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Abstract: In many decision-making scenarios, ranging from recreational activities to healthcare
and policing, the use of artificial intelligence coupled with the ability to learn from historical data
is becoming ubiquitous. This widespread adoption of automated systems is accompanied by the
increasing concerns regarding their ethical implications. Fundamental rights, such as the ones that
require the preservation of privacy, do not discriminate based on sensible attributes (e.g., gender,
ethnicity, political/sexual orientation), or require one to provide an explanation for a decision, are
daily undermined by the use of increasingly complex and less understandable yet more accurate
learning algorithms. For this purpose, in this work, we work toward the development of systems able
to ensure trustworthiness by delivering privacy, fairness, and explainability by design. In particular,
we show that it is possible to simultaneously learn from data while preserving the privacy of the
individuals thanks to the use of Homomorphic Encryption, ensuring fairness by learning a fair
representation from the data, and ensuring explainable decisions with local and global explanations
without compromising the accuracy of the final models. We test our approach on a widespread but
still controversial application, namely face recognition, using the recent FairFace dataset to prove the
validity of our approach.

Keywords: trustworthy artificial intelligence; deep neural networks; Algorithmic Fairness; learning
fair representation; privacy-preserving machine learning; Homomorphic Encryption; explainable
artificial intelligence; attention maps; dimensionality reduction

1. Introduction

Trustworthiness in artificial intelligence (AI) stands out as one of the main problems
to be addressed in developing the future of the modern technological societies [1]. One
of the first stances that depicted the necessity of deploying trustworthy information and
communications technologies goes back to 1999 with “Trust in Cyberspace” [2], where
researchers showed that governments started to become dependent on possibly unreliable
algorithms for operating their critical infrastructures, such as communication, transporta-
tion, and power distribution [3]. Analogously to what has been done in the past for these
infrastructures, there is nowadays a need to address trustworthiness in AI systems as a
holistic property able to guarantee fundamental rights, encapsulate the ethical principles
of the society, enforce resilience to disruption, and cope with human errors or hostile
attacks [4]. The resulting benefits are numerous and multifaceted. For example, it can
contribute to increasing well-being both on a collective and an individual level, for example
by generating wealth [5] or taking care of tedious or dangerous tasks [6]. Moreover, it can
promote fairer behaviors toward social and political equality [4].

In general, this ambitious objective cannot be reached in a single step, but there is a
need to first face specific sub-problems and then combine the results toward a more holistic
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approach [7]. In the context of AI, a fundamental building block is the ability to learn
from data by means of machine learning (ML)-based technologies [8]. This ability allows
us to make predictions based on historical data supporting decision makers (human or
autonomous) [9]. Models learned from data have been shown to deliver very accurate
results in recent years, outperforming human abilities in some specific applications [10–12]
with the use of increasingly complex ML algorithms on the increasing number of available
data [13]. Simultaneously, researchers have begun to show the drawbacks of rushing
towards these accuracy levels: models have started to also learn the human biases and
misbehavior [14–16], to break the privacy of the single individuals [17,18], to show limited
robustness to (malicious) data perturbations [19–23], and to be less and less understand-
able, undermining the fundamental right of explanation principle [24]. For these reasons,
researchers have started to study these problems separately, developing the fields of Al-
gorithmic Fairness [25–27], Privacy-Preserving Data Analysis [28], Adversarial Machine
Learning [29], and Explainable Machine Learning [30–32], respectively. Unfortunately few
works in the literature have tried to address more than one of these problems simultane-
ously. Some have tried to face two of them: for example some works combine fairness
with privacy [33–41], others [42–44] combine adversarial learning with fairness, fairness
with explainability [45–47], adversarial learning with explainability [48,49], and adver-
sarial learning with privacy [50–53]. For this reason, in this work, we drive toward the
development of systems able to ensure trustworthiness by delivering privacy, fairness,
and explainability by design.

Privacy requires protecting the data of the single individuals along with all the in-
formation generated during the entire data lifecycle [4]. It is easy to explain the practical
necessity of privacy guarantees, especially in those applications where digital records
directly contain (or can be exploited to infer) highly sensitive information, such as gen-
der, ethnicity, or sexual or political orientations [28,54]. For this reason, it is required to
cope with the problem of developing ML models able to simultaneously extract useful
and actionable information from data and not violate the privacy of single individuals.
Algorithmic Fairness requires the outputs of ML-based models to not depend on sensitive
attributes (e.g., gender, race, and political/sexual orientation) [26,55]. In fact, datasets may
contain historical biases (e.g., discrimination against historically mistreated subgroup in
the population) or may suffer from a coarse view of the modern societies (e.g., underrepre-
sented subgroups). ML models trained on those biased data may exacerbate unfairness,
generating a cascade effect [4,7,56]. For this reason, it is required to cope with the prob-
lem of developing methods to mitigate such biases. Explainability in ML is the ability
to provide an explanation for the output of an ML-based model [30,32,57]. Explanations
can be local (i.e., why the model gave a particular output provided a particular input)
or global (i.e., what the model actually learned from data) [32,57]. An increasing level
of explainability in the decision-making process also facilitates model traceability, which,
in turn, could help reveal the possible points of failure and prevent future mistakes [4,57].
Making state-of-the-art ML-based models (i.e., deep neural networks) explainable is a
quite challenging task, which needs to be directly addressed to cope with the right of
explanation [24,58] but also for understanding other problems (i.e., unfair behavior, limited
robustness, or leaks in privacy of the model itself [30,57]).

