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Abstract: Since 2018, the bond market has surpassed the stock market, becoming the biggest in-
vestment area in China’s security market, and the systemic risks of China’s bond market are of
non-negligible importance. Based on daily interest rate data of representative bond categories, this
study conducted a dynamic analysis based on generalized vector autoregressive volatility spillover
variance decomposition, constructed a complex network, and adopted the minimum spanning tree
method to clarify and analyze the risk propagation path between different bond types. It is found
that the importance of each bond type is positively correlated with liquidity, transaction volume,
and credit rating, and the inter-bank market is the most important market in the entire bond market,
while interest rate bonds, bank bonds and urban investment bonds are important varieties with great
systemic importance. In addition, the long-term trend of the dynamic spillover index of China’s
bond market falls in line with the pace of the interest rate adjustments. To hold the bottom line of
preventing financial systemic risks of China’s bond market, standard management, strict supervision,
and timely regulation of the bond markets are required, and the structural entropy, as a useful
indicator, also should be used in the risk management and monitoring.

Keywords: bond market; fixed income security; risk spillovers; structural entropy; generalized
variance decomposition; complex network

1. Introduction

From 2007 onwards, the Subprime Crisis brought about drastic changes in the global
economic and financial system, exposing a series of loopholes in traditional financial
institutions and regulatory systems, as well as showing a rising trend of cross-country risk
contagion overtime [1]. Because of the down-speed shifting of economic development with
a new normal medium speed after decades of high-speed and extensive growth, China’s
government now emphasizes quality of economic development and views financial risk
management as a more important consideration than ever before.

Despite the outbreak and spread of the COVID-19 pandemic, the decoupling of the
global economy, and the rise of populism having had a major impact on the global economy,
China’s domestic economy has endeavored to deepen supply-side structural reforms,
which give full play to China’s ultra-large-scale market advantages and domestic demand
potential, and build new development that promotes both domestic and international
cycles, as well as keeping China’s economy energetic. At this stage of the pattern, China’s
financial system has entered a new period full of volatility and uncertainty after the long-
term accumulation of systemic risks. In keeping with the findings from the research of
Fang et al. [2], with the increasing openness of the Chinese economy, Chinese financial
markets are becoming more integrated with those of developed markets, and Chinese
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financial markets are demonstrating a growing impact on global financial markets over
time, especially during periods of turbulence.

Macroeconomic variables often suffer from structural changes due to changes in
institutional reforms, policies, crises, and other factors [3], while systematic macroeconomic
risks often tend to accumulate in the form of bubbles silently [4], only bursting with the
outbreak of a crisis. When the bubble bursts, the spillover effect among institutions
involved in the economic activities would become significant, expanding the range of the
damage, so the systematic risks caused could not be ignored. So, understanding the risk
contagion mechanism of the shocks in the financial market is significantly helpful, as well
as crucial for investors for the purposes of asset allocation, asset pricing, risk management,
and arbitrage trading. Generally, the investors who face asset price fluctuation, including
both institute investors and individual investors, mostly use negatively correlated assets to
complete their asset allocation, minimizing the portfolio risks. However, few investment
institutions realize that to avoid systemic risks from being transmitted to themselves,
identifying systemic risks and related systemically important institutions is a crucial step.
Obviously, it is essential for regulators and governments to understand the transmission
mechanism of financial shocks, since extreme volatility shock spillover causes financial
unpredictability and brings about unexpected market impacts. In order to stabilize the
price fluctuation in financial markets, ensuring that it is in a better condition to serve the
real economy, the policymaker should develop appropriate policies to prevent large market
impacts of volatility shocks from extreme events [5].

As Figure 1 shows, up until 28 October 2020, China’s bond market has a tremendous
scale of RMB 112 trillion, accounting for 52.41% of China’s entire securities market. Accord-
ing to this fast-growing and tremendous volume, the bond market is almost the biggest
investment area in China, only second to the real estate market. Although there are few
individual investors in the bond market, the importance of the prosperity and stability
of China’s bond market cannot be emphasized too much, as well as the significance of
controlling the volatility and risk of this market.

Figure 1. The scale of China’s security market, as of 28 October 2020 (Unit: RMB billion).

However, few studies have focused on the inner dynamics of China’s bond market.
In our research, we innovatively combine the methodology of complex networks and the
traditional econometric method, and instead of using the indices data of the financial
market, we pioneeringly use the interest rate data of different bond types in China’s bond
market, which provide a better representation of the inner factors of China’s bond market
in a relatively micro view, instead of traditional quarterly data from the balance sheets of
financial institutes.
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There are 23 types of bonds included in our research. Using the traditional econometric
model will face the problem of degrees of freedom caused by too many variables, so the
complex network method will be more appropriate. In this paper, the bond market is
regarded as a complex system that includes different types of bonds as nodes. The spillover
indexes among the exchange rate fluctuations are used to construct the network. To make
the relationship among bonds more intuitive and clearer, and to show the most effective
path in the risk contagions process, the minimum spanning tree (MST) method is applied
to analyze the influence structure. Thus, the key nodes and the key path of volatility risk
contagion can be detected. This paper is organized as follows: the first section introduces
the background to our research; the data are briefly introduced in Section 2; the techniques
of network analysis and the results are discussed in Section 3; and finally, we end with a
conclusion in Section 4.

2. Literature Review

The current economic crisis illustrates a critical need for new and fundamental un-
derstanding of the structure and dynamics of economic networks. Economic systems are
increasingly built on interdependencies, implemented through trans-national credit and
investment networks, trade relations, or supply chains that have proven difficult to predict
and control [6]. For investigation of the risk in financial markets, various methods have
been used in related research, and the simulation approach is often used, especially when a
financial network is involved. Battiston and Caldarelli [7] used the simulation approach
and stress tests to focus on the role of linkages within the two dimensions of contagion
and liquidity, and to examine the mechanism of the contagions of systemic risk in financial
networks, and they found that with respect to the issue of the determination of systemically
important financial institutions, the findings indicate that both from the point of view of
contagion and from the point of view of liquidity provision, there is more to systemic im-
portance than just size. Ponta and Cincotti [8] presented and studied an information-based
multi-asset artificial stock market characterized by different types of stocks and populated
by heterogeneous agents to determine the influences of agents’ networks on the market’s
structure. They concluded that the network is necessary in order to achieve the ability to
reproduce the main stylized facts, but also that the market has some characteristics that are
independent of the network and depend on the finiteness of traders’ wealth.

