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Abstract: Ordinal embedding is the task of computing a meaningful multidimensional representation
of objects, for which only qualitative constraints on their distance functions are known. In particular,
we consider comparisons of the form “Which object from the pair (j, k) is more similar to object i?”.
In this paper, we generalize this framework to the case where the ordinal constraints are not given at
the level of individual points, but at the level of sets, and propose a distributional triplet embedding
approach in a scalable learning framework. We show that the query complexity of our approach is
on par with the single-item approach. Without having access to features of the items to be embedded,
we show the applicability of our model on toy datasets for the task of reconstruction and demonstrate
the validity of the obtained embeddings in experiments on synthetic and real-world datasets.

Keywords: ordinal embedding; sets; representation learning

1. Introduction

The objective of an ordinal embedding algorithm is to find a low-dimensional Eu-
clidean representation of a number of abstract items, for which no feature representation
or numerical distance information is available. Instead, the learner has access to a set of
comparisons where for a quadruple of points i, j, l, and k from an abstract space X , it is
specified whether the pair (i, j) is closer to each other than the pair (l, k), i.e., whether
δ(i, j) < δ(l, k) for some latent distance function δ [1,2]. A special case of this problem
results when points i and l coincide, i.e., when the learner has access to triplet comparisons,
which specify for three objects i, j, and k whether i is closer to j or to k.

Several tasks in Machine Learning (ML) and Information Retrieval (IR) depend on
some underlying notion of similarity between objects. Supervised learning attempts to
assign labels to objects based on the notion of feature similarity, while unsupervised learn-
ing attempts to discover hidden patterns of similarity between objects. Prior work in this
area has focused on various aspects of the ordinal embedding problem. Agarwal et al. [3]
provided a flexible and modular algorithm with proven convergence guarantees. Later
work focused on explaining disagreement among human assessors, modeled by noisy
triplets, and more tailored to crowd-sourcing [4–6]. Terada and von Luxburg [7] promised
embeddings that recovered the exact point position with application for density estima-
tion. Other works focused on theoretical aspects of the ordinal embedding problem. For
example, Kleindessner and von Luxburg [8] proved that under reasonable distributional
assumptions, it is possible to recover an embedding that places all objects within a rea-
sonable error range of their correct position, and Jamieson and Nowak [9] showed that
the triplet selection phase is as critical as the algorithm itself and derived a lower bound
on the number of triples necessary for recovering an ordinal embedding. In our own
prior work [10], we proposed a method for finding distributional ordinal embeddings, i.e.,
embeddings that can also model and explicitly represent the uncertainty of the location of
a point recovered from noisy comparisons.

A common application for ordinal embedding methods is crowd-sourcing. In practice,
the triplet comparisons are often obtained by combining the answers from multiple human
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assessors that are asked to give subjective feedback. Moreover, it has been shown that
eliciting such ordinal feedback is more reliable than the feedback based on the question
“how close is item i to item j” [11]. The unequivocal advantage is that this method is a
solution for the issue of comparing subjective scales across different crowd-workers.

In this work, we extend this concept to the case when the learner is not presented with
triplets of abstract items, but rather, sets of abstract items. We are now given (unordered)
sets of items and training triples that provide the form “the set of items J is closer to the
sets of items I than the set of items K”, where I, J, K ⊂ X . Note that the sets may have
overlaps, so that each element x ∈ X may occur in multiple sets. The task is now to output
a meaningful representation of all items x ∈ X in a low-dimensional space that respects
the observed constraints. Obviously, this problem is a generalization of the classical ordinal
embedding problem, where each set only consists of a single element. The set-based
formulation is particularly useful when the number of abstract items is very large and/or
the number of times the oracle that yields the training information can be interrogated is
limited. How can we build a model that deals with sets of abstract values and outputs sets
of low-dimensional representation while satisfying the triplet constraints? This paper aims
at answering this question. We summarize our main contributions as follows:

• A Set-valued Ordinal Embedding (SetOE) is proposed to embed data points in a low-
dimensional space. We reformulate the classical ordinal embedding problem based on
single data points into a generalization based on sets while assuring the permutation
invariance necessary when dealing with the set. We develop an architecture to allow
for conditioning with possibly different sizes of sets and adapt the margin-based loss
for set-valued input;

• We propose a distributional approach that does not rely on the features of the indi-
vidual data points for the ordinal embedding problem with sets. We motivate the
advantages of such a setting and explain the properties we use to enable this;

• Experiments on both artificial and reals datasets demonstrate the validity of our ap-
proach for embedding datasets of considerable size in a significantly low-dimensional
space (e.g., two). We evaluate our approach on several datasets. First, we present a
proof-of-concept with different synthetic datasets. Then, we escalate the complexity of
the tasks to the MNIST dataset, poker, and more real-word datasets such as Reuters.

The remainder of the paper is organized as follows: In Section 2, we formally introduce
the ordinal embedding problem and lay down the mathematical preliminaries, as well
as the notation used throughout the paper. In Section 3, we present our approach for a
set-valued ordinal embedding, which we evaluate in Section 4 with empirical studies in a
variety of datasets. Finally, Section 5 collects related work on ordinal embedding, set-valued
input, and representation learning, before we draw some conclusions in Section 6.

