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Abstract: Asynchronously tuned elementary cellular automata (AT-ECA) are described with respect 
to the relationship between active and passive updating, and that spells out the relationship between 
synchronous and asynchronous updating. Mutual tuning between synchronous and asynchronous 
updating can be interpreted as the model for dissipative structure, and that can reveal the critical 
property in the phase transition from order to chaos. Since asynchronous tuning easily makes be-
havior at the edge of chaos, the property of AT-ECA is called the unfolded edge of chaos. The com-
putational power of AT-ECA is evaluated by the quantitative measure of computational universal-
ity and efficiency. It shows that the computational efficiency of AT-ECA is much higher than that of 
synchronous ECA and asynchronous ECA. 
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1. Introduction 
Research on complex systems frequently claims the system is far from equilibrium 

[1]. While dissipative structure proposed by Prigogine evokes perturbations from the out-
side [2], most studies on complex systems claim that a macroscopic system consists of 
microscopic elements interacting with each other and that the property of perturbations 
can be embedded in microscopic nonlinear interactions [3–5]. Especially, since chaotic dy-
namics was proposed, researchers have tendencies to consider that even randomness can 
be embedded as the properties within a system [6] and is recently utilized in encryption 
[7,8]. Those ideas are also taken in the studies of cellular automata (CA), and that leads to 
the classification of cellular automata because some CA have high nonlinearity and others 
have none [9–11]. 

The idea of which the property of an element of a system can be defined in the form 
of dynamics still accelerates the attempt to find out specific dynamics embedding not only 
the perturbation (chaos) but also the properties mixing the order and chaos. It entails that 
specific dynamics embedding the order and chaos can be regarded as dynamics contain-
ing both the inside of the system as order and the outside of the system as chaos. These 
dynamics touch on two important aspects. The one is the issue of the relation between 
microscopic and macroscopic perspectives, for instance, the statistical mechanics and 
thermodynamics [12], and the other one is the issue of the edge of chaos or criticality [13–
15]. Both aspects are based on the issue of how one can understand two different concepts 
which look like elements of binary opposition on one hand but might be related to each 
other. 

In the relationship between statistical mechanics and thermodynamics, if they are 
equivalent to each other, it is theoretically easy to deal with the system. Therefore, there 
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was an endeavor to find out the condition under which statistical mechanics and thermo-
dynamics are equivalent to each other. The isolated system without thermal exchange al-
lows entropy maximization equivalent to free energy minimization. The closed system 
with thermal exchange allows entropy maximization equivalent to thermodynamic po-
tential minimization [12]. Those conditions were found by an endeavor to relate the mac-
roscopic perspective with the microscopic perspective. How about a system far from equi-
librium? While the attempt to relate the micro with the macro failed, the non-local prop-
erty is introduced to contrast the microscopic to the macroscopic perspectives [16,17]. A 
novel general way to understand a pair of microscopic and macroscopic perspectives is 
required. 

In the relationship between the inside and the outside, two concepts, the inside and 
outside might be opposite with each other. However, if the relationship is embedded in 
the form of specific dynamics, one can find special dynamics featuring the order and chaos, 
that is found at the critical state in the phase transition. The critical state is called the edge 
of chaos [13,14]. It implies that any interaction between the inside and outside can be ex-
pressed as dynamics and that the inside-dominant dynamics show the order pattern and 
the outside-dominant dynamics show the chaotic pattern. Not only dynamics in differen-
tial equations but CA also shows the edge of chaos. If one recalls the situation of the sys-
tem far from equilibrium, the attempt to relate the inside with the outside might be failed 
because the natural system is more perturbed from the outside [18]. As well as the rela-
tionship between the microscopic and macroscopic perspectives, a novel way to under-
stand a pair of the inside and the outside is also needed. 

CA that are more perturbed might be realized by using asynchronous updating. It is 
well known that behaviors of CA with asynchronous updating are totally different from 
those of CA with synchronous updating [19–22]. In addition, various devices to imple-
ment perturbed CA were proposed in the context of unconventional computing [23,24]. 
Notwithstanding those endeavors, there is little research to systematically consider per-
turbed CA including asynchronous updating. Although we previously proposed asyn-
chronously tuned elementary cellular automata (AT-ECA) and argue that most of them 
show critical properties independent of the transition rule [25–27], the construction of the 
updating is so complicated that the significance of it was unclear. In this paper, we define 
the active and passive updating in a term of the order of updating and define AT-ECA 
equipped with the device tuning the synchronous with the asynchronous updating. If 
asynchronous tuning is applied to ECA, then that leads to critical behavior which looks 
like behavior at the edge of chaos. The computability of AT-ECA is here estimated by a 
quantitative measure of computational universality and computational efficiency. 