The research on financial market contagion or spillover effects has been widely studied
in the economic and management aspects, and is also used in our research for its robustness
and interpretability. For example, Diebold and Yilmaz [9] proposed several connectedness
measures built from pieces of variance decompositions, and they argued that they provide
natural and insightful measure connectedness among financial asset returns and volatilities
by using directed networks to make the relationship more clear. Su [10] used the MHS-
EGARCH model, finding that there are negative return and volatility spillover effects
between currency and stock markets, and the stock indices in emerging markets have
a higher return and a higher risk. Dey and Sampath [11] analyzed spillovers in returns
and volatility among five major financial assets in India, especially the shock from the
USA, by using a generalized vector autoregressive model, and they find that banking, real
estate and gold matter the most for India. There are a number of similar studies such as
Georgiadis [12], Yang and Zhou [13], and Miranda-Agrippino and Rey [14] that show that
the US monetary policy could cause a considerable spillover impact in the global financial
market. Morana and Bagliano [15] analyzed business cycle spillovers and synchronization
within groups of old and new European Union countries and found out that spillovers
are beneficial for the common monetary policy of the European Union. Lyocsa et al. [16]
studied the connectedness of a sample of 40 stock markets across five continents using
daily dosing prices and return spillovers based on Granger causality by building a complex
network of the global stock market. In conclusion, they found that the probability of return
spillover from a given stock market to other markets increases with market volatility and
market size and decreases with higher foreign exchange volatility.
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In addition, closing hours are important for information propagation. The research of
Tsai and I-Chun [17] is interesting, as they used the data of economic policy uncertainty
(EPU) in four countries or regions, finding that EPU in China is the most influential, and
its contagion risk spreads to different regional markets, except for Europe; the effect of
EPU in the United States is inferior to that in China; EPU in Japan merely influences
contagion risk in emerging markets; contagion risk in European markets is not influenced
by the four EPU indices; and EPU in Europe is not influenced by contagion risk in the
global stock market. Huo and Ahmed [18] examined the impact of the Shanghai-Hong
Kong Stock Connect by using the BEKK GARCH model. They found that the new Stock
Connect does contribute to the increasing importance of the Chinese mainland stock
market and economic activity, and found a leading role of the Shanghai stock market in
the Hong Kong stock market in terms of both mean and volatility spillover effects after
the Stock Connect. Narayan et al. [19] examined the relationship between stock returns
and mutual fund flows in India by applying a generalized VAR model. In addition, it
was also found that the spillover index defined in their research could be used to predict
stock returns and mutual fund flows. Mensi et al. [20] studied the linkages both within
and between stock and foreign exchange (FX) markets via three higher moments of return
distributions (volatility, skewness and kurtosis), finding that cross-asset market linkages are
of a similar magnitude to intra-asset-market linkages within emerging market, but the latter
are stronger in developed markets. Christiansen [21] used a GARCH volatility–spillover
model to analyze the volatility spillover from the US and aggregate European bond markets
into individual European bond markets, and the weekly data of multiple bond indices
issued by JPMorgan were used in his research. In his conclusion, strong statistical evidence
of volatility spillover from the US and aggregate European bond markets was found.
Additionally, it is interesting to find that the bond markets of EMU countries became
much more integrated after the Euro was first issued, and this was mainly driven by
the convergence in interest rates under the unified monetary policy [22], documented
asymmetry in return and volatility spillover between equity and bond markets in Australia
for daily returns during the period 1992–2006 by using a bivariate GARCH modelling
approach. The illuminative result from their research is that negative bond market returns
spillover into lower stock market returns, whereas good news originating in the equity
market leads to lower bond returns, and the spillover effects are stronger in a one-way
channel from the bond market to the equity market.

There are plenty of studies using matrices and network methods to study financial
markets. Junior and Franca used the eigenvalues and eigenvectors of the correlations
matrices of some of the main financial market indices in the world, showing that the high
volatility of markets is directly linked with strong correlations between them, and their
conclusion provided a good explanation of the major financial market crises that occurred
between 1987 and 2008 [23]. Matesanz’s team analyzed co-movements in a wide group
of commodity prices during the time period 1992–2010. Their methodological approach
was based on the correlation matrix and the networks inside. Through this approach, they
were able to summarize global interaction and interdependence, capturing the existing
heterogeneity in the degrees of synchronization between commodity prices. Their results
suggest that speculation and uncertainty are drivers of the sharp slump in commodity
prices’ synchronization [24]. There are also several studies on the inter-market spillover
effect in China, such as the research of Zhu et al. [25], or about inter-bank spillover effect,
such as the research of Bao, Wu and Li [26].

It is worth mentioning that the hybrid methods such as structural entropy have gradu-
ally become more commonly used in financial research: Murialdo and Ponta [27] presented
a perspective on the intangible complexity of economic and social systems by investigating
the dynamical processes producing, storing and transmitting information in financial time
series by using the moving average cluster entropy approach. Shi et al. [28] used gray
relational analysis and empirical mode decomposition to decompose and reconstruct the
sequences to obtain the evolution trend and periodic fluctuation of systemic risk, and used
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structural entropy as a measurement to verify the results, showing that the systemic risk of
China’s stock market as a whole shows a downward trend, and the periodic fluctuation of
systemic risk has a long-term equilibrium relationship with the abnormal fluctuation of
the stock market. Bielik [29] used entropy combined with technical indicators of the stock
market, such as MACD, to find predictable market parts and improve the automated and
non-automated trading strategies in the financial market.

Except for the methods mentioned above, the rise of econophysics, a fundamentally
new approach in finance, suggests that the influence between the two disciplines has
become less unilateral than in the past. Jovanovic’s research aimed at analyzing the
unexpected influence of financial economics on physics. With this purpose, their study
went one step further in the dialogue between econophysics and economics. Indeed, by
investigating the reciprocal influence between the two fields, their paper identified some
areas for a better cross-fertilization between the fields [30]. Kutner’s research presented
some of the achievements of econophysics and sociophysics which appear to us to be
the most significant [31], and Schinckus’ study aimed at analyzing how econophysicists
implicitly promote a Duhemian way of perceiving scientific research by expanding their
work into economics [32].