In this work we show how to adapt and combine state-of-the-art approaches with the
purpose of learning from data under privacy, fairness, and explainability requirements. In
particular, we show that it is possible to learn from data, leveraging on deep pretrained
models [59,60], simultaneously preserving the privacy of the individuals thanks to the
use of Homomorphic Encryption (HE) [61], ensuring fairness by learning a fair represen-
tation from the data [62–64], and delivering explainable decisions with local and global
explanations [57] without compromising the accuracy of the final models. Then we will
test our approach on a widespread and controversial problem, namely facial recognition,
using the recent FairFace [65] dataset to prove the validity of our approach. In fact, deep
pretrained networks allows one to easily and inexpensively extract a representation vector
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that can be then used and fine-tuned for a specific application at hand [59,60,66]. This
avoids the need to design and train from scratch a new network, which would require a
huge number of data and computational resources, which is seldomly available in practical
applications [67]. Nevertheless, even if an architecture is already available (with its tuned
weights), we need to find smart ways to fine tune the network with limited data and a
number of increasing constraints [68], especially when new data become available (e.g.,
the phenomena is changing) or new requirements arise (e.g., privacy and/or fairness
requirements). HE has gained a lot of attention in the field of privacy-preserving machine
learning since it allows working on encrypted data seamlessly, as the computations are
performed on their original non-encrypted version [69]. Three main approaches exist (i.e.,
Partially, Somewhat, and Fully HE [70]), for which there is a tradeoff between the number
of recoverable computations and the operations type allowed. For our purpose, namely
ML-related applications, Somewhat HE is the most exploited approach, since it delivers
the best trade-off [71] for our application. HE, on one hand, allows ensuring the privacy of
the single individual, especially in the commonly adopted case where the computing and
memory resources are outsourced to a third-party service provider, but on the other hand
dramatically increases the computational requirements and reduces the possible network
architectural choices [72,73]. Algorithmic Fairness deals with the problem of ensuring
that the learned ML does not discriminate subgroups in the population using pre- in- and
post-processing methods [26,74]. When deep models are exploited, such as in our use-case,
learning a fair representation from the data (instead of simply trying to make the models
fair) has been shown to be the best approach [62–64,75]. Still, these approaches can hardly
be combined with HE since not all the operation and architectural choices are allowed
due to the intrinsic limitations of HE [72,76]. For this purpose, in this work, we show
that a particularly simple yet effective constraint for learning fair representation [64,77]
can be combined with deep models and HE to deliver deep, fair and private models. In
our work, fairness is measured according to the Demographic Parity (DP) [78], which
requires the probability of the possible model decisions to be independent of the sensitive
information. Finally, to deliver both local and global explainability, we rely on two state-of-
the-art approaches. For local explainability, we exploit the attention maps of Deep Neural
Networks through the Grad-CAM [79] algorithm, which highlights the most significant
input features for a particular prediction. For global explainability, we will rely on both
average attention maps and a dimensionality reduction algorithm, namely t-SNE [80,81].
Since these methods are straightforwardly applicable in conjunction with HE, they can
be used to check the effect of the fairness constraints on what the deep models actually
learned from data. In this sense, we are using explainability as a provision for the user
right of explanation and as an inspection mechanism for the model creator as well.

The rest of the paper is organized as follows. Section 2 summarizes the works in the
literature related to our research. Section 3 reports some preliminary notions instrumental
for understanding our work. Section 4 presents the proposed method. The results of
applying the method proposed in Section 4 on the face recognition task by means of the
FairFace dataset are presented in Section 5. Section 6 concludes the paper.

2. Related Works

This section is devoted to a brief review of the works related to the context of our paper.
For what concerns the fairness mitigating methods, they are usually categorized depending
on the way they actually work [25,26,74,82]. For classical (i.e., shallow) ML models [83]
trained on manually engineered features based on domain knowledge, we have three main
families of mitigation methods: pre-, in-, and post-processing. Pre-processing methods try
to remove the biases in the data so that any learning algorithm trained on those cleaned
data should generate a fair model. In-processing methods impose the fairness constraints
directly into the learning phase, enforcing fairness in the model’s inner structures. Finally,
post-processing tracks the output of an already trained model to make it more fair. When
it comes to dealing with deep learning [66], where the ML models try to simultaneously
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extract a synthetic yet expressive representation of the raw data (e.g., images or natu-
ral language) without any prior knowledge or human intervention, it has been recently
shown [62,64,84–86] that the best approach is to learn a so-called fair representation. This
fair representation can be reused to train other models which will be, again, fair by-design.

For what concerns the methods for making ML models privacy-aware/compliant, they
can be divided into anonymization techniques, perturbation techniques, and distributed
protocols [28,87,88]. The anonymization techniques try to maintain the privacy of the data
subjects by obscuring personally identifying information within a dataset while preserving
data utility. k-Anonymization [89], l-Diversity [90], and t-Closeness [91] are the most
known approaches for anonymization. Perturbation techniques exploit noise to corrupt
the data, the ML algorithm, or the learned model quantifying the disclosed information in
terms of the power of the noise. Differential Privacy [92] is the most prominent theoretical
framework for the perturbation techniques. Anonymization and perturbation techniques
assume the existence of a trusted curator of the data. When this is not available, we need to
use distributed protocol techniques [93].

For example, Federated Learning [94], one of the prominent approaches in distributed
protocol techniques, requires participants to train their models privately and then to share
the results. However, privacy may still be compromised once the local parameters are
shared, such as the updating gradients, which that may disclose information on the user’s
private data. Recent works mix the use of Federated Learning with different HE schemes to
address these issues [95,96]. In fact, HE recently attracted a lot of attention since it allows
one to work on encrypted data as the computations are performed on their original non-
encrypted version [97,98]. Consequently HE, contrarily to anonymization and perturbation
techniques, entirely preserves utility and, contrarily to other simple distributed protocols
techniques, automatically guarantees preserving the privacy of the single individuals. The
major drawback of HE is its high computational overhead and the limitations for some
operations [72,73]. In particular, three possible approaches are defined: Partially, Somewhat,
and Fully HE. Partially HE benefits from an unlimited number of computations, but only
one operation is allowed (multiplication: RSA [99], addition: Pailler [100]). Somewhat HE
allows for multiple operations but suffers from a limited number of computations due to
an increasing amount of computations-derived noise (BFV [101], CKKS [102]). Fully HE
allows both a multiple number of operations and an unlimited number of computations,
but generally suffers from huge computational costs (Gentry’s [103]).

Concerning explainability, as a general rule, the complexity of a ML model is inversely
proportional to its level of clarity and interpretability [31,57,104]. One solution to this issue
is to design and implement intrinsically explainable algorithms. Alternatively, another
widely used possibility is to build a highly accurate black-box model and then design a post-
hoc explanation. Post-hoc explanation methods can be categorized into two families: global
and local explanations. The former aims at understanding the entire logic of a system and
retracing back the predictions’ reasoning, while the latter is specific to a single instance and
tries to justify single decisions. Post-hoc explanations are often model-agnostic, meaning
that they are not tied to a particular type of ML systems [31,57]. Since explanations are
mostly meant to be exploited by humans, they are usually meant to be visualized. For
example, LIME [105] exploits a local surrogate model to explain the reason for a particular
output. Relative to the context of computer vision, attention maps (e.g., using the Grad-
CAM [79] algorithms) allow one to identify the influence regions of an image that most
contribute to a particular decision. Both approaches can be used either as local methods of
explanation if applied to only one image or as global methods of explanation if applied
to a subset of the data [57]. In addition, dimensionality reduction methods, such as t-
SNE [80], can be exploited as usually global explanations since they allow understanding
how data, representation, and decisions are distributed and how changes in models or in
the constraints (e.g., fairness) influence this distribution.