2. Ordinal Embedding

In this section, we formally state the ordinal embedding problem and establish the
notation, for which we follow [12]. ‖ · ‖ denotes the `2 norm. Sd

+ is the set of all positive-
definite matrices. In the scope of this work, we only focus on Gaussian distributions, which
belong to the family of parametrized probability distributions zh,a,A having a location
vector a ∈ Rd, which represents the shift of the distribution, a scale parameter A ∈ Sd

+,
which represents the statistical dispersion of the distribution, and a characteristic generator
function h. Specifically, for Gaussian distributions, the scale parameter coincides with the
covariance matrix var(zh,a,A) = A. From now on, we denote Gaussian distributions (or
embeddings) as z(h,a,A) = N (a, A).

2.1. Classical Ordinal Embedding

The ordinal embedding problem, also called nonmetric multidimensional scaling [1,2],
aims at obtaining the corresponding embeddings in a low-dimensional space. Consider
n items in an abstract space X , which, without loss of generality, we represent by their
indices [n] = 1, . . . , n. It is worth mentioning that no explicit representation of the items is
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available, so it is not possible to analytically express the dissimilarity between the items.
We thus assume a latent underlying dissimilarity (or similarity) function δ : X ×X −→ R≥0,
which cannot be directly observed, but information on δ is indirectly available via a set of
training triples.

Let T := {〈i, j, k〉 : 1 ≤ i 6= j 6= k ≤ n} be a set of unique triplets of elements in X .
We further assume an oracle O, which provides a binary label +1 or −1 for each triplet
〈i, j, k〉 ∈ T , indicating whether δ(i, j) < δ(i, k) holds or not:

O(〈i, j, k〉) =
{

+1 if δ(i, j) < δ(i, k)
−1 if δ(i, j) > δ(i, k)

(1)

Note that at this stage, we do not require δ to be a metric. Together, T and O represent the
observed ordinal constraints on distances.

The learning problem problem can now be formally defined as follows:

Definition 1 (Ordinal embedding). Given n points {1, . . . , n} in an abstract space X , a set of
triplets T ⊂ X 3, and an oracle O : X 3 → {−1, 1}, which provides information about a latent
similarity function δ as specified in (1), the ordinal embedding problem consists of finding a
suitable embedding function φ : X −→ Rd, such that:

sgn(‖φ(i)− φ(k)‖ − ‖φ(i)− φ(j)‖) = O(〈i, j, k〉) (2)

2.2. Distributional Ordinal Embedding

An extension to the classical ordinal embedding problem is to learn probabilistic
embeddings in lieu of the conventional Euclidean embeddings, taking advantage of the
fact that vectors can be considered as an extreme case of probability measures, namely
Dirac [12]. For this purpose, we focus on the family of elliptical distributions, more precisely
Gaussian distributions, which enjoy many advantages. The main results were extracted
from our previous work [10], which extended the ordinal embedding problem defined in
Section 2.1 from Euclidean embeddings to Gaussian embeddings.

Hence, the considered problem becomes:

Definition 2 (Probabilistic ordinal embedding). Suppose T ⊂ X 3 is a set of triplets over
X and O : X 3 → {−1, 1} is an oracle as defined in (1). Let Z = {z1, . . . , zn} be the desired
probabilistic embedding, where each of the original points xi is mapped to the probability distribution
parameterized by zi and ∆(., .), a distance function between distributions. Probabilistic ordinal
embedding is the problem of finding a function ψ : X −→ Z that maps each point i ∈ X to a
probability distribution zi = ψ(i), such that:

sgn(∆(zi, zj)− ∆(zi, zk)) = O(〈i, j, k〉), (3)

for 〈i, j, k〉 ∈ T .

This definition requires a distance measure ∆ between distributions. For this purpose,
we selected the Wasserstein distance [13], also known as the Earth mover’s distance, which has
been previously used as a loss function for supervised learning [14] and in several applications.

2.2.1. The Two-Wasserstein Distance

In Optimal Transport (OT) theory, the Wasserstein or Kantorovich–Rubinstein metric
is a distance function defined between probability distributions (measures) on a given
metric space M. The squared Wasserstein metric for two arbitrary probability measures
µ, ν ∈ P(Rd) is defined as:

W2
2 (µ, ν)

def
= inf

X∼µ,Y∼ν
E‖X−Y‖2
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In the general case, it is difficult to find analytical solutions for the Wasserstein distance.
However, a closed-form solution exists in the case of Gaussian distributions. Let α

def
=

N (a, A) and β
def
= N (b, B), where a, b ∈ Rd and A, B ∈ Sd

+ are positive semi-definite.
Hence:

W2
2 (α, β) = ‖a− b‖2 +B2(A, B) (4)

where B2 is the squared Bures metric [15], defined as:

B2(A, B) def
= Tr(A + B− 2(A

1
2 BA

1
2 )

1
2 ) (5)

When A = diag dA and B = diag dB are diagonal, W2
2 simplifies to the sum of two terms:

W2
2 (α, β) = ‖a− b‖2 + h2(dA, dB) (6)

where h2(dA, dB)
def
= ‖
√

dA −
√

dB‖2 is the squared Hellinger distance [16] between the
diagonal dA and dB.

