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Abstract: Recent years have seen the flourishing of research devoted to quantum effects on meso-
scopic and macroscopic scales. In this context, in Entropy 2019, 21, 705, a formalism aiming at
describing macroscopic quantum fields, dubbed Reduced State of the Field (RSF), was envisaged.
While, in the original work, a proper notion of entropy for macroscopic fields, together with their
dynamical equations, was derived, here, we expand thermodynamic analysis of the RSF, discussing
the notion of heat, solving dynamical equations in various regimes of interest, and showing the
thermodynamic implications of these solutions.
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1. Introduction

In recent years, a considerable attention has been given to the study of quantum
phenomena on mesoscopic scale, as many physical systems that are nowadays fundamental
for physical applications fall into this regime [1,2]. The main characteristic of mesoscopic
systems is that, while they are still large enough not to be considered purely quantum, they
are neither small enough to ignore quantum effects.

Furthermore, while the behavior of macroscopic fields is well described by classical
wave equations with coherent sources, incorporation of thermal and random sources into
the field equations still represents an open problem [3]. As a matter of fact, the most
common description of such a situation relies on the introduction of phenomenological
terms, for example, terms describing the damping. This solution is not fully satisfactory
from a theoretical point of view, as these extra terms do not give a correct thermodynamic
description of such systems. On this basis, and on drawing from the fact that the ultimate
description of any physical system should be given by quantum mechanics, the Reduced
State of the Field (RSF) formalism was conceived [4].

Since a completely quantum picture is generally too complex and, consequently, not
convenient to treat macroscopic fields, the RSF aims at describing macroscopic waves using
a coarse-grained version of the quantum formalism. Such a description allows one to retain
the most important quantum features that would even emanate at macroscopic scale [4],
while, at the same time, mitigating the complexity that would have no effect beyond the
microscopic realm. Interestingly, in the same spirit, one can answer the question being a
sort of opposite to the former one, namely which features of the quantum evolution can be
classified as classical [5].

On the other hand, recent years have seen the flourishing of quantum thermodynam-
ics [6], namely the study of thermodynamic phenomena on the quantum scale. This interest
has been fostered by progressive miniaturization of electronic and optical devices, at the
level where quantum phenomena cannot be ignored [7]. We, therefore, observe a huge
development of the field of quantum thermodynamics, where a wide range of topics is
being covered, e.g., thermalization and heat transfer [8–11], quantum heat engines and
refrigerators [12–18], and quantum batteries [19–21].
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The biggest advantage of the RSF formalism is that it provides both a suitable defini-
tion of entropy for radiation fields and dynamical equations describing the field which are
in a closed form (do not depend on other degrees of freedom). It is, thus, of interest to see
how thermodynamics intersects with the description of mesoscopic and macroscopic fields
since, especially on the mesoscopic scale, one typically does not have full control over the
system, yet quantum effects need to be taken into account in order to describe the system
appropriately [22].

In this paper, we want to explore how thermodynamic phenomena, such as heat
exchange, fit the RSF formalism. Moreover, we want to analyze the behavior of the entropy
of RSF [4], as its definition differs from the one usually found in the classical or quantum
realms. The paper is organized as follows. In Section 2, we briefly review the RSF formalism,
pointing out its main features. In Section 3, starting from the evolution equations of RSF,
we consistently define the main thermodynamic quantities, such as internal energy, heat,
and work. Then, in Section 4, we solve the equations of motion in some simple but relevant
situations, highlighting the thermodynamic meaning of the different terms present therein.
Finally, in Section 5, we give our conclusions and some outlooks for future works.

2. The RSF Formalism

This section mostly follows Reference [4], since we summarize here the most important
background and ingredients of the RSF formalism. In particular, all formulas appearing in
this section are taken from Reference [4].

We start with classical electromagnetic field which, in a finite volume, is described by
a set of modes fk(x; t) = e−iωkt fk(x), where x is the position, k is a discrete index, and ωk is
the frequency at which the mode oscillates. In the first quantization picture, these modes
represent eigenstates of the single-particle Hamiltonian of quasi-particles associated with
the field. Under a proper normalization, these modes form an orthonormal basis of the
single-particle Hilbert space, where the energy of each mode is equal to h̄ωk.