Many works [33–41] have tried to address fairness and privacy guarantees together.
Kilbertus et al. [34] is one of the first proposals that addressed the need for combining



Entropy 2021, 23, 1047 5 of 26

fairness requirements with privacy guarantees. Their approach is to mitigate Disparate
Impact [106] (i.e., discrimination due to the correlation between sensitive and non-sensitive
attributes) without disclosing sensitive information through secure multi-party computa-
tion. Jagielski et al. [35] builds on top of the previous work, stating that secure multi-party
computation offers insufficient privacy guarantees due to the possible leakage of sensitive
attributes. They provide a different approach based on Differential Privacy, where privacy
is guaranteed through an injectable amount of noise able to mask the presence of a pro-
tected individual in a particular dataset. In this direction, other works [36–39] aimed to
learn fair and differentially private ML models. Cummings et al. [36], while showing that
it is impossible to achieve both differential privacy and exact fairness without non-trivial
accuracy, provides a Probably Approximately Correct [107] learner that is differentially
private and approximately (with high probability) fair. Xu et al. [38] presents two methods
for achieving Differential Privacy and Algorithmic Fairness within a logistic regression
framework through Functional Mechanism [108] that achieves privacy and fairness by
injecting Laplacian noise into the model objective function. Mozannar et al. [37] proposes
a two step algorithm where the first phase finds an approximately non-discriminatory
predictor, while the second produces a final predictor with Local Differential Privacy
guarantees [109]. Besides all the characteristics of standard Differential Privacy, Local
Differential Privacy excludes the possibility in which an adversary is able to learn any sen-
sitive information about a particular data point. On a related note, Bagdasaryan et al. [39]
observed that standard Differential Privacy methodologies, such as gradient clipping and
noise addition [110], yield disparate impact for underrepresented subgroups: the accuracy
for those classes in a privacy-enhanced model tends to deteriorate more when compared
to the non-private case. In this sense, this work empirically demonstrated that carelessly
managing Differential Privacy will end up in exacerbating unfairness, hence supporting the
need for alternative choices for pursuing privacy-preserving ML. Oneto et al. [33], instead,
studies the privacy and fairness properties of randomized algorithms, proving that in this
framework, it is possible to naturally impose fairness (measured with a generalized notion
of fairness contemplating Equal Opportunity, Equal Odds, and Demographic Parity) and
quantify the amount of disclosed information (via differential privacy) with theoretical
guarantees. Unfortunately, the approach is still quite theoretical and practical evidence is
still missing.

Some other works have tried to discuss the need for theoretical and practical ethical
ML-enforcing privacy, fairness, and explainability properties [4,111–113]. Nevertheless,
to the best of the authors’ knowledge, in the literature, there are no works that simul-
taneously focus on enforcing privacy (especially HE), fairness, and (local and global)
explainability in a theoretically grounded way and with actual empirical evidence in a
realistic application.

In our work, we focus on a common face recognition problem using the recently
released FairFace dataset [65]. Facial recognition is becoming a widespread and contro-
versial tool used in many different contexts (e.g., from recreational activities to policing).
Its popularity has increased so rapidly over the last few years that facial recognition soft-
ware is commonly also used by government agencies [114]. Nevertheless, much recent
evidence [115–117] shows how these algorithms can be biased against black people and
women. In reaction to these issues, according to CNN [118], some governments banned
the usage of facial recognition systems in law enforcement agencies and public-facing
businesses. Making face recognition algorithms more trustworthy (fair, private, and ex-
plainable) would greatly improve the public opinion of them and their general acceptance.

Historically, traditional methods for facial recognition attempted to extract hand-
crafted shallow features (e.g., Viola-Jones [119], Gabor [120], LBP [121]), and, before the
advent of deep ML models, they represented the state of the art for classical benchmark
datasets [122]. Deep learning models have recently been shown to outperform these
classical methods, being more robust to changes in illumination, face pose, aging, expres-
sions, and occlusions [123]. In particular, Convolutional Neural Networks (CNN) are
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designed to be particularly proficient in facial recognition tasks and image recognition
in general [124,125], employing a series of convolutional, pooling, and activation layers
for extracting expressive representation from the input images. Moreover, the possibility
of exploiting pretrained networks (e.g., LeNet [126], AlexNet [127], GoogleNet [128], VG-
GNet [129], and ResNet [130]) as-is or fine-tuned represents the state-of-the-art approach
for different computer vision tasks [124]. In this work, we rely on the VGGNet architec-
ture since it offers a good trade-off between accuracy, computational resources, and ease
of use. Moreover, VGGNet differs by a few percentage points in accuracy from other
state-of-the-art deep neural networks [122,131–133].

3. Preliminaries

Let us consider the probability distribution µ on I ×S ×Y , where I is the input space,
S = {1, 2} identifies a binary sensitive variable (in our case the binary gender, i.e., male
and female) and Y = {0, 1} is a binary label (in our case < and ≥ of 30 years old). For
S , our method easily extends to multiple sensitive variables and continuous variables,
but to ease the presentation, we consider only the binary case in the paper. In our work,
I ⊆ Rh×w×3 is the space of all RGB images of human faces, where h and w are the height
and width of the image, while the third dimension defines the three standard color channels
(Red, Green, and Blue). Let D = (Ii, si, yi)

n
i=1 ∈ (I × S × Y)n be a set of n samples from

µ. For each s ∈ {1, 2}, let D1 = {(I, s, y) ∈ D | s = 1} and D2 = {(I, s, y) ∈ D | s = 2}
be the set of samples in the first and second group, respectively. The goal is to learn a
model h : Z → Y able to approximate P{y | Z} where Z ∈ Z may contain (Z = I × S) or
not (Z = I) the sensitive attribute, depending on the specific regulation [134,135]. The
ability of h of approximating P{y | Z} is measured with different indices of performance
P(h) based on the required properties and the different tasks under examination [66]. For
example, in binary classification P(h) can be the Accuracy or the Mean Square Error.

Within the context of the increasingly popular deep ML models, h can be described
as a composition of simpler models m(r(Z)), where m : Rd → Y is a (non-)linear function
and r(Z) ∈ Rd is a function mapping the input data into a vector, usually referred to as the
representation vector. Note that r can be a composition of functions as well r : rl ◦ · · · ◦ r2 ◦ r1,
for example, in a deep neural network of l layers [66]. In other words, the function r creates
a compact and expressive description of the input space that can deliver high accuracy
when used by m to solve a specific task. r, learned in a particular context, can be reused by
many models m as it is or fine tuned for the specific task at hand.

