Jiang, Z.; Wu, Y.; Yang, Y. Graph-Revised Convolutional Network. arXiv 2020, arXiv:1911.07123. [CrossRef]
30. Hao, Y.; Cao, X.; Fang, Y.; Xie, X.; Wang, S. Inductive link prediction for nodes having only attribute information. In Proceedings of

the the 29th International Joint Conference on Artificial Intelligence (IJCAI), Yokohama, Japan, 7–15 January 2021; pp. 1209–1215.
31. You, J.; Ying, R.; Ren, X.; Hamilton, W.L.; Leskovec, J. Graphrnn: Generating realistic graphs with deep auto-regressive models. In

Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; Volume 80,
pp. 5708–5717.

32. Alderson, D.; Li, L.; Willinger, W.; Doyle, J.C. Understanding internet topology: Principles, models, and validation. IEEE/ACM
Trans. Netw. 2005, 13, 1205–1218. [CrossRef]

33. Grover, A.; Zweig, A.; Ermon, S. Graphite: Iterative generative modeling of graphs. In Proceedings of the 36th International
Conference on Machine Learning (ICML), Long Beach, CA, USA, 10–15 June 2019; Volume 97, pp. 2434–2444.

34. Xu, D.; Ruan, C.; Motwani, K.; Korpeoglu, E.; Kumar, S.; Achan, K. Generative Graph Convolutional Network for Growing
Graphs. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK,
12–17 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3167–3171.

35. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th In-
ternational Conference on Learning Representations (ICLR), Palais des Congrès Neptune, Toulon, France, 24–26 April 2017;
pp. 1–14.

36. Lin, W.; He, F.; Zhang, F.; Cheng, X.; Cai, H. Initialization for network embedding: A graph partition approach. In Proceedings
of the WSDM 2020—The Thirteenth ACM International Conference on Web Search and Data Mining, Houston, TX, USA,
3–7 February 2020; pp. 367–374. [CrossRef]

37. Wang, H.; Leskovec, J. Unifying graph convolutional neural networks and label propagation. arXiv 2020, arXiv:2002.06755.
38. Jia, J.; Benson, A.R. A unifying generative model for graph learning algorithms: Label Propagation, graph Convolutions, and

combinations. arXiv 2021, arXiv:2101.07730.
39. Chen, D.; Lin, Y.; Li, W.; Li, P.; Zhou, J.; Sun, X. Measuring and relieving the over-smoothing problem for graph neural networks

from the topological view. arXiv 2019. [CrossRef]
40. Velicković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. In Proceedings of the 6th

International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.
41. Huang, Q.; He, H.; Singh, A.; Lim, S.-N.; Benson, A.R. Combining label propagation and simple models out-performs graph

neural networks. arXiv 2020, arXiv:2010.13993.
42. Karrer, B.; Newman, M.E.J. Stochastic blockmodels and community structure in networks. Phys. Rev. E 2011, 83, 016107.

[CrossRef]
43. Abbe, E. Community detection and stochastic block models: Recent developments. J. Mach. Learn. Res. 2017, 18, 6446–6531.
44. Agarap, A.F.M. Deep learning using rectified linear units (ReLU). arXiv 2018, arXiv:1803.08375.
45. Etworks, N. Geom-gcn: Geometric graph convolutional networks. arXiv 2020, arXiv:2002.05287.
46. Yang, Z.; Cohen, W.W.; Salakhutdinov, R. Revisiting semi-supervised learning with graph embeddings. In Proceedings of the

33rd International Conference on Machine Learning (ICML), New York, NY, USA, 19–24 June 2016; Volume 48, pp. 40–48.
47. Mernyei, P.; Cangea, C. Wiki-CS: A wikipedia-based benchmark for graph neural networks. arXiv 2020, arXiv:2007.02901.
48. Wei, Q. Network completion via deep metric learning. In Proceedings of the International Conference on Big Data Mining and

Information Processing (BDMIP), Qingdao, China, 24–26 July 2020; Volume 1656, p. 012026.
49. Leskovec, J.; Sosič, R. SNAP: A general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol.

2016, 8, 1–20. [CrossRef] [PubMed]

http://doi.org/10.3390/sym11091066
http://doi.org/10.1109/TKDE.2020.2981333
http://doi.org/10.1016/j.aiopen.2021.01.001
http://doi.org/10.1007/978-3-030-67664-3_23
http://doi.org/10.1109/TNET.2005.861250
http://doi.org/10.1145/3336191.3371781
http://doi.org/10.1609/aaai.v34i04.5747
http://doi.org/10.1103/PhysRevE.83.016107
http://doi.org/10.1145/2898361
http://www.ncbi.nlm.nih.gov/pubmed/28344853

	Introduction
	Background
	Related Methods
	Present Work

	Methods
	Problem Formulation
	Overview of LFD-NC
	Label-Based Topology Initialization
	Edge Probability Learning
	Distance Pruning and Topology Refinement

	Experiments
	Experimental Settings
	Datasets
	Baselines and Evaluation Metrics
	Implementation Details

	Completion Performance
	Comparison with State-of-the-Art Methods
	Impact Analysis of Node Labels
	Impact Analysis of Distance Constraints
	Ablation Study

	Conclusions and Future Work
	References

