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Abstract: Functional modules can be predicted using genome-wide protein–protein interactions
(PPIs) from a systematic perspective. Various graph clustering algorithms have been applied to PPI
networks for this task. In particular, the detection of overlapping clusters is necessary because a
protein is involved in multiple functions under different conditions. graph entropy (GE) is a novel
metric to assess the quality of clusters in a large, complex network. In this study, the unweighted
and weighted GE algorithm is evaluated to prove the validity of predicting function modules. To
measure clustering accuracy, the clustering results are compared to protein complexes and Gene
Ontology (GO) annotations as references. We demonstrate that the GE algorithm is more accurate
in overlapping clusters than the other competitive methods. Moreover, we confirm the biological
feasibility of the proteins that occur most frequently in the set of identified clusters. Finally, novel
proteins for the additional annotation of GO terms are revealed.

Keywords: protein–protein interaction networks; PPI networks; functional modules; protein com-
plexes; graph clustering; graph entropy; overlapping community detection

1. Introduction

A functional module is a separable entity in which the functions can be separated.
Functional modules overlap with each other because a protein performs multiple functions
under different conditions [1]. A protein complex is a multiprotein unit composed of
several proteins linked by non-covalent bonds. A protein can be included as a subunit in
multiple complexes of oligomeric structures. Functional modules or protein complexes
can be predicted using protein–protein interactions (PPIs) from a systematic perspective.
PPIs can be represented as a network, which is an undirected graph. The discovery of the
entire set of functional modules from genome-wide PPI networks is an important goal
of functional genomics [2]. Detecting overlapping clusters is also useful for predicting
functional modules at the genome scale [3].

Various graph clustering algorithms have been applied to biological networks. Graph
clustering algorithms can be divided into two groups: partition-based and local search al-
gorithms. Partition-based algorithms search for the optimal partitioning of a graph. For ex-
ample, Markov clustering (MCL) [4] is a partition-based clustering algorithm for weighted
networks. This algorithm strengthens and weakens the connections iteratively through
Markov chains to determine the optimal partition. InfoMap [5,6] is also a partition-based
clustering algorithm that was originally designed for directed and weighted networks.
However, it can be applied to undirected graphs by considering all the edges as bidirec-
tional. InfoMap uses an entropy metric to determine the optimal partition by minimizing
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both the local entropy per cluster and the global entropy. Hierarchical algorithms can be
included in the category of partition-based clustering. They repeatedly merge the closest
subgraphs or recursively divide a graph into two subgraphs to achieve the best partition.
The major characteristic of these partition-based clustering algorithms is that they are
unable to detect overlapping clusters, that is, two or more clusters do not share any nodes.

Local search algorithms repeatedly search for the best cluster in a local area to generate
a set of clusters. They use their own modularity functions for the local optimization.
MCODE [7] is one of the most prevalent graph clustering algorithms for biological networks.
This algorithm follows the seed growth procedure for a local search. For each cluster, the
selected seed node grows by adding neighbors that have a score above a given threshold.
As a severe disadvantage, MCODE requires the setting of many parameters for scoring
and adjusting the cluster growth, and the clustering results are sensitive to these parameter
settings. This indicates that the MCODE algorithm is unsuitable for unsupervised learning.
CFinder [8] is a local search algorithm that uses the clique percolation technique. CFinder
finds the cliques with k nodes, called k−cliques, and iteratively merges them if they share
(k− 1) nodes. Because CFinder must search for cliques to find each cluster, its efficiency
and scalability are typically limited, particularly if the network is large and has complex
connectivity. The graph entropy (GE) algorithm [9,10] also performs a local search following
the seed growth procedure. For each cluster, the selected seed node grows based on the
novel metric of GE. Because these local search algorithms find each cluster independently,
the resultant clusters can overlap.

Recent studies have emphasized the importance of detecting overlapping clusters.
For example, overlapping MCL, which is a method for iteratively forming overlapping
clusters [11]; the overlapping cluster generator as a method to use extended modularity for
overlapping clusters [12]; pairwise constraint non-negative matrix tri-factorization, which
is a method for finding overlapping functional modules based on the matrix [13]; and a
method for forming nested clusters with a greedy search algorithm [14] have recently been
proposed.

In this study, we verified the role of predicting functional modules from PPI networks
using unweighted and weighted GE algorithms. The accuracy of the GE algorithm was
compared with that of competitive graph clustering algorithms. We also assessed the
contributions of overlapping clusters in terms of functional module prediction.

2. Materials and Methods
2.1. PPI Datasets

We used two datasets, STRING and BioPlex, as PPI networks for Homo sapiens. The
STRING database [15,16] provides broadly integrated interactions and a confidence score
for each interaction. The confidence score of STRING [17] corresponds to the probability of
finding a linked protein within the same pathway in KEGG [18]. For PPIs from STRING,
we used the physical links of their confidence scores limited to 700 or higher. The BioPlex
network [19] consists of PPIs obtained using high-throughput affinity-purification mass
spectrometry. A unique gene symbol was used for each protein in both datasets and was
capitalized. For PPI networks from STRING and BioPlex, 4,338,217 and 118,162 links were
used, respectively, by removing redundant links and self-loops.

To analyze the weighted networks, we used the confidence scores of PPIs in STRING
as the probabilistic weights of edges. We also applied topological weights to PPIs in
STRING and BioPlex by computing the ratios of the common neighboring nodes using the
Jaccard index.

2.2. References

To measure clustering accuracy on the PPI networks, we compared the clustering re-
sults with protein complexes and Gene Ontology (GO) annotation data. Protein complexes
were collected from both large- and small-scale experimental results in CORUM [20] and
PCDq [21]. The integrated dataset included 2576 distinct proteins.
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GO [22] is the most widely referenced ontology database unifying biological repre-
sentation and provides annotations of molecular products to the biological descriptions
based on published evidence. For GO annotations, we combined the terms of the bio-
logical process and molecular function sub-ontologies to make 16,588 reference clusters.
GOATOOLS [23] was used to identify each description for annotation.