3. Methodology
3.1. Generalized Vector Autoregressive Forecast Error Variance Decomposition

To measure the risk spillover effect of the complex network of bond markets, we
calculated the volatility spillover indices based on a generalized VAR in which the FEVD is
invariant to the variable ordering initially proposed by Francis et al. [33] and Diebold and
Yilmaz [34]. The details are shown as follows:

At the very first beginning, it is necessary to establish a VAR model with N variables
in the lagging P period with stable covariance:

xt =
p

∑
i=1

φixt−i + Òt (1)

where xt = (x1t, x2t, · · · , xNt) is a vector with N endogenous variables, φi, i = 1, 2, · · · , p
is a N-dimensional autoregressive coefficient matrix, the mean of the error vector Òt is
zero, and the covariance matrix is denoted as Σ. When the VAR model is stationary, the (1)
could be convert to a moving average formula:

xt =
∞

∑
j=0

AjÒt−j (2)

Ai should meet the condition that Ai = φ1 Ai−1 + φ2 Ai−2 + · · · φn Ai−n, and A0 is a
N-dimensional unit matrix, and when j < 0, Ai = 0.

Secondly, in order to measure the spillover effect between variables and the total
spillover effect, this study defines the spillover effect between variables: the spillover effect
of variable xj on variable xi is defined as the variance of the H-step prediction error of xi
that is impacted by the xj part where i 6= j. The H-step represents the time span of the
forecast error of the VAR model—that is, the number of periods of variance decomposition,
which can be represented by Formula (3):

θH
ij =

σ−1
jj ∑H−1

h=0

(
e′i Ah ∑ ej

)2

∑H−1
h=0

(
e′i Ah ∑ A′hei

) (3)

While σ−1
ij is the standard deviation form of the prediction error of the jth variable,

ei is a N × 1 vector, where the ith element is 1, and the rest are zero. θH
ij represents the
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spillover effect of variable xj on variable xi, with it being noted that ∑N
j=1 θH

ij , so θH
ij should

be standardized:

θ̂H̃
ij =

θH
ij

∑N
j=1 θH

ij
(4)

and now
N
∑

j=1
θH

ij = 1,
N
∑

i,j=1
θH

ij = N. The matrix θH =
[
θ̃H

ij

]
shows the spillover effect

among N variables, and the main diagonal element represents the overflow effect of the
variable itself, while the non-diagonal element represents the overflow effect between
different variables.

The percentage form of the total spillover effect can be obtained from Formula (4):

TS =
∑N

i,j=1,i 6=j θH̃
ij

∑N
i,j=1 θH̃

ij

× 100 =
∑N

i,j=1,i 6=j θH̃
ij

N
× 100 (5)

Regarding the total spillover index TS, add the non-diagonal elements in the resulting
matrix θH̃ = θH̃

ij as the numerator of the total spillover index, and the denominator of the
total spillover index is obtained by adding up all the elements in the matrix. In this way,
the total spillover effect index measures the degree of the total spillover effect between
in bond markets, so it can be used as a quantitative indicator to measure the degree of
bond market correlation, as well as its risk of spreading. The bigger the spillover index is,
the greater the volatility of the bond market due to the risk spillovers between different
bond varieties will be, which in turn shows that the links between financial markets are
very close.

3.2. The Complex Network, the MST Method and Structural Entropy

A complex network generally comprises several nodes and edges linking them. The
node is the basic unit of a complex network, which is the abstract expression of an “indi-
vidual” in the real world [35]. The edge is an expression of the relationship between the
units and could be given weight accordingly to describe the extent of the relationships
quantitatively [36]. In human social activities, the most common complex network is the
small world network [37]; while talking about the Internet, scholars of complex networks
usually define it as a scale-free network [38]. Different types of complex networks usually
have different characteristics of their edges and nodes [39], and here in our research, wij
represents the weight of the edge linking node i and node j, where i = 1, 2, 3, . . . , n, j = 1, 2,
3, . . . , n, where n is the amount of nodes in a certain network. For an undirected network,

wij = wji (6)

The research also uses the weighted degree to represent the importance of nodes,
which is defined as:

dwi = ∑
j∈v(i)

wij (7)

where v(i) is the set of nodes linking to node i. The stronger the degree of correlation with
other nodes is, the more important the node is.

In our study, the spillover index of 1st difference to the interest rate data has been
used, shown as:

wij = (spillover index)i to j (8)

It should be noted that wij here represents the weight of the edge from i to j in a directed
network, and the (spillover index)i to j here could be calculated from θH

ij in Formula (3),
and vice versa.

To detect a clearer structure of the complex network of bond market, we apply the
minimum spanning tree (short as MST) method [40] that has been previously applied to this
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research aspect [41,42]. This method selects the indices with the closest interactions among
all the indices and generates a visual presentation of the relationship with n − 1 edges in
the tree. When using the MST method, the relatively insignificant edges are discarded and
there is only one route between any two nodes, which means that the complex network
constructed by the MST shows more concise and clearer risk contagion relationships in
China’s bond market, and that it is easier to discern the key bond types in the risk spillover
complex network.

To construct the MST, the spillover index firstly needs to be converted into a “distance”
coefficient as the input of the Kruskal algorithm. Following these references [28,43], we use
nonlinear mapping:

dij =

√
2
(

1− (spillover index)ij

)
(9)

to obtain the distance dij, noting that dij = dji in the undirected graph, and (spillover index)ij
could be defined as:

(spillover index)ij =
(
(spillover index)i to j + (spillover index)j to i

)
/2 (10)

and (spillover index)i to j here represents the spillover index from node i to node j, and
vice versa. It should be pointed out that the index here represents the percentage of the
spillover of node i to node j to the total impact of j by the volatility spillover. The Kruskal
algorithm [44] is used in this paper to construct the MST complex network.

dij represents the “distance” coefficient, which should be used as input of the Kruskal
algorithm to generate an MST complex network. In an MST complex network, the relatively
insignificant edges are discarded and there is only one route between any two nodes, and
the weights of the edges are inversely proportional to dij.

