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Abstract: In chaotic entanglement, pairs of interacting classically-chaotic systems are induced into
a state of mutual stabilization that can be maintained without external controls and that exhibits
several properties consistent with quantum entanglement. In such a state, the chaotic behavior of
each system is stabilized onto one of the system’s many unstable periodic orbits (generally located
densely on the associated attractor), and the ensuing periodicity of each system is sustained by
the symbolic dynamics of its partner system, and vice versa. Notably, chaotic entanglement is an
entropy-reversing event: the entropy of each member of an entangled pair decreases to zero when
each system collapses onto a given period orbit. In this paper, we discuss the role that entropy plays
in chaotic entanglement. We also describe the geometry that arises when pairs of entangled chaotic
systems organize into coherent structures that range in complexity from simple tripartite lattices to
more involved patterns. We conclude with a discussion of future research directions.

Keywords: chaotic entanglement; chaotic systems; cupolets; entropy; unstable periodic orbits;
geometry; lattices; coherent structures

1. Introduction

In a series of recent papers, it has been shown that chaotic systems can be stabilized
onto periodic orbits through the imposition of a control scheme that applies a set of
impulsive kicks to the chaotic system along control planes or Poincaré sections that intersect
the attractor of the system. The approach is an adaptation of a control scheme introduced
by Hayes, Grebogi, and Ott [1]. However, the discovery of the stabilization property
was a surprise given that in most instances, a given set of controls will lead to a unique
periodic orbit, independently of the initial condition of the chaotic system. The resulting
periodic orbits are called a cupolets (Chaotic Unstable Periodic Orbit-LETS) and are close
approximations of the unstable periodic orbits (UPOs) that are generic for most chaotic
systems. Similar properties have been found for a number of chaotic maps.

The robustness of the stabilization scheme is of great practical importance because it
means that one can drive the chaotic system into a preselected state without any knowledge
of the intial state of the chaotic system. The first application of this technique was the de-
velopment of a secure chaotic communication scheme that passed only control information
between the transmitter and receiver, so that the chaotic system in use was completely hid-
den from any eavesdropper. The robust stabilization property then allowed the transmitter
and receiver to be initialized into the same state [2,3]. Further development along these
lines led to the creation of a remote key generation scheme that addresses the problem of
key distribution in standard secure communication approaches [4,5].

In a somewhat different guise, the cupolets themselves have proven useful when
used as basis functions for approximations of many objects that have rich spectral content,
including creation of an audio synthesizer [6], an audio compression method [7], and an
image and video compression method [8]. Further, the rich spectral content of cupolets
allowed for manipulation of the phases of the cupolet components to create an image
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compression method where the basis functions would span a continuum between a wavelet-
like state and a sinusoidal-like state [9–11].

Subsequent work addressed the question of whether cupolets can be used to provide
a “skeleton” for the chaotic system that enables targeting and steering of the chaotic system
in some desired manner. By looking at the maps between Poincaré sections, it was possible
to develop mapping functions from a set of bins defined on the Poincaré section(s) to
the next intersection with the bins on a Poincaré section. This allowed methods of graph
theory to be brought to bear to develop an algorithm to calculate an efficient, in some sense,
low-energy transition from an initial trajectory to a target trajectory by riding along and
transitioning between cupolets [12]. Further investigation revealed that certain cupolets
could be defined as fundamental and others as composite, with the fundamental cupolets
irreducible within a finite space of cupolets [13].

After this preliminary work, the question arose whether interacting chaotic systems
could ever lock into mutually stabilizing periodic orbits, where the interaction would be
mediated by a fixed exchange function. The basic question can be summarized under the
assumption that the same impulsive control scheme is operating on two identical, chaotic
systems (Systems I and II, say): when System I is stabilized onto a cupolet, if the output of
System I is passed through an exchange function that converts the output into a control
sequence that is imposed on System II, would System II then stabilize onto a cupolet and
are there ever cases where the output of System II, when passed through the same exchange function,
would provide the control sequence that would keep System I stabilized onto its cupolet? It was
shown in [14] that such mutually stabilizing persistent states do indeed exist, and this type
of interaction was termed chaotic entanglement. Further discussions of chaotic entanglement
and comparisons with quantum entanglement are covered in [15]. This will be the jumping
off point for the work in this paper, so more review is provided in Section 2 below.

Recent work has addressed the question of whether cupolets could be found in math-
ematical models of neurons, since one of the main exchange functions under consideration
is an “integrate-and-fire” model taken from neuroscience research. In [16], it is shown that
persistent mutual stabilization could be achieved between a pair of Fitzhugh Nagumo
neurons (mathematical neuron models where each individual model is two-dimensional,
but the combined system exhibits chaos). The mutual stabilization occurs when the ex-
change function exhibits properties related to “synaptic learning,” where the dynamics of
the synapse change as a function of the passage of a neural firing. In this approach, the
exchange function would change as signals passed through a synapse, so it does not utilize
a fixed exchange function as in previous cupolet research; however, the synaptic learning
setup does achieve the mutual stabilization using continuous dynamical equations that
do not involve impulsive kicks. Subsequently, the neuron model research established that
cupolets are indeed found in the three-dimensional Hindmarsh–Rose neuron model in
the traditional sense, where pre-defined impulsive kicks are applied on Poincaré surfaces,
leading to various forms of mutual stabilization [17].

We are aware that several studies, such as [18] and the aforementioned [16], have
also examined interactions between chaotic systems that have led to periodic states, but
to our knowledge none have reported results consistent with our formulation of chaotic
entanglement. For instance, the procedure outlined in [18] describes synchronizing two
coupled laser systems first into chaotic states and then into a quasi-periodic coupling, but
this is all performed by carefully tuning the parameters to a desired set of values. Similarly,
the more recent study discussed in [16] reports on driving two interacting, chaotic neuron
models into mutual stabilization via an external signal that adjusts a parameter shared by
the two neurons. Chaotic entanglement is distinguished from studies of this nature because
it describes how two chaotic systems mutually stabilize one another onto cupolets, all
while the system parameters remain fully in the chaotic regime. Once established, a chaotic
entanglement and the stability of each cupolet are maintained intrinsically by each system’s
dynamical behavior and will persist until the interaction is disturbed. The parameters of
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the systems are not changed in this process, and, in general it is very difficult even for one
chaotic system to stabilize onto a periodic state, all from within a chaotic parameter regime.