2. Asynchronously Tuned ECA (AT-ECA) 
We previously proposed asynchronously tuned elementary cellular automata (AT-

ECA) and showed their basic properties [25–27]. Since AT-ECA is proposed, compared to 
synchronous ECA that is usually used, we here first argue the significance of synchronous 
time. 

Elementary cellular automata (ECA) are defined by a set of the binary sequences of 
cells, Bn with B = {0, 1} and a transition rule fr:B3→B, where fr is synchronously updated to 
all cells and r represents the rule number, where r = Σ7s = 02sds with ds = fr (x, y, z) and s = 4x 
+ 2y + z. The transition rule with synchronous updating is expressed as ait+1 = fr(ai-1t, ait, ai+1t). 
Given a binary sequence, a transition rule is globally and synchronously adapted to all 
cells [9,11]. Although synchronous updating is usually ignored, synchronous updating is 
a special assumption in biological systems. Imagine a multicellular system. Consider the 
updating of a cell, autonomously activated by the active updating, and the updating trig-
gered by neighboring cells by the passive updating. If there is a temporal gap in the up-
dating, one can find the difference between the active and passive updating with respect 
to the order of updating. The preceding cell’s updating is called active, and the following 
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cell’s updating is called passive. Synchronous time invalidates the difference between ac-
tive and passive updating because it looks as if a cell autonomously updates its state and 
simultaneously as if a cell updates its state triggered by neighboring cells. One cannot 
determine whether either of the active and passive updating is true in synchronous up-
dating. 

Figure 1 shows the indistinguishability between the active and the passive by the 
straight line connecting the active circle and the passive circle and shows the hidden as-
sumption founding the indistinguishability as synchronous time. We call the element on 
the left the interface. In ECA the synchronous time plays a role as the interface. Any per-
turbation outside ECA does not influence ECA, and that is shown by the outside sur-
rounded by a broken circle. While one can couple the effect of perturbation with ECA, 
that perturbation is not “inevitable”. We here introduce the perturbation in a broad sense 
as the “inevitable”. 

 
Figure 1. Schematic diagram for synchronous cellular automata. The isomorphism between the ac-
tive and passive is based on the hidden assumption of synchronous time that plays a role as an 
interface. 

To implement the inevitable perturbation, we define the positive and negative an-
tinomy, coupled them, and that leads to the construction of AT-ECA. Through this argu-
ment, one can find that AT-ECA is the inevitable dissipative structure. To implement in-
evitable perturbation, we first define the positive antinomy instead of the interface that is 
shown in Figure 1. The positive antinomy of the active and passive implies that each cell 
allows both active and passive updating. If the order of updating is given, and if a cell 
updates its state before its neighboring cells, then a cell is interpreted as active. Otherwise, 
a cell is interpreted as passive. Thus, if the order of updating is randomly given at each 
time, a cell can be active at some time step and can be passive at other time steps, depend-
ing on the order at that time step. That implements the positive antinomy of the active 
and passive antinomy, since the positive antinomy allows both active and passive updat-
ing that tends to connect them with each other, as shown in the diagram of Figure 2 (left) 
above. Next, we define the negative antinomy of the active and negative updating. With 
respect to a transition rule, one can find neither active and passive updating in a multicel-
lular system. The active attitude to a transition rule can be defined as choosing one invar-
iant transition rule. In contrast, the passive attitude can be defined as a changeable rule 
dependent on the order. Thus, if one defines both a passive rule and negative rule for each 
cell, and if the passive rule is invariant and the active rule is changeable, one can establish 
that neither active nor negative rule is accepted for each cell, and that implies that the 
notion of active and passive is separated from each other in the form of the negative an-
tinomy, as shown in the diagram of Figure 2 (right) above. Coupling the two antinomies 
leads to the traumatic structure. Although trauma is a technical term in psychiatry, we 
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here use the traumatic structure in a broader sense. Since the trauma implies an entangled 
state consisting of two antagonistic senses such as the sense of victim and of perpetrator, 
we call the entangled state of the positive and negative antinomy of the active and passive 
the traumatic structure (Figure 2 below). Since that an entangled state does not usually 
appear without a psychiatric disorder, that is immediately relevant for traumatic structure. 

