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Abstract: Nuclei detection is a fundamental task in the field of histopathology image analysis and
remains challenging due to cellular heterogeneity. Recent studies explore convolutional neural
networks to either isolate them with sophisticated boundaries (segmentation-based methods) or
locate the centroids of the nuclei (counting-based approaches). Although these two methods have
demonstrated superior success, their fully supervised training demands considerable and laborious
pixel-wise annotations manually labeled by pathology experts. To alleviate such tedious effort and
reduce the annotation cost, we propose a novel local integral regression network (LIRNet) that
allows both fully and weakly supervised learning (FSL/WSL) frameworks for nuclei detection.
Furthermore, the LIRNet can output an exquisite density map of nuclei, in which the localization
of each nucleus is barely affected by the post-processing algorithms. The quantitative experimental
results demonstrate that the FSL version of the LIRNet achieves a state-of-the-art performance
compared to other counterparts. In addition, the WSL version has exhibited a competitive detection
performance and an effortless data annotation that requires only 17.5% of the annotation effort.

Keywords: nuclei detection; convolutional neural networks; fully supervised learning; weakly
supervised learning; local integral regression

1. Introduction

Along with the rapid development of deep learning and computer vision, histopathol-
ogy image analysis has become a centrally important research area in the field of com-
putational pathology. The density, morphology, and distribution of cell nuclei, in the
microscopic images of tissue biopsy stained with hematoxylin and eosin (H&E) or immuno-
histochemistry (IHC), can provide quantitative support and significant clues for assessing
both the cancer grades and prognosis [1,2]. Nuclei detection is also the crucial and basic
step for downstream cell classification, thus playing a critical role in computer-aided di-
agnosis [3]. Compared with the traditional methods that require pathologists to visually
count and manually evaluate cancerous nuclei, automatic and accurate nuclei detection is
highly desirable due to the increasing scale of image data [4]. The detection of cell nuclei in
histopathology images is still a challenging task because the nuclei display variability of
size, shape, orientation, and intensity, while the microscopic image also faces the issues of
the nuclei overlapping and being out of focus due to the depth of field.

Deep learning approaches have been proven to produce encouraging results on
histopathology images in various studies [5–7]. Recent learning-based studies on nu-
clei detection mainly focus on two perspectives: nuclei segmentation and nuclei counting.
The segmentation-based algorithms [8,9], especially the instance segmentation, can de-
lineate each nucleus with a sophisticated boundary under the supervision of pixel-wise
annotations, which is a highly time-consuming and specialized task. The counting-based
approaches [10,11], however, only require point annotation located on the center of each
nucleus to generate the ground truth for network training. It outputs a density map of
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nuclei where the global integral and the local maxima suggest the population of nuclei and
their centroids [12,13], respectively. Unfortunately, as a result of blurry maps [14] caused
by the widely utilized pixel-wise Euclidean regression loss, the counting-based methods
can hardly provide the precise location of each nucleus [15,16]. Moreover, even though
the point annotation is a good option in terms of preserving the information and saving
effort, it still requires pathologists to pinpoint the centroids of the nuclei in histopathology
images [17], which is quite costly on account of the small size and the large number of
cell nuclei.

To address the above-mentioned problems of counting-based approaches, a novel local
integral regression network (LIRNet) for nuclei detection is proposed in this paper. Firstly,
a rigorously designed loss function that restricts the local integral around each annotated
point, instead of single pixel in the density map, is adopted in the proposed LIRNet. The
local integral regression loss does not pre-define any hypothesis on the distribution of cell
nuclei density, but still separates nuclei with clear background gaps. As a consequence,
the LIRNet can both provide the evident localization of each nucleus and count the nuclei
population. Secondly, since the local integral calculates the sum of the density values in
a local area while ignoring the specific position of each annotated point, it is reasonable
to extend the local area to artificially meshed image patches, which intuitively yields a
weakly supervised learning (WSL) framework. In the WSL framework of LIRNet, the
histopathology image is gridded into patches for nuclei detection. Meanwhile, pathologists
only need to distinguish whether there is zero, one, or multiple nuclei in one image patch.
As a result, instead of a pixel-wise centroid annotation, patch-level labels are exploited to
guide the training of the WSL framework. Finally, the quantitative experimental results
show that the fully supervised learning (FSL) version of the LIRNet achieves a state-of-
the-art performance, and the weak annotation strategy greatly reduces the labeling cost by
82.5% on average.

In summary, the key contributions of this paper are as follows:

• We propose a novel local integral regression network that allows both fully and
weakly supervised learning frameworks for estimating the conspicuous location of
each nucleus in histopathology images.

• We creatively design a patch-level annotation method to reduce the annotation cost
and explore a weakly supervised learning approach for nuclei detection task.

• The comparative experimental results quantitatively show that the FSL version of the
LIRNet achieves a state-of-the-art performance, while the WSL version has exhibited
a competitive detection ability with much less annotation cost.

The rest of this paper is organized as follows: Section 2 first introduces the current
work in nuclei detection; Section 3 presents the details of the data description, annotation,
and the proposed LIRNet; the experimental results and the discussion of this work are
exhibited in Sections 4 and 5; and Section 6 concludes the paper.

