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Abstract: Mobile edge computing (MEC) focuses on transferring computing resources close to the
user’s device, and it provides high-performance and low-delay services for mobile devices. It is an
effective method to deal with computationally intensive and delay-sensitive tasks. Given the large
number of underutilized computing resources for mobile devices in urban areas, leveraging these
underutilized resources offers tremendous opportunities and value. Considering the spatiotemporal
dynamics of user devices, the uncertainty of rich computing resources and the state of network
channels in the MEC system, computing resource allocation in mobile devices with idle computing
resources will affect the response time of task requesting. To solve these problems, this paper
considers the case in which a mobile device can learn from a neighboring IoT device when offloading
a computing request. On this basis, a novel self-adaptive learning of task offloading algorithm (SAda)
is designed to minimize the average offloading delay in the MEC system. SAda adopts a distributed
working mode and has a perception function to adapt to the dynamic environment in reality; it does
not require frequent access to equipment information. Extensive simulations demonstrate that SAda
achieves preferable latency performance and low learning error compared to the existing upper
bound algorithms.

Keywords: MEC; resource allocation; task offloading; self-adaptive learning

1. Introduction

Since the birth of cloud computing, it has changed the methods of data acquisition,
storage and processing to a large extent. It involves the integration and utilization of
the Internet, mobile network and cable TV network technology, making it a highly inte-
grated network. There are also many emerging businesses, such as video conferencing,
telemedicine, online games, cloud storage, financial cloud services, etc. However, due
to the high complexity, high data intensity and delay sensitivity of these applications,
they are limited by the device computing resources and cost. Offloading computing task
requirements to the traditional cloud is one solution, but the traditional cloud is typically
far away from the application, which creates a new problem—increased latency. It has been
found that if some of the requests with low computational requirements and small data
volume are not sent to the cloud, but processed by the server close to the data requirements,
the transmission path of the request tasks will be greatly reduced. Involving the place-
ment of small servers at the edge of the cellular network, a new distributed architecture
known as mobile edge computing (MEC) has been proposed by the European Telecommu-
nication Standard Institute (ETSI) [1]. In the MEC architecture, distributed mobile edge
servers called cloudlets are deployed at the edge of wireless network to provide computing
resources and storage with high bandwidth and low delay [2].

Simply offloading tasks to the cloudlets is insufficient to reduce the response latency.
When cloudlets are overloaded, a large number of tasks cannot be processed in a timely
manner due to limited computing resources, resulting in non-negligible computing delays.
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Due to the spatiotemporal dynamics of user devices, the appearance time of each user
device in the communication range is random, which means that the cloudlet is not
available for user devices that are not within the communication range. Meanwhile,
many user devices are idle at most times, while some user devices are slow to respond
to tasks due to the shortage of computing resources. Reasonable recycling of the idle
computing resources of user devices and cloudlets can greatly improve the utilization of
user equipment and provide a faster service response for users.

In this paper, our main contributions are as follows:

(1) We propose a self-adaptive learning of task offloading algorithm (SAda) to guide
task offload and minimize task delay. The operation of the SAda algorithm is dis-
tributed and can improve the offloading performance by learning from the previous
offloading experience.

(2) Considering the spatiotemporal dynamics of the user’s device, the perceptual function
is also integrated into the algorithm. The user devices that require the task processing
service are called the task user equipment (TUE), and the user device that can serve
the TUE for the task processing is the service user equipment (SUE). The TUE can
sense the position and working state of the SUE when task processing is needed, and
the computation task can be reasonably assigned to a suitable SUE, which can obtain
the optimal task assignment scheme and the minimum delay.

(3) A learning method during offloading tasks is introduced. With no need to obtain the
exact transfer rate and CPU resources, TUEs can observe and learn during offloading
computing tasks and can select candidate SUEs based on past offloading experience.
In order to prove the performance of SAda, the learning errors of SAda are evaluated
with three existing algorithms, which represents the difference between the delay
of offloading one bit of the task during the learning process and the optimal bit
offloading delay. On this basis, we carry out extensive simulations that show that
the proposed method achieves good learning performance and can improve the task
processing delay.