In this paper, we address a number of new configurations that can be achieved in
chaotic entanglement. Notably, we demonstrate a new framework in which the entangle-
ment can be generated at multiple locations around the attractor of a given chaotic system.
Whereas the previous framework restricted chaotic entanglement to occurring between
two chaotic systems, the new configuration allows for a chaotic system to entangle with
multiple other chaotic systems. This new multi-system entanglement allows for groups
of entangled cupolets to be organized into various geometric structures that range from
simple lattices to more involved patterns. We also characterize the entropy associated
with chaotic entanglement according its Kolmogorov (or metric) entropy, which quantifies
the rate in which dynamical systems generate information over time. Notably, chaotic
entanglement is an entropy-reversing event, which is unusual in classical mechanics.

2. Background on Cupolets

Cupolets are a new class of waveforms that can be isolated from a given chaotic
system through a control mechanism that stabilizes the normally-unstable periodic orbits
of the chaotic system. The control mechanism applies small controls that prevent the
chaotic dynamics from wandering off from a periodic orbit, and hence the cupolets are
approximations of the unstable periodic orbits (UPOs) that are typically generic on chaotic
attractors. Cupolets were originally detected when analyzing and experimenting with
secure chaotic communication applications. The theory behind cupolets and their many
application areas has appeared in numerous publications [2,9,10,12,14,19–21]. This section
will provide a brief summary of the chaotic systems and control techniques that lead to
cupolets, with more technical details available in [9,10,12,14,21].

2.1. Generating Cupolets

While cupolets can be stabilized from several chaotic systems, this paper will focus
primarily on the double scroll attractor (also known as Chua’s attractor) [22]. Many
variations of this basic system exist in the literature and it has been implemented in
circuitry, so it is a useful and practical example of a system that can generate cupolets. In
the equations below [22], the connection to circuit implementations lead to the association
of the v variables with voltages, and the i variable with current:

v̇C1 =
G(vC2 − vC1)− g(vC1)

C1
,

v̇C2 =
G(vC1 − vC2) + iL

C2
, (1a)

i̇L = −
vC2

L
,

where the non-linear resistance g is given by:

g(v) =


m1v, if |v| ≤ Bp,
m0
(
v + Bp

)
−m1Bp, if v ≤ −Bp,

m0
(
v− Bp

)
+ m1Bp, if v ≥ Bp.

(1b)

For the usual parameters, C1 = 1
9 , C2 = 1, L = 1

7 , G = 0.7, m0 = −0.5, m1 = −0.8,
and Bp = 1, the double scroll exhibits chaotic behavior with an attractor that consists of
two lobes, each of which surrounds an unstable fixed point [22]. Figure 1 shows a single,
long chaotic trajectory tracing out the attractor.
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Figure 1. 2D projection of the double scroll attractor showing the control surfaces [15].

In the figure, the cross-sections of two control planes are indicated by the straight
lines; they emanate outward from the unstable fixed points that occur in the center of each
lobe. The control scheme that is used to stabilize cupolets is adapted from one originally
developed by Hayes, Grebogi, and Ott (HGO)for communication purposes [1,23]. In the
HGO scheme, small perturbations are used to steer trajectories onto different lobes of the
attractor, and by labeling the different lobes ‘0’ and ‘1’, it is possible to transmit a message.
For cupolet generation, the use of adapted controls is described below, but the key idea is
to examine how a chaotic system responds to the space of all possible periodic controls.

The procedure used for cupolet generation begins with setting up the two control
planes on the attractor using a Poincaré surface of section and then partitioning each control
plane into N small control bins, where typically N ≈ 2000. In keeping with the original
labeling of the lobes of the attractor in the HGO communication scheme, the control planes
are assigned binary values ‘0’ and ‘1’ so that a binary symbolic sequence may be recorded
whenever a trajectory intersects a given control plane. For later discussion, it is useful
to give such a symbolic sequence a name, so it will be referred to as a visitation sequence.
Except for when a trajectory passes through a Poincaré section (and hence, one of the
control bins on the Poincaré section), the double scroll system evolves freely according
to Equation (1). Perturbations are applied only when a trajectory hits a control bin. The
option to perturb the trajectory is also encoded as binary; either give the system a kick
to a nearby control bin ( ‘1’ control), or allow the trajectory to pass through the control
bin (essentially) unperturbed (‘0’ control). We say “essentially” unperturbed, because
every time the trajectory intersects a control plane and a ‘0’ control command is received,
tiny microcontrol perturbations reset the trajectory to the center of the control bin through
which it passes. In the cases where a ‘1’ control command is received, macrocontrols are
applied that kick the trajectory to a nearby bin on the Poincaré section. Following the HGO
approach, macrocontrol perturbations are defined to be the smallest perturbation along
a control plane necessary to produce a change of lobe some M-many loops downstream
in the visitation sequence. What this means in practice is that if a visitation sequence is
M-bits long, a macrocontrol will shift the trajectory to a nearby control bin so that after M
trips around the lobes of the attractor, the last bit of the visitation sequence will be different
(and, of course, the trajectory will be on a different lobe from where it would be if left
unperturbed). In this way, a chaotic system can be directed to follow any given visitation
sequence by sending in an appropriately-defined string of control instructions, known as
a control sequence. Since the number of control bins is typically large, the impulsive kicks
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along the control plane can be extremely small, yet when combined with the nature of
chaotic dynamics, the downstream effects can be large and controllable.