In the second quantization picture, a pair of operators âk, â†
k is associated to each mode

fk. Standard bosonic commutation relations hold:[
âk, â†

k′

]
= δkk′ [âk, âk′ ] =

[
â†

k , â†
k′

]
= 0, (1)

so that the action of the annihilation and creation operators, on the vectors in the corre-
sponding Fock space spanned by the orthonormal set {|n〉k}, is

âk|nk〉 =
√

nk|nk − 1〉 â†
k |nk〉 =

√
nk + 1|nk + 1〉. (2)

The RSF formalism relies on a correspondence between operators acting on the single-
particle Hilbert space and additive operators acting on the Fock space. The former can be
written as:

b̂ = ∑
k,k′

bkk′
∣∣k〉〈k′∣∣, (3)

where |k〉 ≡ | fk〉, while the corresponding additive observable in the Fock space is (We
follow the convention introduced in Reference [4], according to which operators in the
Fock space are denoted by capital letters (with the density operator ρ̂ being an exception),
while operators acting on a single-particle Hilbert space are denoted by small letters.):

B̂ = ∑
k,k′

bkk′ â
†
k âk′ . (4)

Consequently, unitary operators û acting on the single-particle Hilbert space are in corre-
spondence with multiplicative operators on the Fock space via:

û = eib̂ → Û = eiB̂. (5)



Entropy 2021, 23, 1198 3 of 12

From now on, we also use “Tr” for trace operations in the Fock space and “tr” for traces
applied to the level of the RSF, i.e., on a single-particle Hilbert space.

The RSF description of the state of a macroscopic field is based on the couple (r̂, |α〉),
defined from the full quantum state of the field ρ̂ in the Fock space as:

r̂ = ∑
k,k′

Tr
[
ρ̂ â†

k′ âk

]∣∣k〉〈k′∣∣ := ∑
k,k′

rkk′
∣∣k〉〈k′∣∣, (6a)

|α〉 = ∑
k

Tr[ρ̂ âk]|k〉 := ∑
k

αk|k〉. (6b)

The matrix r̂ is a single-particle density operator, while the vector |α〉 contains the informa-
tion about the phase of the macroscopic field.

It is important to observe that the single-particle density operator is not normalized to
unity but, rather, to the total number of particles in the state, i.e.,

tr{r̂} = N = Tr
{

ρ̂N̂
}

, N̂ = ∑
k

â†
k âk. (7)

In fact, the same expectation-value identification holds for any additive observable

tr
{

r̂b̂
}
= Tr

{
ρ̂B̂
}

. (8)

Furthermore, it turned out beneficial to define an another object, the correlation matrix

r̂α = r̂− |α〉〈α|, where |α〉〈α| = ∑
k,k′

αkα∗k′
∣∣k〉〈k′∣∣, (9)

which is a positive semi-definite operator being zero if and only if the state is coherent. Us-
ing this operator, it is then possible to give a suitable definition of entropy for macroscopic
fields, which is

S[r̂α] = kB tr[(r̂α + 1) ln(r̂α + 1)− r̂α ln r̂α]. (10)

This definition of entropy has an appealing feature of being always greater than or equal to
zero, and being zero only when the RSF is coherent. This also highlights the fact that the
coherent states are the only pure states in this formalism.

To shortly summarize the above, the RSF formalism is particularly suited to deal with
situation where one does not have full quantum control of the system (we just control first
and second moments, so to speak), as is in the case of macroscopic fields, but quantum
effects are still visible. Having revised the RSF formalism and its main features, we are
now ready to start thermodynamic considerations.

3. Thermodynamics of the RSF

In a usual scenario described by thermodynamics, one deals with a system S, often
called the working fluid, interacting with one or more thermal baths, i.e., much larger
systems with infinite heat capacity that are typically assumed to have a well-defined
temperature. By changing the Hamiltonian, i.e., the energy, of the working fluid S and
letting it interact appropriately with the thermal baths, it is possible to extract work from
the system (i.e., we have a heat engine) or to use work to transfer heat from a cold to a hot
bath (i.e., we implement a refrigerator).