In addition, for a better vision to observe the network’s dynamics, the network’s
structural entropy was calculated in this study, which is often used as a quantitative
measurement of the complexity of the complex network system [45]. Generally, a non-fully
connected network structural entropy Edegree could be calculated as follows:

Edegree = −
N

∑
i=1

pilogpi (11)

where N is the total number of the nodes in the complex network, and pi in (11) could be
calculated by the degree of node i, just as follows:

Pi =
degree(i)

∑N
i=1 degree(i)

(12)

After the complex network has been constructed, some useful indicators can be used
to analyze the characteristics of the network, such as degree and centrality. For node i
in the complex network, the degree of node i represents the number of its neighboring
nodes. Compared with the node’s degree, the centrality is a relatively complicated indicator
type, which is usually used to measure the node’s relationship with the other nodes in
some aspect. In this research, three kinds of centrality are mentioned: closeness centrality,
betweenness centrality and eigenvector centrality [46].

Closeness centrality is an indicator that the higher the closeness centrality a node
has, the closer the distance from the node to other node in the complex network, and vice
versa [47]. The closeness centrality Cv could be calculated as follows:

Cv =
V− 1

∑N
i 6=v dvi

(13)

where dvi represents the shortest distance from node v to node i, and V is the total number
of nodes.
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The betweenness centrality is usually used to measure the node’s central significance
to a complex network; the greater the number of shortest paths passing through a node, the
higher its betweenness centrality [48]. The formula of calculating betweenness centrality of
node i, which is denoted as Bi, is as follows:

Bi =
SPi

SPtotal
(14)

where SPi represents the number of the shortest paths passing through node i, while
SPtotal stands for the total number of the shortest paths in the complex network.

The eigenvector centrality, shortened to eigen centrality, is an indicator often used to
measure the number and the importance of its neighboring nodes [49]. The most famous
algorithm used in search engine, called PageRank, is one kind of eigenvector centrality.
The greater the number of nodes and the more important neighboring nodes the node
has, the higher the eigen centrality of the node has, and the highest eigen centrality in the
complex network is set as 1 by normalization. For a given graph G with v number of nodes,
let A = (avt) be the adjacency matrix, and the eigen centrality ECi of node i can be defined
as [50]:

ECi = xv =
1
λ ∑

t∈M(v)
xt =

1
λ ∑

t∈G
av,txt (15)

where M(v) is a set of the neighbors of v and λ is a constant. With a small rearrangement,
this can be rewritten in vector notation as the eigenvector equation:

Ax = λx (16)

4. Data Description

The primary goal of this study is to provide a historical narrative on the dynamics of
risk spillover networks of China’s bond market. For this purpose, data preprocessing of
this research is shown as follows:

At the very beginning of our research, proper data type and bond maturity should be
chosen. We first studied the size and liquidity of different bond type to obtain a holistic
view of China’s bond market today. After obtaining data from WIND, we present the data
in Figure 2.

To take the multiple fundamental elements of bonds into consideration, and in order
to control some factors to concentrate on the evolution of risk and volatility spillover in the
network of bond markets, 23 types of bond interest rate data were chosen, including the
credit spread of SOE, R007, DR007, and SHIBOR, as the benchmark interest rate data. In
addition, in order to obtain a good representation of the results, and avoiding the potential
price distortion of low credit rating bonds, this study mainly focuses on relatively high
credit rating bonds in China, with a rating higher than AA (AA included) generally. For
the same reason, this study mainly chooses the bonds which have 1 year of remaining
maturity, because these bonds could reflect the features of both the monetary market and
the capital market. The time interval is from 15 December 2014 to 28 October 2020, which is
the time interval that guarantees that the above interest rate data could be obtained, and it
is believed that the daily data, which cover almost last 6 years, ensure a good performance
and representation. As Table 1 shows, all the data are stationary or stationary after the
first difference, and the generalized vector autoregressive volatility spillover variance
decomposition model is based on the first differenced data.



Entropy 2021, 23, 920 9 of 20

Figure 2. The percentage of the remaining size of different bond types in China’s bond market (all
maturities), the upper figure shows bonds with all maturity, the lower figure shows bonds with
1 year of remaining maturity; as of 28 October 2020.

Table 1. The interest data of bonds chosen by this study.

Bond Type (Remaining Maturity:
1 Year If Not Mentioned) Details and Description Abbreviation

Commercial Banks Bonds Commercial Banks Bonds (Rating: AAA) BANKAAA

Corporate Bonds
Corporate Bonds (Rating: AAA) CORPAAA
Corporate Bonds (Rating: AA+) CORPAAP
Corporate Bonds (Rating: AA) CORPAA

Treasury China’s Treasury TREASURY

Financial Bonds of Policy Banks
China’s National Development Bond CDB

China’s Agricultural Development Bond ADB
China’s Export-Import Bank Bond IEB

Short- and Medium-Term Notes
Short and Medium Term Notes (Rating: AAA) STNAAA
Short and Medium Term Notes (Rating: AA+) STNAAP

NCD (Interbank negotiable certificates of deposit) Interbank negotiable certificates of deposit (Rating: AAA) BANKIDCAAA
Interbank negotiable certificates of deposit (Rating: AA+) BANKIDCAAP

Consumer Financial Asset-backed Securities
Consumer Financial Asset-backed Securities (Rating: AAA) CFABSAAA
Consumer Financial Asset-backed Securities (Rating: AA+) CFABSAAP
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Table 1. Cont.

Bond Type (Remaining Maturity:
1 Year If Not Mentioned) Details and Description Abbreviation

General Corporate Asset-backed Securities General Corporate Asset-backed Securities (Rating: AAA) ABSAAA

China’s Railway Bond China’s Railway bond RAILWAYB

Local Government Bond Local Government Bond (Rating: AAA) GOVAAA

Urban Investment Bond
(Chengtou Bond)

Chengtou Bond (Rating: AAA) CTBAAA
Chengtou Bond (Rating: AA+) CTBAAP

Credit Spread of State-owned Enterprises Credit Spread of SOE CSPREADSOE

R007 (remaining maturity: 7 days) Seven-day repurchase rate R007

DR007 (remaining maturity: 7 days) Seven-day repurchase rate between deposit institutions DR007
SHIBOR Shanghai Interbank Offered Rate SHIBOR1Y

To take the several fundamental elements of bonds into consideration, and in order
to control some factors, such as credit rating and term structure, to concentrate on the
evolution of risk and volatility spillover network of bond markets as mentioned before, the
descriptive statistical analysis of first differenced data are as follows in Table 2, where the
t-statistics come from the Dickey–Fuller unit root test (AIC):

Table 2. The statistic feature of the bond market’s interest data.