Inspired by ideas from the study of impulsive differential equations [24] and specifi-
cally the reactions of dynamical systems to perturbations, Parker and Short [2] used the
adapted control scheme to study the response of the double scroll system to the space of
repeating binary control sequences. The unique, and somewhat surprising result, was that
for almost all cases the double scroll system stabilizes onto a periodic orbit. In fact, the
stabilization occurs regardless of the initial or current state of the system, or of the starting
bit of each repeating control sequence. These periodic orbits have been given the name
cupolets to indicate that they are chaotic unstable periodic orbit-lets. While this paper will
deal only with the double scroll system, cupolets have also been found in chaotic maps
and a variety of other continuous chaotic systems such as the Lorenz and Rössler systems.
The examples of cupolets appearing in Figure 2 are generated by repetitively applying the
indicated control sequences to the double scroll system. For simplicity, the cupolets are
named with a leading “C” (for “control”) followed by their associated repeated control
code. Later in this paper, visitation sequences associated with the given cupolets will
be important, and those visitation sequences will have the letter “V” prepended to the
binary visitation sequence—in some sense, a visitation sequence can be viewed as metadata
associated with a cupolet.
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Figure 2. Cupolets of various periods belonging to the double scroll system [15]. The cupolets with
the appended (repeated) control sequences are (a) C00, (b) C11, (c) C00001, and (d) C001.
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2.2. Cupolet Properties and Stability

To summarize, as seen in Figure 2, cupolets are highly-accurate approximations to
the UPOs of chaotic systems that are generated by the control scheme. Cupolets exhibit
the properties of being stabilized independently of initial condition and also of being in
one-to-one correspondence with the control sequences. The control bins can be made
arbitrarily small so that the perturbations do not grossly alter the topology of the orbits
on the chaotic attractor, and by increasing the N-bins and the M-downstream loops, the
scale of the perturbations can be reduced accordingly. This suggests that cupolets are
shadowing true periodic orbits, and theorems have been developed to establish conditions
under which this holds [9,25–28]. What sets cupolets apart from UPOs is the ease with
which cupolets are generated, since it is simple to run simulations where periodic control
sequences are generated en masse, making the stabilization onto cupolets very rapid.
Techniques from graph theory can be employed to speed up processing even further.
Meanwhile, UPOs are typically stabilized via a combination of close-return algorithms and
Newton interval operators. This process is cumbersome because it traditionally involves
iteratively refining a brute-force search of the initial conditions of each periodic orbit. In
contrast, the adapted HGO control scheme generates cupolets inexpensively and in large
numbers; for example, over 8800 double scroll cupolets can be stabilized by implementing
up to 16-bit control sequences.

To maintain stability of a cupolet, the only requirement is the repeated application of
its control sequence to the system. If a different control were injected into the sequence,
it would induce the system to destabilize from a stabilized cupolet and revert to chaotic
behavior. If a second sequence of periodic controls were then applied, the chaotic system
would eventually restabilize onto the cupolet associated with the new control sequence,
after an intermediary transient phase as the system restabilizes. Any transient is the result
of the trajectory evolving while the underlying chaotic system sifts through all possible
states until it reaches one where the behavior of an UPO falls into synchrony with the
control sequence, thus stabilizing the new cupolet. Cupolet restabilization is guaranteed
because of the one-to-one relationship between cupolets and the binary control sequences.
This has enabled an approach to navigating around an attractor by transitioning between
cupolets or segments of cupolets, simply by switching control sequences. Details and
efficient algorithms for planning the transition strategy appear in [12].

3. Chaotic Entanglement

In a recent series of papers [14,15,21], it is shown that pairs of chaotic systems that
are capable of producing cupolets may be able to interact in a way that causes them to
chaotically entangle, by which we mean that through their interaction they fall into a state
of mutual stabilization onto their cupolets. For this to occur, the two chaotic systems are
assumed to be connected via an exchange function that exchanges control information and,
in a manner that will be detailed below, when one system is induced to collapse onto a
cupolet state, that cupolet state passes into the interaction function which then induces
the second chaotic system to collapse onto its own cupolet state. The mutually stabilizing
feedback loop is then closed when, and if, the second cupolet state, when passed through
the same interaction function, causes the first chaotic system to remain stabilized onto
the first cupolet. This mutually stabilized, entangled state causes the cupolets to remain
deterministically linked. The entanglement is persistent, but if one cupolet is disturbed
from its periodic orbit, it subsequently affects the stability of the partner cupolet, and vice
versa. This, and related properties evoke several connections to quantum entanglement, as
discussed in [15]. In the cited references, hundreds of entangled cupolet pairs have been
identified for the double scroll system, using several classes of exchange functions.
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The production of chaotic entanglement is mediated by an interaction function we
will call the exchange function, since it exchanges state information for control information
and it will define the interaction between the two chaotic systems and their cupolets within
the context of the control scheme described above. A variety of exchange functions have
been studied, including integrate-and-fire functions that are used in laser or brain neuron
research, moving average filters, and other filters similar to FIR filters. Exchange functions
are described more fully in [14] and are considered to represent the environment or medium
in which the interacting systems are found. Importantly, the same exchange function will be
applied to both the forward interaction between the cupolets and the feedback interaction
as well, since the exchange function is taken to be external to the chaotic dynamics. The
input to the exchange function will be the visitation sequence of a given cupolet, and
the output will be a set of control bits that are applied to the partner cupolet; chaotic
entanglement occurs when the visitation sequences and the control sequences fall into
serendipitous sympatico states. These varying exchange functions mentioned have all
successfully induced chaotic entanglement in the double scroll system.

In Section 2, a cupolet’s visitation sequence was defined to be the binary sequence
of lobes that its orbit visits. Consequently, visitation sequences define a type of symbolic
dynamics for chaotic systems on the periodic orbits traced out by the cupolets. These
symbolic sequences then become the inputs to the exchange functions and thus define
the output controls that are applied to the second chaotic system to produce the partner
cupolet. Chaotic entanglement results when the visitation sequences of the interacting
cupolets turn into the control sequences necessary to keep the same cupolets stabilized.