As in what follows, we will not be interested in a description of the thermal baths but,
rather, in their action on the working fluid S. Therefore, we want to define heat and work
only in terms of the state S, in the current context sufficiently well described by the couple
(r̂, |α〉). In order to study the thermodynamics of a macroscopic field described under the
RSF formalism, we first need to recall the dynamical equations describing the behavior of
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the field when it interacts with an external bath. This was already done in Reference [4],
where the system of equation for the RSF was derived from the standard expression for a
map belonging to a so-called quasi-free dynamical semigroup [23,24], thus extending this
concept to RSF formalism. The set of equations [4] describing the dynamics of the couple
(r̂, |α〉) can be derived from the equations describing the temporal evolution of the full
state in Fock space ρ̂ through:

d
dt

rkk′ = Tr
{

â†
k′ âk

dρ̂

dt

}
,

d
dt

αk = Tr
{

âk
dρ̂

dt

}
. (11)

Considering a generic model of dynamics for ρ̂, given by the evolution equation [4]

d
dt

ρ̂ =− i
h̄
[
Ĥ, ρ̂

]
+

N

∑
k=1

[
ζk â†

k − ζ∗k âk, ρ̂
]
+

N

∑
k,k′=1

Γk′k
↓

(
âk ρ̂ â†

k′ −
1
2
{

â†
k′ âk, ρ̂

})

+
N

∑
k,k′=1

Γk′k
↑

(
â†

k′ ρ̂ âk −
1
2
{

âk â†
k′ , ρ̂

})
+
∫

µ(du)
(

Ûρ̂ Û† − ρ̂
)

,

(12)

which includes the presence of a coherent source, a thermal bath, and random scattering,
one can write the following equations for the couple (r̂, |α〉) (Note that the anticommutator
terms, in comparison with Reference [4], have been divided by 2. See Reference [5] for
details.):

d
dt

r̂ = − i
h̄
[ĥ, r̂] + (|ζ〉〈α|+ |α〉〈ζ|) + 1

2
{
(γ̂↑ − γ̂↓), r̂

}
+ γ̂↑

+
∫

µ(du)(ûr̂û† − r̂), (13a)

d
dt
|α〉 = − i

h̄
ĥ|α〉+ |ζ〉+ 1

2
(γ̂↑ − γ̂↓)|α〉+

∫
µ(du)(û− 1)|α〉. (13b)

Let us start by explaining the meaning of each term in (12) viz. Equations (13a) and (13b).
In the dynamical equation for r̂, we first find the commutator of r̂ with the single-particle
Hamiltonian ĥ = h̄ ∑k ωk|k〉〈k| stemming from Ĥ = h̄ ∑k ωk â†

k âk, and this term describes
nothing but the standard unitary dynamics induced by the free Hamiltonian. Next, we find
the term |ζ〉〈α|, which describes the effect of a coherent source, and, thus, also depends on
the phase of the system |α〉. Then, we can see the anticommutator term with the operators

γ̂l = ∑
k,k′

Γkk′
l
∣∣k〉〈k′∣∣, (14)

describing stimulated absorption and emission processes, while the isolated term γ̂↑
describes spontaneous emission processes. The coefficients Γkk′

l encode the information
about the state of the thermal bath and its interaction with the system. Finally, the integral
term describes the effect of random scattering phenomena, where the operators û are
unitary. Similar considerations apply to the dynamical equation for |α〉. Note also that,
although the usual single particle approach is one where recursive systems of equations
are truncated through appropriate approximations or boundary conditions, in the RSF
approach, one deals with a closed system of equation, a feature that greatly simplifies the
study of the dynamics of a macroscopic field.
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As the entropy is defined in terms of the correlation matrix r̂(α), it is also useful to
derive the dynamical equation for this quantity. Since r̂(α) = r̂− |α〉〈α|, we only need to
compute the time derivative of |α〉〈α| using Equation (13b):

d
dt
|α〉〈α| =

(
d
dt
|α〉
)
〈α|+ |α〉

(
d
dt
〈α|
)

=− i
h̄

[
ĥ, |α〉〈α|

]
+ (|α〉〈ζ|+ |ζ〉〈α|) + 1

2
{
(γ̂↑ − γ̂↓), |α〉〈α|

}
+
∫

µ(du)(û|α〉〈α|+ |α〉〈α|û†)− 2|α〉〈α|), (15)

from which we can write the dynamical evolution for the correlation matrix r̂(α) as

d
dt

r̂(α) = − i
h̄
[ĥ, r̂(α)] +

1
2

{
(γ̂↑ − γ̂↓), r̂(α)