2. Related Works

Computing resources are moved from a remote cloud to the cloudlets, which are
close to the mobile device in the MEC system. In order to improve the user experience
and reduce latency, Xu et al. [3] proposed an enhanced service framework based on
microservice management and a client support provider for efficient user experiments in
the edge computing environment, in order to provide the edge computing service and
management in the network edge. Wang et al. [4] proposed an optimization strategy for
computing resource allocation in massive IoT devices considering privacy protection in
a cloud edge computing environment. Since quality of service (QoS) can be affected by
the choice of fog nodes and wireless transmission, Zhao et al. [5] proposed a novel data
analytics framework for edge computing. The framework is based on a new decentralized
algorithm, which enables all the nodes to obtain the global optimal model without sharing
raw data. Liu et al. [6] attempt to keep the data of edge devices and end users in their local
storage in order to eliminate any risk to user privacy, and they integrate federated learning
and edge computing to propose a privacy-preserving framework that can construct a
unified deep learning model across multiple users or devices without uploading their data
to a centralized server. To prevent poor QoS in edge computing, Deng et al. [7] introduced
a strategy with two stages during burst load evacuation. Based on an optimal routing
search at the dispatching stage, tasks will be migrated from the server in which the burst
load occurs to other servers as soon as possible. Guo et al. [8] proposed the mobile-assisted
edge computing framework to improve the QoS of fixed edge nodes by exploiting mobile
edge nodes. They devised a Credible, Reciprocal and Incentive (CRI) auction mechanism to
stimulate mobile edge nodes to participate in the services for user requests. Tang et al. [9]
considered a probabilistic-QoS-aware approach to multi-workflow scheduling upon edge
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servers and resources. It leverages a probability mass function-based QoS aggregation
model and a discrete firefly algorithm to generate the multi-workflow scheduling plans.

Joint power consumption and resource management schemes have been considered
to maximize overall task offload rates and long-term network stability. Yang et al. [10]
comprehensively considered cloudlet placement and workload scheduling in MEC systems
and forecast the future distribution of user tasks by observing user mobility habits, and
service access patterns, service placement and online load scheduling can be adjusted to
achieve a tradeoff between the average response time of a user request and the mobile
operator costs. Ren et al. [11] analyzed the computational allocation problem in a layered
network architecture, in which tasks were first received by the nearby micro-BSs and then
transmitted to the macro-BS attached with MEC server after aggregation. Zheng et al. [12]
have considered the variability of available resources, and the award and cost of a vehicular
cloud computing (VCC) system, and proposed an optimal computing resource allocation
scheme that aims to maximize the total long-term system reward. Guo et al. [13] proposed
a method that was studied in a small cellular network through joint optimization of the
computing offloading decision, spectrum, power consumption and computing resource
allocation. Liu et al. [14] considered a method to allocate user requests in the signal
coverage area of edge servers. Mazza et al. [15] developed a cluster-based computing
offloading technology that aimed to minimize the cost function by integrating the balance
relationship between energy consumption and task processing time.

In order to balance the workload between edge servers and minimize the access delay
between users and edge servers, Jiang et al. [16] proposed an edge computing node deploy-
ment method for smart manufacturing; by comprehensively balancing the network delay
and computing resources, the optimal deployment number of edge computing nodes is
obtained by using an improved k-means clustering algorithm. Steffenel et al. [17] consid-
ered unbalanced networks and resource heterogeneity when optimizing data transfer and
applications’ performance in the edge. They explored these two concerns through a compre-
hensive set of benchmarks and illustrated their importance with the help of data locality and
context awareness. Xiao et al. [18] considered the multi-user and multi-server MEC system
and solved it through matching theory and heuristic ideas. Mukherjee et al. [19] proposed
an optimal cloudlet selection strategy under the multi-cloud environment. Chen et al. [20]
have analyzed and discussed the offloading problem of multi-user computing in an MEC
system. Hao et al. [21] proposed an optimal IoT service offloading (OSO) method with
uncertainty that considers completion time and load balance variance optimization goals
for developing offloading strategies; then, the non-dominated sorting genetic algorithm-II
(NSGA-II) was fully investigated to improve the performance regarding the completion
time and load balance variance. However, these existing efforts only considered the situa-
tion involving cloudlet systems with continuous connectivity, and they did not take into
account the impact of mobility due to offload failure.