2.3. Graph Clustering Algorithms
2.3.1. Graph Entropy Algorithm

A previous study [9,10] introduced a graph clustering algorithm based on the information-
theoretic definition of GE which is a measure of modularity in a graph. Suppose an undi-
rected graph is partitioned into k subgraphs, C1, C2, · · · , Ck; the entropy of each node v is
computed as follows:

e(v) = −
k

∑
i=1

p(xi) log p(xi) (1)

where p(xi) is the ratio of the edges between v and the nodes of Ci to all edges of v. The
entropy e(G) of a graph G is then defined as the sum of the node entropies for all nodes
in G.

e(G) =
N

∑
i=1

e(vi) (2)

where N is the total number of nodes in G. The lowest GE in this equation indicates the
highest modularity of the partition of G.

The GE algorithm employs the seed–growth procedure, which selects a node as an
initial seed cluster and grows the seed cluster to optimize graph modularity. The definition
of GE is applied to the local optimization of a cluster. The graph is partitioned into two
subgraphs: a seed cluster and the other part. The seed cluster grows to search for the
lowest GE. Here, the entropy of each node is computed as follows:

e(v) = −p(xi) log p(xi)− p(xo) log p(xo) (3)

where p(xi) is the ratio of the edges between v and any node inside the seed cluster, and
p(xo) is the ratio of the edges between v and any node outside the seed cluster.

In the GE algorithm, the seed–growth process iterates to find a set of clusters. Because
each cluster is generated independently, the resultant clusters can overlap with each other
even though a seed node is selected outside the clusters that are found during the preceding
iterations. A stepwise description of the GE algorithm is provided below. Similar to the
definition of a neighbor of a node v as a node linked to v, the neighbor of a cluster C is
defined as a node outside C that is linked to any node in C.

1. Select a seed node. Among the nodes that are not in the output clusters from Step 6,
select the one with the highest degree as the seed node.

2. Form an initial seed cluster including the seed node and its neighbors.
3. Delete each neighbor of the seed node iteratively from the seed cluster if GE decreases.

Check the neighbors in descending order of their degrees.
4. Add each neighbor of the seed cluster iteratively into the seed cluster if GE decreases.

Check the neighbors in descending order of their degrees.
5. Output the seed cluster if partitioning the graph by the cluster results in the lowest GE.
6. Repeat Steps 1–5 to output a set of clusters until no seed node remains.

2.3.2. Weighted GE Algorithm

The GE algorithm can be applied to a weighted graph. The weight of each edge
indicates the strength of the interaction. To detect strongly connected clusters from a
weighted graph, the equation for node entropy should be upgraded. In this study, we
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tested two methods to compute the weighted entropy of each node. The first method
weighs the two factors of Equation (3) using the sums of the edge weights.

e(v) = −Wi · p(xi) log p(xi)−Wo · p(xo) log p(xo). (4)

In this equation, Wi = ∑m
i=1 wi, where w is an edge weight, and m is the number

of edges of v that are linked to the nodes inside the seed cluster. In other words, the
weight Wi is the sum of the edge weights between v and the nodes inside the seed cluster.
Similarly, Wo = ∑k

i=1 wi, where k is the number of edges of v that are linked to the nodes
outside the seed cluster. The weighted GE algorithm using Equation (4) is referred to as
GE with multiplied weights (GE-MW). The second method replaces the ratios of edges in
Equation (3) with the weighted ratios.

e(v) = − Wi
Wi + Wo

log
Wi

Wi + Wo
− Wo

Wi + Wo
log

Wo

Wi + Wo
. (5)

The weighted GE algorithm using Equation (5) is referred to as GE with weighted
ratios (GE-WR).

2.4. Evaluation of Clustering Accuracy

The metrics of average F-score (Equation (6)) and average precision (Equation (7))
were used to evaluate the accuracy of clusters in comparison with protein complexes or GO
annotations. The highest value of each cluster set was obtained and the collected values
were averaged over all resultant clusters. In this evaluation, we excluded the proteins that
do not exist in PPIs from the references. We also excluded the proteins that do not exist in
the reference set from the clusters.

Let the clusters be a set {C1, C2, · · · , Cl} and the reference be a set {r1, r2, · · · , rp}. The
precision of a cluster Ci compared to rj can be expressed as follows: Pij = |Ci ∩ rj|/|Ci|.
The recall of a cluster Ci compared to rj can be expressed as follows: Rij = |Ci ∩ rj|/|rj|.
The average F-score F and average precision P are expressed using Equations (6) and (7),
respectively.

F =
1
l

l

∑
i=1

{
p

max
j=1

(
2×

Pij × Rij

Pij + Rij

)
, i = 1, 2, · · · , l

}
(6)

P =
1
l

l

∑
i=1

{
p

max
j=1

Pij, i = 1, 2, · · · , l
}

(7)

In order to measure the proportion of functionally homogeneous modules in the
set of clusters, we referred to a related previous study [24]. Among all clusters, we
measured the proportion of the clusters with precision of 0.6 or greater in comparison with
GO annotations.

The feasibility of overlapping cluster detection was also evaluated. A node in a PPI
network that appears twice or more in the set of clusters is defined as an overlapping node,
and a cluster that includes at least one overlapping node is defined as an overlapping
cluster. We evaluated the accuracy of the overlapping clusters obtained through each
method by comparing them with the references.