}
+ γ̂↑

+
∫

µ(du)
(

ûr̂(α)û† − r̂(α)
)
+
∫

µ(du)(û− 1)|α〉〈α|(û† − 1). (16)

From this equation, we can see that the dynamics of the correlation matrix are not influenced
by the presence of coherent sources. Consequently, the entropy S[r̂(α)] is also invariant
with respect to coherent evolution. This feature of the theory is associated with the fact
that we are dealing with a mesoscopic or macroscopic system, where, in fact, we do not
have access to all degrees of freedom [4]. In particular, the single-particle Hamiltonian ĥ
does not carry the whole content of the Hamiltonian in the Fock space which also contains
contributions due to the displacement. In view of this, we define the internal energy as

U = tr
[

ĥr̂(α)
]
≡ tr

[
ĥr̂
]
− 〈α|ĥ|α〉. (17)

This definition is motivated by the form of the entropy in Equation (10) and from the
related discussion in Reference [4]: as the definition of entropy relies on the effective degree
of control that one has over the physical system under examination, the same should apply
to other quantities of interest. Since, in the RSF formalism, the entropy is invariant under
the application of the Weyl displacement operator, one could expect the internal energy
to follow the same behavior. In particular, if, for instance, we were to define the internal
energy in the “intuitive” way as tr

[
ĥr̂
]
, then displacement would be a process implying

heat absorption from the system, with no change of entropy. In Section 4, we are going to
show that this issue is resolved by Equation (17), and that, thanks to this definition, we are
able to define properly the free energy of the system. Last but not least, let us emphasize
that the internal energy of the system is a notion which depends on an arbitrary choice in
which degrees of freedom describe the system and which belong to its environment.

Using the notion of internal energy in Equation (17), one has a natural decomposition

dU = tr

[
dĥ
dt

r̂(α)
]

dt + tr

[
ĥ

dr̂(α)

dt

]
dt = dW + δQ. (18)

Two observations are in place here. First of all, the single particle Hamiltonian is time
independent by construction. This is because the frequencies, as well as the eigenmode
basis, of the Hamiltonian, are not under control and do not vary over time due to the
dynamics of the sole field. Therefore, for generic macroscopic fields, there is no work, just
the heat. Work would require an engineered variant of time evolution, i.e., one can perform
(extract) work on (from) the system only by changing the frequencies ωk.

Second of all, only the scattering term couples r̂(α) with |α〉 in Equation (16). This
feature in a salient way distinguishes the scattering processes from the other processes
subsumed in the dynamical equations. Within a thermodynamic description, which is
solely based here on the correlation matrix, the scattering belongs to a different (more
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complex) class of (likely non-equilibrium) processes. The latter property, however, would
strongly depend on the measure µ(du) chosen. Perhaps, for the invariant Haar measure,
the situation would simplify, still, the aforementioned coupling will be there.

Therefore, we believe that the scattering processes deserve a separate and detailed
treatment. Consequently, here, we shall neglect random scattering terms, with the goal of
delineating the heat exchange and entropy production due to other processes. Under this
simplifying assumption, the heat exchanged is equal to

δQ = tr

[
ĥ

dr̂(α)

dt

]
dt =

1
2

tr
[
r̂(α)
{

γ̂↑ − γ̂↓, ĥ
}]

dt + tr
[

ĥγ̂↑
]
dt

= h̄ ∑
k,k′

ωk + ωk′

2
r(α)kk′

(
Γk′k
↑ − Γk′k

↓

)
dt + h̄ωkΓkk

↑ dt, (19)

that is, it only depends on interactions with the thermal bath. In particular, the second
term on the right-hand side of Equation (19) is responsible for the equilibration process
towards the equilibrium populations dictated by the bath structure, while the first term
describes heat exchanges due to changes in the modes’ occupations happening because of
the interaction with the bath.