2. Related Work

Traditional nuclei detection methods rely on the extraction of hand-crafted features
such as color, texture, edge, and intensity information [18–20]. They are designed for a
certain type of histopathology images, and usually cannot work well when encountering
large variations in tissue types and nuclear appearances. Distinct from these methods,
learning-based methods automatically learn the high-level features of input the data. In
this section, we provide an overview of the related work in two aspects: (1) learning-
based nuclei segmentation and counting methods in histopathology images and (2) weakly
supervised algorithms in natural and medical images.

2.1. Learning-Based Nuclei Segmentation and Counting

Learning-based nuclei detection can be achieved from two aspects: segmentation and
counting. The segmentation-based approaches aim to predict a pixel-wise probability map
of the histopathology image, in which each nucleus is supposed to be separated by clear



Entropy 2021, 23, 1336 3 of 17

boundaries. However, the counting-based algorithms intend to estimate a density map of
cell nuclei where the local maxima indicates the predicted position of each nucleus.

Segmentation: In 2017, Kumar et al. [21] adopted a classification-based approach
to distinguish the category (nuclei area or background) of each pixel in H&E stained
images. Some researchers [22,23] developed watershed approaches to segment and count
the cell nuclei in histopathology images. Then, Saha et al. [6] proposed a HER2 deep
neural network (Her2Net) to segment and classify both the cell nuclei and membranes
in breast cancer cells. Naylor et al. [8] completed the nuclei segmentation by applying
a fully convolutional network to regress the distance map of the cell nuclei. Mahmood
et al. [9] utilized a conditional generative adversarial network to segment multi-organ
nuclei. Hou et al. [24] proposed an unsupervised learning algorithm, named a sparse
convolutional autoencoder, to segment nuclei from the foreground of the cell images.
Although the nuclei segmentation provides more valuable information, including the size
and the morphology compared with the counting-based method, it demands more accurate
pixel-wise boundary annotations.

Counting: Most of the nuclei detection studies [4,10–13,25–28] follow a regression
training framework that adopts fully convolutional networks. A pseudo-density map of
the nuclei is generated by infusing Gaussian-like distribution masks around an individual
annotated point as the ground truth. Some early studies [15,16,29] adopted unsupervised
learning or the nuclei population in image patches to predict a counting value as well as
the density map. Khan et al. [5] proposed a classification-based method to count human
embryonic cells. However, those approaches can hardly provide the precise location of
an individual nucleus without the supervision of point annotations [15,16]. Afterwards,
Xie et al. [7] trained a multi-task framework to provide both a location vector and a confi-
dence score for each pixel. Rad et al. [30,31] developed a residual dilated U-net to count
and locate each human embryo. Generally, the traditional counting-based approaches
demand a pseudo-density map as the ground truth, which unfortunately inclines to trigger
a blurred effect on sharp edges.

2.2. Weakly Supervised Learning

Fully supervised object localization requires bounding box labels or point annotations,
which suffers from costly manual annotation. Accordingly, many studies [32–37] exploit
weakly supervised object localization that only requires image-level labels for the network
training. Class activation mapping (CAM) [32] adopts a full convolutional network to yield
a score map predictor before the global average pooling layer. Afterwards, diverse network
architectures [33,36] and data-augmentation strategies [34,35] are proposed to cover the
whole object region. However, few studies use weakly supervised learning to localize a
small instance, especially in histopathology images. Recently, Qu et al. [17] proposed a
weakly supervised nuclei segmentation algorithm which utilized partial point annotations
in each training image as the ground truth, while simpler patch-level labels are required in
our WSL framework.

3. Materials and Methods
3.1. Dataset Description

MBM cells: To assess the contribution of each part of our approach, we adopt the
Modified Bone Marrow (MBM) dataset [16,38] that consists of 44 H&E stained images with
126± 33 cells per image from healthy individuals. After the standard staining procedure,
the purple blue depicts the nuclei of the various cell types, whereas the other cell con-
stituents appear in various shades of pink and red. In our experiments, 16 and 6 images
are randomly selected as the training and validation dataset. The rest of the 22 images act
as the test samples.

CA cells: To evaluate the performance of our WSL algorithm and compare the pro-
posed FSL framework with state-of-the-art counterparts, we also employ the colorectal
adenocarcinoma (CA) dataset [4] containing 100 H&E stained histopathology images with
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29,756 nuclei annotated in total. It represents real-world challenges, for instance, overlap-
ping nuclei and background interference, and is widely used in recent deep learning-based
nuclei detection algorithms. Instead of the conventional point annotations, the ground
truth for the WSL framework training is yielded by gridding the histopathology images
into patches and then labeling them with counting indicators, which is described in the
data annotation. The dataset is randomly divided into training, validation, and test sets
with a ratio of 7:1:2.

PSU cells: Additionally, a dataset [39] from Penn State University (PSU) with
fluorescently labeled cell nuclei is applied to evaluate the nuclei detection performance.
The PSU dataset includes 120 images of colon tissues from 12 pigs with a total number
of 25,462 nuclei, in which an 80:20:20 split is employed for the training, validation, and
test sets. It only visualizes cell nuclei with 4′,6-diamidino-2-phenylindole (DAPI) and,
meanwhile, comprises areas with over-staining and failed auto focusing to represent
outliers normally found in real scenarios.