3. Results
3.1. Experimental Settings

We implemented the unweighted and weighted GE algorithms MCODE, CFinder,
InfoMap, and MCL for accuracy comparison. Among the selected algorithms, GE and
InfoMap do not have any parameters. However, the other methods require parameter
settings. We used the same parameter settings for these unsupervised methods on two
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datasets, STRING and BioPlex. The recommended values from the original study that
introduced each method were applied.

MCODE requires many parameter settings. The “degree cutoff” parameter controls
the minimum degree of a node to be scored, the “node density cutoff” parameter describes
a density threshold for neighbors of a current cluster to be added, the “node score cutoff”
parameter controls the score of a node to be added to the current cluster, the “k-core”
parameter filters out the clusters that do not contain the nodes of at least k degrees, and the
“max depth” parameter limits the distance from the seed node. Our experimental settings
for MCODE parameter values are as follows: we set the degree cutoff to 2, node density
cutoff to 0.1, node score cutoff to 0.2, and k-core to 2.

CFinder must specify the k value to search for k-cliques. It also runs in a weighted
network with an intensity parameter. A clique is added to a cluster only if its intensity,
the geometric average of edge weights in the clique, is larger than a threshold. We used
k = 3 and intensity threshold = 0 for unweighted networks and intensity threshold = 0.5 for
weighted networks.

MCL requires inflation as a parameter that controls the extent of strengthening and
weakening. This parameter influences the granularity of clusters. We set inflation = 3. The
CDLI [25] and NetworkX [26] libraries were used to implement MCL and InfoMap.

3.2. Clustering Results

We excluded singletons having only one node from the obtained clusters. The number
of clusters and the average cluster size are compared in Table 1.Comparing the clustering
results on the STRING PPI dataset, which is a large network, the GE and MCL algorithms
generated a larger number of clusters than the others. This indicates that they become
reliable methods in genome-wide analysis of large networks. Conversely, it was confirmed
that such a number could not be obtained in the case of a small network, the Bioplex PPI
dataset. The unweighted GE algorithm removed a large number of singletons obtained
from the small network.

For the reference datasets, the average size of protein complexes was 4.4, and that of
GO annotations was 19.9. The clustering results of GE, CFinder, and MCL had an average
size similar to those values. However, the clustering results of MCODE and InfoMap had a
significantly larger average size than the references.

3.3. Accuracy Evaluation of Clusters

The performance of the selected graph clustering algorithms was evaluated by com-
paring their clustering results with two reference datasets, protein complexes and GO
annotations. Table 2 shows F scores, and Table 3 shows P scores and the proportion of
functionally homogeneous modules. For the STRING dataset, the GE, MCODE, InfoMap,
and MCL algorithms were applied. Because CFinder is not suitable for application to a
large complex network, it could not be tested with the STRING dataset. In our experiment,
CFinder was not completed within 50 h under the specifications of Core i9, DDR4 32GB,
and RTX 3070. However, for the BioPlex dataset, CFinder and the above four methods
were implemented. The elapsed time of CFinder for the BioPlex dataset was 2 h 6 min,
whereas GE produced an entire set of clusters in 7 min.

To evaluate the edge weighting, three cases of unweighted, probabilistic, and topolog-
ical weights were examined. The confidence scores of PPIs in the STRING dataset were
used as the probabilistic weights. In summary, for the STRING dataset, all three cases were
applied, whereas two cases—unweighted and topological weights—were applied for the
BioPlex dataset. To implement weighted GE, we used the GE-WR in Equation (5).
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Table 1. Clustering results of the selected graph clustering algorithm.

PPI Network Algorithm Weight Number of Clusters Average Cluster Size

STRING

GE
Unweighted 995 19.9
Probabilistic 982 20.5
Topological 444 29.9

MCODE
Unweighted 298 71.2
Probabilistic 85 172.7
Topological 296 65.2

InfoMap
Unweighted 217 44.0
Probabilistic 219 43.6
Topological 90 79.3

MCL
Unweighted 1061 8.9
Probabilistic 781 11.2
Topological 478 9.2

BioPlex

GE Unweighted 126 4.2
Topological 1188 7.8

MCODE Unweighted 113 237.8
Topological 237 70.5

CFinder Unweighted 823 13.1
Topological 145 10.4

InfoMap Unweighted 514 27.2
Topological 79 109.5

MCL Unweighted 3087 3.2
Topological 154 7.0

Table 2. F scores of clusters from the selected graph clustering algorithms.

PPI Network Algorithm Weight F Score with Protein
Complexes

F Score with GO
Annotations

STRING

GE
Unweighted 0.567 0.554
Probabilistic 0.572 0.552
Topological 0.521 0.517

MCODE
Unweighted 0.465 0.487
Probabilistic 0.297 0.397
Topological 0.483 0.494

InfoMap
Unweighted 0.597 0.587
Probabilistic 0.570 0.584
Topological 0.593 0.600

MCL
Unweighted 0.547 0.495
Probabilistic 0.538 0.494
Topological 0.592 0.533

BioPlex

GE Unweighted 0.506 0.435
Topological 0.536 0.389

MCODE Unweighted 0.316 0.254
Topological 0.396 0.318

CFinder Unweighted 0.483 0.377
Topological 0.661 0.433

InfoMap Unweighted 0.440 0.296
Topological 0.372 0.388

MCL Unweighted 0.534 0.378
Topological 0.643 0.456

In the F-score evaluation of Table 2, in the case of the STRING dataset, GE, InfoMap,
and MCL excelled in comparison with protein complexes, and in comparison with GO
annotations, GE and InfoMap stood out. In the case of BioPlex dataset, GE, CFinder,
and MCL excelled in comparison with protein complexes, and GE and MCL excelled in
comparison with GO annotations. That is, the GE algorithm took precedence in all four
cases applied. The P score in Table 3 also showed a similar pattern. It is also noteworthy
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that the proportion of functionally homogeneous modules among the clusters from the GE
algorithm is upstream. This means that most clusters from the GE algorithm are composed
of proteins with the same function.