Series T-Stats Mean Std Error Minimum Maximum Skewness Kurtosis Stationary

BANKAAA −30.887 −0.0010 0.0415 −0.4156 0.2500 −1.3653 17.5455 1st difference
CORPAAA −24.226 −0.0011 0.0368 −0.2350 0.2292 −0.0761 6.7735 1st difference
CORPAAP −24.188 −0.0014 0.0377 −0.2350 0.2292 −0.0117 5.5615 1st difference
CORPAA −25.260 −0.0016 0.0391 −0.2350 0.2292 0.1380 5.0190 1st difference

TREASURY −26.710 −0.0004 0.0335 −0.3100 0.3500 0.1439 20.1279 1st difference
CDB −26.968 −0.0009 0.0400 −0.3529 0.2697 −0.7940 12.5871 1st difference
ADB −23.285 −0.0009 0.0420 −0.2972 0.3673 −0.1849 13.8221 1st difference
IEB −21.325 −0.0009 0.0403 −0.2972 0.3673 0.0009 13.2908 1st difference

STNAAA −22.061 −0.0011 0.0368 −0.2350 0.2292 −0.0905 6.6818 1st difference
STNAAP −22.915 −0.0014 0.0379 −0.2350 0.2292 −0.0455 5.4097 1st difference

BANKIDCAAA −25.728 −0.0011 0.0414 −0.4130 0.2500 −1.3529 17.5522 1st difference
BANKIDCAAP −25.493 −0.0010 0.0416 −0.4030 0.2500 −1.1148 15.1680 1st difference

CFABSAAA −26.411 −0.0013 0.0421 −0.4088 0.2574 −0.7591 11.7487 1st difference
CFABSAAP −26.406 −0.0015 0.0446 −0.4359 0.2744 −0.7592 12.0034 1st difference

ABSAAA −26.326 −0.0013 0.0403 −0.3970 0.2500 −0.8645 12.9141 1st difference
RAILWAYB −22.713 −0.0010 0.0366 −0.2325 0.2159 −0.2254 5.7954 1st difference
GOVAAA −24.470 −0.0005 0.0323 −0.2486 0.3500 0.6673 17.5992 1st difference
CTBAAA −24.195 −0.0012 0.0363 −0.2531 0.2889 0.0380 9.2296 1st difference
CTBAAP −24.395 −0.0015 0.0366 −0.2531 0.2889 0.1237 8.0929 1st difference

CSPREADSOE −60.674 −0.0002 0.1163 −0.8625 0.8883 −0.1068 33.1377 yes
R007 −30.752 −0.0004 0.2417 −2.3025 1.8934 −0.7548 20.5438 1st difference

DR007 −30.809 −0.0007 0.1125 −0.6976 1.3919 1.1032 22.9221 1st difference
SHIBOR1Y −11.817 −0.0010 0.0153 −0.1740 0.0850 −2.8415 24.3002 1st difference

It can be clearly seen from Table 2 that all the data are stationary. In the same scale,
the mean values of the data are all near zero and are all less than zero, which is mainly
because the risk-free rate had a declining trend in this period, which could be indicated by
the mean value of TREASURY and CDB.

5. Empirical Results
5.1. Static Spillover Effect Analysis

By using the model mentioned in Section 2, firstly, the full-sample spillover index
is based on the FEV decomposition 12 days in advance. Each variable is related to the
sequence of daily changes in bonds’ interest rates. Therefore, the measurement of the
diagonal element i = j is the spillover effect within a certain type of bond, while the non-
diagonal element (i 6= j) captures the spillover effect between different bond categories, and
the last line is the acquisition of each variable Additionally, the total spillover effect passed.

As is shown in Table 3, it can be concluded that:
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Table 3. The static spillover effect of the full sample.

BANK
AAA

CORP
AAA

CORP
AAP

CORP
AA

TREA-
SURY CDB ADB IEB STN

AAA
STN
AAP

BANKIDC
AAA

BANKIDC
AAP

CFABS
AAA

CFABS
AAP

ABS
AAA

RAIL
WAYB

GOV
AAA

CTB
AAA

CTB
AAP

CSPRE-
ADSOE R007 DR007 SHI-

BOR1Y
From

Others

BANKAAA 26.5 12.1 11.4 9.5 3.2 7.4 0.6 0.6 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.4 3.1 11.1 9.9 0.1 0.9 0.2 1.1 73.5
CORPAAA 8.7 19.6 17.5 14.3 2.8 6 0.5 0.5 0.3 0.4 0.3 0.3 0.1 0.1 0.2 0.3 2.5 13.1 11.4 0 0.6 0.1 0.3 80.4
CORPAAP 8.2 17.6 19.2 15.2 2.7 5.8 0.6 0.6 0.3 0.4 0.3 0.4 0.2 0.2 0.2 0.3 2.6 12.3 11.4 0 0.7 0.2 0.4 80.8
CORPAA 7.7 16.1 17 21.2 2.4 5.3 0.4 0.4 0.2 0.3 0.2 0.3 0.1 0.1 0.1 0.2 2.3 12.3 11.7 0 0.7 0.2 0.3 78.8

TREASURY 3.4 3.7 3.3 2.6 36.7 8.3 0.8 0.9 0.3 0.4 0.2 0.4 0.1 0.1 0.1 0.2 29.1 3.9 3.4 0.4 0.3 0.3 1.1 63.3
CDB 7.5 7.5 6.9 5.7 6.8 35 1.1 1 0.8 1 0.5 0.6 0.3 0.3 0.3 0.7 5.7 8 6.8 0.8 1.8 0.4 0.3 65
ADB 0.4 0.2 0.2 0.1 0.1 0.2 25 20.4 7.3 6.8 6.8 6.7 5.7 5.6 6.1 7.2 0.1 0.2 0.2 0.1 0.4 0.1 0.1 75
IEB 0.3 0.2 0.2 0.1 0.1 0.1 20.1 25.5 7.3 6.7 7 6.9 5.7 5.7 6.3 7 0.1 0.2 0.2 0 0.2 0.1 0.1 74.5