3.2. Dataset Annotation

Two different data annotation strategies are applied to the proposed LIRNet for
nuclei detection. On one hand, the fully supervised learning framework requires all
of the point annotation centered at each nucleus (Figure 1a) to yield object areas (red
pixels) and a merged background area (pixels in blue), as shown in Figure 1b. On the
other hand, the histopathology images are divided into patches in the weakly supervised
learning framework, and a truncated counting indicator I = {0, 1, 2} is designed to label
each image patch which separately represents zero, one, and at least two nuclei. As a
result, pathologists are not demanded to either pinpoint their centroids or count a precise
population of nuclei in the data labeling procedure. Instead, they only need to make a
simple ternary judgment on whether there is a nucleus and, if yes, whether there is one
nucleus or more than one nucleus in each divided patch.
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Figure 1. Data annotation for different learning strategies. (a) The point annotations of nuclei in a histopathology image,
in which the green crosses mark the center of each nucleus. (b) The ground truth of a fully supervised learning (FSL)
framework can be divided into two parts: discrete object areas (red pixels) and a merged background region (blue pixels).
(c) The patch-level annotation procedure for the weakly supervised learning (WSL) framework. A histopathology image is
firstly divided into large patches and labeled with the truncated counting indicators. Subsequently, the large patches with
the indicator I = 2 are further gridded into small patches. To reduce the annotation cost, only part of the small patches are
randomly chosen and labeled with the truncated counting indicators.

Considering that the nuclei are not uniformly distributed in most histopathology
images (with high-density nuclei) which causes a label imbalance between I = {0, 1}
and I = 2, a further gridding on the dense-nucleus (I = 2) patches is executed to obtain
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more detailed labels. In this work, a histopathology image is firstly divided into large
patches with the resolution of 100× 100 and labeled with the truncated counting indicators
I . Subsequently, the large patches with the indicator I = 2 are further gridded into small
patches with the resolution of 20× 20. To reduce the annotation cost, only part of the
small patches, rather than all of them, are randomly chosen and further labeled with the
truncated counting indicators. Figure 1c shows the schematic diagram of data annotation
for the WSL framework.

3.3. Network Architecture of LIRNet

The schematic diagram of the LIRNet architecture is shown in Figure 2. As a typical
example of fully convolutional networks, U-net [40] is widely applied due to its extraor-
dinary performance on the segmentation of medical images. In this paper, we develop a
lightweight U-net, with nine residual blocks from residual networks (ResNets) [41] inserted
into the feature extraction layers, to predict a density map of cell nuclei which shares the
same image resolution with the input image data.
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Figure 2. The architecture of the local integral regression network (LIRNet), in which nine residual
blocks and a nonlocal module are separately inserted into the feature extraction layers and the bottom
layer of a lightweight U-net.

Besides, a nonlocal module [42] is introduced into the bottom layer of the lightweight
U-net to facilitate the localization of each nucleus. Acting as an extension of self-attention [43],
the nonlocal module is usually used to extract global features and explore nonlocal rela-
tionships among nonadjacent positions. Generally, each type of nucleus in microscopic
histopathology images shares limited variants of cell morphology, which can be explored
and highlighted by inserting a nonlocal module into the whole network. The dot product is
adopted as the pairwise function of the nonlocal module to learn the appearance similarity
of the nuclei. The rectified linear unit (ReLU) [44] is utilized as the activation function in
the whole LIRNet network.

3.4. Loss Function Design
3.4.1. Full Supervision

Unlike the continuously distributed density map employed in traditional counting-
based approaches [12,13,27], the density map in this work is divided into two areas:
discrete object areas, remarked by {Ok|k = 1, 2, . . ., N}, and a merged background area B,
as shown in Figure 1b. Consequently, we propose a novel local integral regression loss
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function that consists of two parts: local integral object loss and local integral background
loss. Taking into consideration that the integral of the whole density map indicates the
nuclei population, it is reasonable to assume that the local integral of the nucleus density
around an annotated point equals to 1 even though there is no hypothesis about its density
distribution. With respect to the background loss, the integral of the density value in any
local background area is supposed to be 0, which can not only isolate an individual nucleus
by a clear boundary but also guarantee the whole nuclei population. Nevertheless, the
background area is a continuous region that can hardly be divided into separate islets.
Therefore, we utilize the mean integral of the background pixels to approximate the local
integral. Ultimately, an old version of the overall loss function under the full supervision
in our previous work [45] can be written as:

L f
LIR = λ

1
NO

NO

∑
k = 1

 ∑
(i,j)∈Ok

Dij − 1

2

+ (1− λ) tanh

SO
SB

∑
(m,n)∈B

Dmn

 (1)

where the first and the second items separately represent the object loss and the background
loss. D denotes the output density map, Ok and NO suggest the kth object area and the
number of discrete object areas, respectively. SO and SB individually describe the number
of pixels in an object area and the whole background. λ serves as a weight coefficient
to balance the object loss with the background loss, which is a hyperparameter to be
manually adjusted.