Table 3. P scores and the proportion of functionally homogeneous modules among clusters from the
selected graph clustering algorithms.

PPI Network Algorithm Weight P Score with
Protein

Complexes

P Score
with GO

Annotations

Proportion of
Functionally

Homogeneous
Modules (%)

STRING

GE
Unweighted 0.542 0.902 98.2
Probabilistic 0.543 0.902 98.2
Topological 0.482 0.881 97.5

MCODE
Unweighted 0.432 0.856 94.3
Probabilistic 0.238 0.806 94.1
Topological 0.451 0.875 95.6

InfoMap
Unweighted 0.692 0.932 93.6
Probabilistic 0.660 0.929 93.7
Topological 0.580 0.892 95.6

MCL
Unweighted 0.583 0.895 92.5
Probabilistic 0.578 0.903 96.4
Topological 0.619 0.943 97.7

BioPlex

GE Unweighted 0.775 0.911 93.2
Topological 0.577 0.791 82.3

MCODE Unweighted 0.296 0.690 79.6
Topological 0.377 0.769 81.0

CFinder Unweighted 0.538 0.745 74.5
Topological 0.714 0.930 97.9

InfoMap Unweighted 0.413 0.658 64.1
Topological 0.356 0.795 86.1

MCL Unweighted 0.657 0.754 64.0
Topological 0.787 0.947 95.8

3.4. Accuracy Evaluation of Overlapping Clusters

Among the graph clustering algorithms selected for our experiment, the partition-
based methods of InfoMap and MCL are unable to detect overlapping clusters. For GE,
MCODE, and CFinder, the ratios of overlapping clusters are listed in Table 4. MCODE
produced the highest ratio of overlapping clusters. However, the number of clusters of
MCODE was significantly smaller than that of GE.

Table 4. Proportion of overlapping clusters from graph clustering algorithms.

PPI Network Algorithm Weight Number of
Clusters

Number of
Overlapping Clusters

Proportion
(%)

STRING

GE
unweighted 995 778 78.1
probabilistic 982 756 76.9
topological 444 277 62.3

MCODE
unweighted 298 250 83.8
probabilistic 85 80 94.1
topological 296 230 77.7

BioPlex

GE unweighted 126 55 43.6
topological 1188 854 71.8

MCODE unweighted 113 112 99.1
topological 237 192 81.0

CFinder unweighted 823 783 95.1
topological 145 41 28.2
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We evaluated the accuracy of the overlapping clusters collected from the clustering
results of GE, MCODE, and CFinder. Table 5 shows the F scores measured for overlapping
clusters only. It can be observed that as the number of clusters is reduced, the overall
accuracy decreases. For the STRING dataset, GE using probabilistic weights had the highest
F score (0.375) compared to protein complexes, and unweighted GE had the highest F score
(0.537) compared to GO annotations. For the BioPlex dataset, CFinder using topological
weights had the highest F score (0.432) compared to protein complexes, and GE using
topological weights had the highest F score (0.359) compared to GO annotations. Overall,
in the evaluation of overlapping clusters, GE exhibited the best performance.

Table 5. F scores of overlapping clusters from GE, MCODE, and CFinder.

Graph Clustering Algorithm F Score with Protein
Complexes

F Score with GO
Annotations

STRING GE unweighted 0.371 0.537
STRING GE with probabilistic weights 0.375 0.535
STRING GE with topological weights 0.307 0.470
STRING MCODE unweighted 0.269 0.438
STRING MCODE with probabilistic weights 0.174 0.390
STRING MCODE with topological weights 0.270 0.432

BioPlex GE unweighted 0.381 0.342
BioPlex GE with topological weights 0.321 0.359
BioPlex MCODE unweighted 0.159 0.231
BioPlex MCODE with topological weights 0.219 0.248
BioPlex CFinder unweighted 0.244 0.347
BioPlex CFinder with topological weights 0.432 0.349

We also compared the precision of the overlapping clusters to assess whether the
members of an overlapping cluster were included in the same protein complex or GO
annotation. As shown in Table 6, the unweighted GE method showed the highest precision
for all PPI datasets and references. For the STRING dataset, the average precision was
0.308 compared to protein complexes and 0.880 compared to GO annotations. For the
BioPlex dataset, the average precision was 0.575 compared to protein complexes and
0.915 compared to GO annotations. When the overlapping clusters are compared to GO
annotations, the P scores in Table 6 are remarkably higher than the F scores in Table 5. This
result was caused by the relatively large size of the GO annotations used as a reference, as
well as the large number of GO annotations.

Table 6. P scores of overlapping clusters from GE, MCODE, and CFinder.

Graph Clustering Algorithm P Score with Protein
Complexes

P Score with GO
Annotations

STRING GE unweighted 0.308 0.880
STRING GE with probabilistic weights 0.308 0.880
STRING GE with topological weights 0.244 0.817
STRING MCODE unweighted 0.207 0.793
STRING MCODE with probabilistic weights 0.119 0.764
STRING MCODE with topological weights 0.211 0.807

BioPlex GE unweighted 0.575 0.915
BioPlex GE with topological weights 0.319 0.718
BioPlex MCODE unweighted 0.117 0.610
BioPlex MCODE with topological weights 0.168 0.659
BioPlex CFinder unweighted 0.232 0.659
BioPlex CFinder with topological weights 0.455 0.847

For a more detailed comparison of the accuracy of overlapping clusters, Figures 1
and 2 show the distributions of the values from each accuracy metric using boxplots. The
distributions of F-scores of the overlapping clusters compared to protein complexes and
GO annotations (shown as GOA) are displayed in Figure 1. The distributions of precision
scores of the overlapping clusters are also examined in Figure 2. In the case of the median



Entropy 2021, 23, 1271 9 of 14

and mean values, results similar to those in Tables 5 and 6 can be confirmed. Overall, the
distributions demonstrate that unweighted GE and GE with probabilistic weights have
higher accuracy than the other cases.

