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Abstract: Source Code Generation (SCG) is a prevalent research field in the automation software
engineering sector that maps specific descriptions to various sorts of executable code. Along with
the numerous intensive studies, diverse SCG types that integrate different scenarios and contexts
continue to emerge. As the ultimate purpose of SCG, Natural Language-based Source Code Genera-
tion (NLSCG) is growing into an attractive and challenging field, as the expressibility and extremely
high abstraction of the input end. The booming large-scale dataset generated by open-source code
repositories and Q&A resources, the innovation of machine learning algorithms, and the devel-
opment of computing capacity make the NLSCG field promising and give more opportunities to
the model implementation and perfection. Besides, we observed an increasing interest stream of
NLSCG relevant studies recently, presenting quite various technical schools. However, many studies
are bound to specific datasets with customization issues, producing occasional successful solutions
with tentative technical methods. There is no systematic study to explore and promote the further
development of this field. We carried out a systematic literature survey and tool research to find
potential improvement directions. First, we position the role of NLSCG among various SCG genres,
and specify the generation context empirically via software development domain knowledge and
programming experiences; second, we explore the selected studies collected by a thoughtfully de-
signed snowballing process, clarify the NLSCG field and understand the NLSCG problem, which
lays a foundation for our subsequent investigation. Third, we model the research problems from
technical focus and adaptive challenges, and elaborate insights gained from the NLSCG research
backlog. Finally, we summarize the latest technology landscape over the transformation model
and depict the critical tactics used in the essential components and their correlations. This research
addresses the challenges of bridging the gap between natural language processing and source code
analytics, outlines different dimensions of NLSCG research concerns and technical utilities, and
shows a bounded technical context of NLSCG to facilitate more future studies in this promising area.

Keywords: natural language-based source code generation; systematic literature review; machine
learning application

1. Introduction

As the cost of data ingestion, storage and computation continues to decrease, applying
AI in practice is becoming the focus of the whole IT industry. The enormous potential is un-
leashed with a combination of AI and other fields, and Source Code Generation (SCG) is no
exception. Various deep learning algorithms and neural network construction approaches
have been applied to the automatic SCG and intelligent software development environment.
SCG allows practitioners to generate source code from a higher level of abstraction [1].
Processing methods more intelligent thatn SCG are opening new possibilities for the in-
put abstraction levels, resulting in the endless emergence of new perspectives. Popular
perspectives represented by specific descriptions can be instantiated as domain-specific
language, formal language, modeling language, natural requirements, etc. Among these,
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natural requirements, including natural language or prototypes, have attracted intense
academic interest due to their intuitiveness, roughness, and primitiveness.

As the ideal scenario for automatic SCG, research on Natural Language-based Source
Code Generation (NLSCG) is booming. Some encouraging progress has been made, devel-
oping promising solutions with a confident performance. The majority of these studies start
with problems of individuation coupled with specific datasets, presenting the tendency
of tentative occasional successful solutions. There is no systematic study to promote the
further development of this field. To understand the practitioners interested in NLSCG
from their perspective, we brainstormed and sketched out an empathy map (see Figure 1)
to direct the following research concerns and trends. As the empathy map expressed,
participators, including researchers for typical NLSCG models, open-source community
contributors for NLSCG products and toolchains, and automated software platform users
for considering the degree of automation, are passionate about the NLSCG field. Under
the mainstream trend of vigorous development of NLSCG, participants are curious about
the baseline and the state-of-the-art NLSCG models.

Figure 1. NLSCG empathy map.

However, the abundant relevant studies and tools driving the process make it more
laborious and challenging for participants to obtain comprehensive and detailed NLSCG re-
search actualities. They confront bad quality studies and tools, and have to devote massive
amounts of effort to reading; hence, there are difficulties in quickly getting started. Trying
to discern the outstanding direction of improvement from partial studies calls to mind the
story of the blind men and the elephant. The improvements may inadvertently fall into
a futile pitfall, so it is meaningless to promote the entire field. It is urgent to clarify the
current development status of NLSCG, namely, the appropriate dataset, the essential algo-
rithms and representative architecture of the transformation model, the living bottlenecks,
the enabling factors, and the potential perfection directions. Based on these motivations, we
investigate the actualities and future trends, summarize representative datasets and tasks,
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and gain insights from the research backlog of NLSCG. Finally , the NLSCG landscape
depicts typical components, their correlations, and their advantages.

NLSCG allows users to generate source code from an extremely intuitive and primitive
perspective. This end-to end manner is amicable for those who lack prior knowledge in
source code. NLSCG processing techniques can also be applied to commercial automated
software platforms, enabling us to establish natural language interfaces with executable
source code, which can reduce the cost of learning and the training cost to a certain extend.
Research in this field shows its significance, as the learned experiences would be applied to
similar scenarios that transform from abstract and fuzzy descriptions to highly structural
constrained representations. In addition, widespread application of deep learning has
promoted the prosperity of the transformation between natural language and source code
like semantic code search [2] and automatic comment generation [3]. However, natural
language precisely challenges the efficient construction of transformation models due to
its ambiguity and uncertainty. The well formedness, type-sensitiveness, executability [4],
and semantics of source code create the most difficulties. Many studies [4–69] have been
conducted on the NLSCG and its relevant tasks by employing baseline and state-of-the-art
deep learning models and algorithms. Abundant relevant studies are creating momentum
to make this the right moment to explore the entire NLSCG field, with the expectation of
discovering its actualities, potentials, and improvements.

This paper makes the following contributions: (1) We position the role of NLSCG and
specify the context among various SCG genres empirically based on the domain knowledge
and programming considerations. (2) We clarify the NLSCG field via an elaborate literature
survey and get a distinct problem understanding. (3) We model the NLSCG research
problems by explicating technical focus and adaptive challenges and gaining insights from
the research backlog. (4) We summarize the technology landscape of NLSCG through
exhaustive research on the transformation model and depict the critical tactics used in the
essential components and their correlations.

The remainder of this paper is organized as follows. We introduce our research journey
which guides our subsequent works in Section 2. In Section 3, various code generation gen-
res are introduced before we derive a definition of NLSCG. Section 4 strengthens the process
of NLSCG problem understanding through a systematic literature tracking approach. We
elaborate on the insights from the research backlog in Section 5. In Section 6, the state-of-art
NLSCG technology landscape and essential components along the generating pipeline are
depicted, and this survey is concluded in Section 7.

2. Research Journey and Context

Figure 2 presents the research journey we followed in this survey. The journey starts
with explaining the various SCG genres to clearly examine the research vision, in which
we position the role of NLSCG among these genres. To figure out the state-of-the-art
and potentials of NLSCG exhaustively, we launched an exploration via three phases:
(1) Problem understanding; (2) research backlog; and (3) utilities. The three phases are
present in succession; the conclusion obtained by the former is considered as the basis and
constraints for the latter, while the latter echoes the former.

Problem Positioning: Various SCG genres constantly emerge and develop, contribut-
ing to the building of the software engineering automation ecosystem. Gazing at the
ecosystem from the overall perspective, we specify the NLSCG context, expanding the
entire research vision, which implicates specific impacts on NLSCG research concerns
and technical means. Based on the understanding and analysis of automation software
engineering, we position the role of NLSCG among the various SCG genres in terms of
the application scenarios, the input and output style, the conversion direction, and the
popularity, and finally propose a preliminary definition of NLSCG.
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Figure 2. The Research Journey for this Survey.

Problem Understanding: We leverage the snowballing literature collection method
and its matched analysis to enhance the problem understanding. NLSCG possesses a
small domain scope and presents a certain homogeneity technical tendency. The very
classic and well-known studies in the NLSCG field are selected before the snowballing
process is executed . Afterward, depending on the predefined selection rules (expected to
be three-round selections), the literature snowballing continuously until the appropriate
significant studies are screened out. Next, we perform quantitative analysis to get critical
statistical information from these potential studies. After completing these peripheral tasks,
we investigate these selected studies intensively with specific purposes, laying a foundation
for our subsequent works. These purposes include exploring research concerns, technical
landscape, baseline, and state-of-the-art model details. We abstract the crude prototype
of NLSCG backlog items from the research concerns and summarize the NLSCG utilities
from model-relevant attempts. We build up a deepening understanding of the NLSCG
research context from these investigations, and it paves the way for better exploration and
summarization of our subsequent steps.