The variation of the entropy in time is also found to be

d
dt

S[r̂(α)] = kB tr

[
dr̂(α)

dt
ln

(
r̂(α) + 1

r̂(α)

)]
. (20)

We use the notation in which the fraction of non-negative operators needs to be under-
stood in terms of their eigenvalues. This is possible because, whenever some eigenvalue
approaches 0, the time derivative also vanishes, killing the potential singularities [25].

Note that the trace of r̂(α) does not need to be constant in time. For a quasi-static
process, in which the state ρ̂ is always in thermal equilibrium, the correlation matrix is
always of the form

r̂(α) =
1

eβĥ − 1
. (21)

Since, in this case,

ln

(
r̂(α) + 1

r̂(α)

)
= βĥ, (22)

we recover the equality from standard thermodynamics

dS = kBβδQ. (23)

This observation further strengthens our definition of work and heat. Moreover, for a
non-quasi-static process, one has that r̂(α) is not of the form in Equation (22); thus, one has
also entropy production.

4. Some Examples of RSF Thermodynamics

In the following subsections, we want to solve the dynamical Equations (13a) and
(13b) under various circumstances where some of the terms are absent or can be simplified,
thus highlighting their thermodynamic meaning.

4.1. Free Dynamics of the RSF

The simplest, and almost trivial, case that one can analyze is the one where no
interaction with either a coherent source or a thermal bath is present, so that the dynamics
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of the RSF is fully described by the Hamiltonian term alone. Assuming the Hamiltonian in
the Fock space to be:

Ĥ = ∑
k

h̄ωk â†
k âk → ĥ = ∑

k
h̄ωk|k〉〈k|, (24)

we can explicitly write down the equations governing the matrix elements rkk′(t) and the
vector components αk(t) as:

d
dt

rkk′(t) = −i(ωk −ωk′)rkk′(t),
d
dt

αk(t) = −iωkαk(t). (25)

The solutions to these equations are easily found:

rkk(t) = rkk(0); rkk′ = e−i(ωk−ωk′ )trkk′(0); αk(t) = e−iωktαk(0). (26)

These solutions imply that, under purely free dynamics, the populations stay constant,
while the coherences among them rotate at a frequency equal to the detuning between
the modes. Finally, the components of the phase vector |α〉 rotate at the corresponding
frequency. In accordance with Equation (19), there is no heat exchange, as there is no
thermal bath. An important fact to be noted is that, as in Equation (16), the correlation
matrix depends on the Hamiltonian ĥ only through the commutator term, and the en-
tropy is unchanged under purely Hamiltonian dynamics, since the eigenvalues of r̂(α) are
left unchanged.

4.2. RSF Dynamics in Presence of a Coherent Source

We now want to solve Equations (13a) and (13b) subject to a coherent source, but still
without a thermal bath, so that we get:

d
dt

r̂ = − i
h̄
[ĥ, r̂] + (|α〉〈ζ|+ |ζ〉〈α|), (27)

d
dt
|α〉 = − i

h̄
ĥ|α〉+ |ζ〉, (28)

where |ζ〉 = ∑k ζk|k〉. We can easily get the dynamical equations for the matrix elements:

d
dt

rkk′ = −i(ωk −ωk′)rkk′ + (αkζ∗k′ + α∗k′ζk), (29)

d
dt

αk = −iωkαk + ζk. (30)

Solving the second equation first, we get

αk(t) = e−iωktαk(0)− i
ζk
ωk

(1− e−iωkt), (31)

so that the r̂ matrix elements are

rkk′(t) = e−i(ωk−ωk′ )t
[

rkk′(0) +
∫ t

0
ds ei(ωk−ωk′ )s

(
αk(s)ζ∗k′ + α∗k′(s)ζk

)]
. (32)

After we perform the integral, we get

rkk′(t) = e−i(ωk−ωk′ )t
(

rkk′(0) +
ζkζk′

ωkωk′

)
+

ζkζ∗k′
ωkωk′

(
1− e−iωkt − eiωk′ t

)
+ i

(
αk(0)ζ∗k′

ωk′
e−iωkt −

α∗k′(0)ζk

ωk
eiωk′ t

)
. (33)
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Let us consider the case where the initial phase vector |α〉 is null, i.e., αk(0) = 0, for all
k. In this case, the solution for the phase and the matrix elements of r̂ reads:

αk(t) = −i
ζk
ωk

(1− e−iωkt), (34)

rkk′(t) = e−i(ωk−ωk′ )t
(

rkk′(0) +
ζkζ∗k′

ωkωk′

)
+

ζkζ∗k′
ωkωk′

(
1− e−iωkt − eiωk′ t

)
. (35)

The latter result, for the diagonal elements rkk(t), reduces to

rkk(t) = rkk(0) + 2
|ζk|2

ω2
k
(1− cos ωkt). (36)

This implies that the populations oscillate around the average values rkk(0) + |ζk|2/ω2
k .