From the precision comparison in Figure 2, it can be seen that the comparison with GO
annotations of Figure 2b shows a higher precision value than the comparison with protein
complexes of Figure 2a due to larger and more reference clusters of GO annotations than
protein complexes. That is, precision is higher because the average size of the reference
clusters of GO annotations (19.9) is significantly larger than that of protein complexes (4.4),
and the number of reference clusters of GO annotations (16588) is greater than the number
of protein complexes (2576). Larger and more references give a comparative advantage of
higher precision.
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Figure 1. Boxplots of F-score distributions of overlapping clusters. (a) F-scores of overlapping
clusters compared to protein complexes. (b) F-scores of overlapping clusters compared to GO
annotations. The green solid triangles and orange lines represent the mean and median values of the
distributions, respectively.
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Figure 2. Boxplots of precision distributions of overlapping clusters. (a) Precision of overlapping
clusters compared to protein complexes. (b) Precision of overlapping clusters compared to GO
annotations. The green solid triangles and orange lines represent the mean and median values of the
distributions, respectively.
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3.5. Biological Aspects of Clusters from GE Algorithms

To examine the biological aspects of the clustering results from the unweighted and
weighted GE algorithms, the STRING dataset was used because of the larger number
of PPIs. We considered two aspects: First, the biological suitability of the proteins that
appeared most frequently in the clusters was investigated with reference to previous
studies, as described in Table 7. Second, novel members of known functional modules from
GO were predicted based on the clustering results, as shown in Table 8. Unlike the previous
calculation, the F-scores compared to GO annotations were obtained without removing the
exclusive proteins from the reference. Newly discovered proteins in the clusters with an
F-score greater than 0.9 were treated as novel members.

Table 7. Functions of overlapping proteins with high frequency in the clusters generated by GE.

Overlapping
Proteins

Frequency of Appearance Reported Function
STRING

GE
Unweighted

STRING GE with
Probabilistic

Weights

STRING GE with
Topological

Weights

RAB1A 60 60 10 Rab1 proteins regulate vesicular
transport [27]. Rab GTPases regulate
membrane traffic and are involved
in many cell types [28].

RAB1B 60 60 10

ITSN1 55 54 10 Intersectins (ITSNs) regulate
endocytosis and cell signaling [29].
ITSNs may regulate the interactions
of various functions [30].

ITSN2 55 54 10

CALM1 53 51 15 Calmodulin (CaM) is an essential
protein for calcium ion sensing and
signal transduction [31]. CaM
enhances the interaction affinity of
many proteins [32].

CALM2 53 51 15
CALM3 53 51 15

Table 6 shows that two high-frequency classes of proteins (Rab1 and ITSN) are in-
volved in the regulation of many other proteins, and the third class of proteins, CaM, is
involved in increasing the interaction affinity of many proteins. These functional descrip-
tions explain why overlapping proteins appear so frequently across clusters.

In Table 8, two GO terms with an F-score close to 1, that is, GO:0019054 and GO:0070125,
were selected. In the case of GO:0019054, its function is described as modulation by virus
of host cellular process, and the missing element (KPNA6) can be filled in the Karyopherin
proteins; this is easy to reveal intuitively, as confirmed by connections on the PPI network.
A recent study [33] also reported that KPNA6 is necessary for replicating viruses such as
Zika virus.

In the case of GO:0070125, its function is described as mitochondrial translational
elongation, and the newly appeared members were different for each algorithm; there-
fore, the F-score is also different. First, the novel proteins common to all algorithms
are AC004556.3, AC139530.2, HDDC3, HIBCH, ICT1, MRRF, MTIF2, MTIF3, MTRF1L,
RPL23L, and RPMS17. Among them, ITCN1 has been reported as a putative factor for
mitochondrial translational release [34]. A previous study [35] also reported that MTRF1 is
a mitochondrial translational release factor, and MRRF is required for ribosome recycling at
the termination of mitochondrial translation. Another study [36] reported that MTIF2 and
MTIF3 are two initiation factors involved in mitochondrial translation. As mitochondrial
ribosomal proteins, RPL23L and RPMS17 are aliases of MRPL23 and MRPS17 from GO
annotation, respectively.
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Among the novel members of GO:0070125, the exclusive proteins for each method
were as follows: using unweighted GE, the three exclusive proteins from GO annotation
were MRPL23, MRPL58, and TSFM, and the two exclusive novel proteins are C12ORF65
and MTG2. C12ORF65, also known as mitochondrial translation release factor in rescue
(MTRFR), has been reported to prevent aberrant translation during elongation [37]. MTG2,
also known as GTPBP5 according to the HGNC symbols, has been reported to be required
for mitochondrial translation [38]. Using GE with probabilistic weights, the two exclusive
proteins from GO annotation were MRPL23 and MRPL58, and the two exclusive novel
proteins were C12ORF65 and MTG2, identical to those determined using unweighted GE.
Using GE with topological weights, the three exclusive proteins from GO annotation were
MRPL23, MRPL58, and TSFM, and the three exclusive novel proteins were GUF1, PDF,
and SOD2. According to the gene nomenclature, GUF1 is known as a translation factor,
mitochondrial, or GTP-binding elongation factor; PDF is known as peptide deformylase,
mitochondrial; and SOD2 is known as superoxide dismutase 2, mitochondrial.

Table 8. Proposing novel proteins for additional annotation to GO terms.