Research Backlog: To identify the ongoing concerns of the NLSCG field and conse-
quently understand current efforts and potential directions of future improvement, we
present the research backlog for a more vivid expression. Adapting the term “backlog”
coined from agile development, we consider it the “research to-do task” in this NLSCG field.
Through series of readings on the selected studies collected by the snowballing process,
we accumulate the research backlog in terms of resource, environment, boundary, enabler,
utilities, etc., with the research concerns as a clue. We tentatively extract a taxonomy based
on scattered research backlog items from the perspectives of inherited research focuses and
adaptive challenges. While this “taxonomy” exhibits immaturity and fragility, it can be
regarded as a feasible scheme to collect the research backlog items. Finally, we summarize
insights gained from the NLSCG research backlog and elaborate the details in conjunction
with specific studies. The research backlog deepens the understanding of the NLSCG
problem and contributes to sketching up the essential utilities for NLSCG.

Utilities: As the critical part of the NLSCG solutions, the design and technical imple-
mentation details of the transformation models have shown steady attraction for relevant
practitioners. Several aspects are particularly remarkable, including the baseline and
essential components indicating how the model sprouts; how the advanced models are
explored from different angles; how the fuzzy mappings between research concerns and
implementations function; and the tactics adopted by every pivotal component. Similarly,
we gain much raw information about NLSCG model attempts based on the selected studies
from the snowballing. Taking the research backlog as a guideline, we decompose the raw
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information, convert it into essential components, and then build interactions according to
the data processing chain and the conventional deep learning model pipeline. Finally, we
summarize and depict all critical tactics and give a detailed explanation of the transforma-
tion model, and we regard them as the technical utilities of NLSCG. The utilities can tackle
the current backlog items from two directions: Internal model advancement and external
enhancement. Apparently, advancements deriving from the transformation model, such as
input and output representation, model architecture, learning categories, etc., are worth
great effort. Besides, embracing diverse and divergent thinking upon these predefined
directions until covering all mainstream processing manners is also an indispensable part
of investigating the essential utilities. Some studies go in the opposite direction, searching
for probable routes of external enhancement, such as the dataset quality that determines
the upper-bounds of the model performance, the retrieval strategy in the model inference
stage, etc. The essential utilities would bring a comprehensive understanding of NLSCG
models to beginners, and, what is more, it would inspire practitioners with more potential
improvements in this field.

3. Source Code Generation Genres

Various description systems are proposed to depict, design, and refine software objects
and artifacts, and these description systems are then considered as the input end of SCG.
Automatic generating source code from various description styles is a historical field
both in academic and industrial areas. Limited by the characteristics of the description
system, different approaches present various tendencies. According to automation software
engineering status, the dominating SCG genres and their correlations are shown in Figure 3.
Overall, the abstract level of description increases from the direction of right-to-left in
the pipeline. The farther the horizontal distance between the two description systems
in Figure 3, the more difficult it is to convert between them due to their vast degree of
abstraction. Different SCG genres show their unique application scenario and popularity
and are coupled with the technical conditions at the time. Some genres are still active,
like NRA, DSLA, and GMA, while others are gradually lacking attention like FLA and
EMA. Besides, the transformations between different description systems also attract a
certain amount of attention, such as code summarization, reverse engineering, etc. We
summarized the primary SCG genres as follows.

Figure 3. Source Code Generation Genres.

Domain-Specific Language based Approach (DSLA): As the most commonly applied
approach in the industry, the transformation between domain-specific language (DSL) and
source code tends to be business friendly and to involve close-domain couplings. DSL
specifies a set of domain-related rules that the software must obey and run on a dedicated,
high-reliability scenario [70], presenting extreme precision of transformation. This would
achieve more cost effectiveness during the development process. From another perspective,
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the transformation is driven by rules manually defined by domain experts and would bring a
higher cost of learning in the initial stage.

Formal Language based Approach (FLA): The formal method describes and analyzes the
behavior of software systems utilizing mathematical symbols, and the verifiability is capable
of improving the correctness of the system [71]. FLA possesses high accuracy under specific
domains and fits relatively common scenarios. However, formal language-based methods and
techniques raise a high demand for practitioners, resulting in abundant learning and training
efforts to adapt to the rigid limitation. They have to make trade-offs between the production
cost and effectiveness, and this limitation narrows the scope of application in the industry area.

Graphic Modeling-based Approach (GMA): Generating source code from modeling lan-
guages supporting object-oriented analysis and design is a classical direction. This approach
focuses on the high-level design of systems, for instance, the static skeleton code (like class
declaration, function definition, etc.) of a specific scenario. Relatively complex research can
produce the business process as well [72]. The main challenge in GMA is to replenish the details
of the generated code [73]. GMA possesses a more substantial universality independent of
implementation details and could adapt to various software development scenarios. However,
conversions between the two highly abstract description systems will lead to unavoidable
information loss. In addition, GMA pays close attention to static mapping, and the generated
source code with the simple logic flow cannot recreate the details, making it infeasible to be
applied in practical application.

Enriched Models based Approach (EMA): It has been a long time since UML has been
applied to design object-oriented systems. However, the ambiguity of models created by
UML specifications makes it inappropriate for it to be the starting point of automatic code
generation [74]. Models attached by strictly defined mathematical concepts and objects, such as
Petri net, are promising directions for improvement. EMA focuses on the rigorous mapping of
UML notations to the object-oriented class of enhanced models. While limited by the restricted
structure of models and exponential efforts while constructing the reachability graphs, EMA
can still greatly enhance the accuracy, readability, or extensibility of the generated code in
some instances.

Nature Requirement based Approach (NRA): As continues on semantic parsing and
deep learning, NRA has become one of the most active research topics in SCG. The natural
requirement can be divided into prototype figure description [75] and natural language de-
scription. It is the most intuitive approach to generating source code from natural language,
especially for programming beginners. NRA departs from past work on methodology and
mode of thinking for the primitive, completely undesigned input end. At present, NRA tends
to generate simple code snippets which implement minimum functionalities with unsteady
performance. Researchers are trying to improve the transformation performance by attaching
syntactic constraints and contextual information.

In the SCG genre diagram, various description forms and their conversion paths are
highlighted. We describe the conversion direction, pros, and cons of each SCG genre in terms
of the description systems features and research actualities. Each genre has its characteristics
and has enlivened recent studies in certain areas, but they present as more outmoded than
NRA. NRA, especially the natural language description-based approach, is the most popular,
promising, and worthy of consideration. The challenges confronted by natural language-based
source code generation (NLSCG) is foreseeable; we tentatively propose the definition of NLSCG
as follows:

Given a specific problem context C (C can not be specified in the code snippet generation
and program synthesis task types, refer to Section 4.3) and a natural language description
NL to C, natural language-based source code generation (NLSCG) converts the input NL
into the output executable source code (SC) corresponding to that NL. During the generation
process, the semantic integrity of NL, the well-formedness, type-sensitiveness, executability of
SC, and the semantic consistency between the two ends must be guaranteed. In addition, when
C is given, NL must embed appropriate information from C, and the compatibility of SC and C
must be guaranteed.
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4. Problem Understanding Process

Abiding by the research journey map, the process started with well-designed research
snowballing with the goal of acquiring valuable studies. We carried out the iterative forward and
backward snowballing to obtain a mass of studies and employed three round screening to get
small minority studies suitable for follow-up research. These selected studies are subsequently
utilized for quantitative analysis to obtain preliminary viewpoints on recent trends in the NLSCG
field. More importantly, these preliminary investigations have contributed to the refinement of
NLSCG task types based on the basic NLSCG definition. There are slight differences between
these types in research concerns and modeling priorities. Finally, we payed attention to the
indispensable dataset for constructing the NLSCG models and summarized 36 datasets as well
as their foundational information and applied task types.