While in this work, we abandon the hyperparameter λ in the interest of conciseness
and further replace each loss item with `1 form. Finally, the overall loss function of the FSL
algorithm is formulated by:

L f
`1LIR =

NO

∑
k = 1

∣∣∣∣∣∣ ∑
(i,j)∈Ok

Dij − 1

∣∣∣∣∣∣+
∣∣∣∣∣∣ ∑
(m,n)∈B

Dmn

∣∣∣∣∣∣ (2)

We find that the `1 loss without any hyperparameters outperforms the previous loss
in Equation (1), which is demonstrated in the Results section. Meanwhile, to test the
superiority of the proposed local integral regression loss, a widely used control experiment
that adopts a pixel-wise Euclidean regression error [13] is also introduced as a baseline,
which is written as:

L f
PER = ‖D − Dgt‖2

F (3)

where D and Dgt represent the output density map and the true density map, respec-
tively. The true density map is generated by embedding a Gaussian distribution at each
annotated point.

3.4.2. Weak Supervision

As described in the data annotation and Figure 1c, the ground truth for the WSL frame-
work is made up of patch-level counting indicators I . We now define Ik and CP

k = ∑(i,j)∈Pk
Dij

that denote the annotated counting indicator and the counting prediction of the kth image
patch Pk, respectively. Then, taking advantage of the mean square error (MSE) to construct
the loss function between Ik and CP

k is intuitively practical. However, because the counting
indicator Ik = 2 represents a dense-nuclei patch with at least 2 nuclei instead of a precise
population, the traditional MSE loss will indiscriminately compel all of the corresponding
counting predictions to approach 2. Accordingly, even if the true number of nuclei in an
image patch might be much greater than 2, especially for the large patches, at most, 2 nuclei
can be precisely detected. In order to address this underestimate problem, a truncation
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function is designed to truncate the counting prediction of multi-nucleus patches, which
can be formulated by:

T
(
CP

k

)
=

{
CP

k CP
k < 2

2 + γCP
k CP

k > 2
(4)

where γ represents a positive constant that provides a small gradient designed to avoid the
vanishing gradient issue. As a result, the loss function for each type of indicator Ik can be
constructed by the `2 form and an optimized hyperbolic tangent function [45]:

Lk =


tanh

(
T
(
CP

k
))
Ik = 0(

T
(
CP

k
)
− 1
)2 Ik = 1

tanh
(
2− T

(
CP

k
))
Ik = 2

(5)

In this work, we also replace each loss item mentioned above with the `1 form for the
same reason, hence the former Equation (5) is rewritten as:

Lk
`1

=

{∣∣Ik − T
(
CP

k
)∣∣ Ik = 0, 1

Ik − T
(
CP

k
)

Ik = 2
(6)

It should be noted that there is no | · | operating on the item for the indicator Ik = 2.
It is mainly because this patch Pk has more than 2 nuclei, and the truncated counting
prediction is expected to surpass its indicator value 2. Even so, it can not guarantee a
reasonable end because the above loss for Ik = 2 in Equations (5) and (6) is a monotonic
decreasing function. Consequently, a regularization term on the counting prediction is
necessary to avoid the obviously counterintuitive results. Since the LIRNet outputs a
density map of the nuclei with the same resolution as the input image, it is reasonable to
assume that the density value of each pixel in the density map is less than 1. For the reason
that the limitation on the density value of each pixel is equivalent to the restriction on the
max density value in the density map, the regularization term can thus be formulated by:

ψ(D) = max(Dmax − 1, 0) (7)

where Dmax represents the max value in the density map. Consequently, the whole loss
function of the WSL algorithm, including the previous truncated combine loss and the `1
form in this work, can be individually formulated by:

Lw
TC =

1
NP

NP

∑
k=1

Lk + ηψ(D) (8)

Lw
`1TC =

1
NP

NP

∑
k=1

Lk
`1
+ ηψ(D) (9)

where η is the weight of the regularization term. NP denotes the number of training patches.

3.5. Nuclei Localization

Post-processing algorithms on the density map, which could be predicted by the the
LIRNet, are desired to obtain the accurate location of an individual nucleus. According to
the traditional experience of counting-based approaches [12,13], the integral of the density
map and the local maxima of the resulting image are identified as the counting prediction
and the central positions of nuclei, respectively. Therefore, by heuristically searching the
top N local maxima on the density map, where N denotes the integral of the predicted
density map, the nuclei locations can be obtained. A simplified version of non-maximum
suppression (NMS) [46] is adopted to reduce false positives. It directly erases all of the
density values in a circular neighborhood with a radius r centered at each local maximum.
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3.6. Evaluation Metrics

We adopt the common metrics, including precision (P), recall (R), and F1 score (F1),
to quantify the nuclei detection performance of our algorithm and other competitive
supervised approaches.