We now provide a straightforward demonstration of chaotic entanglement using
generic cupolets CA from System I and CB from System II, say. Beginning with System I
having already been stabilized onto cupolet CA, the visitation sequence of this cupolet
is passed as input to an exchange function. The exchange function takes the visitation
sequence and converts it to an output sequence of bits that is termed the emitted sequence.
This emitted sequence is then turned into the control sequence that is applied to cupolet CB
of System II. Since the interaction is a two-way interaction, the visitation sequence traced
out by cupolet CB then passes through the same exchange function, and the resulting
emitted sequence feeds back as control instructions to CA. Thus, cupolets CA and CB
are in a feedback loop, receiving and transmitting control information via the exchange
function. The key concept is that there are cases where the emitted sequence from cupolet
CA matches the control sequence needed to maintain the stability of cupolet CB, while at
the same time the emitted sequence of cupolet CB matches the control sequence needed to
maintain the stability of cupolet CA. When this occurs, the cupolets have become trapped
in a mutually-stabilizing feedback loop which we have defined as chaotic entanglement.
The external controls applied to cupolet CA can be removed once the mutual stabilization
has occurred.

To make this visually evident, the following figures are reprinted from [15], with
a summarized discussion. Consider the two cupolets shown in Figure 3, along with
the cartoon depicted in Figure 4, which portrays the chaotic entanglement of cupolets
C000011111 and C000011111 in a series of step-by-step illustrations. The process starts
with two (uncontrolled) chaotic double scroll systems, Systems I and II. When the control
sequence ‘000011111’ is applied to System I, it will stabilize onto cupolet C000011111. This
step is illustrated in Figure 4a, where the (yellow) oval represents the external control
pump. Cupolet C000011111 then produces the visitation sequence, V000111111, as shown
in Figure 4b. This visitation sequence is then passed as input to the exchange function
where it is operated on to produce a binary output that is transmitted to System II as an
emitted sequence. The specific exchange function used here is a ‘preponderance’ exchange
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function (see [14]) that converts V000111111 into the emitted sequence E011101111 essen-
tially by interpreting the bits of a visitation sequence as binary energy and imposing an
energy threshold on the visitation sequence. The emitted sequence ‘011101111’ is applied
as controls to System II, causing it to stabilize onto the cupolet C011101111 (as is evident
since the emitted sequence actually is this second cupolet’s control sequence). This stage of
the process is depicted in Figure 4c.
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(a) C000011111 (b) C011101111

Figure 3. Entangled cupolets (a) C000011111 (period 9) and (b) C011101111 (period 18) [15]. The
visitation sequences of these cupolets are V000111111 and V000000000111111111, respectively.

The feedback interaction now occurs in the reverse direction. The visitation sequence
of cupolet C011101111 is V000000000111111111 (again see Figure 4c, which is transformed
by the preponderance exchange function into the emitted sequence E000011111. Since
this emitted sequence is the same as the external control sequence required to stabilize
System I, when it is applied as a feedback control to System I, it maintains the stability of
cupolet C000011111. Thus, the output of System I stabilizes System II, and the output of
System II in turn stabilizes System I, and so we have established a mutually stabilizing,
persistent feedback loop. The cupolets are now considered chaotically entangled, and their
stabilities are guaranteed so long as their two-way interaction is undisturbed, as illustrated
in Figure 4d. Table 1 summarizes the correspondence between the control, visitation, and
emitted sequences of these cupolets.

The chaotic entanglement summarized in this section has been found with numerous
forms of exchange functions and many different cupolet pairs, as shown in the refer-
ences [14,15]. Another example has been found where the exchange function is the identity
function, so the applied controls are determined purely by the lobe visitation sequence of
the cupolets. This is known as pure entanglement since no intermediary exchange function
is needed [21]. The use of cupolets has facilitated these explorations since they make the
investigation more efficient, but these properties are expected to be shared by the true
UPOs of the chaotic systems.
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Figure 4. (Color online) Schematic illustration of chaotic entanglement as seen in [15]: in (a) a control sequence is applied
to Chaotic System I via the (yellow) control pump. This causes System I to stabilize in (b) onto cupolet C000011111 with
visitation sequence V000111111. In (c), a preponderance exchange function converts V000111111 into the emitted sequence,
E011101111. When E011101111 is applied as a control code to Chaotic System II, the system stabilizes uniquely onto cupolet
C011101111 with visitation sequence V000000000111111111. In (d), the exchange function converts V000000000111111111
into E000011111, which is then applied as control instructions to C000011111 of System I. The emitted sequence of each
cupolet matches the control sequence of the opposite cupolet, and so the external control pumps seen in (a–c) are unnecessary
and can be removed. Systems I and II are now chaotically entangled via their cupolets. This entanglement is summarized in
Table 1. The orbits of these cupolets can be seen in more detail in Figure 3.

Table 1. Summary of the chaotic entanglement seen in Figure 4. Cupolets C000011111 (of Chaotic
System I) and C011101111 (of Chaotic System II) entangle because the control sequence required
to sustain the stability of cupolet C011101111 is contributed by cupolet C000011111 via its emitted
sequence, E011101111. In this case, a preponderance exchange function converts the visitation
sequence into the emitted sequence. Similarly, the stability of C000011111 is maintained by the
emitted sequence E000011111, which is generated by C011101111 via the same exchange function.

Cupolet Visitation Sequence Emitted Sequence

Chaotic System I C000011111 V000111111 E011101111
Chaotic System II C011101111 V000000000111111111 E000011111
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4. Entropy in Chaotic Entanglement

In recent years, entropy has emerged as a fundamental tool for characterizing the
statistical uncertainty exhibited in both quantum and classical mechanics. In quantum
mechanics, entropy is used to assess the strength of an entanglement [29]. In classical
systems, entropy is inherently related to information theory as it is used to measure the
rate in which a dynamical system generates information over time. Kolmogorov or metric
entropy applies to classical dynamical systems and relies heavily upon this information-
theoretic foundation [30–32]. Kolmogorov entropy essentially measures the rate of growth
of sequences that a trajectory visits as it evolves on an the attractor.