4.1. Snowballing Process

Recently, an increasing number of studies have been published in the open-source
database. To collect studies related to intelligent code generation and its similar tasks
scientifically and effectively, we utilize the snowballing approach [76]. A very classic and
well-known paper LPN [5] is selected as the starting point of the snowballing process. LPN
proposes a novel NLSCG neural architecture considering the conditioning context and
granularity of generation, and the creation of two new datasets, especially Hearthstone,
has launched a new era for the NLSCG field.

The whole literature snowballing process and selection result sets are shown in
Figure 4. With the starting point of LPN, by utilizing forward snowballing, we collected
135 citations. In the next round of screening, 24 studies were retained after applying se-
lection criteria by title, abstract, and full text by turns. Then we conducted backward
snowballing. We collected 768 references and retained 24 studies after removing dupli-
cates and screening by title, abstract, and full text by turns. After this round of screening,
48 studies were retained in total. To prevent possible omissions and obtain the latest re-
sults, we carried out a new round of forward snowballing and collected 3079 citations.
Afterward, we conducted a round of screening in advance by Google Scholar relevance and
timeliness for the sake of effectively filtering. Finally, through a full round of three-level
screening, 66 studies were selected (the complete list of the selected studies is available
online: Selected Studies List Ref: https://github.com/Ada12/NLSCG_Research/blob/
main/selected-studies-list.md, accessed on 31 August 2021 ).

4.2. Studies Analysis

This section conducted a simple quantitative analysis of the selected studies from
publication year, adopted datasets, and generation task dimensions. We summarized
the development trend of automatic code generation in recent years and the most classic
dataset classification through an intuitive two-dimensional diagram. As shown in Figure 5,
the serial number in each grid represents the selected research ID, and the left half of the
horizontal axis represents the publication year. The dataset type present on the right and
the vertical axis represents the type of generation task described in Section 4.3. Besides,
we summed up the utilized datasets by different studies to provide references for future
readers. Section 4.4 elaborates the detail of all datasets used in selected studies.

Studies are classified into at least one code generation task type according to the
adopted datasets and their introductions. The left half of Figure 5 shows the study IDs
related to the four code generation task types in the past five years. Only one study was
published in 2015, and since then the number of published studies has been increasing
continuously, especially in the years 2018 and 2019. Due to the screening time range
limitation, only a small part of the 2020 studies was selected. Some studies tend to research
domain-general problems across different tasks, using multiple types of datasets. The most
conspicuous representatives are studies 17 [6] and 18 [7], which employ various datasets
across three task types.

https://github.com/Ada12/NLSCG_Research/blob/main/selected-studies-list.md
https://github.com/Ada12/NLSCG_Research/blob/main/selected-studies-list.md
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Figure 4. NLSCG Snowballing Process (until 31 May 2020).

Figure 5. Selected Studies Distribution between Publication Year, Generation Task and Dataset.

The right half of Figure 5 shows the study IDs with specific generation task types and
the target datasets. The output language corresponding to the dataset becomes increasingly
complicated from the left-to-right direction. The complexity of syntax, the richness of
semantic, the length of utterance-denotation pairs, and more importantly, the locality
design pattern and the global architecture tactics make different ensemble generation
languages with a qualitative leap. In general, to achieve the goal of code generation tasks,
various datasets are proposed as the basis for training in this area. The lambda calculus
and its variants lambda DCS, SQL, and Python are the most popular generation style. It
is worth noting that program synthesis takes customized DSL [8,9] as a springboard for
better bridging the huge abstraction degree gap between natural language and programs.

4.3. Natural Language-Based Intelligent Code Generation Tasks

Considering SCG tasks as machine translation[77] has kicked off a generation storm
tide by introducing deep learning to this field. Deep learning has gradually become the
most commonly used technology for such tasks, and impressive performance has been
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achieved. However, various output end styles tend to adopt different problem-solving
tactics and impact the design of neural network models. Therefore, in the field of intelligent
NLSCG and relevant tasks, we summarize four mainstream types from selected studies in
terms of output end.

Semantic Parsing (SP): Semantic parsing is a classical school of computational linguis-
tics and has always been an active research area. It maps natural language utterances into
a semantic representation [76]. In the last few years, researchers have been trying hard
to generate semantic representations such as regular expressions, if–then recipes, lambda
calculus with their semantics, etc. The expressions generated by semantic parsing are
associated with simple logic generally. The fuzzy mapping between each utterance and
its logical form makes it more challenging. The relative entropy symmetry between the
expressions and natural language gives more opportunities to produce a perfect semantic
parser. However, researchers are encountering difficulties when dealing with complicated
symbolic expressions [10].

Domain Specific Language Generation (DSLG): Generating types under the constraints
of inherent modes usually take DSL as a medium. Currently, SQL generation is the most
accessible direction, and this type of generation is limited to some meaningful fields under
the DSL framework. On the other hand, DSL generation can be considered as the sub-
stage of the program synthesis process. By customizing the DSL suitable for the current
generation target and context, the stage of DSL generation can be regarded as a buffer from
ambiguous natural language to the high-level patterns in the program. DSLG is capable of
assisting in program synthesis by bridging the gap.

Code Snippet Generation (CSG): Code snippet generation focuses on producing a
small part of programs, which refers to fragments without advanced business logic flow in
a project-level perspective. Researchers have tried to generate general-purpose languages
like Python and Java, and are also starting to deliver impressive results. Compared with
semantic parsing, the generation of this kind of code (1) usually involves a relatively
large code scale and long dependency chain; and (2) encounters more complex generation
scenarios. What is more, source code snippets are tightly constrained by syntax rules and
affected by context. Moreover, numerous expressions and statements increase the difficulty
of generation.

Program Synthesis (PS): Program generation is the ultimate goal and the thorny branch
in the field of intelligent code generation. The asymmetries of information entropy between
the program and natural language aggravate the difficulties of program synthesis. The
mixture of the high-level patterns in the program and low-level detail implementations
makes it extremely challenging to generate a one-shot result based on natural language.
Therefore, a two-stage method was proposed to solve such problems [7,11].

4.4. Source Code Generation Relevant Datasets

There are multiple existing cross-domain datasets coupling with intelligent code
generation tasks. To inspire in-depth research about this direction in readers, we combed
all datasets appearing in selected studies. We created a profiling table for all selected
studies, and purposely extracted and gathered information filled into the corresponding
grid. We collected 21 attributes of different granularities from each study, including the
adopted datasets. By integrating and removing the duplicate datasets, finally we obtain all
the adopted datasets (36 in total). Due to the differences between the target language’s
complexity, a wide variation exists in intelligent generation model design, including the
algorithm, the intermediate representation, and critical processing procedures. Therefore,
these datasets and their variants are applied to different kinds of SCG tasks. Based on
the characteristics and application fields of the datasets, we launched a finer-grained
classification. Many classic datasets among them have been applied in semantic parsing
tasks for years. Meanwhile, there are also emerging datasets created for current intelligent
NLSCG. Aiming at the code generation task and according to the output end language
complexity, the current aggregated datasets can be divided into six categories of four task



Entropy 2021, 23, 1174 10 of 27

types, as shown in Table 1. The functional programming language can be conducted to a
new category in terms of trends, and the proposed research has mentioned this drift.

Table 1. Output-oriented Dataset Classification.