STNAAA 0.2 0.1 0.1 0 0 0.1 6 6.1 16.9 15.5 8.3 8.2 7.8 7.8 8.2 14.3 0 0.1 0 0 0.1 0 0.2 83.1
STNAAP 0.2 0.1 0.1 0.1 0 0.1 6.1 6.2 16.2 17.2 8 7.9 7.7 7.7 8.1 13.8 0 0.1 0.1 0 0.1 0 0.2 82.8

BANKIDCAAA 0.2 0.1 0.1 0 0 0 5.4 5.7 8 7.3 15.6 14.6 11.4 11.4 12.1 7.7 0 0.1 0.1 0 0.2 0 0.1 84.4
BANKIDCAAP 0.2 0.1 0.1 0.1 0 0.1 5.4 5.7 8.1 7.5 14.8 15.8 11.1 11.1 11.7 7.7 0 0.1 0.1 0 0.2 0 0.1 84.2

CFABSAAA 0.1 0 0 0 0 0 4.7 4.7 7.7 7.2 11.4 11 15.3 15.2 14.5 7.7 0 0.1 0.1 0 0.2 0 0 84.7
CFABSAAP 0.1 0 0 0 0 0 4.7 4.7 7.6 7.2 11.5 11 15.2 15.3 14.6 7.7 0 0.1 0.1 0 0.2 0 0 84.7

ABSAAA 0.1 0 0 0 0 0 4.8 4.9 7.8 7.3 11.9 11.3 14.2 14.2 15 7.8 0 0.1 0.1 0 0.2 0 0 85
RAILWAYB 0.2 0.1 0.1 0 0 0.1 6.1 6.2 14.8 13.5 8.5 8.3 8.2 8.2 8.6 17 0 0 0 0 0.1 0 0.1 83
GOVAAA 3.4 3.8 3.6 3 29.1 7.2 0.7 0.7 0.2 0.3 0.2 0.3 0.1 0.1 0.1 0.2 36.7 4.2 3.6 0.3 0.2 0.2 1.6 63.3
CTBAAA 8.3 13.6 12.6 10.9 2.9 6.6 0.5 0.6 0.4 0.5 0.5 0.6 0.3 0.3 0.3 0.4 2.7 19.7 17.2 0 0.4 0.1 0.5 80.3
CTBAAP 7.8 12.7 12.5 11 2.9 6.4 0.6 0.6 0.4 0.6 0.5 0.6 0.3 0.3 0.4 0.4 2.8 18.1 19.8 0 0.4 0.3 0.5 80.2

CSPREADSOE 0.6 0.5 0.5 0.5 0.6 1.9 0.6 0.1 0.4 0.4 0.1 0.1 0.2 0.2 0.2 0.1 0.5 0.4 0.4 90.3 0.7 0.2 0.4 9.7
R007 2.4 2.2 2.4 2.2 0.5 3.7 0.9 0.8 0.4 0.5 0.8 1 0.7 0.7 0.7 0.6 0.4 1.4 1.3 0.1 60 16.7 0.1 40.3

DR007 1.1 0.5 0.9 1 0.8 1.9 0.5 0.5 0.2 0.4 0.2 0.4 0.1 0.1 0.2 0.3 0.5 0.6 0.9 0.2 21 67.4 0.4 32.6
SHIBOR1Y 8.1 4.7 4.3 3.3 3.8 7 0.4 0.4 1.1 1 0.3 0.3 0.1 0.1 0.1 0.8 3.4 5.9 4.8 0.6 0.1 0.8 48.7 51.3

Contribution
to others 69 96 93.8 79.7 58.9 68.2 71.5 72.2 90.6 85.3 92.7 91.4 89.8 89.9 93.4 85.9 56 92.3 83.8 3.1 30 20.2 8

Contribution
including own 95.4 115.6 113 100.9 95.6 103.2 96.4 97.7 107.5 102.4 108.2 107.3 105.1 105.1 108.4 102.9 92.7 111.9 103.5 93.4 89 87.6 56.7
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For bond varieties with a high liquidity and large trading volume, such as financial
bonds, government bonds, short- and medium-term notes and other mainstream varieties
traded in the inter-bank bond market, the volatility spillover effects of these varieties
are significantly higher. The volatility of the entire bond market overflows the complex
network of greater systematic importance, mainly because the price of these bonds has
become the benchmark of similar bonds to some extent.

For the same types of bonds with the same maturity, the sub-categories with high credit
ratings have higher spillover effects, greater system importance, and a deeper influence on
the system, compared with the low-credit rating bonds. This might be attributed to the
high-credit rating bonds having better liquidity and the risk aversion of investors, and,
furthermore, there may be some internal regulation and guidance in investment institutions
that mean that the trader could only buy bonds which have a credit rating of AAA or
AA+, which might enhance these effects. This can be clearly seen from related corporate
bonds, medium- and short-term notes, and urban investment bonds as to their total static
spillover effect, where the high-rating bonds have a bigger contribution to others than
low-rating bonds.

For the purpose of a better illustration of the result of the study regarding the mech-
anisms of the complex network of risk spillovers in China’s bond market, we used the
static spillover index to construct the relevant complex network and used Gephi to draw
Figure 3a as follows, noting that the size of nodes corresponds with the importance of the
bond: the bigger the node is, more important the bond is in the complex network. The
thickness of the link between the nodes indicates the strength of the influence of one bond
on the other bond, in the direction of the linkage.

Figure 3. The complex network of bond markets constructed by the static spillover index of the
full sample: (a) is the fully connected graph, (b) is the MST graph (the nodes which represent bond
varieties traded in the inter-bank market are colored as red, noting that self-loops here mean the
spillover effect from historical data of itself).
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It can be seen from the complex network diagram in Figure 3a that as a result of
their large trading volume (accounting for nearly 90% of the entire bond trading volume),
good liquidity, and relatively fairer pricing, meaning they are preferred by investors,
the mainstream trading bond types in the inter-bank market are more influential in the
generalized volatility spillover variance decomposition network of bond markets.

It should also be noted that Figure 3b is an undirected graph. In addition, the link
between the nodes means that the influence is a two-way transmission. As is shown in
Figure 3b, the biggest node is CDB, which is also the most traded variety of all in China’s
bond market, and as the central node, it is linked with another two policy banks: ADB and
IEB. CTBAAA and STNAAA are also important nodes thanks to their large trading volume.

The red nodes occupy the mainstream chain and are very closely connected, the
trading volume of the inter-bank market is tremendous, and the weight of its main trading
varieties is extremely significant.