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 =
2PR

P + R
(10)

Same as Sirinukunwattana et al. [4], Zhou et al. [10], and Tofighi et al. [39], a circular
area centered at each annotated nucleus centroid is regarded as the golden standard region.
The radius of the circular neighborhood is set to 6 pixels for the CA/MBM cell dataset
and 10 pixels for the PSU cell dataset. Accordingly, a detected nucleus is judged to be a
true positive (TP) if its predicted location is nearest to an annotated nucleus centroid and
falls into its golden standard region. In case of multiple detected nuclei around the same
ground truth point, only the closest one is considered as a true positive. The ground truth
points which have no corresponding detection are false negatives (FN). The same “Golden
Region” is used across all of the methods that are in comparison.

To measure the localization accuracy of each method, we also adopt the median, 1st
quartile (Q1), and 3rd quartile (Q3) of the distribution of the Euclidean distance between
each detected nucleus and its nearest annotated center of nucleus.

3.7. Training Details and Implementation

The object area for local integral is generated by a square kernel centered at an
individual annotated point. The size of the square kernel is set according to the average
distance between each nucleus and its 2 nearest neighbors (to reduce the influence of
repeat labeling on the same nucleus) in the training dataset. As a result, the kernel size
is set to 15, 11, and 13 pixels for the MBM, CA, and PSU datasets, respectively, which is
exhibited in Table 1. The small constant γ in the truncation function Equation (4) and the
coefficient of the regularization η in Equation (9) are set to 0.0001 and 0.001, respectively.
The configuration of the weight λ in Equation (1) is set uniformly to 0.1 in all of the
experiments.

Table 1. The configuration of square kernel size. The distance between each nucleus and its 2
nearest neighbors in the training dataset, including Modified Bone Marrow (MBM), colorectal
adenocarcinoma (CA) and labeled nuclei from Penn State University (PSU), is calculated.

MBM Cells CA Cells PSU Cells

Distance 15.22 ± 3.51 10.34 ± 6.03 12.56 ± 1.48
Configuration 15 11 13

Data augmentations, including rotation and flipping, are conducted on the images to
promote the accuracy of location. Besides, both the original image and its augmented form
are simultaneously fed into the network at each training iteration, which is conceived to
promote the detection performance. The training is optimized by the Adam optimizer [47]
with a batch size of 12 (6 original + 6 augmented) for 200 epochs. The learning rate is
initialized with 0.0001 and adjusted by the F1 score of the validation set. The model that
achieves the best performance in the validation dataset is recorded as the final model.

4. Results

We first evaluate the performance of the FSL version of the proposed approach and
compare it with state-of-the-art counterparts. Afterwards, the performance and the ability
to reduce the annotation cost of the WSL framework are extensively evaluated on the
CA and MBM datasets. Finally, we quantitatively assess the contribution of each part of
our algorithm.
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4.1. Comparison with Counterparts

We compare our LIRNet with eight competitive approaches on the CA cells dataset,
including stacked sparse autoencoder (SSAE) [29], local isotropic phase symmetry measure
(LIPSyM) [48], symmetric residual convolutional neural network (SR-CNN) [25], spatially
constrained convolutional neural network (SC-CNN) [4], shape prior convolutional neural
network (SP-CNN) [49], sibling fully convolutional network with prior objectness inter-
action (SFCN-OPI) [10], vector oriented confidence accumulation (VOCA) [7], and shape
prior convolutional neural network (TSP-CNN) [39]. Specifically, LIPSyM exploits the
morphological features of nuclei to detect their centroids in H&E stained images. SSAE
adopts an unsupervised learning framework to identify the high-level features of nuclei,
while both SR-CNN and SC-CNN apply a ConvNet to estimate the density map of nuclei
under the full supervision of point annotations. SP-CNN and its updated version, tunable
SP-CNN (TSP-CNN), take advantage of additional prior-guided shape information to
enhance nuclei detection. SFCN-OPI completes the nuclei detection and classification by
applying a unified framework and achieves the best recall. VOCA develops a multi-task
learning framework to provide both a location vector and a confidence score for each pixel.
These methods are chosen because they are widely compared.

The quantitative results of the comparative performance are shown in Table 2, in
which LIR and LIR-`1 separately represent the proposed LIRNet with the `2-tanh [45] and
`1 loss function. The experimental results of all of the counterparts are derived from their
papers [4,7,10,39]. The NA means the results were not reported and not available by that
method. Although SFCN-OPI detects 87.4% nuclei, our LIRNet with `1 loss achieves both
the best precision at 0.864 and the highest F1 score of 0.858. The quantitative gains in
precision, the F1 score, and the Q3 metric are quite explicit in Table 2. The comparison
of the Q1/Q3 metrics illustrates that the distances between 25%/75% of detected nuclei
and their nearest annotated points are within 1.414/3.606 pixels, which suggests that the
LIRNet can largely promote the location accuracy of nuclei detection.

Table 2. The comparison of nuclei detection performance among different approaches on the CA
dataset. Bold and blue font suggest the best and the second-best performance, respectively. NA
indicates the result were not available. LIR-`2-tanh and LIR-`1 represent our approach with `2-tanh
loss (Equation (1)) and `1 loss (Equation (2)). ↑ / ↓means higher/lower is better.