To compute the Kolmogorov entropy of a dynamical system, begin with a sequence
of samples of an associated trajectory made at regular time intervals ∆t and consider a
partition B of the phase space into hypercubes βi. The ergodicity property of dynamical
systems allows for time series averaging, with each sample representing the starting point of
a sequence to produce the appopriate probability measures. Let p(βi) denote the probability
that the dynamical system visits βi as it evolves through time. Then p(β1, β2, . . . , βb) gives
the joint probability that the trajectory visits a sequence of hypercubes {βi}b

1. Here the
enumeration of the β’s from 1 to b is merely a convenience meant to convey an arbitrary
sequence of b-many visited hypercubes. The Kolmogorov entropy K is defined as the
supremum over all partitions and all time intervals ∆t as the sequence length b goes
to infinity:

K = sup
B, ∆t

[
lim
b→∞

(
− 1

b∆t ∑
β1, ..., βb

p(β1, . . . , βb) ln p(β1, . . . , βb)

)]
, (2)

where the sum is taken over all sequences of length b [33].
The rate in which information is generated by a classical system depends on the nature

of the dynamics that it exhibits; for instance, whether the system is periodic, chaotic, or
random. The Kolmogorov entropy can be used to distinguish between these different types
of behaviors. For instance, Equation (2) gives K = 0 for periodic or quasi-periodic systems,
since once they have completed a full period, or traced out a torus, there is no further
generation of new sequences. In contrast, K → ∞ for random sequences since a random
system will generate information at an unbounded rate and realize all possible sequences.
In between are the chaotic trajectories for which 0 < K < ∞, meaning that chaotic systems
generate sequences at finite rates [32,33]. This last result follows from the fact that although
the dynamics of chaotic systems are deterministic, their aperiodicity and the geometry of
their attractors are such that chaotic trajectories are confined to evolving along unique and
non-stochastic paths on an attractor.

In chaotic systems, information is typically encoded in an associated symbolic dynam-
ics, in which case entropy specifically measures the rate in which these systems generate
new symbol sequences. The visitation sequences of the double scroll system provide such
a symbolic dynamics, and hence entropy can be used to describe the dynamics before and
after chaotic entanglement is established. As illustrated in Figure 5a, every freely-evolving
chaotic system generates symbolic information at a positive and finite rate. As seen in
Figure 5b, this entropy decays to zero when the chaotic system is directed onto a periodic
or cupolet state, either by the control scheme described in Section 2, or when the system
interacts with a second system and is induced into entanglement. Both scenarios involve
the collapse of chaotic to periodic behavior, and the corresponding decrease to zero of
each system’s entropy. In other words, chaotic stabilization and entanglement are each
entropy-reversing events.

The discussion of chaotic entanglement in this paper has focused on induced entan-
glement, where an outside impetus is provided to drive System I onto a given cupolet. In
that circumstance, one might point out that the reduction in entropy comes at the expense
of input energy. However, as indicated in [14,15], the potential exists for serendipitous
entanglement, since the two systems are fully in the chaotic regime of parameter space.
This means that the dynamical evolution is aperiodic and, more importantly, the systems
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will visit the close vicinity of the unstable periodic orbits infinitely often. Further, since the
interactions mediated by the exchange function are a property of the environment, not the
chaotic systems, if one allows for the possibility that many thousands or millions or many
moles of chaotic systems are present, then the opportunity for chaotic entanglement is
significant, even without an external impetus to drive System I onto a cupolet. Thus, it may
be possible for entropy reduction through chaotic entanglement to be a natural process.

(a) Chaotic system: 0 < K < ∞. (b) Cupolet: K = 0.

Figure 5. (Color online) This figure illustrates the entropy-reversing nature of cupolet stabilization,
which can arise either via the control scheme described in Section 2 or via chaotic entanglement.
In (a), we see an uncontrolled and freely-evolving chaotic system, which has positive and finite
entropy. When it is stabilized onto the periodic orbit of a cupolet, seen in (b), the entropy decays
to zero.

5. Multi-System Entanglement

The framework described in Section 3 allows for the chaotic entanglement of two
interacting chaotic systems. We now describe how this framework can be tailored to allow
for the entanglement between more than two chaotic systems. In the new configuration, we
imagine a degree of proximity between the lobes of an attractor, so that an individual lobe
can individually send and receive control information. This allows each lobe to entangle
with the lobes of other chaotic systems. The entanglement defined via this configuration is
known as multi-system entanglement because it allows for chaotic systems with multi-lobed
attractors to chaotically entangle with multiple systems. From here, lattices of entangled
chaotic systems can be assembled, with chaotic entanglement playing the role of a bonding
agent between each pair of interacting lobes.

5.1. Procedure

In this new framework, a local control code and local visitation sequence are associated
to each lobe of the attractor. These are binary sequences that are similar to what will now
be referred to as the global control code and global visitation sequence, respectively, which
were discussed earlier in Section 3. A local control code contains the bits of the global control
code that are applied exclusively along the control plane of an associated lobe. A local
visitation sequence indicates the sequence of visits that the underlying cupolet or chaotic
system makes to the associated lobe. Local control codes and local visitation sequences
are effectively lobe-specific versions of their global namesakes in that they perform similar
roles in the entanglement process, but do so in a way that allows entanglement to form at
each lobe, rather than from the attractor as a whole.

To determine the local control code of a particular lobe, a cupolet’s global control code
must first be repeated, if necessary, so that it has the same length as its global visitation
sequence. This is natural to do because cupolets are generated in such a way that a
visitation sequence either has the same length as one period of its cupolet’s control code,
or is an integer multiple of that period. Next, the local control codes are initialized as
initially-empty control arrays that have the same length as the global control code. Each
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local control code is then derived by sequentially comparing the bits of the global control
code to the corresponding bits of the global visitation sequence. A ‘1’ in the visitation
sequence, for instance, indicates that the cupolet is evolving around its 1-lobe, which means
that the corresponding bit of the global control code would be applied along the control
plane of the 1-lobe. This particular bit is copied from the global control code and inserted
into the same location of the 1-lobe’s local control code. In this situation, the cupolet is
not evolving around its 0-lobe, and so we simply insert a ‘0’ into the same location of
the 0-lobe’s local control code. A zero that is inserted in this manner acts as a delay, or
placeholder, until the cupolet next evolves around the lobe associated with local control
code. This guarantees that the bits of a local control code are applied along the appropriate
control plane in the order that they appear in the global control code.