According to Algorithmic Fairness, we expect the model h to be fair with respect to one
or more notions of fairness [26]. As recently theoretically studied in [64] and empirically
demonstrated in many works [62,63,136–139], when deep learning models are developed,
learning a fair representation actually allows one to make the entire network fairness-aware.
Intuitively, this fair representation could be subsequently exploited by other ML models,
for example, within the context of Transfer Learning [140], enforcing fairness by-design.
In our work, we require the representation vector to satisfy the DP constraint [78]. Other
notions of fairness could be exploited in this paper such Equal Opportunity and Equal
Odds [141], but this extension is straightforward and out of the scope of this paper.

PZ{r(Z)∈C | s=1} = PZ{r(Z)∈C | s=2}, ∀C⊆Rd, (1)

namely, the two conditional distributions of the representation vector should be equal with
respect to the sensitive attribute. The constraint of Equation (1) directly implies that any
model m learned on top of a fair representation will be again fair

PZ{m(r(Z))=1 | s=1} = PZ{m(r(Z))=1 | s=2}. (2)

The performance P(h) of the final models h will be evaluated with the accuracy metric
(ACCy(h)), namely percentage of correctly classified samples, computed on the test set (i.e.,
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data not exploited to train h) [142]. Exploiting Equation (1), the fairness of the final models
h will be measured by means the Difference of Demographic Parity (DDP) [64]∣∣∣∣∣∣ 1

|D1| ∑
(Z,y)∈D1

[h(Z)=1]− 1
|D2| ∑

(Z,y)∈D2

[h(Z)=1]

∣∣∣∣∣∣, (3)

where the Iverson bracket notation is used.
We will rely on HE for enforcing privacy guarantees. In linear algebra, a homomor-

phism is a transformation between two algebraic structures that preserves the defined
operations. For example, let φ : A → B be a homomorphic map between two sets A
and B with the same algebraic structure, if ⊕ is a binary operation on that structure, then
φ(A1 ⊕ A2) = φ(A1)⊕ φ(A2), ∀A1, A2 ∈ A. Hence, HE is an encryption protocol that
relies on homomorphic transformations obtained through the definition of public (i.e.,
encryption) and private (i.e., decryption) keys. Thanks to the property of homomorphism,
some operations can be performed on the encrypted data as they were carried on the
non-transformed version preserving the privacy of the original data. Specifically, we will
rely on Somewhat HE using the CKKS scheme, which allows a bounded number of compu-
tations limited to addition, multiplications, and rotations. The CKKS algorithm defines four
phases: encoding, encrypting, decrypting, and decoding [102]. First, the input data, which
consist of a vector of real values, are encoded into a polynomial (i.e., the plaintext) of degree
p, where p is a power of 2. CKKS works with cyclotomic polynomials from the Ring theory
because they offer a good trade-off between security and efficiency [102]. The plaintext is
then encrypted into a pair of different polynomials (i.e., the ciphertext) through the use
of a public encryption key. The homomorphism of this encryption is achieved thanks to
the theory of Ring Learning With Error [143], where, of particular interest for this work,
addition and multiplication are preserved. While additions cause no obstacles, multiplica-
tions increase the noise kept in the pair of ciphertexts; therefore, only a limited number of
products is allowed. However, higher polynomial degrees allow for wider computational
bounds, yet they are more expensive in terms of processing and memory requirements.
Once the required computations are performed, the pair of ciphertexts can be reverted back
first to the plaintext polynomial through the use of the secret decryption key, and then
to the vectors of values through the final decoding phase. The output vectors will yield
approximate results, close to the real solution thanks to the property of homomorphism.
The polynomial degree p must be chosen as small as possible to guarantee the correctness
of the results without increasing too much the computational requirements [102].

In order to improve the readability of the technical parts, we added the list of notations
in Table 1 that are exploited in the paper.

Table 1. Notations.

Symbol Description

I General input space of RGB images

h RGB images height

w RGB images width

S Binary sensitive attribute space

s sth sensitive group

Y Binary label space

D Full dataset

Ds Samples from D in the sth sensitive group

Z Model input space that may (or not) contain the sensitive attribute

Z Model input
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Table 1. Cont.

Symbol Description

h General end-to-end model

h∗ Learned end-to-end model

r Sub-model that learn the data representation (embedding layers)

m Sub-model that learn the task from the representation (task specific layers)

P General utility measure

ACC Accuracy Measure

φ Homomophic map

A, B Sets with same algebraic structure

p Degree of the encoded cyclotomic polynomial

F General fairness measure

λ Fairness regularization hyper-parameter (Tikhonov formulation)

η Fairness regularization hyper-parameter (Ivanov formulation)

DP Demographic Parity

DDP Difference of Demographic Parity

AVG First order (convex and differentiable) approximation of the DDP

y Classification prediction target

yn Non-normalised classification model prediction for y

A Convolutional layer output

Ak Matrix relative to channel k in layer output A

Gyn ,Ak Gradients matrix of yn w.r.t. Ak

αy,Ak Importance weight of Ak w.r.t. the target y

Ly Grad-CAM map w.r.t. the target y

Ms Dataset average Grad-CAM for the sth sensitive group

FRO Frobenius distance

KS Kolmogorov–Smirnov distance

4. Proposed Method

In this section we will present our approach to learn private, fair, and explainable deep
ML models. In particular, we will start presenting our approach to private deep ML models
based on HE showing the limitations that are implied in terms of computations and opera-
tions (Section 4.1). Then we will present the chosen architecture, with particular reference
to the exploited facial recognition application. The proposed architecture slightly differs
from the classical one due to the handling of the HE limitations (Section 4.2). Following this
analysis, we will show how to impose the fairness constraint, again taking into account the
limitation imposed by HE, using the fair representation framework (Section 4.3). Finally,
we will empower the proposal with explainability properties that will be used also to
understand what is learned from the deep model and whether the fairness constraint
actually changes how and what the architecture perceives from the images (Section 4.4).