2.2.2. Learning Gaussian Embeddings

As mentioned in Definition 2, our goal is to learn a function that maps each item i to a
parametrized probability distribution zi, such that the two-Wasserstein distances between
the embeddings satisfy as many triplets as possible. In our case, we use a d-dimensional
Gaussian embedding, so that zi = (µi, Σi). Let Eij be the energy function between two
items (i, j) [17], which characterizes our energy-based learning approach. In particular, we
set Eij = W2

2 (zi, zj). Finally, the corresponding optimization problem is the following:

max
z1,...zn∈Rd

∑
t=(i,j,k)∈T

O(t) · sgn(Eij − Eik) (7)

which is discrete, nonconvex, and NP-hard. For these reasons, a relaxation of this optimiza-
tion problem is needed. We make the choice of using the hinge loss L((t = 〈i, j, k〉,O(t)), a
well-established loss function in contrastive metric learning, as a convex surrogate:

L = ∑
t=〈i,j,k〉∈T

max(1−O(t) · (Eij − Eik), 0) (8)

The empirical performance of embedding methods is evaluated by the empirical error, also
called the triplet error.

Err =
1
|T′| ∑

〈i,j,k〉∈T
1[(y · sgn(Eij − Eik)) = 1] (9)

3. Ordinal Embedding for Sets

This section contains our primary contribution: an approach for encoding sets of
abstract items into sets of low-dimensional vectors. As previously established for the
ordinal embedding problem, the only supervision given is in the form of triplet comparisons
by an oracle O(t) that takes as the input the triplet of sets t = 〈I, J, K〉 and returns a value
{−1,+1}.

3.1. Problem Statement

As in conventional ordinal embedding, we consider n items in the abstract space X ,
which we represent without loss of generality by their indices [n] = 1, . . . , n. Without loss
of generality, we represent a set X as an unordered collection of indices of size kX, i.e.,
X = {x1, . . . , xkX} ⊂ X .

The input to our model is a triplet of sets t = 〈I, J, K〉. The sets can be overlapping,
so that each item i ∈ X may occur in arbitrarily many sets. Furthermore, each set X can
have different cardinalities kX , so a constant set size is not a prerequisite of our approach.
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However, in the following, if the context is clear, we omit the set index and denote the
cardinality of each set as k. Analogous to (1), we assume that each triplet in the set of
training triplets T has been labeled by an oracle O as:

O(〈I, J, K〉) =
{

+1 if δ(I, J) < δ(I, K)
−1 if δ(I, J) > δ(I, K)

(10)

where δ(., .) is a latent, unspecified similarity function between sets.
The goal is to learn a mapping function that takes as the input a set of indices X and a

training set of labeled triplets T defined over elements in X and outputs a set of vectors in
Rd corresponding to the embedding of the individual items that compose X . Formally, we
can define the problem as follows:

Definition 3 (Set-based ordinal embedding). Let X be an abstract space of items, which we
denote with {1, . . . , n}, and PX = 2X × 2X × 2X the space of all triples of subsets of X . Given
T ⊂ PX and an oracle O : PX → {−1, 1}, which provides information about a latent similarity
function δ as specified in (10), the set-based ordinal embedding problem consists of finding a
suitable embedding function φ : X −→ Rd, such that:

sgn(‖ agg(Φ(I))− agg(Φ(K))‖ − ‖ agg(Φ(I))− agg(Φ(J))‖) = O(〈I, J, K〉) (11)

where Φ(.) denotes the elementwise extension of φ(.) to sets and agg(.) : Rd×k → Rd is an
aggregation operator defined over elements in Rd.

3.2. Set Encoding

Clearly, the ordinal embedding for sets problem is a natural generalization of the
classical ordinal embedding problem as defined in Definition 1: The generic input for our
model is not a single item, but a set of items X = {x1, . . . , xk} of size k, where each xi is an
indexed item of X . The output of the model is a set of feature vectors of dimensionality d
represented by the matrix Y = Φ(X) ∈ Rd×k with the column elements Y = [y1, . . . , yk],
where Φ is the learned mapping function.

In order to properly deal with sets, all the operations that compose Φ need to have the
properties of permutation equivariance and permutation invariance. That is to say that
Φ should not rely on the arbitrary order of the elements of the input set. The approach
proposed in this paper relies on set encoders. A set encoder is a model that encodes a
set of elements into feature vectors in a latent space. They are built as a composition of
permutation-equivariant operations with a permutation-invariant operation at the end.
Specifically, we assume that the function Φ can be decomposed into an elementwise
function φ(.), which can be independently applied to each element, i.e.,

Φ(X) = [φ(x1), . . . , φ(xk)] = [y1, . . . , yk]. (12)

Essentially, the function φ(.) corresponds to the elementwise function of Definition 1. The
resulting Φ(.) is permutation equivariant because its defining function φ(.) is applied to
every element individually. Hence, it does not rely on the arbitrary order of the input set,
and the the order of the output will adapt to any change in the order of the input.

Since the supervision is available only for the set and not for the single components,
intuitively, the vectors {yi}k

i=1 need to be aggregated into a single vector using an aggrega-
tion function agg(.). Obviously, agg(.) also needs to respect the property of permutation
invariance. Multiple operations abide by this rule, for example the sum, average, min, or
max. This allows us to obtain a representation of the set and its elements regardless of
the order in which of the set elements are presented. In our experiments, we focus on the
centroid, the center of mass ȳ ∈ Rd, i.e.,

agg(Y) def
= ȳ =

1
k ∑

k
yk. (13)
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3.3. Distributional Embeddings for Sets

Learning ordinal embeddings from triplet comparisons based on sets is a problem that
can lead to substantial approximations and imprecisions. One of the main advantages of the
distributional approach outlined in Section 2.2 is that it is possible to represent and address
severe perturbations in the data. As stated earlier, the representation through probability
measures naturally allows encapsulating the uncertainty about the representation. Hence,
following this approach, we further generalize our approach to a distributional embedding,
where each set in the target space corresponds to a probability distribution.