Similarly, a ‘0’ in the global visitation sequence indicates that the cupolet is evolving
around its 0-lobe, which means that the corresponding bit in the global control code would
be applied along the control plane of the 0-lobe. This bit of the global control code is copied
into the same location of the 0-lobe’s local control code. The ‘0’ in the visitation sequence
indicates that the cupolet is not evolving around its 1-lobe, and so we insert a ‘0’ into the
same location of the 1-lobe’s local control code to serve as a placeholder until the cupolet
next evolves arounds its 1-lobe.

This process of distributing the bits of the global control code among the local control
codes continues until the global control code and global visitation sequence have been
completely compared bitwise. The resulting local control codes each have the same length
as the global control code and contain the control instructions that are relevant to their
particular lobe of the attractor. Were one to work backwards, a cupolet’s global control
code can be recovered from its local control codes and its global visitation sequence. The
local control codes thus collectively work in tandem to establish and maintain the stability
of their associated cupolet, but separately they determine how the control scheme is
implemented at each corresponding lobe. For the double scroll system, we obtain two local
control codes, C0 and C1, that are associated with the 0- and 1-lobes, respectively.

Similarly, a local visitation sequence describes the sequence of visits that a trajectory
makes to an associated lobe. Each time that a trajectory evolves around a particular lobe,
the corresponding bit of the associated local visitation sequence is defined to be a ‘1’;
otherwise, the corresponding bit is a ‘0.’ For two-lobed attractors, such as the double
scroll system, the local visitation sequence of the 1-lobe is the same as the global visitation
sequence, while the local visitation sequence of the 0-lobe is the bitwise complement. Every
local visitation sequence has the same length as the global visitation sequence. For the
double scroll system, we obtain two such local visitation sequences, V0 and V1, for the 0-
and 1-lobes, respectively.

As an example, the cupolet C0110111 has a global control code of length seven and
a global visitation sequence, V11111110000111, of length 14. When we repeat the control
code twice so that its bits align with those from the visitation sequence:

C0110111 0110 111
V1111111 0000 111, (3)

we see that the bits of the global control code associated with the 1-lobe control plane are
‘0110111’ and ‘111’, and that the 0-lobe control bits are ‘0110.’ Inserting the placeholder zeros
in the correct locations gives C0 = 00000000110000 and C1 = 01101110000111. Regarding
the cupolet’s local visitation sequences, observe that this cupolet traverses its 1-lobe seven
times, which means that V0 and V1 begin as ‘0000000’ and ‘1111111’, respectively. C0110111
then makes four loops around its 0-lobe, followed by three loops about its 1-lobe, giving
V0 = 00000001111000 and V1 = 11111110000111.

Each local visitation sequence can be converted by an exchange function into an
emitted sequence that can then be applied as control information to the lobe of another
chaotic system. This exchange of control information constitutes the interaction that is
necessary for two chaotic systems to enter into entangled states according to the procedure
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described in Section 3, except that in the configuration outlined here, the interaction is
carried out between the individual lobes of the two systems, rather than between the
systems themselves. This variation of the chaotic entanglement process is known as multi-
system entanglement because it allows for one chaotic system to entangle with multiple
other systems, with each entanglement transpiring at one specific lobe of the attractor.

5.2. Demonstration

As a general demonstration, we consider two interacting chaotic systems, Systems A
and B, as well as two cupolets, CA and CB, that have already been stabilized from Systems A
and B, respectively. Let CA

0 , VA
0 , and EA

0 be the local control code, local visitation sequence,
and local emitted sequence associated with the 0-lobe of cupolet CA, and let CB

1 , VB
1 , and EB

1
represent the same for the 1-lobe of cupolet CB. We will use this example to demonstrate
the entanglement between the 0-lobe of cupolet CA and the 1-lobe of cupolet CB, and so
neither the 1-lobe’s local control code of CA, nor the 0-lobe’s local control code of CB, will
figure explicitly in our discussion.

As cupolet CA evolves around its attractor, its local visitation sequence VA
0 is passed

to an exchange function that performs a binary operation on VA
0 . The bits outputted

from the exchange function form the emitted sequence, EA
0 , that is associated with the

0-lobe of CA. EA
0 is then transmitted as control instructions to the 1-lobe of System B. The

interaction between Systems A and B now plays out in the reverse direction, from the
1-lobe of System B to the 0-lobe of System A. In particular, the emitted sequence EA

0 is used
to maintain the stabilization of System B onto cupolet CB. As cupolet CB winds around
its attractor, the bits of its local visitation sequence VB

1 are generated and processed by the
same exchange function that operates on VA

0 coming from the 0-lobe of System A. This
exchange function converts VB

1 to EB
1 , which is then applied as a control sequence to the

0-lobe of System A.
In order for the 0-lobe of System A and the 1-lobe of System B to chaotically entangle,

the control bits of EA
0 must match those of CB

1 and the control bits of EB
1 must match those

of CA
0 . If so, then the 0-lobe of System A is transmitting the exact control information to

the 1-lobe of System B that is necessary for maintaining the stability of cupolet CB. At the
same time, the 1-lobe of System B is sending the exact control instructions to the 0-lobe of
System A that are necessary for maintaining the stability of cupolet CA. Once this particular
interaction has been established, then the 0-lobe of System A and the 1-lobe of System B
have entered into mutually-stabilizing states that require no external application of controls
in order to be maintained.