Of course, the correlation matrix remains constant (also if initial |α〉 is not null), so does
the entropy.

4.3. Dynamics of the RSF in Presence of a Coherent Source and a Thermal Bath

Let us now consider the case where also a dissipation term is present, i.e., we want to
analyze the case where the system interacts with both a coherent source and a heat bath. In
this case, the dynamical equations for r̂ and |α〉 are:

dr̂
dt

= − i
h̄
[ĥ, r̂] + (|α〉〈ζ|+ |ζ〉〈α|) + 1

2
{(γ̂↑ − γ̂↓), r̂}+ γ̂↑, (37)

d
dt
|α〉 = − i

h̄
ĥ|α〉+ |ζ〉+ 1

2
(γ̂↑ − γ̂↓)|α〉, (38)

where the operators γ̂l have already been defined as

γ̂l = ∑
k,k′

Γkk′
l
∣∣k〉〈k′∣∣. (39)

Let us remind that the matrix elements Γkk′
l are the particle creation and decay rates that

can be derived using the Fermi golden rule. Under the typical Born, Markov, and secular
approximations, the operators γ̂l become diagonal

γ̂l = ∑
k

Γk
l|k〉〈k|, (40)

where the rates Γk
l, due to the thermal character of the bath, are related via

Γk
↑

Γk
↓
= e−

h̄ωk
kBT , (41)

with kB being the Boltzmann constant, and T being the temperature of the heat bath.
In this case, the dynamical equations for the RSF become:

drkk′

dt
= −i(ωκ −ωk′)rkk′ −

1
2

(
Γk
↓

Zk
+

Γk′
↓

Zk′

)
rkk′ + δkk′Γ

k
↑ + (αkζ∗k′ + α∗k′ζk), (42)

dαk
dt

= −iωkαk −
Γk
↓

2Zk
αk + ζk, (43)
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where we have defined Zk =
(

1− e−βh̄ωk
)−1

. These equations are of the same form
as Equations (29) and (30). This can be noted by defining complex frequencies ω̃k =
ωk − iΓk

↓/2Zk. In this notation, we get:

drkk′

dt
= −i(ω̃k − ω̃∗k′)rkk′ + δkk′Γ

k
↑ + (αkζ∗k′ + α∗k′ζk), (44)

dαk
dt

= −iω̃kαk + ζk, (45)

so that one can immediately write down the solution to the second equation as:

αk(t) = e−iω̃ktαk(0)− i
ζk
ω̃k

(
1− e−iω̃kt

)
, (46)

which implies that the phases αk are driven towards their steady-state values

α
steady
k = −i

ζk
ω̃k

. (47)

As for the matrix elements rkk′ , one finds:

rkk′(t) = e−i(ω̃k−ω̃∗k′ )t
[

rkk′(0) +
∫ t

0
ds ei(ω̃k−ω̃∗k′ )s

(
αk(s)ζ∗k′ + α∗k′(s)ζk + δkk′Γ

k
↑

)]
,

and, consequently,

rkk′(t) = e−i(ω̃k−ω̃∗k′ )t
(

rkk′(0) +
ζkζk′

ω̃kω̃∗k′

)
+

ζkζ∗k′
ω̃kω̃∗k′

(
1− e−iω̃kt − eiω̃∗k′ t

)
+ i

(
αk(0)ζ∗k′

ω̃∗k′
e−iω̃kt −

α∗k′(0)ζk

ω̃k
eiω̃∗k′ t

)
+ δkk′ e

−βh̄ωk Zk

1− e−
Γk
↓

Zk
t

. (48)

It is of particular interest to see the steady values of the matrix elements rkk′ ,

rsteady
kk′ =

ζkζ∗k′
ω̃kω̃∗k′

+ δkk′ e
−βh̄ωk Zk. (49)