To that end, we chose the Gaussian distribution N (µ, Σ) characterized by a location
vector µ and a covariance matrix Σ, i.e., we associated each set X with a distribution
zX = (µX, ΣX), where µX = ȳ, i.e., the centroid (13) of the set, and, following what is
detailed in Section 2.2, a diagonal covariance matrix ΣX. Overall, such a distributional
embedding for sets allows obtaining a meaningful representation for each set, while being
bounded by the components of the sets themselves.

The updates performed on a single training triplet are illustrated in Algorithm 1.
Essentially, it takes a set triplet 〈I, J, K〉 and updates the item embeddings for all the
elements in these sets, so that the hinge loss (8), which is based on the Wasserstein distances
between the distribution of the item embeddings of the elements in each of the three sets,
is reduced.

Algorithm 1 Distributional ordinal embeddings from set constraints.

Require: set of items X , set of training triplets T , oracle O
Ensure: set embeddings Y of points in X

1: initialize Y randomly
2: for all (t = 〈I, J, K〉) ∈ T do
3: for all (S ∈ {I, J, K} do
4: YS = {y1, . . . , y|S|} column vectors of Y corresponding to S
5: zS ← N (µS, ΣS) {mean and variance of YS}
6: end for
7: l ← max(1−O(t)(W(zI, zJ)−W(zI, zK)), 0) {compute hinge loss}
8: Y· ← Y· − η ∂l

∂Y {gradient descent step}
9: end for

3.4. Deep Set Encoder

We represent the elementwise embedding function φ(.) as a deep neural network, as
illustrated in Figure 1. While our work relates to numerous architectures proposed in metric
learning such as that in [18], our deep neural encoder is fundamentally different because of
the nature of the problem. The most distinctive point is that we do not have access to the
features of the items we aim to embed. In fact, our model learns a representation of the
items based on a random input to the encoder. In particular, we chose as inputs random
vectors on input dimension h = 64 sampled from N (0, Ih). A first deep encoder, namely
two-layer MLP with ReLU, φθ(·) maps these random inputs into d-dimensional outputs.
These are then aggregated to µθ(·) and fed to produce the variance Σθ(·), a function, which
is again represented with a deep forward network.



Entropy 2021, 23, 964 7 of 18

Figure 1. Distributional ordinal embeddings for sets. Each element of the input set i is fed to identical
2-layer MLP and outputs yi. These feature representations are averaged into µ, the centroid of the
set. Finally, θ takes as input µ and outputs the covariance matrix Σ (in our case, it is reduced to the
diagonal of the covariance matrix). Coupled with the previously obtained µ, these vectors constitute
the distributional embedding of a given input set. The Wasserstein-based hinge loss allows the
optimization for learning the low-dimensional representation of the elements of a triplet of sets.

3.5. Complexity

The training complexity is linear in the size of T , which is the set of all triplets, and
bounded by O(n3). However, a well-chosen sampling strategy may decrease this bound.
It has been shown by Jamieson and Nowak [9] that the minimum number of triplets to
recover an ordinal embedding is Ω(nd log n) in Rd. We adapted this result to the setting in
which the parameters to be learned are a mean vector in Rd and a covariance matrix Sd

+.
Hence, the dimensionality can be considered to be d′ = d + d2 and O(d2). Thus, the newly
recovered lower bound for the triplets becomes Ω(d2n log n), which is still polynomial in
d and O(n log n). Since ordinal embeddings typically map into a low-dimensional space,
this is not a drastic loss in efficiency. Moreover, it is worth mentioning that a low number
of epochs was needed for convergence for all experiments. Finally, the computational
bottleneck when dealing with Wasserstein distance in its closed-form is computing the
matrix square roots of the scale parameters. However, as we opted to learn diagonal
covariances, hence this problem is not present in our approach.

3.6. Practical Tricks

Besides relying on the optimization of the energy-based max-margin loss (8), we
applied some regularization to the learning process. We observed that no regularization
is needed for learning the location vectors. However, the covariance matrix needs to be
bounded, since the main goal of our approach is to obtain perceptual embeddings. Hence,
we constrained the covariance matrix to lie within the hypercube [0, C]d, C being a chosen
constant. We chose to focus on diagonal covariance because we argue the rotation angle is
not easily interpretable to appreciate the similarity between items and that the principal
axes are sufficient to appreciate the uncertainty of the representation. Thus, the regular-
ization is achieved by bounding each element of the covariance matrix, Σii = max(Σii, C).
Moreover, we adapted our approach to be able to handle sets of variable size. First, we
padded all sets in a batch to allow for efficient computation. We then provided an addi-
tional mask feature mi for each set Pi that indicates whether it is a regular element of the
set (mi(k) = 1) or padding element (mi(k) = 0). This mask is useful for computing the
centroid of the set through the weighted average and the covariance of the set.
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4. Experiments

Our main objective was to investigate the effectiveness of our approach for the ordinal
embedding problem. With this objective in mind, we evaluated our model in two different
settings. First, we performed experiments with reconstruction tasks on synthetic datasets
with particular shapes. These sets of experiments were particularly useful as a controlled
environment because the ground truth was available. Then, we applied our approach to
real-world datasets for more complex data in order to assess the performance of our model
in real cases.