4.1. Making the Model Private

As previously mentioned, to enforce privacy, we relied on HE during both the train-
ing and forward phases of the deep ML models. During training time, each sample is
encrypted following the CKKS [102] scheme to a high order polynomial that masks the
real data attributes and labels. Then these encrypted values are fed to the DNNs, which
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output encrypted predictions. Thanks to the homomorphism property, the masked labels
and predictions can be compared through a loss function. The loss function needs to
be expressed in terms of additions and multiplications (the only operations allowed by
CKKS) so a polynomial loss function is the most natural choice (e.g., the Mean Square
Error [144]). During the training phase, we rely on Gradient Descent algorithms [66,145],
which natively require us to compute just additions and multiplications. This is true
only if the architecture of the deep ML model does not contain special (non-polynomial
activations) functions whose derivative cannot be expressed easily with additions and
multiplications (this limits our architectural choices; e.g., the widely-used RELU activation
function cannot be deployed). Belonging to Somewhat HE, CKKS adds a certain amount
of noise to the encrypted data, which increases with the number of stacked layers [72,76].
This fact also limits the depth of the network. Finally, the CKKS scheme heavily increases
the memory and computational requirements for storing and processing the data, further
limiting the architectural choices and the number of data that we can use to train the
network. Note that the privacy of the deep network can be enhanced by also encrypting
the weights of the network [146] (e.g., to avoid or at least mitigate adversarial attacks
(https://blog.f-secure.com/mitigations-against-adversarial-attacks (accessed on 11 Au-
gust 2021)). The process of encryption/decryption is performed through the python
TenSEAL [147] library for the CKKS scheme which easily allows the integration with com-
mon deep ML software frameworks like PyTorch [148]. Other libraries, even more efficient,
exist [149,150], but they can be hardly combined with deep ML software frameworks.

4.2. The Architecture of the Deep Model

In this work, we will exploit the VGGNet-16 [129] (Configuration D) as the architecture
for face recognition. VGG-based networks exploit deep architectures, leading to quite accu-
rate results for a variety of different tasks while maintaining relatively low computational
requirements thanks to the use of small filters. In fact, stacking convolution layers with
small kernels seems to be preferable to using a single layer with larger kernels, provid-
ing computational and generalization advantages [129]. Moreover, the use of multiple
stacked layers allows tone o easily increase the nonlinearity harnessed by the network
by adding an activation function at each intermediate step. The VGGNet-16 embeds the
input data in a 25,088-dimensional vector space by means of 14 million parameters, which
allow lynear state-of-the-art results to be achieved in multiple facial-recognition-related
tasks [122,131–133]. Because of such complexity, the VGGNet-16 deployed in this work has
been pretrained on the face recognition dataset VGG-Face [151].

However, in this work, we will need to depart from the standard end-to-end use of
deep learning models due to the limitation imposed by HE as expressed in Section 4.1.
The convolutional layers need to be kept fixed, i.e., used just to extract the embedding.
In fact, fine-tuning them would require using end-to-end HE for the whole architecture,
resulting in an intractable problem from the computational point of view. Actually, the
25,088-dimensional embedding cannot be directly used, for the same reason above, but we
have to shrink it in a much smaller embedding, i.e., a 32-dimensional, by means of a dense
layer with Sigmoidal activation. The parameters of this layer, along with those of the last
convolutional layer, are initially pretrained on the FairFace dataset. To give an idea of why
we chose 32 as the dimensions of the embeddings, we point out that managing 1000 images
embedded in this 32-dimensional vector requires approximately 30 GB of memory (see
details in Section 5).

The actual learning phase was conducted starting from these fixed 32-dimensional em-
bedding using a single hidden layer architecture empowered with HE. The 32-dimensional
vector is fed into a 16-dimensional dense layer with a square activation function, which
complies with the CKKS limitation. The output of this layer is fed into a 2-dimensional
dense network with linear activation. We did not use a single output neuron for being able
to exploit the Grad-CAM visualization algorithm (see Section 4.4). The parameters of these
last layers are randomly initialized according to a Gaussian distribution N(0, 0.01).

https://blog.f-secure.com/mitigations-against-adversarial-attacks
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Figure 1 represents both a classical architecture [45] (Figure 1a) and the proposed one
(Figure 1b) for facial recognition.

(a) Classical VGGNet-16-based face
recognition architecture.

(b) Proposed VGGNet-16-based face
recognition architecture.

Figure 1. Classical and proposed architectures for facial recognition. Figure shows the pretrained,
the trained, and the fine tuned layers, where the HE is employed, the fairness constraints, and the
visualization methods are applied.

4.3. Making the Model Fair

As reported previously, many different approaches exist to impose the fairness con-
straint of Equation (1). In particular, following the fair representation principle [45], we
propose the formulation of a Tikhonov regularizer F(h) for balancing the possibly biased
performance index P(h) (Section 3) in the cost function as follows:

h∗ = arg min
h

P(h) + λF(h), (4)

where λ ∈ [0,+∞) trades off accuracy and fairness, as we will also see in Section 5. Note
that the constraint could have been imposed using the Ivanov philosophy [152], and the
results would be the following optimization problem

h∗ = arg min
h

P(h), s.t. F(h) ≤ η, (5)

where η ∈ [0, 1] regulates the level of accepted fairness, which is cognitively more close to
the problem of imposing a certain level of fairness to the final model. Nevertheless, note
that, for some values of η and λ, the two problems of Equations (4) and (5) are equivalent,
but Problem (4) is much less computationally demanding with respect to Problem (5) [153].
Note also that setting η = 0 in Problem (5) (or λ→ +∞ in Problem (4)) to impose the DP
does not guarantees fairness in terms of generalization since Problem (5) (or Problem (4))
exploits empirical quantities. Setting η ∈ [0, 1], λ ∈ [0,+∞) allows one to avoid overfitting
the particular sample.

The concept of learning a fair representation is expressed, in this context, by imposing
the regularizers on the last layer of the representation, namely F(h)→ F(r). This translates,
in the classical architecture, into imposing the constraint in the last convolutional layer
as the most effective strategy [45] (see Figure 1a), while, for the proposed architecture,
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in imposing the constraint in the last tunable representation layer, i.e., the 16-dimensional
last hidden layer (see Figure 1b).

Unfortunately, the fairness constraint of Equation (3) is practically hard to handle, and
it is necessary to approximate it by defining effective yet computationally efficient alterna-
tive regularizers, which also have to meet the HE limitations. In the literature, different
approaches have been proposed, and the most effective ones appear to be the one reported
in [64]. The authors of [64] propose three different regularizers: one based on convex
approximation and relaxation of the constraint of Equation (1), one based on the squared
Maximum Mean Discrepancy [154], and one based on the Sinkhorn divergence [155].