Method Precision ↑ Recall ↑ F1 ↑ Median Distance ↓ (Pixels) (Q1, Q3) ↓ (Pixels)

SSAE 0.617 0.644 0.630 4.123 (2.236, 10)
LIPSyM 0.725 0.517 0.604 2.236 (1.414, 7.211)
SR-CNN 0.783 0.804 0.793 2.236 (1.414, 5)
SC-CNN 0.781 0.823 0.802 2.236 (1.414, 5)
SP-CNN 0.803 0.843 0.823 NA NA

SFCN-OPI 0.819 0.874 0.834 NA NA
VOCA 0.831 0.863 0.847 2.0 * (1.414, 2.236) *

TSP-CNN 0.848 0.857 0.852 NA NA

LIR-`2-tanh 0.854 0.850 0.852 2.236 (1.414, 3.162)
LIR-`1 0.864 0.852 0.858 2.236 (1.414, 3.606)

* This method evaluates the Euclidean distance between each pair of ground truth and its assigned detection.

We also evaluate the proposed FSL framework on the PSU dataset [39], and the
performance comparison is reported in Table 3. It can be seen that the LIR-`2-tanh achieves
the best precision, and its `1 form achieves the second-best F1 score, which is 0.011 lower
than that of the TSP-CNN. This is largely because the additional information, including the
cell nuclei shapes, is utilized as trainable prior knowledge during the training procedure
in the TSP-CNN [39]. Nevertheless, both LIR-`2-tanh and LIR-`1 of the LIRNet achieve a
better performance than the SP-CNN, which is the previous version of the TSP-CNN with
fixed shape priors. Figure 3 visually exhibits typical results of nuclei detection on both the
CA and PSU datasets. It could be observed that nearly all of the nuclei are captured by the
LIR-`2-tanh method, and the LIR-`1 approach further improves the detection performance.
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Table 3. The comparison of nuclei detection performance on the PSU dataset. Bold and blue font
suggest the best and the second-best performance, respectively. LIR-`2-tanh and LIR-`1 represent
our approach with `2-tanh loss (Equation (1)) and `1 loss (Equation (2)). ↑ / ↓means higher/lower
is better.

Method Precision ↑ Recall ↑ F1 ↑
SSAE 0.665 0.634 0.649

SR-CNN 0.797 0.805 0.801
SC-CNN 0.821 0.830 0.825
SP-CNN 0.854 0.871 0.863

TSP-CNN 0.874 0.911 0.892

LIR-`2-tanh 0.875 0.871 0.873
LIR-`1 0.869 0.893 0.881

(a) Original image (b) Ground truth (d) LIR-(c) LIR-   -

Figure 3. Typical results of the FSL framework for nuclei detection on the CA (up) and PSU (down) cell datasets. The F1
scores of our method LIR-`2-tanh on the two images are 0.899 (up) and 0.905 (down), respectively. The F1 scores of LIR-`1

on the two images are 0.919 (up) and 0.912 (down), respectively.

4.2. Weakly Supervised Learning Results

We count and compare the cost of both the proposed patch-level labeling and the
conventional point annotations, so as to measure the capability of our WSL framework
on reducing the data annotation cost. It could be quantified by the number of mouse
clicks. The experimental results on the CA dataset are illustrated in Table 4. According
to the statistical analysis, the average number of mouse clicks for the conventional point
annotations is about 280 per image in the training dataset. In contrast, a different number of
patch-level labels are set to quantify the performance of our WSL method. In our previous
study [45], it is achieved by randomly labeling five small patches in a different number of
large patches with the counting indicator I = 2. While in this work, we randomly annotate
a different number of small patches from all of the large patches with the counting indicator
I = 2, as shown in Figure 1c.
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Table 4. Experimental results of the WSL framework on the CA cell dataset. Underline and bold font represent the
best performance of the FSL and WSL framework, respectively. Blue font suggests the minimal labels provided in the
WSL framework.

Method Loss Number of Labels (Ratio%) Precision ↑ Recall ↑ F1 ↑ Median Distance (Q1,Q3) ↓ (Pixels)

Previous work

FSL L f
LIR 280 (100%) 0.854 0.850 0.852 2.236 (1.414, 3.162)

WSL Lw
TC 130 (46.4%) 0.810 0.777 0.793 3.162 (2.236, 5.0)

WSL Lw
TC 92 (32.9%) 0.773 0.792 0.783 3.0 (2.236, 5.099)

WSL Lw
TC 72 (25.7%) 0.772 0.739 0.755 3.162 (2.0, 5.099)

This paper

FSL L f
`1LIR 280 (100%) 0.864 0.852 0.858 2.236 (1.414, 3.606)

WSL Lw
`1TC 122 (43.6%) 0.790 0.823 0.807 2.828 (1.414, 4.472)

WSL Lw
`1TC 98 (35.0%) 0.809 0.791 0.800 2.236 (1.414, 4.123)

WSL Lw
`1TC 74 (26.4%) 0.730 0.830 0.777 2.828 (1.414, 6.0)

WSL Lw
`1TC 49 (17.5%) 0.747 0.758 0.753 3.0 (2.0, 5.385)