In all experiments, we used the following hyperparameters: lr = 1e− 3 as the learning
rate, batch size 512, h = 64 as the hidden size of the input layer, and d = 2, the output size
of the embeddings. We compared our proposed model to a model that learns to embed
a set simply as its centroid. In order to evaluate our approach, we used as the metric the
Procrustes distance, as well as the triplet error (9) between the ground truth and learned
embeddings.

4.1. Synthetic Datasets

Data. In this section, we present a series of experiments that use reconstruction tasks in
order to illustrate the capabilities of our approach. We followed the experimental setting
of [19]. More specifically, we used 4 2-dimensional synthetic datasets generated with the
scikit-learn package in Python. The datasets were:

(i) Gaussian isotropic blobs;
(ii) A large circle containing a smaller circle in 2D;
(iii) Two interwoven spirals;
(iv) Two interleaving half circles;

as illustrated in Figure 2a. For each of these datasets, we proceeded as follows:

• Fix n and ki with i = 1, . . . , n, respectively the number of sets of items, and the size of
each set;

• Generate n points ci that follow the pattern of the chosen dataset. These points are the
centroids of the n sets;

• Given ci, draw ki random points from a normal distribution parameterized asN (ci, ε).
We chose ε, the spread of the set, between 0 and 0.5;

• We divided the obtained n cloud of points in overlapping sets.

Following the approach described, we generated |T| triplets sampled from a uniform
distribution. In order to simulate the ordinal feedback from the oracle, we computed the
difference of the squared l2 norm between the centroids of the sets for a given triplet. The
total number |T| of sets was set to be pnd log n with p = 1, 2, 4.

Results. This series of experiments on synthetic datasets illustrates the performance for
reconstruction and density estimation of our approach and, in particular, the influence of
the number of triplets on the reconstruction ability. The first column of Figure 2 depicts
the ground truth. Then, proceeding left to right, the embeddings werelearned for different
values of T. The number of triplets increases with T = pnd log n, where p = {1, 2, 4}.

For all datasets, we observed that the quality of the reconstruction with respect to the
location of the point vector improves when the number of triplets increases. We recall that
an ordinal embedding is not unique, but the distances can be recovered up to an orthogonal
transformation (translation, rotation, and reflection).
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Target

(a) Ground Truth

p = 1 p = 2 p = 4

(b) p = 1, 2, 4

Baseline

(c) p = 4

Figure 2. SteOE embeddings for the synthetic experiments. The first column (a) shows the ground truth, (b) the progression
of learned embeddings from increasing number for triplets pnd log n with p = {1, 2, 4}, and (c) the learned embedding from
the baseline model with p = 4. The colors are merely used for better visibility of the different groups; they were not used
for training.

The last column in Figure 3c is the visualization of the embeddings obtained by the
baseline model, which is visibly less accurate than the proposed model. In order to obtain
a quantitative, objective evaluation of the difference, Table 1 shows the Procrustes distance
between the ground truth and the resulting embedding for both our proposed model and
the baseline approach. We notice that our embeddings are consistently more precise, and
this suggests that our distributional approach for set embedding leads to a better and more
accurate representation.

(a) k = 10 (b) k = 25 (c) k = 50

Figure 3. Ordinal embeddings of MNIST digits. The supervision information is the sum of the digits in the sets. Colors
represent the label of single digits, used only for visualization purposes.
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Table 1. Procrustes distance from the ground truth and learned embeddings. Smaller (bold numbers)
is better.

Ours Baseline

Circles 0.12 0.18
Moons 0.09 0.33
Spirals 0.25 0.91
Blobs 0.03 0.04

4.2. Sum of MNIST Digits

Data. Next, we applied our approach to more complex distributions than the synthetic
datasets previously illustrated. We adapted the MNIST dataset for this task. MNIST
contains 60,000 instances of 28× 28 grey-scale stamps of digits in the range 0, . . . , 9. We
randomly sampled N = 100,000 for training and 1000 for testing with a maximum size of k
= 10, 25, 50 images. The supervision information provided by the oracle (10) is based on
the difference of the sum of the digits in a set, i.e.,

δ(I, J) =
∣∣∣∑

i∈I
λi −∑

j∈J
λj

∣∣∣ (14)

where λi is the label of image i, i.e., the one-digit number displayed by it. Thus, we cannot
directly observe the label of the image, but we can only observe whether it tends to appear
in sets with larger or smaller sums. The desired outcome is that the embedding of the
individual images is able to capture the hidden label information.

Results. Figure 3 illustrates the obtained results for three different maximal set sizes. Each
point represents a single image of the MNIST dataset. The color indicates the label of each
single digit. We can clearly recognize the linear order in the learned embeddings. Low
digits are separated from high digits, and the gradient is clearly noticeable.

Moreover, the smaller the sets used for learning, the more the order is distinguishable.
In fact, although it is clear that the model was able to capture the linear order from the
feedback of each triplet comparison, the results of Figure 3c are not as clear as those of
Figure 3a. This can be expected, because in larger sets, the contribution of each individual
number of the sum is lower than in smaller sets. This is an important factor from which we
conclude that there exists a trade-off between the reconstruction ability and precision of
the obtained representations. When density estimation is the priority, a bigger set size is
advantageous because it necessitates fewer comparisons. However, when the focus is on
the preciseness of the location of individual items in the space, a smaller set size should
be preferred. Finally, we train a simple classifier on the learned embeddings to whose
objective is to predict the label of the single MNIST digits. The results are reported in
Table 2 in terms of mean accuracy. We can notice that our embeddings perform better than
the ones learned through the baseline model, which proves the validity of our approach.