 
Figure 2. Schematic diagram for asynchronously tuned elementary cellular automata (AT-ECA). Coupling the positive 
with negative antinomy results in AT-ECA, where the coupling structure is called traumatic structure. 

Asynchronously tuned ECA (AT-ECA) is defined by ECA equipped with the trau-
matic structure. To implement the positive antinomy of the active and passive updating, 
the order of updating for all cells, 𝑖𝑖 ϵ {1,2,⋯ ,𝑁𝑁} is defined by 

𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) ϵ {1,2,⋯ ,𝑁𝑁} ,   𝑖𝑖 ≠ 𝑗𝑗 ⇒ 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) ≠ 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑗𝑗). (1) 

A function, 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) is defined as a bijective map, and implies an order of updating at 
the 𝑡𝑡 -th step for the 𝑖𝑖 -th cell. 𝑁𝑁 implies a system size. In the case of 𝑁𝑁 = 5, 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) is 
expressed as 

  𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(0) = 3, 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(1) = 5, 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(2) = 4, 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(3) = 1, 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(4) = 2.  (2) 

In time development, 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) is randomly determined at each time step. By using 
𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖), the state of each cell is updated. 

As mentioned above, the traumatic structure is implemented by the active and pas-
sive rules for each cell. The passive rule that is invariant through time and universal for 
all cells is defined by 

     
000
𝑎𝑎0

,
001
𝑎𝑎1

,
010
𝑎𝑎2

,
011
𝑎𝑎3

,
100
𝑎𝑎4

,
101
𝑎𝑎5

,
110
𝑎𝑎6

,
111
𝑎𝑎7

 , (3) 

where 𝑎𝑎0~𝑎𝑎7 is either 0 or 1. In contrast, the active rule is defined such that it is different 
for each cell and is temporally changed. Thus, the active rule at the 𝑡𝑡-th step for the 𝑖𝑖-th 
cell is defined by 

      
000
𝑒𝑒𝑖𝑖,0𝑡𝑡

,
001
𝑒𝑒𝑖𝑖,1𝑡𝑡

,
010
𝑒𝑒𝑖𝑖,2 
𝑡𝑡 ,

011
𝑒𝑒𝑖𝑖,3𝑡𝑡

,
100
𝑒𝑒𝑖𝑖,4𝑡𝑡

,
101
𝑒𝑒𝑖𝑖,5𝑡𝑡

,
110
𝑒𝑒𝑖𝑖,6𝑡𝑡

,
111
𝑒𝑒𝑖𝑖,7𝑡𝑡

  (4) 
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𝑒𝑒𝑖𝑖,0𝑡𝑡  ~ 𝑒𝑒𝑖𝑖,7𝑡𝑡  is also either 0 or 1. It is assumed that for each cell the active rule is initially the 
same as the passive rule. It implies that for 𝑡𝑡 = 0, and for any 𝑖𝑖, 

 𝑒𝑒𝑖𝑖,𝑘𝑘0 = 𝑎𝑎𝑘𝑘   (𝑘𝑘 = 0,⋯ ,7) .  (5) 

In 𝑡𝑡 > 0, 𝑒𝑒𝑖𝑖,𝑘𝑘𝑡𝑡  is determined at each step by the procedure mentioned later. 
The state of the 𝑖𝑖-th cell at the 𝑡𝑡 –th step expressed as 𝑐𝑐𝑖𝑖(𝑡𝑡) is defined as 

𝑐𝑐𝑖𝑖(𝑡𝑡) ∈ {0,1} .  (6) 

Initially 𝑐𝑐𝑖𝑖(0) is randomly distributed in an array. 
The state of each cell is updated, depending on the local order of updating that is the 

order of 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 − 1), 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖), and 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 + 1). The condition of that updating is divided 
into the following four cases. 