After the analysis of Figure 3, the result of the MST complex network can be clearly
seen in Table 4, corresponding with Figure 3.

Table 4. The statistical features of the MST complex network of China’s bond market.

Bond Degree Closeness
Centrality

Betweenness
Centrality

Eigen
Centrality

CDB 5 0.38 0.72 1.00
ADB 3 0.36 0.54 0.73

STNAAA 4 0.32 0.50 0.65
CTBAAA 3 0.32 0.39 0.63

TREASURY 2 0.29 0.17 0.47
R007 2 0.29 0.09 0.44

BANKIDCAAA 3 0.27 0.32 0.44
CORPAAA 3 0.26 0.26 0.41

CSPREADSOE 1 0.28 0.00 0.37
IEB 1 0.27 0.00 0.27

STNAAP 1 0.25 0.00 0.25
RAILWAYB 1 0.25 0.00 0.25
ABSAAA 2 0.22 0.17 0.25
CTBAAP 1 0.24 0.00 0.24
GOVAAA 2 0.23 0.09 0.22
CORPAAP 2 0.21 0.09 0.21

BANKIDCAAP 1 0.22 0.00 0.18
DR007 1 0.22 0.00 0.17

BANKAAA 1 0.21 0.00 0.17
CFABSAAP 2 0.19 0.09 0.15

CORPAA 1 0.18 0.00 0.09
SHIBOR1Y 1 0.19 0.00 0.09

CFABSAAA 1 0.16 0.00 0.07

It is worth mentioning these new emerging indicators, especially the centrality. In a
holistic view of the results in Table 4, CDB is undeniably the most important node in the
MST complex network of China’s bond market, due to its dominant position in relation to
all four indicator rankings, including degree, closeness centrality, betweenness centrality
and eigen centrality, showing that CDB not has only the most edges, but also the most
influential neighbor nodes and the minimum average distance, proving that it is actually
the central node of this complex network, thus demonstrating the systemic significance of
China Development Bank. ADB is second to CDB, having the second highest centrality
indicator performance, with a degree of 3. From the positions of CDB and ADB, it can
clearly be seen that the bonds issued by China’s policy banks have great influence in the
bond market, and are also frequently traded in the inter-bank market. However, the third
highest ranking bond according to all the indicators is a bond issued by the left policy bank
named Export-Import Bank of China (short as IEB); the main reason for this might be that
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the trading volume of IEB is slightly smaller than CDB and ADB. STN occupies second
place in degree ranking and third place in all the centrality indicator rankings. This might
also be thanks to the fact that medium- and short-term notes (short as STN) exist as a type
of bond, akin to a bridge between short-term bonds and long-term bonds. The ranking
of the other bonds are mainly positively related to the liquidity and trading volume, in
line with common sense regarding bond trading activities, and tin varieties traded in the
inter-bank market have obvious privilege.

Combined with Figure 3 and Table 4, from the perspective of the importance of bonds
issued by financial institutions, the ranking is as follows: China Development Bank (bond)
> Agricultural Development Bank (bond)≈ bonds issued by banks and short- and medium-
term notes with a rating of AAA (one of the most important inter-bank market trading type)
>= Export-Import Bank (bond). In terms of institutional systemic importance, the regulator
and policymaker must guarantee the capital adequacy ratio of these core institutions and
the requirements of the Basel III, which also called «International Convergence of Capital
Measurement and Capital Standards».

As the most influential type of credit bond which could also be traded in the inter-
bank bond market, urban investment bonds have their own special advantages called
“urban investment beliefs” and a large transaction volume. These “beliefs” stem from the
implicit guarantee from the local governments, and urban investment bonds are usually
invested in government-related construction projects. To prevent systemic financial risks,
the default risk of urban investment bonds needs to be carefully considered in the position
of systemic importance, especially there are already a few urban investment bonds which
have technically defaulted recently.

5.2. Dynamic Spillover Effect Analysis

It is generally accepted that the spillover effect will change over time, and the relevance
of different markets may intensify or decrease under uncertain conditions and unexpected
shocks. In other words, the full-sample spillover index mentioned in the previous section is
static, and might ignore the impact brought about by various political and financial events,
such as the European sovereign debt crisis in 2009 and the violent fluctuations and crash of
the Chinese stock market in 2015. The impact of these events during the sample period
will exacerbate the spillover effect between different participants in the market and the risk
crossing into different markets.

Taking the possibilities mentioned above into account, it seems that any static model
with a single fixed parameter cannot reflect the evolution of the entire interval of the
sample over time. Therefore, this research uses the sliding window method to study the
time-varying spillover effects of different bonds, and through the total spillover index
corresponding to the time series evaluates the degree and main characteristics of dynamic
spillover effects. From the perspective of econometrics, the forecast step and the accuracy
are negatively correlated. Perron and Qu’s research [51], which identified the structural
change points of the dynamic spillover index series by the unit root test, used a 200-
day sliding window and a 12-day forecast step. Taking the limitation of the number of
observation points in the entire sample into account, retaining more instant spillover effect
information in the bond market, this study uses a 150-day sliding window and a time-
varying model with a 5-day forecast step to construct a dynamic volatility spillover index.

As Figure 4 depicts, the volatility of China’s bond risk spillover index from 2015 to
2020 can be divided into three stages: (1) deleveraging policy proposed by state coun-
cil, (2) China–US trade disputes, and (3) outbreak of COVID-19. From the perspective
of bond systemic risks represented by changes in dynamic volatility spillover variance
decomposition coefficients, with the expansion of China’s bond market and the continuous
improvement of regulations issued by the governments, as well as with the gradual decline
of real interest rates, the overall systemic risk trend falls slightly, and it is undeniable that
the “Deleveraging policy” proposed by State Council played an important role in this
process. However, it can also be seen that the shock caused by the rapid spread of coron-
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avirus (COVID-19) has had dramatic impacts on financial markets all over the world [52].
It has created an unprecedented level of risk, causing investors to suffer significant loses
in a very short period of time. With the tight liquidity and related expectations of the
financial market, the systemic risk of China’s bond market has actually increased, while the
risk has slightly decreased with the government’s macro-control after a short time, while
finally, with the overall economic expectations moving toward pessimism and the rise of
the global epidemic, the systemic risks have demonstrated a raising trend again. These
pronounced and persistent impacts of the coronavirus pandemic upon Chinese financial
markets correspond with recent research [53,54]. At the same time, systemic risks show
a certain seasonal effect, which is related to the characteristics of liquidity changes in the
bond market itself.