In order to improve the service reliability of MEC, task replication technology was
introduced by Jiang et al. [22], where copies of tasks can be offloaded to multiple mobile
devices for simultaneous processing. However, centralized frameworks require frequent
updates of state information to optimize system performance, resulting in high signal
overhead, which is a key drawback. Considering the spatiotemporal dynamics of the user
devices and the signaling overhead, it is feasible for the task generator to make the task
offload decision in a distributed way. Furthermore, it would be significant to design a
workload offloading scheme with low computational complexity when the occurrence
rate of devices is at a peak. Based on the limited processing capacity of edge nodes, a
new edge computing offloading strategy has been designed to optimize the offloading
experience learning performance of IoT devices. Li et al. [23] introduced a learning method
to achieve high-performance workload allocation in the edge computing environment.
Sun et al. [24] considered the situation of offloading computing tasks in the VEC system, in
which the vehicle could learn the offloading delay experience of its neighboring vehicles
when offloading computing tasks, so as to reduce the delay. However, the influence of
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different user devices’ moving speeds on the whole learning process and offloading process
was not taken into account.

3. System Model and Problem Formulation
3.1. System Model

The devices that generate the task request are called the user equipment (UE). When
there are surplus computing resources on adjacent user devices, a UE task request is
offloaded to the standby server considering maximized resource utilization.

The task offloading mechanism in the MEC system is mainly divided into the following
two types [24]:

UE–UE offloading: The user devices involved in UE–UE offloading in the MEC system
are divided into two categories. The TUEs are the user devices that currently produce task
requests, and the SUEs are the user devices that can provide enough surplus computing
resources. The functionality of each user device depends on the adequacy of its computing
resources and changes over time. The TUEs can offload tasks to nearby SUEs. Each TUE
may have several candidate SUEs to handle tasks, and each task can only be offloaded to
a single SUE and executed. A task offloading model is shown in Figure 1: there are four
candidate SUEs (SUE 1–4) for TUE1, and the current tasks are offloaded to SUE 4 because
of the distance between them and the sufficient computing resources of SUE 4.

Figure 1. A task offloading model in MEC system.

UE–BS offloading: When there are no suitable SUEs for the TUE within the commu-
nication range, or the cloudlets that are attached to the base stations (BSs) are closer to
the TUEs in the communication range, TUEs will directly offload the tasks to the BSs with
cloudlets for processing. As shown in Figure 1, TUE 2 and TUE 3 offload the tasks to the
cloudlet as SUE, TUE 4 and TUE 5 are unsuitable for offloading tasks to the cloudlet due to
distance issues.

In addition, each TUE can determine the optimal SUE independently, without internal
collaboration between TUEs. We do not make any assumptions about an SUE’s conditions of
service and UE mobility models. All the variables used in this paper are shown in Table 1.

3.2. Problem Formulation

Task offloading decision: Since the offload decision is distributed, we focus on the
offload problem of the TUE model. An MEC system has three task procedures in each
period, namely SUE perception, task offloading and task processing.
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Table 1. List of symbols.

Symbol Definition

N (t) Set of candidate SUEs
B Set of computational epochs
xt Data size generated by tasks transferred from SUE to SUE at time t
αt Index of the selected SUE in time period t

h(u)t,n Uplink wireless channel state of TUE and SUE n at time t

I(u)t,n Uplink interference of SUE n at time t

r(u)t,n Uplink transfer rates for TUE and SUE n
λt,n Average task arrival rate of SUE n
dup Transmission delay of uploading the task to SEU n at time t
dcom Computing delay of the task transferred to SEU n at time t
Fn Maximum CPU resource
ft,n CPU resource assigned to the TUE at time t
Dk The maximum allowable computation delay for task requests of TUE
Cn The maximum computation capacity of SUE n
W Channel bandwidth
P Transmission power
σ2 Noise power

ut,n Delay of offloading a bit of input data to SUE n at time t
γt Computing capacity of the selected SUE at time t

kt,n Binary index of SUE n selected by TUE at time t

SUE perception: TUE selects as SUEs those UEs within its communication range
that are adjacent and have the same movement direction as SUEs. The real-time status
of each UE, including movement speed, position and direction of movement, can be
obtained through the communication protocol. For instance, in the dedicated short-range
communication (DSRC) standard [25], periodic beaconing messages can provide these
status messages. This is used to represent the set of candidate SUEs within a time period T,
which may change as the user’s device moves.