Applying the former annotation strategy, at most, 130 patch-level labels per image
are provided on average, which reduces the annotation cost by at least 53.5%. As a result
of the trade-off, the F1 sore of the WSL with Lw

TC loss is decreased by 0.06 compared with
the FSL version. While for the latter annotation strategy with new Lw

`1TC loss, the F1 sore
of the WSL is still above 0.8 when 122 patch-level labels are provided on average, which
outperforms other fully supervised approaches, such as SR-CNN and SC-CNN (Table 2),
and simultaneously reduces the annotation cost by 56.4%. As the number of annotated
labels continues to decrease, the mean annotation costs of both 98 and 74 patch labels are
reduced to 35% and 26.4% that of fully supervised training, respectively. Meanwhile, the
F1 scores of the WSL with Lw

`1TC loss are only reduced by 0.007 and 0.03 compared with the
situation that 122 patch-level labels are provided. It clearly reveals that our WSL LIRNet
algorithm possesses both an effortless data annotation and a competitive performance of
nuclei detection. Similar trends can also be seen in Lw

TC loss in terms of the benefits of
patch-level labeling. Even though 49 patch-level labels (17.5% of total annotation cost) are
provided in each image, the F1 performance of the WSL with Lw

`1TC loss can still remain
above 0.75, which is close to 72 labels of the WSL with Lw

TC loss.
The WSL results on the MBM dataset are exhibited in Table 5. It is also obvious that

the achieved F1 score is above 0.8 even though less than half of the annotated labels are
provided. The above comparison results demonstrate that our WSL algorithm can achieve
a competitive performance of nuclei detection while largely reducing the annotation cost.
More importantly, in the aspect of the labeling complexity, the point annotation requires
precise clicks in the centroid pixel of each nucleus one by one. Nevertheless, the patch-level
labeling only demands one judgmental click on each image patch, which is obviously more
flexible and convenient when compared with traditional point annotation.

Table 5. Experimental results of the WSL framework on the MBM cell dataset. Underline and bold font represent the
best performance of the FSL and WSL framework, respectively. Blue font suggests the minimal labels provided in the
WSL framework.

Method Loss Number of Labels (Ratio%) Precision ↑ Recall ↑ F1 ↑ Median Distance (Q1,Q3) ↓ (Pixels)

FSL L f
`1LIR 129 (100%) 0.867 0.893 0.880 2.828 (2.000, 4.123)

WSL Lw
`1TC 86 (66.7%) 0.893 0.812 0.825 3.162 (2.0, 5.0)

WSL Lw
`1TC 61 (47.3%) 0.808 0.798 0.803 3.0 (2.0, 5.0)

WSL Lw
`1TC 51 (39.5%) 0.707 0.738 0.722 3.606 (2.236, 6.083)

4.3. Ablation Study
4.3.1. Contribution of Nonlocal Module

To verify the ability of a nonlocal module on extracting global features of cell mor-
phology and exploring the relationships among different positions, we first evaluate and
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compare the detection performance of different network variants. The experimental results
on both the MBM and CA cells dataset are exhibited in Table 6, in which N+ and N−

individually suggest the whole network with and without a nonlocal module. It could be
concluded that the network variants (N+, L f

LIR) achieve a higher F1 score than the network

variants (N−, L f
LIR) on both datasets, clearly confirming the effectiveness of the nonlocal

module.
Figure 4 provides further insight into the merits of different network variants on

two typical images from the MBM and CA datasets. Due to the evidently distinguishable
nuclei morphology on the MBM dataset (first row), the network variant (N−, L f

LIR) and

the (N+, L f
LIR) achieves nearly the same detection performance. However, on the CA

dataset (second row), the morphological features of the cells are substantially diverse
even though they are located adjacently. As a result, the network variant (N−, L f

LIR) fails
to localize a large number of nuclei that distributed at the middle, left, and bottom of
the image, while the network with a nonlocal module (N+, L f

LIR) significantly reduces
false negatives (FN, blue circles) and thus increases the F1 score by 0.057. This improved
performance demonstrates that the nonlocal module can enhance the network to explore
the morphological similarity and further apply it to forward reasoning.

Table 6. Experimental results of ablation study on the MBM cell and CA cell datasets. N+ and N−

suggest the whole network with and without a nonlocal module, respectively. Bold font suggests the
best performance.

Dataset Network Variants Precision ↑ Recall ↑ F1 ↑

MBM cells

(N−, L f
LIR) 0.877 0.874 0.875

(N+, L f
PER) 0.905 0.718 0.801

(N+, L f
LIR) 0.885 0.873 0.879

(N+, L f
`1LIR) 0.867 0.893 0.880

CA cells

(N−, L f
LIR) 0.862 0.811 0.836

(N+, L f
PER) 0.848 0.759 0.801

(N+, L f
LIR) 0.854 0.850 0.852

(N+, L f
`1LIR) 0.864 0.852 0.858

4.3.2. Contribution of Local Integral Regression Loss

In order to explore the effectiveness of the loss function design, we perform an ablation
study between the local integral regression (LIR) loss (Equations (1) and (2)) and the pixel-
wise Euclidean regression loss (Equation (3)). Table 6 shows the performance comparison
among the L f