Figure 4. The dynamic evolution and trend of spillover effect of China’s bond market, including description of shock events
(15 December 2014–28 October 2020).

To test the robustness of the results of dynamic spillover effect analysis, several
hyperparameters were applied for comparison: forecast horizons (i.e., h = 4, 5, 6 days)
and rolling window width (i.e., w = 140, 150, 160 days). In Figure 5, it is shown that the
spillover index of China’s bond market follows a similar volatility pattern for the different
values of h and w, concluding that the results of the study are robust regarding consistency.

In addition, to make the results more convincing and robust, possible future research
could be expanded into several areas, such as the robustness of other methods or conducting
dynamic analysis of networks [55].

To verify the analysis of the dynamic spillover effect of China’s bond market and
to discover the complexity of the bond market as a complex system, we calculated the
structural entropy in a moving time window, which has a length of 150 days with a step
size of 1 day, meaning that 1326 observations of structural entropy were generated. It is
worth mentioning that from Figure 3a and Table 3, we can see that the complex network is
an all-connected network, which means that the structural entropy of the network would
be constant, making it worthless for the study, so the authors decided to cut some edges of
weak connections, standing for the low spillover effect, to calculate the structural entropy.
After observing the spillover coefficient distribution in Table 3, combining the analysis
of the data correlation coefficient distribution and multiple adjustment attempts, it was
found that the empirical result is relatively clear when the threshold is set to 5 percent,
so the threshold was set at 5 percent, which means the edge between node i and j would
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exist only if wij in Formula (8) ≥ 5 percent, otherwise the edge would be cut off. After the
calculation from Formula (11), the result is shown as Figure 6:

Figure 5. Robustness result of dynamic spillover effect of China’s bond market, with forecast step = 4, 5, 6 days and time
window = 140, 150, 160 days.

Figure 6. The complexity of the network of China’s bond market and the dynamic spillover effect of China’s bond market,
represented by the structural entropy and the spillover index, respectively.

In this study, the node number of the complex network is always 23; that is, the
increase in system complexity caused by the increase in the number of the nodes, which
is a very common phenomenon as an interference, does not appear in the research [21].
From Figure 6, we can see that the structural entropy and the dynamic spillover index has
the similar pattern of the fluctuation. The correlation between the structural entropy and
the spillover index is 0.451, and the p-value of the correlation is 0.0000, which means that
the complexity of the complex network is statistically significantly positively correlated
with the spillover index, and the result is statistically reliable. From this result, it can be
concluded that, with the strengthening of the node connections within the network, the
structural entropy, standing for the complexity of the complex network, will rise, while
the systemic risk of China’s bond market also increases. The structural entropy could also
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be used as an effective indicator to measure the systemic risk, especially in the financial
systems, which means that structural entropy could be used as a useful risk indicator to
guide investment activities and show investors changes in the financial market or risk in
their investment portfolio. In the meantime, structural entropy could also be an important
reference for financial market regulators to assess financial risks.

6. Discussion and Conclusions

In this research, we document the evolution of the dynamics of risk spillover networks
based on the complex network of China’s bond market by using daily interest rate data
of representative bond categories in the Chinese bond market. At the very beginning,
we construct an innovative correlation complex network and an MST network of China’s
bond market, and these studies conduct a dynamic analysis based on a generalized vector
autoregressive model, for which the volatility spillover variance decomposition method
has been used to construct a complex network, and we adopt the minimum spanning tree
method to analyze the clear transmission path of each bond’s interest rate and its volatility.
Here are the main conclusions:

Firstly, it has been concluded that the importance of each bond type in the Chinese
bond market is positively correlated with the main characteristics of bond-like liquidity,
transaction volume, and credit rating, etc.

Secondly, the inter-bank market is the most important market in China’s entire bond
market, without any doubt. In addition, interest rate bonds, commercial bank bonds and
urban investment bonds are important bond types with systemic importance, which can
be clearly seen in the complex networks constructed by the static spillover index.

Thirdly, from Figures 4 and 6, we can see that the long-term trend of the dynamic
spillover index of China’s bond market falls in line with the pace of interest rate adjustments,
while several macro events such as the COVID-19 epidemic could bring instant shock which
might cause systemic risk in China’s bond market, and furthermore, systemic risks show
a certain seasonal effect. To hold the bottom line of preventing financial systemic risks
in China’s bond market, standard management, strict supervision, and timely regulation
of the bond markets are required, and the structural entropy, as a useful indicator for
the complex network of the financial system, also should be used in risk management
and monitoring.

Based on the conclusions above, corresponding policy recommendations can be
put forward:

First, it is recommended to strengthen the monitoring and early warning systems
of the fluctuations of China’s bond market, especially for the inter-bank market. The
inter-bank market has the characteristics of large transaction volumes, a variety of bond
trading types, and an upstream position of the capital. Drastic fluctuations in the inter-bank
market will be transmitted to the downstream financial market, and even the real economy
would be affected. In order to serve the real economy better, the supervision and regulation
of the inter-bank market should be one of the top priorities in the work of policymakers,
implementers and regulators.

Second, for issuers of the bonds with systemic importance in the volatility spillover
network, the government and regulatory agencies of China should regard them as sys-
temically important institutions in the network of bond market participants such as bond
traders and market makers, and they need to propose higher standards of capital adequacy
ratio and other requirements, to ensure that it can fully comply with the requirements of
the Basel Agreement.

Third, investors in China’s bond market need to pay more attention to the credit rating
and liquidity of bonds. Moreover, they need to pay more attention to bonds that are traded
in the inter-bank market, such as commercial bank bonds and urban investment bonds.

The above conclusions have profound policy-guiding significance. On the one hand,
China’s policymakers could comprehensively consider financial decisions related to China’s
bond market from a networked perspective, thereby optimizing relevant decisions; on the
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other hand, from the standpoint of the China’s government, identifying economic areas
which are closely related to China’s bonds market and financial institutes which have
systemic importance in a timely manner has great forward-looking guiding significance
for China’s government’s goal of maintaining the bottom line of preventing systemic
financial risks.
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