Because of the limitations imposed by HE, the approaches based Maximum Mean
Discrepancy and Sinkhorn divergence cannot be effectively employed. We rely on the
convex approximation and relaxation of the constraint of Equation (1) proposed by [64]
where the regularizer assumes the following form:

AVG(r) =

∥∥∥∥∥∥ 1
|D1| ∑

(Z,y)∈D1

r(Z)− 1
|D2| ∑

(Z,y)∈D2

r(Z)

∥∥∥∥∥∥
2

. (6)

Note that this convex approximation and relaxation is simply the first-order approxi-
mation of Equation (1). Note that if the chosen architecture can be handled with H, this
regularizer added in the cost function simply adds a term which can be computed with
sum and multiplications, such as its derivatives.

4.4. Making the Model Interpretable

In order to provide both local and global explanations and to visualize how the
CNNs react to the input images, we analyze the attention regions obtained through Grad-
CAM [79]. Specifically, Grad-CAM extracts attention maps (i.e., heatmap images) that
highlight the most influential features for a particular supervised task. They can be used as
a local explanation method if applied to a single instance or global if the result is averaged
over a subset of the instances (e.g., over all the men older than 30 years old). When dealing
with fairness, attention maps can underline any divergence in the representations between
different protected groups.

By fixing a classification prediction target y ∈ Y (i.e., the output neuron of the network
corresponding to particular class), a non-normalised network score yn for y (i.e., prior to
the final Softmax activation for classical architecture or simply the output for the proposed
one in Figure 1), and a convolutional layer output A ∈ RK×U×V (where we extract the
matrix Ak ∈ RU×V relative to the channel k ∈ {1, · · · , K} - U, V are the output matrices
dimensions for any of the k channels), then the gradient Gyn ,Ak ∈ RU×V of yn with respect
to Ak is defined as

Gyn ,Ak =
∂yn

∂Ak
. (7)

The importance weight of the channel k with respect to the class y is naturally obtained
as the average αy,k across the convolutional layer matrix entries

αy,Ak =
1

UV

U

∑
i=1

V

∑
j=1

Gyn ,Ak ,i,j. (8)

Finally, the Grad-CAM map with respect to a target y is defined as Ly, namely the
weighted sum across all the dimensions k, is

Ly = ReLU

(
K

∑
k=1

αy,Ak Ak

)
, (9)
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where the ReLU function [127] simply suppresses all the negative values highlighting the
interest for the features that have only a positive influence towards a certain target.

Since the first part of the architecture is unencrypted (see Figure 1b), the network can
be inspected easily by either the user (using its own private data) or the model designer
(using a set of data not constrained by privacy issues) both when the network parameters
are encrypted or unencrypted.

In our work, we extract the Grad-CAM attention maps relative to the last convolutional
layer of VGGNet. Usually, earlier convolutions extract low-level features (e.g., edges or
corners), while deeper convolutional layer are able to describe more abstract features, such
as geometrical shapes or complex connected regions [79], which are extremely significative
for tasks such as facial or image recognition. Note that Grad-CAM allows inspecting the
network perception even if some of the deep layers are kept fixed and just the last layers are
modified or fine-tuned (like in our case, see Figure 1b). In fact, the perception is propagated
from the output to the inner convolutional layers, which allows to track back changes on
the last weights [79].

Although gradient-based methods might not be the optimal solution for visual expla-
nation (e.g., saturation, zero-gradient image regions, and false confidence in the output
score phenomena [156]), the computational cost of Grad-CAMs is negligible when com-
pared to other methods that require multiple network forward-passes per image [156,157].
Moreover, Grad-CAM is considered the reference method in several recent works [157–161].

The second implemented approach to globally explain the deep network behavior
consists in observing whether the network maps the input data into a feature space able to
both preserve performances and mask the membership in a protected population. Fixing
an internal network layer, this task can be performed by reducing the dimensionality of
the layer’s original space to a lower-dimensional (possibly two) and more interpretable
one. In our work we rely on the t-SNE algorithm [80,81] for effectively carrying out this
dimensionality reduction. As an unsupervised approach, it allows one to evaluate the
statistical distribution of the extracted features hiding task-related information, which may
produce undesired distortions.

t-SNE firstly calculates the similarity between points both in the high-dimensional
space and in the corresponding low-dimensional one. The similarity is calculated as the
conditional probability that a point P1 would choose point P2 as its neighbor following
a Gaussian distribution centered at P1. Then, it tries to minimize the difference between
these conditional probabilities in the higher-dimensional and lower-dimensional spaces by
minimizing the sum of Kullback–Leibler divergence of overall data points using a gradient
descent method.

In this work, we applied directly t-SNE on the 16-dimensional embedding (since it
is the only one which varies with the training phase) for the proposed architecture (see
Figure 1b).

For what concerns the classical architecture (see Figure 1a), instead, the 25,088-dimensional
embedding is too big to be fed directly to the t-SNE algorithms. For this reason, we will
adopt a two-step approach for effectively reducing its dimensionality. The first step of
this feature reduction is supervised (by means of L1-regularized Logistic Regression [162]),
while the second one is un-supervised (by means of the t-SNE). The first step allows us
to remove the features with zero contributions to the specific task under examination.
The second step allows us instead to evaluate the statistical distribution of the remaining
features hiding task-related information which may produce unwanted distortions. As
usually happens in deep networks, the representation vector has a large number of elements
(to allow its use in multiple tasks) but only a subset of them is needed to solve a specific
task. Exploiting a L1-regularized Logistic Regression allows to discard the features with
no contribution to the task solution (by means of the L1-regularization [163]) reducing the
dimension of the space to just the informative features for the considered task. Since t-SNE
is a computationally demanding algorithm, usually a PCA-based [164] pre-dimensionaly
reduction step is adopted.
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5. Experimental Results

In this section we present the results of applying the methodology presented in
Section 4 on the FairFace real-world dataset [65]. In particular, in Section 5.1 describes
the FairFace dataset. Then, Section 5.2 describes the architectural configurations tested
in the study (i.e., with and without HE and/or fairness constraints). Section 5.3 reports
the performance of this architecture in terms of accuracy and fairness, while Section 5.4
focuses on their computational requirements. Finally Sections 5.5 and 5.6 focus on local and
global explainability, respectively, to give more insights into what the different architecture
actually learned from the data and what the effects of introducing privacy and fairness
requirements are. All the codes for producing the results are made freely available to
the community (https://github.com/lucaoneto/ENTROPY_2021 (accessed on 11 August
2021)).