Classification Generation Object Dataset Name Identifier

IFTTT IFTTT 2015 1.1
IFTTT 2016 1.2

SAIL 1.3
Simple Logical Actions SCENE 1.4

Custom Actions ALCHEMY 1.5
TANGRAMS 1.6

Karel 1.7

Regular Expression NL-RX 2.1

Prolog JOBS 2.2

GEO 2.3

Lambda Calculus
ATIS 2.4

Logical Language
NLMAPS 2.5
SPADES 2.6

GeoGrAnno 2.7

WEBQUESTIONS 2.8

Lambda DCS OverNight 2.9
WikiTableQuestions 2.10
WEBQUESTIONSSP 2.11

Customized Domain LISP-inspired DSL ALGOLISP 3.1Specific Language

Graph Query GRAPHQUESTIONS 4.1
ComplexWebQuestions 4.2

GEO 4.3
ATIS 4.4

WikiSQL 4.5
General-Purpose

SQL
SENLIDB 4.6

Domain Specific Language Scholar 4.7
Textbook 4.8
Advising 4.9

Spider 4.10
MIMICSQL 4.11

Bash NL-Bash 4.12

Python DJANGO 5.1
Advanced Programming HS 5.2

Language Java MTG 5.3
ACBJ 5.4

Program
API Usage AML 6.1

Programmatic Context CONALA 6.2
CONCODE 6.3

In particular, as a related field of code generation, semantic parsing aims to convert
natural language utterances into logical forms with formal language. From our perspective,
based on the complexity and abstraction of the formal language, we manually divide it
into the simple logical actions and logical language. The simple logical actions belong to
the most straightforward semantic parsing tasks. Some datasets possess a set of properties
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and actions that can be triggered by a pre-designed process, while some datasets attempt
to describe the process control information (such as IFTTT) from a zones perspective. On
the other hand, the logical language related datasets consist of natural language queries
paired with a logical representation of their denotations. It has always been the most
challenging branch task in the process of the semantic parsing field. There are various
logical languages shown in datasets. The regular expression usually defines a pattern
that verifies the feature of strings and has been widely used in various programming
languages. As a more complex logical language initially employed to formal systems,
lambda calculus applies a function to an argument and forms functions by abstraction [78].
Prolog can be converted to equivalent statements in the lambda calculus, where some of the
datasets are annotated with Prolog-style semantics too. Further, lambda dependency-based
compositional semantics (λ DCS) was proposed in 2013; it is an alternate formal language
that can be notationally simpler than lambda calculus [79]. Many semantic parsing tasks
have been based on λ DCS in recent years.

Domain-Specific Language (DSL) is very popular in the industry; it is a language
designed for specific fields. The diversity between natural language and programs, which
refers to the ambiguity of natural language, corresponds to the strictness of the program.
Therefore, DSLG acts as a compromise to cope with this challenge, and the LISP-inspired
DSL was designed for code generation instead of an existing programming language. It
acts as a mediator to bridge the differences between natural language and source code.
In addition, general-purpose DSLs like SQL and Bash are limited to the context of a
specific platform or application and have been maturely applied in various development
environments. Hence, the end-to end generation of DSL is becoming more accessible for
recent SCG tasks.

The open-sourcing of the datasets promotes the automatic generation of source code
snippets, especially the Trading Card Games (TCGs) like MTG and HS. TCGs map semi-
structured information, including textual description and categorical numerical attributes,
to general-purpose programming languages like Java and Python. Some new datasets
focus on code snippet generation which is constrained by the programming framework
and cross-domain features. These burgeoning datasets enrich code snippet generation in
real scenarios instead of being limited to one mode. Moreover, some datasets are collected
for program synthesis tasks concentrating on code generation under the programmatic
contexts (CONALA) or the essence of API usage (AML) in general-purpose languages.

Appendix A shows the details of all the summed-up datasets. These datasets employ
the input in natural language or other semi-structured methods and are subsequently
converted into various languages. Some datasets contain additional contextual information
that constrains the generated source code, such as the generated SQL having to be compati-
ble with the database schema, and the addition of context information would impact the
entire model design.

5. Insights Gained from NLSCG Research Backlog

With the continuous improvement of deep learning and NLP technologies, researchers
have attempted to model NLSCG from new perspectives. Researchers tend to stand on
the shoulders of giants and get used to enhancing models based on the previous classic
approaches. Exploring their initial research concerns is critical, and helps us follow up with
improving the direction of this field. Therefore, we extract the research concerns from the
selected studies and abstract them into the NLSCG research backlog, expecting to bring
a more glittering view to future research. As shown in Figure 6, four disciplines in the
treemap specify the critical research tasks for attempts and possible improvement directions,
while the three tiers indicate different levels of details. The amount of studies related to a
given backlog item determines the corresponding area’s shade and size. We accumulate
the research backlog in terms of resource, environment, boundary, enabler, utilities, etc.,
from the selected studies collected by the snowballing process. From the perspective of
inherited research focuses and adaptive challenges, we summarize a taxonomy based
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on these research backlog items, which categorize all backlog items into four significant
disciplines. (1) Language characteristics focuses on meeting challenges created by the
inherent characteristics of natural language (NL) and source code (SC). (2) Target concerns
emphasize the external features that are encountered during the generation process and
that are able to be satisfied under a specific context or scenario. (3) Training refers to
the difficulties confronted throughout the training process. (4) Context concentrates on
processing the contextual information that exists in the input, output, and the entire
generation problem. Despite this, “taxonomy” shows its immaturity and fragility; the
scattered research backlog items gather together to present an overall comprehensible
research treemap. Finally, we gain insights from the backlog of NLSCG research and
elaborate the details in conjunction with specific studies.

Figure 6. NLSCG Backlog Items.

5.1. Language Characteristics

Language is responsible for information transmission, and the mapping from NL to
SC is one of the manifestations of abstract information transformation. NL and program-
ming language possess various native characteristics that affect the model construction,
and many targeted efforts have been put together to address such challenges. This subsec-
tion describes the insights gained from language characteristic items according to the input
and output language category, which can be refined into the basic appearance, contributory
factors, expected impacts, attempted solutions, etc.

When modeling the SC end, distinct characteristics, including syntactic and semantic,
and latent characteristics, including complexity and separability, accumulate to this part
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of backlog items. Syntactic dictates ensure well-formedness, type-sensitiveness, and exe-
cutability, and pay close attention to semantic equivalence, program aliasing, and semantic
consistency between the two ends in a semantic aspect. The complexity of the inherent
structure in the SC end brings difficulties to sequential modeling. Obstacles include long-
distance dependency problems, long decoding paths, the insufficient separation between
high-level patterns and low-level implementations, etc. It is necessary to make trade-offs
between tracking complete details and training efficiency. Research tasks on the NL end
present as almost identical to the regular NLP field, which can be summarized from essen-
tial elements, complexity, and ambiguity. The adaption to the NLSCG tasks has put new
requirements on the language ambiguity, owing to the asymmetries between the NL and
SC ends. These asymmetries are not only reflected to a strict extent, but also in the number
of tokens between the two ends.

5.1.1. Source Code

Syntactic. The generated SC must strictly satisfy a rich set of syntactic constraints,
which can be easily extended to three aspects: Well-formedness, type-sensitiveness, and ex-
ecutability. To be specific, well-formedness can readily be kept by representing the SC as
abstract syntax trees [4], while type-sensitiveness needs to guarantee the generated code is
well typed. SC is often semantically brittle, and slight changes may drastically change the
meaning of code [80], which may affect the executability. Besides, applying grammar-based
decoding to general programming languages such as SQL is challenging as the AST may
not sufficiently constrain its target [12]. Researchers devote themselves to tackle these
fundamental problems through many different approaches, like formulating production
rules [13], abstract syntax networks [4], program sketches [14], SQL template [15], targeted
probability maximization [16], execution guidance [17], etc.