Given the uncertainty of each user’s device mobility, the candidate SUE set N (t) is
unknown for the next time period. In addition, assuming that ∀t, N (t) 6= ∅, the TUE can
offload task requests to the edge cloud for processing.

Task offloading: After updating the candidate SUE set in each new time period,
TUE selects an SUE n ∈ N (t) and offloads its computing task. Assume that xt( bits)
represents the data size generated by the task transferred from TUE to SUE in time period
T, h(u)t,n , n ∈ N (t) represents the wireless channel status of the uplink between TUE and

SUE, and I(u)t,n , n ∈ N (t) represents the interference of SUE n. During the offload process
of each computing task, the state of the wireless channel is kept static. We assume that
transmission power is P. W and σ2 represent the channel bandwidth and noise power,
respectively; according to Shannon Hartley’s theorem, the uplink transmission rate of TUE
and SUE can be expressed as:

r(u)t,n = Wlog2

1 +
P·h(u)t,n

σ2 + I(u)t,n

 (1)

The transmission delay of offloading tasks to SEU n at time t is expressed as:

dup(t, n) =
xt

r(u)t,n

(2)

Task processing: Task processing begins after the selected SUE receives the task from
TUE. In time period T, the total workload generated by tasks offloading is xt wt, where wt
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represents the computational intensity that the CPU cycle requires to process one bit of
input data—it depends mainly on the nature of the application.

The maximum CPU resource within each computing cycle Fn represents the comput-
ing power of SUE n, and ft,n ∈ (0, Fn) is the CPU resource allocated to TUE at time t. SUE
can process multiple computing tasks in parallel and dynamically adjust the CPU resource
using dynamic voltage and frequency scaling (DVFS) technology [26].

Assuming that each computation task can be completed within a specific time period
and every time slot of T is equal, the tasks with a larger workload can be divided into
several sub-tasks, which are offloaded to the SUE n for a period of time and further
processed. Then, the computing delay can be expressed as:

dcom(t, n) =
xtwt

ft,n
(3)

which can be written as:

dcom(t, n) =
xtwt

ft,n

1
γt
xt
−∑n∈N (t) kt,nλt,n

(4)

After the task processing is complete, the selected SUE n sends the result back to the
TUE. Due to the very small amount of result data, the delay of result return is not taken
into account here.

Then, at time t, when offloading tasks to SEU n, the total delay is:

dsum(t, n) = dup(t, n) + dcom(t, n) (5)

Our goal is to minimize the total offload delay by guiding the decisions of TUEs
and maximize the computation resources of SUE. In each time slot of time period T, the
workload offloading problem is formulated as follows:

P1 : min
α1 ...αT

1
T

T

∑
t=1

dsum(t, αt) (6)

Here, αt is an optimization variable, indicating that SUE’s index is selected in time
period t.

Acquire state information: The device state information on the TUE side and the SUE
side is obtained, including the data size of input data generated by each task xt, and the
computational intensity ωt. The uplink transmission rate is r(u)t,n , and ft,n represents the
CPU resource assigned to each task calculation. The total delay can be calculated assuming
that all of these states are fully known before each task is offloaded, and the optimization
problem P1 above can be expressed as:

P2 : αt = min
n∈N (t)

dsum(t, n) (7)

However, due to the temporal and spatial dynamics of user devices, data transmission
rates change rapidly and are difficult to predict. Meanwhile, the exchange of the status
information between the TUE and candidate SUEs results in signaling overhead, which is
high. As a result, the TUE may lack information about the status of the SUE and may not
be able to provide minimum latency for manufacturing decisions on its own.