GO Term GO Name GO Annotated Proteins Novel Proteins Algorithm F-Score

GO:0019054 modulation
by virus of
host
cellular
process

KPNA1, KPNA2, KPNA3, KPNA4,
KPNA5, KPNA7, KPNB1

KPNA6 GE un-
weighted

0.933

KPNA6 GE with
proba-
bilistic
weights

0.933

GO:0070125
mitochondrial
transla-
tional
elongation

AURKAIP1, CHCHD1, DAP3, ERAL1,
GADD45GIP1, GFM1, GFM2, MRPL1,
MRPL10, MRPL11, MRPL12, MRPL13,
MRPL14, MRPL15, MRPL16, MRPL17,
MRPL18, MRPL19, MRPL2, MRPL20,
MRPL21, MRPL22, MRPL23, MRPL24,
MRPL27, MRPL28, MRPL3, MRPL30,
MRPL32, MRPL33, MRPL34, MRPL35,
MRPL36, MRPL37, MRPL38, MRPL39,
MRPL4, MRPL40, MRPL41, MRPL42,
MRPL43, MRPL44, MRPL45, MRPL46,
MRPL47, MRPL48, MRPL49, MRPL50,
MRPL51, MRPL52, MRPL53, MRPL54,
MRPL55, MRPL57, MRPL58, MRPL9,
MRPS10, MRPS11, MRPS12, MRPS14,
MRPS15, MRPS16, MRPS17, MRPS18A,
MRPS18B, MRPS18C, MRPS2, MRPS21,
MRPS22, MRPS23, MRPS24, MRPS25,
MRPS26, MRPS27, MRPS28, MRPS30,
MRPS31, MRPS33, MRPS34, MRPS35,
MRPS36, MRPS5, MRPS6, MRPS7,
MRPS9, OXA1L, PTCD3, TSFM, TUFM

AC004556.3,
AC139530.2,
C12ORF65, HDDC3,
HIBCH, ICT1,
MRRF, MTG2,
MTIF2, MTIF3,
MTRF1L, RPL23L,
RPMS17

GE un-
weighted

0.914

AC004556.3,
AC139530.2,
C12ORF65, HDDC3,
HIBCH, ICT1,
MRRF, MTG2,
MTIF2, MTIF3,
MTRF1L, RPL23L,
RPMS17

GE with
proba-
bilistic
weights

0.920

AC004556.3,
AC139530.2, GUF1,
HDDC3, HIBCH,
ICT1, MRRF, MTIF2,
MTIF3, MTRF1L,
PDF, RPL23L,
RPMS17, SOD2

GE with
topo-
logical
weights

0.910

Bold typefaces indicate a common set of novel proteins from each algorithm.

4. Discussion and Conclusions

GE is a novel metric to quantify the modularity of a set of subgraphs (i.e., clusters)
in a large, complex network. The GE-based graph clustering algorithm, which iteratively
performs a local search to detect an optimal cluster with the lowest GE, was recently
proposed. This algorithm can also be extended to the versions for a weighted network,
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a graph with edge weights. By applying the unweighted and weighted GE algorithms
to PPI networks and evaluating their performance, this study confirms their validity for
predicting functional modules of proteins.

Unlike other networks, the major property to be considered in a PPI network is
modularity. We applied the GE algorithm to a random network with the same number
of nodes and edges (in both the Erdos–Renyi method [39] and Knuth method [40]) and
found that no clusters were created and only singletons were left. Even in the case of a
node with a high degree, most of its neighbors are eliminated during the node removal
stage of the GE algorithm because of low modularity. In other words, the connections in
random networks cannot be measured because they are literally random, whereas in PPI
networks, clusters of proteins can be detected because similar proteins tend to be linked
together as protein complexes or functional modules.

Our clustering results have two major implications. First, the GE algorithms are
particularly suitable for genome-wide analysis of PPI networks. Their clustering results
most closely represent the reference datasets, a set of protein complexes at the genome
scale and comprehensive functional modules in GO annotations, in terms of the number of
clusters and the average cluster size. Second, the GE algorithm is suitable for predicting
functional modules. That is, it belongs to the upper group in a comparison of prediction
accuracy and homogeneity of functional modules and has a comparative advantage in
accuracy, especially in a comparison of overlapping clusters.

We propose the following two implications from a biological perspective: First, a
protein that occurs in many overlapping clusters can be biologically justified based on the
functions it performs. Our results confirmed that such proteins are involved in regulation
or interaction affinity. A previous study [12] reported that such proteins are involved in
regulating and binding activity. It has also been reported that a large number of proteins are
involved in the regulation of endocytosis and cell signaling [41]. Second, we propose novel
proteins for annotating the GO terms. This may imply the discovery of novel pathways,
such as disease–gene associations [42,43].

Finally, the following limitations were identified in this study. The STRING database
has an advantage in that it supports a vast amount of interactome data. However, it
provides Ensembl protein IDs, whereas gene symbols are commonly used in other datasets.
There might be a limit to completely converting Ensembl protein IDs into gene symbols
or vice versa. If the aliases for the gene symbols of all proteins are investigated and
standardized, better results can be confirmed. There are also cases in which publication
bias is inevitable in known PPI networks [44], and attempts to overcome this issue are still
insufficient for a genome-wide study [45]. If these limitations are overcome, more accurate
and useful results can be expected for research on genome-wide large PPI networks.

Author Contributions: Conceptualization, H.J. and Y.-R.C.; data curation, H.J., Y.K., Y.-S.J., and
Y.-R.C.; formal analysis, H.J., Y.K., and Y.-S.J.; funding acquisition, Y.-R.C.; investigation, H.J. and
Y.-R.C.; methodology, H.J. and Y.-R.C.; project administration, D.R.K. and Y.-R.C.; resources, D.R.K.
and Y.-R.C.; software, H.J., Y.K., and Y.-S.J.; supervision, Y.-R.C.; validation, H.J., Y.K., and Y.-S.J.;
visualization, H.J.; writing—original draft preparation, H.J., Y.K., Y.-S.J., and Y.-R.C.; writing—review
and editing, H.J. and Y.-R.C.; All authors have read and agreed to the published version of the
manuscript.