Complexity. The inherent structural information of SC induces it tricky-to-generate
complex code correctly through the baseline approach. Take the case of RNN, which is
considered as the primary fundamental network of the baseline approach. With RNN and
its variants, memorizing large and complex structures is arduous [18], and capturing long
sequences extracted from AST is inappropriate for RNN [19]. Besides, the long-distance
dependency problem, occurring between code elements where their positions are far
apart in space [20], exacerbates the unsuitability of RNN-based modeling. What is more,
the process of converting SC into a flattened sequence through AST can easily lead to long
decoding paths, even for short snippets of SC [21]. Some over-detailed expansions will
not provide fancy information for constructing neural decoding models; instead, this will
bring in interference and result in a meaningless waste of training resources. Complexity
also affects the DSLG tasks, especially the generation of nested SQL queries [22], and we
can simplify the complexity of the generator and improve performance by ignoring the
order of fields and condition attributes [23].

Semantic. Prevalent challenges exist across diverse SC categories in the aspect of se-
mantic and syntactic elements. Meanwhile, slight differences appear among these elements
in complexity and significance. In terms of semantics, Xu [24] finds that different SQL
queries may be equivalent to each other due to the commutativity and associativity, which
lead to the futility of the sequence in certain SQL positions, like tokens in attributes in
SELECT and WHERE clauses. However, the order of these constraints would affect the per-
formance of a sequence-to-sequence-style model, which is considered as the baseline model
in the SCG tasks. In addition, many different programs can frequently satisfy one given
the NL specification, which suggests a phenomenon known as “program aliasing” [16,25],
and this type of limitation pervades all SC categories.

Separability. Program synthesis is perceived as the most challenging of the intelligent
NLSCG tasks due to the insufficient separation between high-level patterns and low-
level implementation details [7]. The low-level features, such as variable names and
intermediate results, would impede the learning process. While the high-level patterns are
challenging to learn from datasets, a combinatorial, syntax-guided program synthesizer
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can easily accomplish this task [81]. Therefore, researchers [14,26] have attempted to get
the decomposition disentangled high-level features from low-level features, and enable
decoders to model at different levels of granularity.

5.1.2. Natural Language

Essential Elements. On account of the two essential elements of natural language,
vocabulary and syntax, tentative efforts have been made to get improvements. Some
studies merely extract word order features depending on SeqLSTM while neglecting useful
syntactic information [27]. To address the problem, authors [28] tried to employ syntactic
trees (like CCG and CFG) instead of flat sequence on the input end to thoroughly capture
NL information based on dependency parsing and constituency parsing . Meanwhile,
it is noticeable that the characteristics of RNN structure make it difficult to learn proper
representation from the diverse vocabulary and syntax [29].

Complexity. In particular scenarios, the input question composed of sub-questions
might be too long to understand. Understanding each sub-question could contribute to
the semantic parsing of the original complex question [30]. The decomposition of complex
questions can be considered as the predecessor task of NLSCG to alleviate the difficulties
of understanding. Rule-based methods have been proposed [82], but experts and massive
design efforts have to be devoted to the task. A neural question decomposer has been
tentatively proposed to identify sub-questions more accurately [30].

Ambiguity. Another problem that blocks the research process is language ambiguity [31].
After a long-term NL evolution, people tend to express their thoughts relatively concisely,
such as with fewer words and shorter phrases. More importantly, ambiguous language
can be accurately understood only on the premise that the whole context is comprehended.
The linguistic ambiguity problems may affect the meaning of the syntactic elements [83],
which aggravates the difficulty of generating the corresponding code.

5.1.3. Asymmetries between Natural Language and Source Code

Encoder–decoder architecture is widely applied to intelligent NLSCG and its similar
tasks. The encoder takes NL as the input sequence, converts it into specific representations,
and then transforms it into the desired code structures via the decoder. This section
attempts to summarize the research backlog affected by the asymmetries between encoder
and decoder.

Less Token vs. More Token. Many studies find that apparent asymmetries in the
number of tokens between input and output end give rise to beset difficulties in building the
generative models [18,19,25]. These asymmetries can easily attribute to the larger number
of tokens in the source code end. To ensure source code can be modeled without missing
rich structure information, converting source code into tokens depending on a specific
traversal approach from AST is prevalent. Extracting tokens on account of the tree-based
approach can easily lead to rapid quantity growth compared to the original source code,
which exacerbates the appearance of asymmetry. CNN-based models [19], retrieval-based
generation [18], and pre-training distributions of SC and NL [25] are proposed to address
this backlog item.

Ambiguous vs. Strict. As an essential attribute of NL, ambiguity brings difficulties
in describing the exact requirements clearly [9]. In contrast, the source code seems to be
sophisticated equipment with precision and unequivocal representation. A slight difference
would impact on syntax, executability, and even semantics of source code. Therefore, extra
efforts must be devoted to coping with the transformation from ambiguous language to
strict language. Research [9] tackled this problem by attaching input and output examples
to synthesize programs.
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5.2. Target Concerns

Concerns running through the entire modeling process are worthy of consideration,
and many studies attempt to concentrate on it to get potential improvements. In this
section, we summarize the four chief features that researchers devote more attention to.
We inspect the portability and generalizability from a global perspective, and the accuracy
and spuriousness focus on evaluating the generation task itself, where we discuss their
derivation, usage scenario, and tentative solutions. The concerns expressed by these
models can be applied to evaluate the external model learning ability to a certain extent.
By studying the current limitations of these concerns, favorable directions to improve the
model became apparent.

For achieving better performance, researchers restrict the model to a limited domain,
resulting in domain-crossing problems. The new release of cross-domain datasets and
attempts at learning methods have greatly alleviated this difficulty. Since the semantic
equivalence between the two languages cannot be calculated, it is almost impossible to
construct a cross-language generative model under the existing technical conditions. This
backlog item still has a long way to grow. In terms of generalization ability, overfitting
is a common problem, and recursive generative architecture and reinforcement learning
methods have been presented to tackle this problem. External complement and model
enhancement perspectives can improve the accuracy of the model. Dataset augmentation,
search space optimization, dialog-based generation, and two-stage generation are preva-
lent approaches in external complement. Researchers are improving the model accuracy
by discovering potential limitations in architecture strategies and learning approaches.
Lastly, to solve spurious programs, the auxiliary reward function of reinforcement learn-
ing and the mechanism to eliminate spurious programs during the training process are
practical approaches.

5.2.1. Portability

Domain crossing. Generating target code with high precision across domains has
become the main bottleneck of NLSCG tasks tightly coupled with domain knowledge. As
elaborated in Section 5.4.2, domain knowledge utilization shows progressive features, (1)
investigating whether to utilize domain knowledge in the budding phase; (2) discussing
how to utilize domain knowledge in the rising phase efficiently; and (3) addressing how
to utilize domain knowledge sufficiently under the premise of crossing domains in the
perfection phase. The inherent ambiguity exhibited by NL restricts the NLSCG task to
specific application scenarios [32]. Depending on manually designed features, many
previous works build models with a domain-specific specialty [33], and these models learn
to match semantic parsing results rather than truly learn to understand the meanings of
inputs [34], making it challenging to adapt to new domains. Building the model targeted
on one specific domain (i.e., database, table) [35] or binding interactive guidance from
users has become the primary approach that existing technologies try in order to achieve
high accuracy. Hence, existing techniques for NL-based synthesizing of the corresponding
code , SQL in particular, are not database agnostic (i.e., do not require database-specific
training or customization) [36]. One reason is that the training datasets applied in the
NLSCG tasks based on supervised learning are concentrated on the particular domain while
ignoring data previously collected for other domains. The popular Overnight [84] dataset
containing eight domains has greatly alleviated this problem. In addition to mainstream
supervised learning, some general cross-domain learning categories have been introduced
to NLSCG, including meta-learning [37] and transfer learning [38], and have achieved
confident performance.

Language crossing. NLSCG tasks embrace various code types constrained by rela-
tively unique grammatical rules. To achieve the general-purpose generation and ensure the
syntactic well-formedness of the generated code, it is necessary to design a parser that ex-
plicitly reflects the domain-dependent grammar of code embedded in the model [39]. Prior
work proposes a model that performs the task from text descriptions to regular expressions,
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utilizing a domain-specific component that computes the semantic equivalence between
two regular expressions [85]. However, the effectiveness of this approach is extremely
dependent on the component mentioned above, leading to trouble with generalizing to
other languages since the semantic equivalence calculations are not possible across other
formal languages [40]. Therefore, addressing this issue with general-purpose grammar
models has become a considerable exploration direction.