Learning while offloading: To solve the above-mentioned problems, a learning method
during offloading is introduced. TUE can observe and learn during offloading computing
tasks and select candidate SUEs based on past offloading experience, with no need to
obtain the exact transfer rate and CPU resource. When generating tasks through the same
type of application, let the input data size be time-varying, and the computational intensity
wt is constant. Assuming that Dk is the maximum allowable computation delay for task
requests of TUE and Cn is the maximum computation capacity of SUE n, which represents
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the size of task data that SUE n can simultaneously process at time t, each task request can
only be offloaded into one SUE. Then, the total delay can be written as:

dsum(t, n) = xt

 1

r(u)t,n

+
wt

ft,n

 (8)

Then, we have:

P3 : min
n∈N (t)

T

∑
t=1

kt,n(
xt

r(u)t,n

+
1

γt
xt
−∑n∈N (t) kt,nλt,n

) (9)

s.t.
T

∑
t=1

γt ≤ Cn, ∀ nεN (t) (10)

T

∑
t=1

dsum(t, at) < Dk (11)

T

∑
t=1

kt,n = 1 , ∀ nεN (t) (12)

γt,n

xt
−

T

∑
t=1

kt,nλt,n > 0, ∀ nεN (t) (13)

kt,n ∈ {0, 1} (14)

Constraint (10) indicates that the task assigned to SUE at time t cannot exceed its
computational capacity. Constraint (11) ensures that the total computation delay of the
entire iteration cycle is less than the maximum allowable computation delay. Constraint
(12) means that each TUE selects an SUE. The average task arrival rate for SUE cannot be
greater than its average service rate, as shown in constraint (13); otherwise, the offloading
request will accumulate indefinitely.

The decision problem P3 can be transformed into a partition problem, which is
known as an NP-complete problem. Since the decision problem for P3 is NP-complete, P3
is NP-hard [27].

3.3. The SAda Algorithm

The task offloading problem P3 can be solved according to Multi-Armed Bandit
(MAB) [28] theory, which requires online sequential decision making. The TUE is the
decision maker of task offloading, and it requires constant learning to estimate losses in
order to minimize the sum of cumulative losses. Based on the problem, we propose a
self-adaptive learning task offloading algorithm (SAda) for MEC systems, which can sense
both the size of the input data and the occurrence of the user’s device and enables TUE to
learn from the offloading experience of the candidate SUE.

In Algorithm 1, the parameter β is constant, ∀t, wt = w0, and kt,n denotes the count
of tasks offloaded into SUE n at time t. tn represents the occurrence time of SUE n; Lines
7–14 are the main cycle of the learning process, which is inspired by the Upper-Confidence-
Bound (UCB) algorithm [29] and MAB mentioned above. At the beginning of each iteration,
before offload tasks and calculation xt, the TUE obtains the input data size xt.
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Algorithm 1: The SAda Algorithm.

1: Initialization Parameter: xt, α0, ω0 and σ2

2: for t in T do

3:
Get the location of IoT devices and select the suitable devices as the candidates,

update N (t).
4: if none of SUE n ∈ N (t) has connected to TUE then
5: Connect to SUE n once.
6: Update ut,n, kt,n, tn .
7: else
8: Observe xt .
9: for each device n ∈ N (t) do

10: Calculate the efficiency function ut,n .
11: Find device αt ,where αt = arg min

n∈N (t)
ut,n .

12: Update dsum(t, αt) .
13: Update u(t, αt ) =

ut−1,αt kt−1,αt+dsum (t,αt )
kt−1,αt+1 (15)

14: Update kt,αt = kt−1,αt+1
15: end for
16: end if
17: end for

The padding function defined in Equation (15) is used to evaluate the service capacity
of each SUE, which is derived from the empirical bit offloading delay u(t, n). Specifically,
it takes into account both the input data size and the time of occurrence of each SUE.
Given the limited computing resources of users’ devices, it is necessary to balance SUE
exploration and task processing in the process of offloading task learning. Reasonable
allocation of computing resources can ensure that they both obtain the best improvement
under the limited computing resources and also adapt to the dynamic MEC environment.

The SAda algorithm has the following two prominent advantages:
Service capacity assessment: The algorithm can estimate the possible delay impact of

offloading the task to the SUE by combining the size of the input data with the remaining
computational resources of the SUE. The input data size can affect the computation latency
of different SUEs.