If 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 − 1) > 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) < 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 + 1) ,  

𝑐𝑐𝑖𝑖(𝑡𝑡 + 1) = 𝑔𝑔𝑖𝑖𝑡𝑡�𝑐𝑐𝑖𝑖−1(𝑡𝑡), 𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑐𝑐𝑖𝑖+1(𝑡𝑡)�  ; (7) 

If 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 − 1) < 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) < 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 + 1) , 
𝑐𝑐𝑖𝑖(𝑡𝑡 + 1) = 𝑓𝑓�𝑐𝑐𝑖𝑖−1(𝑡𝑡 + 1), 𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑐𝑐𝑖𝑖+1(𝑡𝑡)�; 

(8) 

If  𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 − 1) > 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) > 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 + 1), 
𝑐𝑐𝑖𝑖(𝑡𝑡 + 1) = 𝑓𝑓�𝑐𝑐𝑖𝑖−1(𝑡𝑡), 𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑐𝑐𝑖𝑖+1(𝑡𝑡 + 1)�; 

(9) 

If 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 − 1) < 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) > 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 + 1), 
𝑐𝑐𝑖𝑖(𝑡𝑡 + 1) = 𝑓𝑓�𝑐𝑐𝑖𝑖−1(𝑡𝑡 + 1), 𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑐𝑐𝑖𝑖+1(𝑡𝑡 + 1)� 

(10) 

where 𝑐𝑐𝑖𝑖(𝑡𝑡)  represents the state of the 𝑖𝑖 -th cell at the  𝑡𝑡 –th step, and function, 
𝑓𝑓 and 𝑔𝑔𝑖𝑖𝑡𝑡 represent the passive rule defined by Equation (3) and the active rule defined by 
Equation (4). Namely, for the passive rule, 𝑓𝑓(0, 0, 0) =  𝑎𝑎0 , 𝑓𝑓(0, 0, 1) =  𝑎𝑎1 , 𝑓𝑓(0, 1, 0) =
 𝑎𝑎2 , 𝑓𝑓(0, 1, 1) =  𝑎𝑎3 , 𝑓𝑓(1, 0, 0) =  𝑎𝑎4 , 𝑓𝑓(1, 0, 1) =  𝑎𝑎5 , 𝑓𝑓(1, 1, 0) =  𝑎𝑎6 , 𝑓𝑓(1, 1, 1) =  𝑎𝑎7 . For 
the active rule, 𝑔𝑔𝑖𝑖𝑡𝑡(0, 0, 0) =  𝑒𝑒𝑖𝑖,0𝑡𝑡 , 𝑔𝑔𝑖𝑖𝑡𝑡(0, 0, 1) =  𝑒𝑒𝑖𝑖,1𝑡𝑡 , 𝑔𝑔𝑖𝑖𝑡𝑡(0, 1, 0) =  𝑒𝑒𝑖𝑖,2𝑡𝑡 , 𝑔𝑔𝑖𝑖𝑡𝑡(0, 1, 1) =  𝑒𝑒𝑖𝑖,3𝑡𝑡 , 
𝑔𝑔𝑖𝑖𝑡𝑡(1, 0, 0) =  𝑒𝑒𝑖𝑖,4𝑡𝑡 , 𝑔𝑔𝑖𝑖𝑡𝑡(1, 0, 1) =  𝑒𝑒𝑖𝑖,5𝑡𝑡 , 𝑔𝑔𝑖𝑖𝑡𝑡(1, 1, 0) =  𝑒𝑒𝑖𝑖,6𝑡𝑡 , 𝑔𝑔𝑖𝑖𝑡𝑡(1, 1, 1) =  𝑒𝑒𝑖𝑖,7𝑡𝑡 . 

Finally, the active rule is updated by the following procedure. The condition of up-
dating the active rule is divided into three cases, depending on the updating of the state 
of the cell. For the first case, if the state of the cell is updated by following Equation (7), 
the active rule is not updated, and that implies 

𝑒𝑒𝑖𝑖,𝑘𝑘𝑡𝑡+1 =  𝑒𝑒𝑖𝑖,𝑘𝑘𝑡𝑡       (𝑘𝑘 = 0,⋯ ,7).  (11) 

For the second case, if the state of the cell is updated by Eq.-(8) and (9), the active rule 
is updated by 