5.2.2. Generalizability

Overfitting. Overfitting remembers superfluous minor features of the training data
and reduces the generalization ability. A model with good generalization must be able
to perform exceptionally well outside the training set. In terms of the NL end, due to
the particularity of real-world NLSCG tasks, the large and varied vocabulary with many
rare words naturally intensifies overfitting [41]. When it comes to the SC end, the more
extraordinary complexity generation scenarios, like the multi-schema problem in SQL,
would aggravate the occurrence of overfitting [42]. Recent work [10] has discovered
that incorporating the notion of recursion into neural program synthesis architecture or
leveraging reinforcement learning instead of supervised techniques could significantly
improve model generalizability.

Domain Generalization. Solving the problems of limited training samples and data
distribution conversion can improve the domain generalization problem to a certain extent.
As described in Section 5.4.1, domain crossing can evaluate the portability of a model,
which means training based on one domain and then smoothly applied to another one
without any additional training data. However, it is challenging to achieve this goal as,
in the training process, not all the target domain KB constants (relationships and entities)
can be observed at the training stage [15], and emerging domains will break the pre-adapted
models. Furthermore, mainstream complex SQL query generation methods often take SQL
templates or slots as the intermediate absorber and impair the ability to generate code of
unseen templates [43].

5.2.3. Accuracy

External Complement. Improvements based on the model itself are prone to touch the
ceiling. From an engineering thinking perspective, complementing specific components
externally, the model can more effectively improve the performance of the generated tasks.
Inspired by successful application in machine translation, a retrieval-based approach has
been introduced into neural code generation [18]. For instance, studies [6,44] gain an
insight that the parser still maintains high recall when incorporating the n-best predictions
into the gold-standard generated code most of the time. Thus, by reranking the n-best list
of candidate code snippets, they investigate potential actions to improve the precision.

Model Enhancement. Popular external complements, such as training set enrichment [45],
search space optimization [6,18,46], purposeful supplementation of context information [32],
two-stage generation [7,14,36], etc., are prevalent approaches to improving the accuracy
of NLSCG tasks. However, some researchers are dedicated to focusing on a pure end-to-
end approach. They learn experiences from historical success models, discovering latent
limitations from the perspectives of model architecture strategy and learning approach,
and improve precision within an accomplishable range. Research [8] has proposed a bare
neural model, without any search, additional postprocessing, or other forms of auxiliary
means, and still achieved state-of-the-art test-set accuracy. Instead of designing multiple
decoders from different language components or adding extra controllers for expansion
of production rules, authors [47] have proposed a fine-grain control over the decoding
process while retaining the simplicity of the sequence structure.

5.2.4. Spuriousness

Weeding out Spurious SC. NLSCG sometimes encountered spurious programs, which
are prevalent in any general-purpose programming language. Spurious programs denote
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that the incorrect utterances accidentally produce correct results yet do not reflect the actual
semantics. Research [48–50] in selected studies explored this topic. Spurious programs
would provide wrong signals for the generation model, developing in an increasingly
biased direction. This can be alleviated by using the auxiliary reward function derived
from reinforcement learning [48] or designing a mechanism to eliminate spurious programs
during training [50].

5.3. Training

Sometimes the failure of training neural networks occurs in silence; Karpathy [86] has
proposed a recipe to achieve better performance for training neural networks. Compared with
adopting inertial and experience-based tricks with a kind of elusiveness, researchers are trying to
find the breakthrough from visible limitations, including training dataset and training character-
istics, to get improvements. In this subsection, we summarize the research backlog items related
to training that researchers discover in the NLSCG field to inspire potential enhancements.

Data-hungry and rare word problems are widespread in machine learning training tasks.
The former can be alleviated via semi/unsupervised learning, data augmentation, and releasing
new datasets to a certain degree. In dealing with rare words problem, the only thing to pay
attention to is how to accurately embrace the successful experience applied in other fields
to the distinctive SC end. Capturing all tiny details on the SC end would inevitably lead to
computational challenges, and researchers should make trade-offs between complicated deep
learning models and training efficiency. In addition, injecting prior knowledge would improve
model performance, and successful attempts are based on the data recombination process.

5.3.1. Dataset

Data Hungry. The dataset is one of the essential factors determining the upper
bound of the model performance to some extent. The abundance of high-quality labeled
data is critical for effectively training supervised models [31,51]. However, manually
annotating NL utterances with their corresponding SC is expensive, cumbersome, and time
consuming [10,38,52,53]. While emerging datasets have sprung up, due to the limitations
in quantity, quality, and domain-crossing, the limited availability of labeled data is still
becoming the primary bottleneck for data-driven supervised models [49].

Rare Words. It is challenging to learn representations of rare words with a neural
language model. The entire word sequence containing rare words would be underestimated
due to the influence of rare words on the context of neighboring words [87]. Words that are
rare in the dataset are unable to learn good enough parameters [88]. The hybrid method
combining significant example retrieval and neural models has been proven to be successful
in processing rare words [89]. Hayati et al. [18] deal with rare words through constructing
n-gram over subtrees to exploit the code structural similarity.

5.3.2. Training Features

Efficiency. Modeling source code with large formal grammars can easily lead to long
decoding paths, even for short code snippets [21]. The training of deep neural networks
with complex topologies is difficult, time consuming, and error-prone [54]. Researchers
should find a way to make a trade-off between complicated deep learning models and
training efficiency. Zhong et al. [55] discovered that the output space of the softmax in
the Seq2Seq model would be unnecessarily large if the generated sequence cannot be
restricted to a particular list. Computational challenges occur concerning supervised
learning, as well as concerning semi-supervised learning. A semi-supervised autoencoder
tends to convert the transformation object from (x -> y) to (y -> x -> y) by considering the
input sequence as a latent variable, where x is the input sequence, and y represents the
output sequence. However, modeling the latent variable as a series of discrete symbols
drawn from multinomial distributions will bring serious computational challenges, as it
requires marginalizing over the space of latent sequences ∑∗

x [51].
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5.3.3. Prior Knowledge

Lack of Prior Knowledge. Recently, some NLSCG tasks tried to build more flexible
models and generate the corresponding code via learning more general grammars and
features while trimming lots of task-specific prior knowledge. Compared with standard
semantic parsers, this modeling flexibility is attributed to the common application of
minimal feature engineering represented by RNNs. Such knowledge plays a critical role in
understanding modeling limitations, and the parser would get better performance under
the constraints of task-specific prior knowledge [56]. Jia and Liang [57] have proposed a
data recombination framework which induces a generative model from the training data
and samples from it to generate new training examples with available prior knowledge.

5.4. Context

The context indicates information about the circumstances in which something or
someone is located, which can influence and assist users in understanding the original
intention to a certain extent. In the entire process of NLSCG, three components would be
affected by the context, including the input end, the output end, and the relatively special
domain knowledge across the whole generation problem (especially for instances in DSLG
and SP). The lack and insufficient application of such information impel us to discover
these research backlog items.

However, rare existing works make sufficient use of the context information, which
accumulates the backlog items of ineffective domain knowledge. The inefficiency is mainly
reflected in the low accuracy caused by the lack of accurate knowledge embedding and
the preconceived wrong assumptions before model design. Besides, the limited context
indicates the restricted context from the user’s intents and programmatic and generation
problem perspectives. The present items mainly lie in the narrow scope of the context,
insufficient utilization manner, and lack of reasonable solutions, etc.