Occurrence awareness: Considering the temporal and spatial dynamics of an SUE,
a solution is set for it. Specifically, for any SUE that is detected for the first time, kt−1,n

is inversely proportional to
√

ln(t−tn)
kt−1,n

. Smaller padding functions mean that SAda takes

advantage of more learning information.
The whole task processing time is defined as T, and there are C epochs in time T,

c1, c2 . . .. The unit learning error e represents the difference in the delay of offloading one
bit of the task during the learning process. û represents the optimal bit offloading delay in
each epoch. Then, the learning error in the whole learning process can be expressed as:

ET =
C

∑
c1

T

∑
t=1

xt(u(t, n)− û) (16)

Lemma 1. After a finite number of iterations, the SAda algorithm will terminate after completing
the flexible assignment of tasks.

Proof. Let τ = |N (1)| = m, τ > 0. Initially, N (1) represents the set of SUEs that have not
been assigned tasks. Then, the algorithm selects the appropriate SUE at for each iteration
with minimum bit delay and offloads the task on the TUE to it. With the execution of
the algorithm, τ decreases gradually and finally approaches zero; N (1) = ∅ after a finite
number of iterations. �
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As shown in the SAda algorithm, the complexity of calculating the efficiency function
is |Z| in Line 8; the minimum seeking problem in Line 10 has a complexity of |Z|. O(1)
is the complexity of Line 12–13. Therefore, the total algorithm complexity in each time
period is O(Z). Assuming that the number of task requests is I during the entire offloading
process in the MEC system, the total algorithm complexity is O(IZ), which is relatively
lower than the existing algorithm.

Lemma 2. When each TUE finds a suitable SUE, X is determined and P3 becomes a convex
optimization problem.

Proof. To prove the problem, let y = ktn(
xt

r(u)t,n

+ 1
γt,n
xt
−∑t∈T ktnλtn

), and take the second

derivative with respect to γt; then, we have ∂2y
∂2γt,n

= ∑t∈T 2ktnx−2
t (

γt,n
xt
−∑t∈T ktnλtn)

−3.

The function y is convex because of the positive definite Hesse matrix Y = ∂2y
∂2γt,n

. �

By solving the KKT condition of P3 [30], the optimal solution of P3 can be acquired
as a convex problem. As a result, the optimal task offloading scheme with TUE to SUE
obtains the optimal solution with the lowest response time.

4. Simulations and Discussion

In this section, the average delay performance of user devices is evaluated under
different moving speeds of the proposed SAda algorithm and implemented algorithm
simulations. The influence of key parameter changes on the time delay in the composite
scene is evaluated to simulate the real street scene. The parameters used in this simulation
are shown in Table 2. The Wi-Fi transmission, which can access wireless signals at any time
and has strong mobility, is considered as the main transmission technology in this paper.

Table 2. Parameters used in the simulation.

T W A0 w0 P σ2

3000 s 10 MHz −17.8 dB 1000 Cycle/bit 0.1 W 10−13 W

The simulation environment consists of 10 SUEs and 1 TUE. A 12 km segment of
road in Beijing is downloaded from Open Street Map and used in our simulations. SUEs
are randomly distributed around the TUE and move in the same direction [24]. The
emergence and leaving time of SUEs are shown in Table 3. In the T = 3000 time periods, the
whole iteration cycle is divided into three periods and each epoch lasts 1000 time periods.
The communication ranges of the TUE and SUEs are set to [0, 300], channel bandwidth
W = 10 MHz. According to the inverse power law hu

t,n = A0l−2, the wireless channel state
is modeled with A0 = −17.8 dB, and l is the distance between TUE and SUE [31]. The
computational intensity w0 = 1000 Cycle/bit represents the CPU cycles required to process
one bit of input data, and it mainly depends on the nature of the application. The input
data size xt is generated uniformly between [0.1, 1], and the transmission power P = 0.1 W,
which mainly depends on the transmission distance l. According to the Shannon–Hartley
theorem, the noise power σ2 = 10−13 W.

Table 3. SUE discovery and disappearance epochs.