Funding: This research was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government, the Ministry of Science and ICT (No. 2021R1A2C101194611).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: STRING, https://string-db.org/cgi/download, accessed on 17 Febru-
ary 2021; BioPlex, https://bioplex.hms.harvard.edu/interactions.php, accessed on 17 February
2021; GO annotations, http://geneontology.org/docs/download-go-annotations/, accessed on 27
February 2021.

https://string-db.org/cgi/download
https://bioplex.hms.harvard.edu/interactions.php
http://geneontology.org/docs/download-go-annotations/


Entropy 2021, 23, 1271 13 of 14

Acknowledgments: We would like to thank Dr. Joon-Hyung Sohn of Wonju Medical University’s
Central Laboratory for his advice on the use of the data and its biological significance.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Not applicable.

Abbreviations
The following abbreviations are used in this manuscript:

PPI Protein–Protein Interaction
GE Graph Entropy
GO Gene Ontology
F Average F-Score
P Average Precision Score
MCL Markov Clustering

References
1. Barabasi, A.L.; Oltvai, Z.N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101–113.
2. Pereira-Leal, J.B.; Enright, A.J.; Ouzounis, C.A. Detection of functional modules from protein interaction networks. Proteins

Struct. Funct. Bioinform. 2004, 54, 49–57.
3. Pereira-Leal, J.B.; Levy, E.D.; Teichmann, S.A. The origins and evolution of functional modules: lessons from protein complexes.

Philos. Trans. R. Soc. Biol. Sci. 2006, 361, 507–517.
4. Enright, A.J.; Van Dongen, S.; Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids

Res. 2002, 30, 1575–1584.
5. Rosvall, M.; Bergstrom, C.T. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA

2008, 105, 1118–1123.
6. Bohlin, L.; Edler, D.; Lancichinetti, A.; Rosvall, M. Community detection and visualization of networks with the map equation

framework. In Measuring Scholarly Impact; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–34.
7. Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC

Bioinform. 2003, 4, 1–27.
8. Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and

society. Nature 2005, 435, 814–818.
9. Kenley, E.; Cho, Y. Entropy-Based Graph Clustering: Application to Biological and Social Networks. In Proceedings of the

2011 IEEE 11th International Conference on Data Mining, Vancouver, BC, Canada, 11-114 December 2011; pp. 1116–1121.
doi:10.1109/ICDM.2011.64.

10. Kenley, E.; Cho, Y. Detecting protein complexes and functional modules from protein interaction networks: A graph entropy
approach. Proteomics 2011, 11, 3835–3844.

11. Shih, Y.K.; Parthasarathy, S. Identifying functional modules in interaction networks through overlapping Markov clustering.
Bioinformatics 2012, 28, i473–i479.

12. Becker, E.; Robisson, B.; Chapple, C.E.; Guénoche, A.; Brun, C. Multifunctional proteins revealed by overlapping clustering in
protein interaction network. Bioinformatics 2012, 28, 84–90.

13. Liu, G.; Chai, B.; Yang, K.; Yu, J.; Zhou, X. Overlapping functional modules detection in PPI network with pair-wise constrained
non-negative matrix tri-factorisation. IET Syst. Biol. 2018, 12, 45–54.

14. Nepusz, T.; Yu, H.; Paccanaro, A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods
2012, 9, 471–472.

15. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.;
Tsafou, K.P.; et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015,
43, D447–D452.

16. Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al.
The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids
Res. 2016, p. gkw937.

17. Von Mering, C.; Jensen, L.J.; Snel, B.; Hooper, S.D.; Krupp, M.; Foglierini, M.; Jouffre, N.; Huynen, M.A.; Bork, P. STRING: known
and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005, 33, D433–D437.

18. Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res.
2004, 32, D277–D280.

19. Huttlin, E.L.; Ting, L.; Bruckner, R.J.; Gebreab, F.; Gygi, M.P.; Szpyt, J.; Tam, S.; Zarraga, G.; Colby, G.; Baltier, K.; et al. The BioPlex
network: a systematic exploration of the human interactome. Cell 2015, 162, 425–440.

20. Ruepp, A., Waegele, B., Lechner, M., Brauner, B., Dunger-Kaltenbach, I., Fobo, G., Frishman, G., Montrone, C.; Mewes, H.W..
CORUM: the comprehensive resource of mammalian protein complexes—2009. Nucleic Acids Res. 2010, 38, D497–D501.

https://doi.org/10.1109/ICDM.2011.64


Entropy 2021, 23, 1271 14 of 14

21. Kikugawa, S., Nishikata, K., Murakami, K., Sato, Y., Suzuki, M., Altaf-Ul-Amin, M., Kanaya, S.; Imanishi, T.. PCDq: human
protein complex database with quality index which summarizes different levels of evidences of protein complexes predicted
from H-Invitational protein-protein interactions integrative dataset. BMC Syst. Biol. 2012, 6, S7.

22. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019,
47, D330–D338.

23. Klopfenstein, D.; Zhang, L.; Pedersen, B.S.; Ramírez, F.; Vesztrocy, A.W.; Naldi, A.; Mungall, C.J.; Yunes, J.M.; Botvinnik, O.;
Weigel, M.; et al. GOATOOLS: A Python library for Gene Ontology analyses. Sci. Rep. 2018, 8, 1–17.

24. Liu, G.; Wang, H.; Chu, H.; Yu, J.; Zhou, X. Functional diversity of topological modules in human protein-protein interaction
networks. Sci. Rep. 2017, 7, 1–13.