5.4.1. Ineffective Domain Knowledge

Low Accuracy. The input NL query often contains keywords that can be specific
to the underlying database. Shreds of evidence show that those words are crucial to
many downstream actions , including inferring column names and condition values in
the SQL query [58]. Some particular tasks of NLSCG constrained by additional domain
knowledge to generate proper SC present significant differences in taking advantage
of domain knowledge. Research [59] notices that some studies do not utilize domain
knowledge; specifically, those missing or lacking accurate embeddings exist between the
database schema entity and the input query.

Wrong Assumption. Researchers [43,58] find many models assume that users have an
exceptionally familiar sense of the domain knowledge, such as knowing about the exact
column names and string entries in that table. They copy the question words from the input
query directly via a soft-alignment mechanism. However, the mismatch between question
words and column names (or cells) exacerbates the incorrectness and non-executability
of the generated results. Under these circumstances, even if the embeddings of domain
knowledge reach perfection , the performance of downstream tasks could not meet the
expectations, and it seems to be counterproductive occasionally.

5.4.2. Limited Context

User’s Intent. Acquiring users’ real intentions follows the principle of gradual im-
provement. However, the reality is that existing works tend to assume that the corre-
sponding source code can be generated end to end from one single NL description [60].
Therefore, many users’ fundamental details are omitted, yet the generator does not have
the capabilities to figure out the user’s real intentions via their initial description.

Programmatic Context. The mainstream generating approaches of NLSCG have
restricted the relevant code to a limited language and code environment. In most cases,
the generated code focuses on more straightforward scenarios and context, so that very few
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of them take into account programmatic context. For example, the fixed code templates
generate only parts of a method with a predefined structure, such as IFTTT and custom
actions; a fixed context generates the body of the same method within a single fixed class,
such as code snippets; or no context at all generates code tokens from the flat SC sequences
separately, such as SQL slots [61]. All those mentioned above are still a long way from the
executable program. While these fragments have motivated NLSCG solutions in model
design and architecture selection, the generation scenario with the programmatic context is
more complicated and presents its practicality.

Simple Context. In NLSCG tasks, mapping NL utterance to the target SC under the
context of special domain knowledge, such as generating SQL constrained by database
schema, semantic parsing associated with its own knowledge base, is a particular instance.
The number of domains, schemas, and tables, along with users’ intentions, can determine
the difficulty level of SQL generation tasks . Many datasets about one domain contain
only one database schema for that domain; more seriously, some schema only contain one
table [42]. Consequently, many existing works are often formed into simple and crude
applications, as complex scenarios like multi-table cascade queries by foreign key can never
happen concerning these works.

6. Perspectives on NLSCG Latest Technology Landscape

This section summarizes the foremost important part of the NLSCG models through
an intensive investigation of the selected studies. The generative model can be regarded as
a particular data processing problem, with which it is easy to depict the entire generation
process clearly by utilizing a pipeline-based approach. Based on the two main processing
pipelines of NLSCG, namely the NL end (description of requirements and intents) and
the SC end (executable source code in a specific context); regarding research backlog as
guidelines, we decompose raw information from selected studies, and convert them into
essential components, and then build interactions according to the data processing chain
and the conventional deep learning model pipeline. We propose a latest NLSCG technology
landscape illustrated with a metro map metaphor, to explain the NLSCG utilities as vividly
as possible. On this basis, the leading technical tactics adopted by each component are
elaborated gradually to stimulate more possibilities for model construction.

Regarding NLSCG tasks as data processing problems, we use the pipeline-based
diagram to produce a thorough elaboration of the current utilities shown in Figure 7.
Like two ends of a scale, we could go through two main routes covering the generation
process from NL to SC when traveling along with pipelines in the landscape diagram.
Besides, another 11 routes run through the main routes directly or indirectly with the
identification of corresponding color and guideboard. During the crossroad, important
components are highlighted in the form of different types of shapes. The critical technical
points are displayed in the diagram in the form of a circle point. The solid path indicates
that information can be directly transmitted between the two main lines, while the dashed
path cannot. Table 2 describes the significant routes and intersections deriving from
the landscape. Here we consider them as the actuating routes and enabling factors that
motivate the further improvements of the NLSCG field. The representative studies which
indeed describe the corresponding enabling factors are also exhibited in this table.

NLSCG maps natural language (NL) utterances into an executable representation.
As mentioned in Section 4.3, these executable representations refer to logical actions,
logical language, customized DSL, general-purpose DSL, advanced programming language,
and program. There are some scenarios where the NLSCG process depends on a specific
programmatic context [61]. The input representation is typically executed against a problem
context, such as a knowledge base [62] or database [58], to generate the desired output. For
the problem context that plays an essential role in semantic analysis and domain-specific
language generation tasks, the context scope, the context-embedding approaches, and the
manners of combining context with the NL end are worthy of attention.
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Different from the ambiguity of natural language, the source code is constrained by
an underlying syntax or grammar. Such constraints can usually be converted into an
intermediate structure with AST as the typical grammar criterion. The complexity of the
intermediate tree structure brings difficulties in leveraging information with rich structures,
which attracts most researchers’ attention. The prerequisite for taking full advantage of
such information is to clarify the structural embedding basis before gaining representations,
which is different from the conventional word or character level granularity of the NL.
The inherent structural information in the SC constrained by the syntax rules has shown
its utilization characteristics of diversity; different state propagation directions, grammar
conversion criterion, distinguishing basis, and the random combinations between them
have a profound impact on the design of subsequent embedding algorithms. Considering
the complete embedding for both ends, researchers take sequence or structure as the
modeling object to construct the network. Researchers also make trade-offs between the
levels of details and the final network complexity in the structure-embedding process to
ensure the training efficiency of the model.

Figure 7. NLSCG Technology Landscape.
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Table 2. Significant Enabling Factors in the Landscape.

Actuating Enabling Description Representative

Routes Factors Studies

Copy Alignment Outline the most classic and widespread strategies that align S2,S3,S6,etc.

Mechanism the NL end and SC end.

Domain Problem Focus on the critical contextual information and how it S7,S34,S35,S45,

Context assimilates into the generative model. S56,S63,S65,etc.

Learning Shared Sketch the granularity of the participants’ vectorization unit S1,S22,etc.

Unit Granularity in the encoding stage (word or character) and modeling object

in the network construction stage (sequence or structure).

Constraint Structural Discuss the basis for achieving structural embedding from S2,S3,S14,S36,

Evidence Embedding different views. S50,S58,S64,etc.

Basis

Constraint Grammar Describe the extraction criteria for getting intermediate S36,S58,S64,etc.

Evidence Structure structure.

Constraint Propagation Discuss the additional state propagation between nodes at S6,S9,S21,etc.

Evidence the different relative position in the grammar structure.

Constraint Distinguishing Indicate the distinguishing basis of different nodes in the S2,S3,etc.

Evidence Basis grammar structure in the subsequent modeling process.

Embedding Fundamental Investigate the conventional embedding algorithms and S1,S8,S15,S30,etc.

Algorithm Representation tactics based on the original sequence input.

and Tactics

Embedding Structural Explore the common embedding algorithms and tactics based S11,S14,S15,S50,

Algorithm Representation on the intermediate structure. S66,etc.

and Tactics

Embedding Token-based Summarize the embedding strategies that consider tokens as S5,S7,S16,S20,

Algorithm Constraints the decoding object and hold the extended constraint during S26,S34,etc.

and Tactics the decoding process.

Embedding Syntax-driven Summarize the embedding strategies that utilize intermediate S2,S3,S11,S15,

Algorithm Constraints structure as the springboard, granularity and syntactic S25,S44,S45,etc.

and Tactics constraints as the foundation and standard, and they work

together to extract the structure information.

Embedding Constraint Summarize on the strategy for attaching critical constraints to S2,S3,S8,S10,

Algorithm Decoding the decoding inference stage to ensure the syntactic correctness S11,S15,etc.

and Tactics and semantic accuracy of the generated result.

Fundamental Network Introduce the widely adopted networks and variants and S1,S7,S11,S14,

Algorithm the approaches to integrating the learning unit, constraint S22,S23,S52,etc.

evidence, and embedding algorithm and tactics.