Table 2. Mean accuracy obtained for the classification of single MNIST digit embeddings. Best results
are in bold.

Baseline Ours

k = 10 0.76 0.78
k = 25 0.76 0.82
k = 50 0.77 0.79

4.3. Poker Hands

Data. Poker is one of the best-known card games. The players bet whether the value
of the hand they hold will beat all others according to a predefined ranking of hands.
The complexity of the ranking system, where each card can be a part of a winning hand
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depending on the other cards in the hand, provides an interesting use case for assessing
the embedding abilities of our approach. Variants largely differ on how cards are dealt and
the methods by which players can improve a hand. In our experiments, we modeled a
setting that was motivated by the Texas hold’em variant. We assumed two players J and K,
each holding p cards, and a set of c community cards I.

The supervision information we used was based on which of the two players could
obtain the best hand of five cards by combining his/her own cards with the community
cards. The hand strength computations were based on Cactus Kev’s algorithm.

Results. Figure 4 illustrates the results. In all cases, the number of triplets is 2nd log n,
with d = 2 and n = 52. The colors show the rank of the cards, but this information was not
available during the training. We illustrate three different variants:

Figure 4a shows the results of the setting with five community cards and each of the
two players having two cards. This corresponds to the Texas Hold’em game.

The remaining figures show variants with differing numbers of board and community
cards, which do not correspond to actual game settings, but which we studied to gain more
insight into the obtained embeddings.

(a) p = 2, c = 5 (b) p = 5, c = 2 (c) p = 1, c = 4

Figure 4. Ordinal embeddings from poker for different numbers of player cards p and community cards c.

The results for the classical variant (Figure 4a) show that even if the supervision comes
from a highly nonlinear source, our approach is still able to learn ordinal embeddings and
output latent representations for the game that are fair and interpretable. First, we notice
that unlike in the previous experiment, where a clear linear order of the embedded MNIST
images was obtained, the structure obtained here is more complex. Nevertheless, we see
that cards with similar values tend to form clusters because they go well together, forming
pairs, triples, or even pokers, which have a high evaluation in the game. We can also see
that clusters of cards with a low rank are pushed afar, whereas cards with higher ranks
tend to be closer to each other. This, again, makes sense from the perspective of the game,
because two high cards (regardless of whether they match or not) are a good combination.
In particular, aces, being the cards with the highest rank in the deck, remain in the center
of the plot. This finding is in accord with the rules of the game, since the probability of
having a good hand is higher if it includes aces. It is possible to notice how the clusters are
arranged in a spiral-like shape with the aces being in the center and moving farther away,
and we can find the other values in decreasing order.

We then chose to evaluate the opposite setting of the one just described, in which the
board has less cards than each player hands, more specifically two cards for the board
and five for each player. This corresponds to Figure 4b. Even though this setting does
not correspond to any game configuration, we assumed that investigating it could be of
interest. Once again, we reached the same conclusions: cards with similar ranks are close to
each other, also arranged in a spiral-like shape emanating from the center of cluster of aces.
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However, contrary to the canonical setting, the cluster of aces is further from the middle of
the point, and this is probably due to the higher combinatorial nature of the evaluation
that perturbed the original order.

In the next setting, we tried to remove the combinatorial factor of the excess community
cards. For this, we used the configuration in which each player had one card (a singleton)
and the board had four cards. The results, shown in Figure 4c, exhibit the best separation
between the different clusters of ranks and the spiral shape of their arrangement. Low
ranks are far apart from high-ranked cards, and the higher ones are closer to the center,
with the cluster of aces being the most centered one.

Overall, the found embeddings appear to be quite reasonable in all three cases. They
seem to capture the expected property that cards that go well together in a poker hand have
a low pairwise distance, whereas pairs of hands that do not go well together are further
apart. For that reason, the low cards are rather far from all other cards except for their
own kind, whereas the higher cards tend to be closer to each other. In order to test this, we
computed a correlation coefficient between the distance of a pair of cards and the pairs’
Chen score (the Chen score is a formula proposed by Bill Chen for assessing the strength of
a pair of starting cards in Texas hold’em [20]) for all pairs of cards. As expected, the results,
in Table 3, show a reasonably high positive correlation.

Table 3. Pearson correlation coefficient between l2 of the different embedding vectors and the Chen
score for all possible pairs of poker cards.

Figure Pearson Coeff.

Figure 4a 0.58
Figure 4b 0.68
Figure 4b 0.65

4.4. Reuters

Data. For this experiment, we used data from the Reuters-21578 benchmark corpus [21].
This dataset contains n =10,788 Reuters Newswire articles. Each article is represented as
a set of paragraphs with size k ∈ {2, 15}, with 60,222 paragraphs in total. The goal was
to cluster these documents according to the categories of the newspaper. The documents
belong to 90 different categories. The supervision used was the same as the one used in the
MNIST sums of digits experiments.

Results. The results are shown in Figure 5. We embedded each document as a set of
paragraphs in a two-dimensional space. As we can notice from the colors that indicate the
label of the documents, the clusters are clearly distinguishable. Moreover, we conducted a
quantitative evaluation on the obtained embeddings. For this, we computed the centroid of
each set from the learned feature vector. Then, we trained an MLP classifier to predict the
label associated with the n documents. We compared the mean accuracy of our approach
to the baseline. We obtained an improvement of 5% in the mean accuracy, which proves
that our obtained embedding are better suited for downstream tasks.
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Figure 5. Ordinal embeddings for the Reuters dataset.