25. Rossetti, G.; Milli, L.; Cazabet, R. CDLIB: a python library to extract, compare and evaluate communities from complex networks.
Appl. Netw. Sci. 2019, 4, 52.

26. Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function using NetworkX. In Proceedings
of the 7th Python in Science Conference, Pasadena, CA, USA, 19–24 August 2008; pp. 11–15.

27. Cavieres, V.A.; Cerda-Troncoso, C.; Rivera-Dictter, A.; Castro, R.I.; Luchsinger, C.; Santibañez, N.; Burgos, P.V.; Mardones, G.A.
Human Golgi phosphoprotein 3 is an effector of RAB1A and RAB1B. PLoS ONE 2020, 15, e0237514.

28. Mizuno-Yamasaki, E.; Rivera-Molina, F.; Novick, P. GTPase networks in membrane traffic. Annu. Rev. Biochem. 2012, 81, 637–659.
29. Hunter, M.P.; Russo, A.; O’Bryan, J.P. Emerging roles for intersectin (ITSN) in regulating signaling and disease pathways. Int. J.

Mol. Sci. 2013, 14, 7829–7852.
30. Herrero-Garcia, E.; O’Bryan, J.P. Intersectin scaffold proteins and their role in cell signaling and endocytosis. Biochim. Biophys.

Acta (BBA)-Mol. Cell Res. 2017, 1864, 23–30.
31. Boczek, N.J.; Gomez-Hurtado, N.; Ye, D.; Calvert, M.L.; Tester, D.J.; Kryshtal, D.O.; Hwang, H.S.; Johnson, C.N.; Chazin, W.J.;

Loporcaro, C.G.; et al. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT
Syndrome and Functional Characterization of a Novel Long QT Syndrome–Associated Calmodulin Missense Variant, E141G.
Circ. Cardiovasc. Genet. 2016, 9, 136–146.

32. Chin, D.; Means, A.R. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000, 10, 322–328.
33. Yang, L.; Wang, R.; Yang, S.; Ma, Z.; Lin, S.; Nan, Y.; Li, Q.; Tang, Q.; Zhang, Y.J. Karyopherin alpha 6 is required for replication of

porcine reproductive and respiratory syndrome virus and zika virus. J. Virol. 2018, 92, e00072–18.
34. Richter, R.; Rorbach, J.; Pajak, A.; Smith, P.M.; Wessels, H.J.; Huynen, M.A.; Smeitink, J.A.; Lightowlers, R.N.; Chrzanowska-

Lightowlers, Z.M. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.
EMBO J. 2010, 29, 1116–1125.

35. Hansen, L.L.; Jørgensen, R.; Justesen, J. Assignment of the Human Mitochondrial Translational Release Factor 1 (MTRF1) to
Chromosome 13q14. 1–> q14. 3 and of the Human Mitochondrial Ribosome Recycling Factor (MRRF) to Chromosome 9q32–>
q34. 1 With Radiation Hybrid Mapping. Cytogenet. Cell Genet. 2000, 88, 91–92.

36. Rudler, D.L.; Hughes, L.A.; Perks, K.L.; Richman, T.R.; Kuznetsova, I.; Ermer, J.A.; Abudulai, L.N.; Shearwood, A.M.J.; Viola,
H.M.; Hool, L.C.; et al. Fidelity of translation initiation is required for coordinated respiratory complex assembly. Sci. Adv. 2019,
5, eaay2118.

37. Desai, N.; Yang, H.; Chandrasekaran, V.; Kazi, R.; Minczuk, M.; Ramakrishnan, V. Elongational stalling activates mitoribosome-
associated quality control. Science 2020, 370, 1105–1110.

38. Maiti, P.; Antonicka, H.; Gingras, A.C.; Shoubridge, E.A.; Barrientos, A. Human GTPBP5 (MTG2) fuels mitoribosome large
subunit maturation by facilitating 16S rRNA methylation. Nucleic Acids Res. 2020, 48, 7924–7943.

39. RENYI, E. On random graph. Publicationes Mathematicate 1959, 6, 290–297.
40. Knuth, D.E. Art of Computer Programming, Volume 2: Seminumerical Algorithms; Addison-Wesley Professional: Boston, MA, USA,

2014.
41. Sorkin, A.; Von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 2009,

10, 609–622.
42. Afiqah-Aleng, N.; Altaf-Ul-Amin, M.; Kanaya, S.; Mohamed-Hussein, Z.A. Graph cluster approach in identifying novel proteins

and significant pathways involved in polycystic ovary syndrome. Reprod. Biomed. Online 2020, 40, 319–330.
43. Eguchi, R.; Karim, M.B.; Hu, P.; Sato, T.; Ono, N.; Kanaya, S.; Altaf-Ul-Amin, M. An integrative network-based approach to

identify novel disease genes and pathways: a case study in the context of inflammatory bowel disease. BMC Bioinform. 2018,
19, 1–12.

44. Schaefer, M.H.; Serrano, L.; Andrade-Navarro, M.A. Correcting for the study bias associated with protein–protein interaction
measurements reveals differences between protein degree distributions from different cancer types. Front. Genet. 2015, 6, 260.

45. Luck, K.; Kim, D.K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.; Campos-Laborie, F.J.; Charloteaux,
B.; et al. A reference map of the human binary protein interactome. Nature 2020, 580, 402–408.


	Introduction
	Materials and Methods
	PPI Datasets
	References
	Graph Clustering Algorithms
	Graph Entropy Algorithm
	Weighted GE Algorithm

	Evaluation of Clustering Accuracy

	Results
	Experimental Settings
	Clustering Results
	Accuracy Evaluation of Clusters
	Accuracy Evaluation of Overlapping Clusters
	Biological Aspects of Clusters from GE Algorithms

	Discussion and Conclusions
	References