From this steady-state solution, together with Equation (47), we can compute the associated
correlation matrix r̂(α), for which one simply obtains:

r(α)steady
kk′ = rsteady

kk′ −
∣∣∣αsteady

〉〈
αsteady

∣∣∣
kk′

= δkk′ e
−βh̄ωk Zk =

1

eβĥ − 1
. (50)

From this result, one can see clearly what was already noted in Reference [4], namely that,
in presence of random scattering (which is absent in this case) or a thermal environment
with temperature different from zero, it is impossible to obtain a coherent state, and that
only an initial pure state remains pure when the above conditions are met.

Next, we express the entropy of the steady state as a function of β (we set kB = 1):

S[r̂(α)steady](β) = tr
[
(r̂(α)steady + 1) ln

(
r̂(α)steady + 1

)
− r̂(α)steady ln r̂(α)steady

]
= tr

[
βĥr̂(α)steady

]
+ tr

[
ln
(

r̂(α)steady + 1
)]

= βU + tr
[
ln
(

r̂(α)steady + 1
)]

, (51)

as it can be found using Equation (50) and going through some algebra. One can immedi-
ately see that the entropy depends on the temperature, both through the partition functions
and the occupation numbers of the modes. We plot in Figure 1 the entropy as a function of
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the temperature β for different values of the frequency. From the plot, it can be seen that
lower frequency modes have a greater entropy than the modes with higher frequency.
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Figure 1. In this plot, the entropy as a function of temperature β is shown. The various lines are
plotted using different frequency, so that one can see that the low frequency modes contribute more
to the entropy, especially at low temperatures.

The Equation (51) can also be rearranged as:

U − β−1S = − 1
β

tr
[
ln
(

r̂(α)steady + 1
)]

, (52)

so that, in this way, we are driven to define the equilibrium-free energy Feq

Feq = − 1
β

tr
[
ln
(

r̂(α)steady + 1
)]

= − 1
β ∑

k
ln Zk. (53)

This is exactly the sum of the equilibrium-free energies of each mode. We can then define
the free energy as:

F = U − β−1S = tr
[
r̂(α) ĥ

]
− 1

β
tr
[
(r̂(α + 1) ln

(
r̂(α + 1

)
− r̂(α) ln r̂(α)

]
= tr

[
r̂(α)
(

ĥ− 1
β

ln

(
r̂(α) + 1

r̂α

))]
− 1

β
tr
[
ln
(

r̂(α) + 1
)]

(54)

= Fneq + Feq, (55)

where we have introduced the non-equilibrium-free energy

Fneq = tr

[
r̂(α)
(

ĥ− 1
β

ln

(
r̂(α) + 1

r̂α

))]
. (56)

Thus, we see how, in the presence of a thermal bath, and using the definition of internal
energy of Equation (17), we are able to define in a reasonable way the free energy, both “in
and out” of equilibrium. Clearly, the proposed notion of free energy is somehow attached
to the specific case of macroscopic fields. This is to be expected since, in the RSF formalism,
one assumes the lack of control over certain (actually, many) degrees of freedom. Therefore,
in its spirit, our approach does not differ from descriptions of other physical situations, such
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as the modeling of magnetic [26,27] and molecular [28,29] systems, where adjustments are
necessary in order to account for the specific properties of the system under examination.

5. Conclusions

In this paper, we explored how to define thermodynamic quantities in the RSF formal-
ism, given its definition of entropy. We also showed some examples of dynamical regimes
that allowed us to explicitly compute the quantities of our interest, such as energy, heat,
work, and other thermodynamic functionals.

Starting from the definition of entropy given in Reference [4], we gave a reasonable
definition of internal energy, heat, and work. We were able to show that, in a quasi-static
equilibrium process, our definition of heat gave the proper increase of entropy, and then
we defined the equilibrium and non-equilibrium-free energy.

It would be interesting in the future to further explore how to describe other thermo-
dynamic phenomena under this formalism, such as work extraction from heat engines and
work storage in batteries. This would surely help to further clarify how thermodynamics
should be described at mesoscopic scales, as well as to individuate possible issues to
be solved in this regime. Last but not least, scattering terms deserve a careful, separate
consideration.
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