5. Related Work

In this section, we briefly summarize work that is related to our approach, both in the
realm of ordinal embeddings, as well as in finding set representations.

5.1. Ordinal Embeddings

In recent years, ordinal data have received a growing interest in machine learning. The
ordinal embedding problem has been studied from different points of view, for example:
the question of finding the minimum number of triplets necessary to determine an ordinal
embedding in the Euclidean space was tackled in [9] and further extended and generalized
in [22]. Multiple methods have been designed to deal with triplet similarity. They typically
produce representations of data points as low-dimensional Euclidean vectors. In particular,
Generalized Nonmetric Multidimensional Scaling (GNMDS) [3] relies on a max-margin
approach to minimize a hinge loss. Stochastic Triplet Embedding (STE) [6], on the other
hand, assumes a Gaussian noise model and minimizes a logistic noise. The crowd kernel
model [5] makes the assumption that triplets have been generated by an explicit noise
model. It is worth mentioning that these models adopt a classification scheme to solve the
problem by predicting the label of the relative comparisons. Another notable work is [7],
which solved the ordinal embedding problem via a reduction to the problem of embedding
nearest-neighbor graphs. Moreover, these methods rely on expensive gradient projections
and are unsuitable for large datasets. The main purpose of those methods is to facilitate
data visualization of similarity inferred from human assessments. However, other tasks
employing similarity triplets have been studied, such as medoid estimation [23], density
estimation [24], or clustering [25]. Closely related to our approach is [19], which employed
deep learning to scale the ordinal problem to large datasets.

5.2. Sets’ Representation

Machine learning on sets includes different subgroups depending on the nature of
the input and output (e.g., vector-to-set, set-to-set, set-to-sequence). To the best of our
knowledge, we are the first to propose an approach for set-valued input that does not
rely on features. However, there are different works in the literature that are related to
ours, more specifically in the set-to-set domain, where both the input and output are
structured as sets. Notable examples are [26], which offered a permutation-invariant
function for inference over sets by relying on the summation of all element representations
prior to further nonlinear transformations. Other less recent works in the set-to-set domain
are [27–29]. A more complete comparison of set encoders can be found in the next section.
It is important to clearly differentiate our work, which falls into the set-to-set mappings,
from some related works on vector-to-set mappings [30,31]. In fact, our work relates more
to [26]. The main difference is that the input to our model is necessarily a set of items, albeit
without features. Notable works in the vector-to-set literature are suited to tasks such as
object detection, taking as input a feature representation of images and producing a set of
coordinates for the bounding boxes. Loosely related are also methods such as in [32–34]
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that learn a permutation matrix for sets of items. Once the permutation matrix is learned,
it is applied to the input set, hence turning the set into an (ordered) sequence. Once again,
our method differs because, there, the output set is not ordered, hence not a sequence.

5.3. Sets Encoder Models

The goal of a set encoder is to encode an input set into an embedding vector as an
output. Several studies have proposed different approaches for performing this task. In
this section, we list the most relevant to our work and provide a more thorough comparison
in order to deepen the comparison from the previous section. As stated earlier, in this
work, we propose a deep neural architecture for encoding sets without features. Moreover,
our approach belongs to the set-to-set category. However, since the ordinal feedback
available is only at the set level, the optimization is performed on the embedding of the
set rather than the encoding of the single items that compose the set. The most natural
comparison to our work is Deep Sets [26], which provides a robust mathematical analysis
for designing permutation-invariant and permutation-equivariant deep learning models.
This framework offers a simplified procedure by relying on the summation of all elements’
representation for obtaining the set feature vector, which is consequently transformed into
the desired output (e.g., the class probability for classification or a single number for set
regression). Our approach is a generalization of the Deep Sets framework in which we
do not require the input feature of the elements of the sets. Additional main differences
from our work are that our set representation is a probabilistic measure rather than a point
vector and the permutation-equivariant function is the mean rather than the sum.

Other works have tackled the task of finding robust set encoders. They largely differ
from our proposition, but we discuss them for the sake of completion. The Pointer Net-
work [28] is an encoder-decoder architecture that provides a modified attention mechanism,
and its main goal is to learn the target reordering of the input elements. An important
characteristic of Pointer Networks is that they do not treat set-valued input in the strict
sense. In fact, the input is treated through sequential recurrent neural networks; hence,
the obtained representation is not permutation-equivariant. The primary applications of
Pointer Networks are tasks where the target output is a reordering or permutation of the
elements of the initial input. This reordering is based on pointers to indices of the original
input sequence.

Another important set encoder architecture is represented by the Read-Process-and-
Write-Model. This is a neural network architecture made of different blocks, which aims
to obtain a permutation-invariant representation of the input set and learn a mapping to
arbitrary target outputs. It relies on an attention mechanism to satisfy the property of
permutation-invariance and can be seen as a special case of Memory Networks [35]. In
fact, it is a recurrent neural network model that creates a memory representation of each
element in the input sequence and accesses the representation via the attention mechanism.