5.1. The Dataset

The FairFace dataset [65] is a collection of ≈100 thousand facial images extracted from
the YFCC-100M Flickr dataset [165]. Automated models trained on FairFace can exploit
age group (age ranges of [0–2], [3–9], [10–19], [20–29], [30–39], [40–49], [50–59], [60–69],
and [70+]), gender (which, for this dataset, refers to the perceived binary gender (Male and
Female) of an individual), and ethnicity (Western White, Middle Eastern White, East Asian,
Southeast Asian, Black, Indian, and Latinx.) as sensitive information. Our task consists in
predicting whether a face belongs to a person with more (1) or less (0) than 30 years old
measuring the discrimination between individuals with different gender. Table 2 reports
some statistics about the FairFace dataset with respect to the selected sensitive attribute.

Table 2. Fairface: label distribution (gender is the sensitive features).

Age ≥ 30 Age < 30
Sensitive

Marginals

Females
18.60%
18,174

28.40%
27,746

47.00%
45,920

Males
27.21%
26,587

25.79%
25,191

53.00%
51,778

Class
Marginals

45.82%
44,761

54.18%
52,937

97,698

For this work, the training and test sets are composed, respectively, of 86.7 thousand
and 10.9 thousand images (same split of the original FairFace dataset [65]).

5.2. Tested Configurations

In this section, we summarize all the architecture that we tested in the experiments:

• The classical VGGNet-16-based face recognition architecture (see Figure 1a) under the
following settings:

– The architecture was trained with a random selection of 20,000 training and
10,000 test images from the training and test sets, respectively. We train every
model for a total of 10 epochs using the ADADELTA [166] gradient descent
method with mini batches of 150 images. The layers before the last convolution
one (excluded)were not fine-tuned and would benefit from the parameters pre-
trained on the VGG-Face dataset (see Section 4.2);

– We investigated the case when the fairness constraint (see Section 4.3) is or is not
imposed in the last convolutional layer;

https://github.com/lucaoneto/ENTROPY_2021


Entropy 2021, 23, 1047 14 of 26

– We also derived the attention maps and the dimensionality reduction with respect
to the last convolutional layer.

• The proposed VGGNet-16-based facial recognition architecture (see Figure 1b) under
the following setting:

– The architecture was trained with a random selection of 1000 training (because of
the limitation imposed by HE; see Section 4.1) and 10,000 test images from the
training and test sets, respectively. We trained every model for a total of 10 epochs
using gradient descent [66]. Before the actual training could take place, the em-
beddings needed to be reduced to a much smaller representation vector due to
the computational limitation imposed by HE (see Section 4.1). To perform this
task, we trained the architecture depicted in Figure 1b without applying HE. We
chose a 32-dimensional representation since it represents a good tradeoff between
information compression (due to the HE limitations) and utility (the accuracy
of the whole network remains unaltered). This preliminary phase observes the
same settings imposed for training the classical architecture. Once the network
parameters are trained for extracting the 32-dimensional representation vector,
we reset the weights of the last two dense layers following again the original
Gaussian distribution N(0, 0.01). This simulates the case when a new network
is trained from scratch by applying privacy guarantees through HE. The layers
before the last convolution one (excluded) were fine-tuned and could benefit
from the parameters pre-trained on the VGG-Face dataset (see Section 4.2).

– We investigate the case when HE was or was not exploited (see Section 4.1) in
the last three layers of the network (see Figure 1b).

– We investigated the case when the fairness constraint (see Section 4.3) was or was
not imposed in the last hidden layer;

– We derived the attention map with respect to the last convolutional layer. We
applied, instead, the dimensionality reduction to the last hidden layer.

5.3. Accuracy vs. Difference of Demographic Parity

In this section, we evaluate the different architectures in terms of accuracy ACC and
fairness DDP, on the test set.

In particular, Figure 2 reports the ACC against the DDP for the different architectures
(see Section 5.2) when different values of λ are exploited.

Two tendencies can be observed in Figure 2. The first one refers to the tension between
accuracy and fairness: the more fair we want the model to be (the higher value for the
regularization parameter λ), the less accurate the model will be on the available data (i.e.,
data are biased and then, trying to remove these bias, not fully trustable). The second one
refers to the tension between accuracy and privacy: enforcing privacy with HE actually
reduces our ability to use large amounts of data, computation, and architectural choices
and hence reduces our ability to learn accurate models. Nevertheless, the results of the
proposed architecture gives similar results as expected from the theory (see Section 4.1)
whether HE is present or not, while the small differences are obviously due to the noise
introduced by HE in the computation.

Figure 2 clearly shows the effectiveness of the proposed approaches in learning private
and fair models.
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(a) Classical Architecture with (λ > 0) and with-
out (λ = 0) the fairness constraint.

(b) Proposed Architecture with (λ > 0) and
without (λ = 0) the fairness constraint and
no HE.

(c) Proposed Architecture with (λ > 0) and
without (λ = 0) the fairness constraint and HE.

Figure 2. Comparison between the different architectures in terms of accuracy ACC and fairness DDP.

5.4. Computational Requirements

In this section, we would like to report and underline the computational requirements
for training the different architectures under examination (see Section 5.2).

In particular, Table 3 reports the training time and memory requirements averaged
over different runs for the different architectures described in Section 5.2. Experiments were
run on a machine equipped with Windows Server 2019, 4 Intel Xeon CPU E5-4620, 256GB
DDR3 of RAM, 1 TB SSD disk, Python 3.7, scikit-learn 0.24.2, PyTorch 1.8, and TenSeal 0.3.4.

Table 3. Training time and memory requirements averaged over different rounds for the different architectures.

Architecture Fairness Homomorphic Number of Training Time Memory
Constraint Encryption Training Samples (sec/epoch) Requirements (GB)

Classical 20,000 6200 ≈10

(Figure 1a, full) x (batches of 150) 6100 ≈10

Proposed

1000

< 1 ≈1

(Figure 1b, x < 1 ≈1

training last two x 2100 ≈30

dense layers) x x 3000 ≈30
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From Table 3, it is possible to note the explosion, in terms of computational require-
ments, when the HE is employed. This is expected from the theory (see Section 4.1), and
this is the reason behind the architectural choices (the reduction of the embedding dimen-
sion from 25,088 to 32) and the limitation in the size of the training set from 20,000 to 1000).
Nevertheless, the results of Section 5.3 have shown how these limitations actually do not
compromise the ability to learn fair and accurate models.

5.5. Attention Maps

In this section, we aim at assessing a possible discriminatory attention behavior carried
out by the different architectures (see Section 5.2) tested in Sections 5.3 and 5.4.