Model Assembling Outline the assembling paradigms that assemble multiple S8,S11,S15,S23,

Architecture encoders or decoders composed of fundamental networks. S51,S63,etc.

Learning Learning Summarize the learning categories that NLSCG attempts and S8,S15,S16,S24,

Category their adaptive scenario and superiorities. S28,S30,S55,etc.

Generation Generation Discuss the generation manner in the way of end-to end S6,S34,S35,S41,etc.

Route or via an intermediate stage .

After confirming the granularity of the learning starting point, the relevant NL should
be encoded into the representations that the computer can recognize, with the expectation
of not losing information during the encoding process. At this stage, comparing NL and SC,
current explorations present a relatively different situation and tendency. Overall, various
embedding algorithms are applied to the NL end, while few researches have focused
merely on the bare source code encoding. The majority of the NL end and minority of
the SC end are regarded as flat sequences, adopting representation learning algorithms
commonly applied in the NLP field. In contrast, both ends attempt different capture
strategies for extracting information via the structure modeling object. By employing the
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syntactic analysis thinking, the NL end directly builds tree-based neural networks on
the intermediate syntactic structure. The representation of structural information from
the SC end shows its own particularity, with the granularity and structural embedding
basis as the cornerstones. These foundations serve as inspirations to design constraint
strategy and decoding process, and gradually develop into mature approaches. Current
studies have made efforts in two types of constraints, namely token-based constraints and
syntax-driven constraints; combining specific constraints with the appropriate decoding
process would unleash huge creative potentials. These constraints and decoding processes
establish a benchmark for accurately tracking structural information. Further, various
methods are branched on this mainline to perform subsequent modeling and deriving to
different factions.

To ensure the syntactic correctness and semantic accuracy of the generated SC, the con-
straint decoding attaches critical structural constraints to the decoding inference stage.
Afterward, a distribution is produced over these SC by modeling and ultimately screening
high scoring results after the searching procedure under this model. Similar to familiar
intelligent generation tasks, the fundamental algorithms adopted by NLSCG are based on
popular deep learning models and their variants. These actualities hold for both NL and
SC end modeling. Multiple types of comprehensive networks, including sequential NN
(RNN, LSTM, etc.), convolutional NN (CNN), and structural NN (tree NN and graph NN),
are attempted in this field, and the emerging modeling algorithms like Transformer are
applied to NLSCG and have gradually shown their superiority.

In most cases, the complexities of NLSCG tasks result in the infeasibility of generation
relying on one single neural network. Therefore, the encoder–decoder framework with
neural attention has become the baseline architecture of NLSCG, and the assembly of
various models on this basis is also becoming increasingly mainstream. The attention
mechanism was initially introduced to align the information between NL end and SC end,
and it is frequently employed in the splicing and integration process of the network.

The learning algorithm is employed to update the model’s parameters on account of
the training dataset. Supervised learning still occupies the mainstream category with its
more accessible training and higher accuracy. Semi/unsupervised learning has also been
introduced as the auxiliary method to solve the data-hungry problem. Reinforcement learn-
ing has also been introduced to enhance performance and generalization. In addition, meta-
learning is constantly being introduced into this area to deal with cross-domain problems.

Hybrid methods have proven to be effective in NLSCG tasks. Hence, we could transfer
between different routes from the starting, terminal, and intermediate points in the land-
scape to inspire potential improvements of NLSCG utilities. The end-to-end generation
strategy sustained by technologies and components linked by the pipeline still occupies
the mainstream position of the current generation task’s technology stack. However,
many studies shed a different light on external complementary methods, with the hope of
making the next leap in performance and domain-crossing. Genres based on search con-
cepts, including combining retrieval methods into neural code generation models [18,46],
reranking a list of potential candidates [6], etc., are relatively feasible. Besides, data aug-
mentation [45,63] processing based on training datasets , as well as the two-stage [52] and
sketch [24]-based generation tactics, are also worthy of consideration.

7. Conclusions and Future Directions

SCG has been studied for a long time, and the NLSCG shows its popularity with the
increasing adaptation maturity of deep learning techniques. This survey provides insights
for NLSCG from laborious and deliberate exploration of 66 relevant studies collected
by the well-designed snowballing process. We extract preliminary information from the
selected studies, review the overall development trend in recent years, summarize the
frequently used dataset, and refine the types of NLSCG research tasks, consequently
promoting the understanding of the NLSCG problem. Then the research backlog is filled by
considering critical motivations and priorities under the guidance of the research journey
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map. We extract a taxonomy based on the research backlog items through a circular
treemap regarding the inherited research focuses and adaptive challenges. Then we
summarize the insights gained from the NLSCG research backlog and elaborate the details.
Finally, based on the two main processing pipelines of NLSCG, we propose a technology
landscape of NLSCG to explain the NLSCG utilities as vividly as possible. The technology
landscape depicts the critical fundamental components, correlations between components,
and leading technical tactics, stimulating more possibilities for model construction.

We agree that the following issues need to be addressed in future work. First of
all, there is no precise horizontal comparison between the selected studies. The reasons
are as follows: (1) There are significant differences in various types of generation tasks,
which hinder the comparison; (2) most selected studies use different datasets and eval-
uation benchmarks, which increase the difficulty of comparison. Secondly, this article
only introduces main components in the NLSCG landscape due to space limitations, while
ignoring important details about each technical solution, which need to be elaborated in
future research.
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Appendix A. Dataset List

Table A1. Datasets.

ID Name Output-End Form Scale Year Related Study

1 JOBS Prolog-style Queries 640 1996 3,11,50

2 GEO Lambda Calculus / SQL 880 1996 3,10,17,23,24,28,32
41,50,54,57,60,65

3 SAIL Custom Actions 3236 2006 28

4 ATIS Lambda Calculus / SQL 5871 2010 8,10,11,17,23,24,32,37
41,46,50,57,58,60,61

5 WEBQUESTIONS Lambda DCS 5810 2013 29,37,44,54
6 IFTTT 2015 If-This-Then-That Recipes 86,960 2015 2,5,13,25
7 DJANGO Python 18,805 2015 1,2,8,10,12,17,65
8 OverNight Lambda DCS 13,682 2015 38,39,49,60,63
9 MTG Java 13,297 2016 1

10 HS Python 665 2016 1,2,3,11,12
18,22,23

11 WikiTableQuestions Lambda DCS 222,033 2016 4,59
12 IFTTT 2016 If-This-Then-That Recipes 291,285 2016 25,48
13 NLMAPS Lambda Calculus 2380 2016 28
14 SCENE Custom Actions 4403 2016 30
15 ALCHEMY Custom Actions 4560 2016 30
16 TANGRAMS Custom Actions 4989 2016 30
17 NL-RX Regular Expression 10,000 2016 31
18 SPADES Lambda Calculus 79,247 2016 37,54
19 GRAPHQUESTIONS Graph Query 5166 2016 37,40,54

20 WikiSQL SQL 80,654 2017 7,10,21,33,34,36
42,55,57,59,62

21 WEBQUESTIONSSP lambda DCS 4737 2016 14
22 SENLIDB SQL 24,890 2017 21
23 Scholar SQL 817 2017 32
24 Textbook SQl 108 2017 35
25 NL-Bash Bash 5413 2017 40
26 AML AML 150,000 2018 6
27 ALGOLISP DSL inspired by LISP 100,000 2018 9,15
28 CONALA Python 2879 2018 17
29 Advising SQL 4385 2018 24
30 Karel Customer Tree 10,000 2018 43
31 CONCODE Java 100,000 2018 19,45,46
32 Spider SQL 10,181 2018 18,47,51,56,58,66
33 ComplexWebQuestions SPARQL 34,689 2018 52
34 GeoGrAnno lambda calculus 824 2019 63
35 ACBJ Java 1,074,963 2019 64
36 MIMICSQL SQL 10,000 2020 53
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