Among the most complex methods designed to handle set input problems, there is the
Set Transformer [36]. The Set Transformer consists of stacked multi-head self-attention lay-
ers for both the internal encoder and decoder, as seen in the classic Transformer [37]. One
main difference from the previously described set encoding methods is that instead of using
a fixed pooling operation such as sum() or average() to ensure permutation-invariance. It
employs a parameterized pooling function that is learned and therefore results in being
much more adaptive to the particular task at hand. The Set Transformer [36] is designed to
model higher-order interactions among elements and their subsets within the input set.
Its key advantage is that it concurrently encodes the entire input set through a sequence
of permutation-equivariant Set Attention Blocks (SABs). By comparison, the previously
discussed Deep Sets and our proposed approach method obtained element features inde-
pendently of other input set elements. The main limitation of the Set Transformer is its
computational cost. In fact, the SABs require quadratic complexity O(n2) with n being
the cardinality of the input set. A lower projection was proposed by the authors to try to
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overcome this limit bringing the overall complexity to O(mn) with m being the chosen
number of inducing points for the low-rank projection.

Reference [30] proposed a permutation-invariant approach that derives from the the
naive method of sorting all the elements of the input set by a chosen feature. However,
when the output is a set, this approach leads to discontinuities, which the authors described
as the responsibility problem. In a nutshell, these discontinuities arise whenever two elements
are swapped in the input and the output. To avoid this difficulty, the authors developed a
novel pooling method, which sorts each feature across the elements of the input set and then
performs a weighted sum. This allows the model to remember the permutation applied
through the feature-wise sorting and apply its inverse in the decoder. This process restores
the original, arbitrary order of the input elements making the encoding a permutation-
equivariant operation, preventing the discontinuity in the outputs of the model.

Another interesting approach to encode sets based on the reordering of the input is
the Janossy pooling approach by [38]: the symmetric (permutation-invariant) encoding
function is expressed as the average of a mixture of permutation-sensitive functions applied
to all re-orderings of the original input. Generating all permutations of a set results in
n! intermediate inputs, all of which would then require the application of the chosen
permutation-sensitive function. However, this approach is not tractable. To mitigate this,
the authors proposed a number of strategies, among them the use of a smaller number of
selected canonical orderings that are presumed to carry relevant information.

PointNet by [27] is a neural architecture for encoding 3D point clouds. An additional
constraint for this architecture is that the output should be independent of the translation
or rotation of the input point cloud. Loosely speaking, PointNet first obtains an embedding
of each of the input points through stacked, fully connected layers in the form of an MLP,
such that each element is identically and independently transformed. This permutation-
equivariant representation is then pooled via the max() operator (per dimension) and
further transformed through an additional fully connected layer. Finally, the obtained
point cloud encoding is concatenated with the embedding of each point. This combination
of local and global features is shown to be crucial for point segmentation tasks.

The AttSets model, proposed by [39], uses weighted attention to obtain a permutation-
invariant representation of the input set. This model was originally meant to be applied to
a multi-view 3D reconstruction task, where a set of images of the same object from different
angles is used to estimate its true 3D shape. In order to achieve this, each element of the set
is individually and independently transformed via a learned attention function, which can
take the form of an MLP or a multidimensional CNN, according to the form of the input.
The output of this function is normalized via softmax() and then used as an attention mask
over the original input elements. This allows the model to learn to pay a varying degree
of attention to individual dimensions of the input elements’ representations. Finally, the
original input elements are multiplied by the attention mask and summed together to a
fixed length set encoding.

Finally, the RepSet [40] model consists of stacked feed-forward, fully connected layers,
as in the Deep Sets method [28], followed by a custom permutation invariant layer replacing
the sum() operator. This layer was inspired by the concepts from the field of bipartite
graph matching. The permutation-invariance is achieved through a configurable number
of hidden sets (potentially of different sizes), whose elements correspond to columns of
trainable weight matrices. These are then compared with the elements of the actual input
set to create matrices that are fed the Hungarian algorithm. The resulting values can be
further transformed through standard neural network layers according to the problem at
hand. One limitation of this approach is the computational complexity ofO(mn+ n2 log n),
where n is the cardinality of the input set and m is the chosen number of hidden sets.

6. Conclusions

We proposed an approach to solve the ordinal embedding problem when the input
is under the form of sets of items and the feedback is available only for triplets of sets.
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Our approach maps the objects in a low-dimensional space endowed with the Wasserstein
distance. This is based on learning a representation for sets and taking advantage of
the common statistic for sets, which is the centroid. Each set is described by a location
parameter, its centroid, and a scale parameter, which represents the spread of the set. We
argue that reformulating the problem under this point of view allows prompting fewer
triplets comparisons for a greater number of learned items. Our algorithm is suitable
when the input sets have variable size. Moreover, a trade-off between the precision of
the individual embeddings and the accuracy of the overall density estimation has to be
taken into account when choosing the size of the input sets. In a number of experiments
on different datasets, we demonstrated the validity of our approach. We showed that the
proposed framework is robust and beneficial when the triplet comparisons are limited.
Overall, with our proposed approach, we were able to obtain valid embeddings that can
be used for downstream tasks. In conclusion, we think that our main idea should be
readily extensible to a similar domain, even including features, such as set-to-sequence,
set-to-graphs, or set-to-set. Future directions of improvement involve extending the model
to consider pairwise or more complex interactions among the elements of a given set. In
fact, so far, the encoding step focuses on one element at time. Moreover, an additional way
of improvement might be to relax the link between the cardinality of the input set and the
precision of the output embedding. Finally, a next improvement we aim to make would be
to improve the aggregation function by using a parameterized and learned function, which
could improve the performance according to the task at hand.
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