LIR, L f
PER, and L f

`1LIR loss. It is obvious that the F1 score of the variants (N+,

L f
LIR) separately achieve 7.8% and 5.1% higher than that of the variants (N+, L f

PER) on

the MBM and the CA datasets. Besides, the `1 form of LIR loss (L f
`1LIR) achieves the best

performance over all of the network variants, suggesting that L f
`1LIR is the most appropriate

loss function for the LIRNet training procedure.
Figure 4c–e exhibits the comparison of nuclei detection among different network

variants, including the network with pixel-wise Euclidean regression loss (N+, L f
PER) and

the networks with our LIR loss (N+, L f
LIR), (N+, L f

`1LIR). It can be observed that (N+,

L f
PER) indeed omits a large amount of cell nuclei (blue circles) on both of the datasets, while

the variant (N+, L f
LIR) with LIR loss significantly reduces false negatives and increases

the F1 score by 6.9% and 13.5% on the MBM and CA images, respectively. Besides, the
detection performance is further improved by the network with the updating LIR loss in
the `1 form, as shown in Figure 4 and Table 6.
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(a) Original image (b) (c) (d) (e)

Figure 4. Typical detection results of ablation study from the MBM cell (first row) and CA cell (second row) datasets. Green,
blue, and red circles represent ground truth with correct detection (TP), ground truth without correct detection (FN), and
false positive detection (FP), respectively. The F1 score for (N−, L f

LIR), (N+, L f
PER), (N+, L f

LIR), and (N+, L f
`1 LIR) in the

first row are 0.874, 0.806, 0.875, and 0.884, respectively. The F1 score in the second row are 0.798, 0.720, 0.855, and 0.856,
respectively. More clearly displayed in color and enlargement.

Since our approach adopts the tanh and `1 functions to generate the background loss
and provide constraints, the LIRNet can output a more elaborate density map of the nuclei
with much less background noise. As a consequence, the network with LIR loss is less
sensitive towards the radius of the circular neighborhood in NMS than the L f

PER network
variant. Figure 5a,b displays the variation of detection performance with the change of
the NMS radius. It can be seen that the F1 score of the L f

PER network variant deteriorates
sharply as the NMS radius decreases. In contrast, the F1 score of the variants with LIR loss
still remain above 0.7 even though the true positive is restricted within one pixel from the
true annotated point, which reaches a fairly strict standard. In a brief, the LIRNet predicts
a refined density map of the nuclei in which nuclei localization is barely affected by the
post-processing algorithms.

(b) (a) (c) 

Figure 5. (a,b) The comparison of detection performance under different non-maximum suppression (NMS) radii in the
MBM cell and the CA cell datasets, respectively. (c) Performance comparison with and without data augmentation strategy.

4.3.3. Contribution of Data Augmentation Strategy

In the training stage, both the original image and its randomly augmented form
(rotation/flipping) are simultaneously fed into the network at each iteration. To exhibit its
contribution, we also compare the performance with and without employing this training
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strategy on the (N+, L f
`1LIR) network. Figure 5c shows the experimental results on three

datasets. It can be observed that all of the achieved F1 scores with the data augmentation
strategy, which improves the robustness of the localization, are higher than those without
the strategy. In spite of the limited benefit on the PSU dataset, the data augmentation
strategy increases the performance by nearly 1% on the CA dataset. The insignificant
improvement on the PSU dataset is mainly because the background and the morphology
in the DAPI-labeled cells are clearly distinguishable, which weakens the effect of the data
augmentation strategy.

5. Discussion

We manually set each object area to the uniform square kernel according to the
average distance between two nuclei in the histopathology images, as shown in Table 1,
to reduce the difficulty of computing the local integral. A significant direction for future
work is to provide an adaptive size for each detected object, especially for the cells with
different morphology.

In addition, we attempt to explain how the weakly supervised nuclei detection works
in three aspects. First of all, the positions of the nuclei and the specific numbers remain un-
known for the WSL training procedure. By comparing empty patches with single-nucleus
ones, the LIRNet manages to distinguish and localize the nucleus from the background.
Secondly, both single-nucleus and multi-nucleus patches provide weak counting super-
vision for the proposed network. Therefore, the LIRNet is capable of learning to count
the number of nuclei, particularly for the regions with high-density nuclei. Thirdly, the
nonlocal module in the LIRNet can effectively spread the learned capability of nuclei
localization to the multi-nucleus patches on account of the similarity in appearance of
nuclei with identical morphology.

6. Conclusions

In this paper, we propose a novel local integral regression network that allows both
fully and weakly supervised learning frameworks on nuclei detection. Compared with
other fully supervised learning approaches, the FSL version of LIRNet achieves state-of-
the-art detection performance, while the WSL version of LIRNet possesses a competitive
detection performance and an effortless data annotation that requires much less annotation
effort. Prospectively, the proposed approaches could offer a benefit to pathology practice
in terms of a quantitative analysis of tissue images, and potentially lead to a better under-
standing of disease. Besides, considering the fact that LIRNet promotes the precision of
location, it can conceivably be extended to other computer vision applications, for instance,
the crowd detection issues.
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