Note that the two chaotic systems involved in this example still have lobes of their
attractors that are as yet unused and that therefore provide opportunities for additional
entanglement. Namely, the 1-lobe of CA is available to entangle with a cupolet from some
other chaotic system, and similarly for the 0-lobe of CB. This is why the entanglement
established in this manner is known as multi-system entanglement. From here, lattices
can be assembled between pairs of entangled chaotic systems, leading to the formation of
coherent structures of wide ranging complexity.

The multi-system entanglement described here is just as sensitive to disturbance as
the entanglement that we have previously described in Section 3. For instance, if emitted
sequence EA

0 does not match the control code CB
1 , say, then System B will not receive the

necessary controls that ensure the stability of cupolet CB
1 . In this situation, System B will

no longer be directed along the orbit of cupolet CB and will instead revert to evolving
chaotically around its attractor. Doing so will generate a new local visitation sequence at
the 1-lobe of System B and then a new emitted sequence that is different from EB

1 . This will
ultimately induce a similar destabilization of System A from CA.

5.3. Geometric Structures in Chaotic Entanglement

Figure 6 shows an example of multi-system entanglement in which a geometric lattice
has been constructed from three entangled cupolets. Here, the 1-lobe of C0000111110100111
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(seen as the leftmost cupolet in the figure) entangles with the 0-lobe of C0000001001000001
(the central cupolet of the figure), whose 1-lobe of entangles with the 0-lobe of
C0000000100010011 (the rightmost cupolet in the figure). The opposite lobes of these cupo-
lets are aligned together in this figure, but this is purely for illustration purposes. All three
cupolets are period-16. Each entanglement is managed by the IntegrateAndFire(5,8)
exchange function, the details of which are described in [14]. Table 2 lists the relevant global
and local control codes, visitation sequences, and emitted sequences of these cupolets. The
process in which these pairs of cupolets entangle is outlined below.

0

1

1

0

1

0

C0000111110100111

C0000001001000001

C0000000100010011

Figure 6. (Color online) A lattice of three double scroll systems that are chaotically-entangled
via the cupolets C0000111110100111, C0000001001000001, and C0000000100010011. The 1-lobe of
C0000111110100111 entangles with the 0-lobe of C0000001001000001, whose 1-lobe in turn entangles
with the 0-lobe of C0000000100010011. An IntegrateAndFire exchange function is used to manage
each interaction. This figure also shows the associated control plane labels. The global and local
control codes and visitation sequences of these cupolets can be found in Table 1, which also contains
the local emitted sequences of these cupolets.

As seen in Figure 6, the 1-lobe of CA = C0000111110100111 entangles with the 0-lobe
of CB = C0000001001000001. This can be confirmed by checking Table 1, where we find
that the emitted sequence produced by this exchange function for the 1-lobe of CA is
EA

1 = 0000000000000001. After a cyclic rotation of its control code bits, EA
1 matches the local

control code of the 0-lobe of CB, which is CB
0 = 0000000001000000. Similarly, the 0-lobe

emitted sequence of cupolet CB is EB
0 = 0100000000000000, which, after a cyclic rotation,

matches the local control code of the 1-lobe of cupolet CA, which is CA
1 = 0000000000000001.

As a result, the cupolets C0000111110100111 and C0000001001000001 entangle via this
particular combination of lobes. A similar process leads to the entanglement between the
1-lobe of cupolet CB and the 0-lobe of cupolet CC = C0000000100010011.

Figures 7 and 8 show additional examples of the geometric patterns that can form
from multi-system entanglement. Figure 7 depicts a loop of four entangled cupolets, while
Figure 8 shows a chain of seven entangled cupolets. The coherent structures seen in these
two figures are each generated using an IntegrateAndFire exchange function. As before,
the opposite lobes of these cupolets are aligned together for illustration purposes.
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Figure 7 is particularly interesting because it illustrates how a closed network of
entangled cupolets may form. In particular, the 0-lobe of each cupolet entangles with
the 1-lobe of its neighbor cupolet, and so on around the loop. This geometric structure
is particularly sensitive to perturbation, given that the destabilization of just one of these
four cupolets will evoke a chain reaction of destabilizations around the loop. Figure 8
is similarly intriguing because it demonstrates how large numbers of cupolets can be
assembled into coherent structures via chaotic entanglement. This figure shows a chain of
seven entangled cupolets, all of which are period-16.

Table 2. This table contains the control code, visitation sequence, and emitted sequence infor-
mation for the cupolets that are seen multi-entangled in Figure 6, which are cupolets CA =

C0000111110100111, CB = C0000001001000001, and CC = C0000000100010011. Specifically, this table
lists these cupolets’ global control codes (CA, CB, and CC, respectively), global visitation sequences
(VA, VB, and VC), local control codes (CA

0 , CA
1 , CB

0 , CB
1 , CC

0 , and CC
1 ), local visitation sequences (VA

0 ,
VA

1 , VB
0 , VB

1 , VC
0 , and VC

1 ), and local emitted sequences (EA
0 , EA

1 , EB
0 , EB

1 , EC
0 , and EC

1 ). Each local
emitted sequence is generated via the same IntegrateAndFire exchange function.

Cupolets

C0000111110100111 C0000001001000001 C0000000100010011

CA = 0000111110100111 CB = 0000001001000001 CC = 0000000100010011
VA = 1111000000000001 VB = 1000111000011111 VC = 0001100110000011

CA
0 = 0000111110100110 CB

0 = 0000001000000001 CC
0 = 0000000000010000

CA
1 = 0000000000000001 CB

1 = 0000001000000001 CC
1 = 0000000100000011

VA
0 = 0000111111111110 VB

0 = 0111000111100000 VC
0 = 1110011001111100

VA
1 = 1111000000000001 VB

1 = 1000111000011111 VC
1 = 0001100110000011

EA
0 = 0100001000000000 EB

0 = 0100000000000000 EC
0 = 0000001000000001

EA
1 = 0000000010000000 EB

1 = 0000000000000001 EC
1 = 0000000000000000
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C0000000100000001

C000000000001001

C000000001000001

C000001101000011

Figure 7. (Color online) A lattice of four, chaotically-entangled double scroll systems. The entangled
cupolets are: C0000000100000001, C000000000001001, C000000001000001, C000001101000011, and
C0000000000010001. An IntegrateAndFire exchange function is used to manage each entanglement.