SUEs 1 2 3 4 5 6 7 8 9 10

Epoch1
√ √ √ √ √

— — —
√

—
Epoch2

√ √ √ √
—

√ √
—

√ √

Epoch3 —
√

—
√ √

—
√ √

—
√
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To evaluate the performance of the proposed algorithm, SAda, we compare it with
three existing algorithms. (1) The Upper-Confidence-Bound (UCB) algorithm [29] is neither
occurrence awareness nor input data size sensing. (2) The volatile UCB (VUCB) algo-
rithm [32] can sense an SUE’s presence. (3) The adaptive UCB (AdaUCB) algorithm [33]
has the ability to sense the size of input data.

Considering the spatiotemporal dynamics of the TUE, we simulate it at low speed,
high speed and random speed. As shown in Figure 2, TUEs with a faster moving speed of
60 km/h are considered as the experimental object. In the first epoch, UCB and VUCB have
the same approach rate, and the optimal average delay is higher. SAda and AdaUCB have
a lower delay and approach rate than UCB and VUCB. Further, SAda has the minimum
average delay and optimal delay approach rate. During the second period, due to the
emergence of more SUEs in the system, the task requirements of TUE can be processed
more fully and quickly, so that the optimal delay is reduced. With the departure of SUEs,
the system’s task processing delay increases. SAda also has the lowest approach rate and
the fastest optimal delay approach rate compared to the other algorithms in the third epoch.
It is obvious that, throughout all the epochs, SAda has the optimal delay and approach rate.

Figure 2. Average delay comparison between SAda and three other existing algorithms at TUE speeds of 60 km/h.

Figure 3 shows the simulation of user devices with lower mobile speeds, which con-
siders the mobility characteristic of user devices in the real world. Throughout the entire
period, compared with the other three algorithms, SAda has a faster optimal delay conver-
gence speed and optimal average delay when the speed of TUEs is 10 km/h. Compared
with the VUCB and AdaUCB algorithms, SAda can improve the convergence of optimal
delay by 80% to 95%. In order to adapt to the real environment, the simulation is performed
at random speed and the result is shown in Figure 4. As mobile devices move at a variety
of speeds, SAda still has the best optimal delay convergence rate, response delay and a
significant performance improvement. Because SAda has both the input perception and
consciousness perception function, it can find SUEs for TUE more quickly and select an
appropriate SUE for task offloading.
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Figure 3. Average delay comparison between SAda and three other existing algorithms at TUE speeds of 10 km/h.

Figure 4. Average delay comparison between SAda and three other existing algorithms at random TUE speed.
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Figure 5 evaluates the learning errors of the three algorithms. The SAda algorithm has
the lowest learning error in the whole period, and the learning error during the process
of task offloading can be increased by around 20%, 70% and 75%, respectively, compared
with the three existing algorithms. The learning errors of VUCB and AdaUCB are smaller
than that of UCB, which indicates that input perception and consciousness perception
enhance the adaptability of the MEC system, and considering both can further improve the
performance of the system. Through extensive simulation, it is proven that SAda has lower
task processing delay and learning error, with better performance when compared with
the other three algorithms.

Figure 5. Comparison diagram of algorithm learning error.

5. Conclusions

In this paper, we have investigated the problem of offload allocation in MEC systems,
and a novel self-adaptive learning task offloading algorithm, SAda, for MEC systems is
proposed to minimize the task processing delays while considering the spatiotemporal
dynamics of mobile devices. On the basis of the original MAB algorithm, the perception
function and the offloading learning mechanism have been considered to improve the
speed of the task transmission processing. Through extensive simulation, it is proven that
SAda has a lower delay rate and better performance compared with the existing algorithms.
Compared with the VUCB and AdaUCB algorithms, SAda can improve the convergence of
optimal delay by 80% to 95%, and the learning error during the process of task offloading
can be increased by 20%, 70% and 75%, respectively.

In the future, the task offload situations when there are multiple TUEs will be consid-
ered in order to better match the reality. Moreover, a faster learning network can be used
for this work, and more complex task offloading between crossings and cloudlets attached
to the roadside should be considered in order to further optimize the delay performance.
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