In fact, following the method presented in Section 4.4, we wish to observe whether the
application of the fairness constraint produces less discriminatory attention mechanisms,
namely more similar attention maps between different subgroups. In order to standardize
the image face regions, we exploited a set of 50,000 images of frontal faces extracted from the
Diversity in Faces dataset [167], where, again, gender was exploited as the sensitive feature.

Firstly, we took the average attention maps of both males and females, and we com-
puted the difference between these two average attention maps through the Frobenius dis-
tance [168]. More formally, for each image in the dataset, let us compute the grad-CAM at-
tention map LY (see Section 4.4). Then, let us define Ms ∈ RU×V , with s ∈ {males, females},
as the dataset averaged LY for each subgroup in the population. Finally, the Frobenius
distance of Mmales and Mfemales is computed as

FRO(Mmales, Mfemales) =

√√√√ U

∑
i=1

V

∑
j=1

(Mmales,i,j −Mfemales,i,j)2.

Figure 3 reports Mmales, Mfemales, and FRO(Mmales, Mfemales) for the different architec-
tures with (λ > 0) and without (λ = 0) the fairness constraint. Figure 3 clearly shows the
positive effect of the fairness regularizes in reducing the networks’ discriminatory attention
mechanism, which is quite evident if compared to the no-regularized case.

For sake of completeness, we also report in Figure 4 the attention map for the different
architectures with (λ > 0) and without (λ = 0) the fairness constraint for a young male,
a young female, an old male, and an old female. Due to space limitations, we report just
the results with a λ that showed the best accuracy/fairness in the results of Section 5.3.

Figure 4 clearly shows how the fairness regularizer is able to restrict the networks’
receptive field to class-specific face regions.

(a) Classical Architecture with (λ > 0) and without (λ = 0) the fairness constraint.

Figure 3. Cont.
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(b) Proposed Architecture with (λ > 0) and without (λ = 0) the fairness constraint and no HE.

(c) Proposed Architecture with (λ > 0) and without (λ = 0) the fairness constraint and HE.

Figure 3. Comparison between the different architectures using the average attention map extracted
with Grad-CAM.

(a) Classical Architecture with (λ > 0) and without (λ = 0) the fairness constraint.
Figure 4. Cont.
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(b) Proposed Architecture with (λ > 0) and without (λ = 0) the fairness constraint
and no HE.

(c) Proposed Architecture with (λ > 0) and without (λ = 0) the fairness constraint
and HE.

Figure 4. Comparison between the different architectures using the attention map of sample images
extracted with Grad-CAM.
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5.6. Dimensionality Reduction

In this last set of experiments, we analyzed the distribution of the representation
vectors (see Section 5.2 and Figure 1) by means of dimensionality reduction using the
pipeline presented in Section 4.4.

For what concerns the classical architecture (Section 4.4), we cross-validated the L1-
regularization strength in the L1-regularized logistic regression obtaining a top accuracy
above 80% for the binary classification task. This step discarded most of the representation
vector features extracted by the VGGNet-16, keeping just ≈ 450 features (i.e., those with
weights different from 0). Then, the PCA further reduced the dimensionality of the space
from ≈ 450 to 50 features. Finally, the t-SNE has been exploited to map this 50-dimensional
space into a 2-dimensional space.

For what concerns the proposed architectures (Section 4.4), instead, the t-SNE was ex-
ploited to directly map the hidden 16-dimensional embedding into a 2-dimensional space.

Figure 5 displays the results for the different architectures, with (λ > 0) and without
(λ = 0) the fairness constraint, on a random selection of 3000 samples from the test set
to allow a friendly visualization. Due to space limitations, we report just the results with
a λ, which showed the best accuracy/fairness in the results of Section 5.3. For the sake
of completeness, Figure 5, also reports the two-dimensional Kolmogorov–Smirnov (KS)
distance [169,170] between the distributions of Males and Females in this low-dimensional
space. Figure 5 clearly shows how the application of the fairness regularizer reduces the
amount of discrimination: Males and Females are distributed similarly in the space after the
application of the fairness regularizer, while before they either were clustered in different
sub-spaces (Figure 5a) or presented a higher KS distance (Figure 5a–c). This means that
the regularizer reduced the ability to identify Males and Females simple based on their
position in the space defined by the representation vector learned by the architecture.

(a) Classical Architecture with (λ > 0) and without (λ = 0) the fairness constraint.

(b) Proposed Architecture with (λ > 0) and without (λ = 0) the fairness constraint and no HE.

Figure 5. Cont.
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(c) Proposed Architecture with (λ > 0) and without (λ = 0) the fairness constraint and HE.

Figure 5. Comparison between the different architecture using the t-SNE dimensionality reduction
algorithm on the learned embedding.

6. Conclusions

The use of artificial intelligence coupled with the ability to learn from historical
data is becoming ubiquitous. For this reason, the social and ethical implications of the
widespread use of tools empowered with such intelligence cannot be ignored any longer.
The increasing concerns regarding these issues are not only increased by the population
or by the institutions, but also by researchers who have shown potential discriminatory
behavior, by threats to privacy and to the right of explanation, and by risks of attacks
in current artificial intelligence systems. Institutions such as the European Union have
created a high-level expert group on this subject drawing guidelines for more trustworthy
intelligent systems (https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai
(accessed on 11 August 2021)).

For this purpose, in this work, we work toward the development of systems able
to ensure trustworthiness by delivering privacy, fairness, and explainability by-design.
In particular, we have shown that it is possible to simultaneously learn from data while
preserving the privacy of the individuals thanks to the use of Homomorphic Encryption,
ensure fairness by learning a fair representation from the data, and ensure explainable
decisions with local and global explanations without compromising the accuracy of the final
models. We then tested the practicality of our approach on a widespread and controversial
application, namely the face recognition, using the recent FairFace dataset to prove the
validity of our approach.

To the best knowledge of the authors this is one of the first results in this framework
with actual practical results. Nevertheless, this work is just a step forward toward the
design of fully trustworthy intelligent systems. For example, in the future, more appli-
cations could be explored. Moreover, we need to address the requirement of robustness,
which demands making the approach more robust to the presence of adversarial attacks
(i.e., adversarial samples or poisoning methods). For this aspect, our framework is already
designed to encapsulate robustness requirements since adversarial defense mechanisms
are mostly based on gradient-based methods, which marry well with our framework.
Finally, while a strong theoretical framework has been developed for the different methods
employed in this work, a theoretical framework able to simultaneously offer statistical
guarantees of privacy, fairness, and explainability still needs to be designed.
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