C0000101111100101

C0000000000100101

C0000010000100001

C00000001

C0000000000010001

C0000001001000001

C0000000100010011

Figure 8. (Color online) A lattice of seven, chaotically-entangled double scroll systems. The en-
tangled cupolets are: C0000101111100101, C0000000000100101, C0000010000100001, C00000001,
C0000000000010001, C0000001001000001, and C0000000100010011. An IntegrateAndFire exchange
function is used to manage each entanglement.

6. Discussion and Future Research

Chaotic entanglement represents a recently-discovered phenomenon in which the
dynamics of interacting chaotic systems are collapsed onto the orbits of cupolets, whose
periodic behaviors are sustained so long as the interaction between the interacting systems
is maintained. Previous research has documented numerous instances of chaotic entangle-
ment in low-dimensional chaotic systems, but these results have so far been limited to two



Entropy 2021, 23, 1254 17 of 19

systems per entanglement. The new multi-system entanglement framework presented here
removes the restriction of entangling with just one other system, so a given chaotic system
can now entangle with multiple other chaotic systems through localized interactions at
the invidivdual lobes of the associated attractors. From here, multi-entangled chaotic
systems can be organized into various coherent structures that range in complexity from
the simple tripartite lattice seen in Figure 6 to the closed loop structure of Figure 7 and the
seven-cupolet lattice seen in Figure 8.

We stress that this application of chaotic entanglement remains at an information-
theoretic level, and so additional work is necessary to relate this research directly to physical
systems. In generating chaotic entanglement in an information-theoretic approach, one
is free to define the interaction between entangled cupolets and hence how the control
information that maintains their stability is exchanged. Even so, many of our exchange
function are inspired by models of physical systems and anticipate methods that are easily
implemented through linear shift registers or filters. For instance, the IntegrateAndFire
exchange functions demonstrate how two chaotic systems representing neural or laser
networks can interact.

As noted above, chaotic entanglement is an entropy-reversing event. This is not
altogether surprising in the scenario where an external energy impulse is required to prime
the generation of chaotic entanglement. However, as described above, it may naturally
occur that a chaotic system tracks along an unstable periodic orbit and thus initiates an
entanglement without any external energy. In whatever scenario, when the entanglement
has been established, any external mechanism can be removed because at this point the
entanglement can instead be maintained exclusively by the intrinsic dynamics of each
(now-periodic) system. It is also worth emphasizing the sensitivity of chaotic entanglement
to disturbance, as is discussed in [15]. Any disturbance to the stability of either cupolet of
an entangled pair may be enough to compromise the entanglement, the effects of which
would then transfer over to the partner cupolet by way of the exchange function. Both
systems would then revert to chaotic behavior, causing their entropies to increase from
zero to a positive value. This transition would not be instantaneous, though, because
the previously-entangled systems would continue to evolve in close proximity of their
respective cupolets for a period of time proportional to the local Lyapunov exponents
of these cupolets. If their interaction is restored quickly enough, then the two systems
would not have drifted too far from their previously-stabilized periodic orbits and could
redirect each other back onto their respective cupolets, thus resuming their entanglement
and a corresponding decay to zero in the overall entropy. In short, chaotic entanglement
is an entropy-reversing event, but a fluid one at that, able to range from zero to positive
and back.

Therefore, the next stage of research will be to identify physical interactions where
induced chaotic entanglement can be found,which would demonstrate new interplay
between chaotic and physical systems. One promising area where this may occur is in
chaotic neuron entanglement, where the neuronal signals are naturally impulsive in a
manner that is similar to how controls are implemented during the cupolet control scheme.
Accordingly, we are also investigating certain Hamiltonian systems that are known to be
chaotic, as well as several physical systems where an interaction is defined through a short-
range force. Figure 9 illustrates this general idea, where we see two double scrolls systems
interacting via a force, F(r), whose strength is inversely dependent on the separation
distance, r, between the states of the two systems. The idea is that F(r) will be large when
the states of the chaotic sytems are spatially close to each other, and small when the states
of the systems are distant. In other words, F will behave as 1/rk, for some exponent k > 0,
which is consistent with the interactions that are defined via physical force laws like the
well-known gravitational and Coulomb forces, which behave as 1/r2, or van der Waals
forces, which can behave as 1/r6 [34].



Entropy 2021, 23, 1254 18 of 19

Figure 9. This figure illustrates how the interaction between two chaotic double scrolls would be
defined via a short-range force, F(r). The strength of F is inversely related to the spatial separation, r,
between the states of the two systems (at the same time). The idea is that F behaves as 1/rk for some
exponent k > 0, so that F(r) is large when r is small, and vice versa. In this setup, F would play the
same role as the controls that are implemented by the cupolet-generating control scheme described
in Section 2. Under the right conditions, the continued interaction between the two evolving systems
might lead them to stabilizing each other onto cupolets and then into chaotic entanglement.

In this setup, F(r) would assume the role of the controls that are implemented by
the cupolet-generating control scheme described in Section 2. Rather than inducing per-
turbative “kicks” at select locations along a control plane, the effects of F(r) would be
continuously applied to each chaotic system as it evolves around its attractor. This could
lead to the stablization of each chaotic system onto a periodic orbit and the subsequent
entanglement of the two systems.

Science is full of systems that interact and then remain in interaction. Covalent
bonding in water molecules and the interactions caused by van der Waals forces are just
two examples. If a van der Waals force law can be used as the interaction that induces
two chaotic systems to entangle, then our work could be experimentally verifiable. If
we can identify several physical interactions that lead to simulated chaotic entanglement,
then the hope is that this research could lead to the discovery of chaotic entanglement in
physical systems.
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