𝑒𝑒𝑖𝑖,𝑘𝑘𝑡𝑡+1  =  �
 𝑎𝑎0   (𝑘𝑘 = 𝑚𝑚)
 𝑒𝑒𝑖𝑖,𝑘𝑘𝑡𝑡   (𝑘𝑘 ≠ 𝑚𝑚) , (12) 

where 𝑚𝑚 = 4 ∙ 𝑐𝑐𝑖𝑖−1(𝑡𝑡) + 2 ∙ 𝑐𝑐𝑖𝑖(𝑡𝑡) + 𝑐𝑐𝑖𝑖+1(𝑡𝑡) . It implies that the value corresponding to the 
neighborhood at the 𝑡𝑡 –th step is replaced by 𝑎𝑎0 that is defined in the passive rule. Equa-
tion (12) plays a role in initializing the active rule. For the third case, if the state of the cell 
is updated by Equation (10), the active rule is updated by 

𝑒𝑒𝑖𝑖,𝑘𝑘𝑡𝑡+1  =  �
 𝑐𝑐𝑖𝑖(𝑡𝑡 + 1)   (𝑘𝑘 = 𝑚𝑚)

𝑒𝑒𝑖𝑖,𝑘𝑘𝑡𝑡    (𝑘𝑘 ≠ 𝑚𝑚)   .  (13) 

While each cell has both the passive and the active rules, they are tuned with each 
other in the form of Equation (13). Since Equation (13) invalidates the difference between 
the passive and active rules, the positive active/passive antinomy which contains both 
active and passive updating is weakened, and that also implies the negative active/passive 
antinomy. That tuning between the passive and the active rules is illustrated as shown in 
Figure 3. In Figure 3, any cell has the same active rule whose rule number is rule 22. Since 
the configuration of squares (cells) in vertical direction represents time, it is easy to see 
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that the configuration of the active rule in Figure 3 represents the local order in the neigh-
borhood such as 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 − 1) > 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) < 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 + 1). The passive rule of the sixth cell in 
Figure 3 is also rule 22, and is illustrated for three cases,  𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 − 1) > 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) >
𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 + 1) , 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 − 1) < 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) < 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 + 1) , and  𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 − 1) < 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖) >
𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖 + 1). For the sixth cell in Figure 3, 𝑐𝑐𝑖𝑖(𝑡𝑡 + 1) = 1 and 𝑐𝑐𝑖𝑖−1(𝑡𝑡) = 0, 𝑐𝑐𝑖𝑖(𝑡𝑡) = 0, 𝑐𝑐𝑖𝑖+1(𝑡𝑡) =
0, and then the active rule is updated by the following: 𝑒𝑒𝑖𝑖,0𝑡𝑡+1  =  𝑐𝑐𝑖𝑖(𝑡𝑡 + 1)  = 1 (0 = 4 ∙
𝑐𝑐𝑖𝑖−1(𝑡𝑡) + 2 ∙ 𝑐𝑐𝑖𝑖(𝑡𝑡) + 𝑐𝑐𝑖𝑖+1(𝑡𝑡) ). The result of the tuning is drawn by red squares in the rewrite 
active rule in Figure 3. 

 
Figure 3. Schematic diagram of the adjustment of the passive and active rules. The above layer shows that each cell has 
both active and passive rules. The middle layer shows that the transition is based on the update order. The first active rule 
(A rule) is applied to the cell, and the passive rule (P rule) is applied. The bottom layer shows how the results of the 
application of the passive rule are interpreted as the application of the active rule, and that leads to the update of the active 
rule. 

Figure 4 shows the procedure of simulating asynchronously tuned automata. Alt-
hough it looks so complicated compared to synchronous cellular automata, it reveals just 
perpetual adjustment between the passive and active rules. 
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Figure 4. Algorithm for the asynchronously tuned automata. 

Figure 5 shows some examples of patterns generated by asynchronously tuned cellular 
automata (AT-ECA). Each pair of squares shows a pattern generated by AT-ECA (left) and a 
pattern generated by synchronous ECA (right), where the passive rule of AT-ECA is the same 
as the rule of synchronous ECA, which is represented by the accompanying number. Due to 
the common rule number, one can say that the procedure of asynchronous tuning is applied 
to ECA. For the top left pair in Figure 5, the procedure of asynchronous tuning is applied to 
rule 22 of ECA. It is easy to see that asynchronous tuning lets the ECA exhibit class 4 like 
behavior, whether the original synchronous ECA are class 1, 2, or 3. Due to asynchronous 
tuning, the class 3 chaotic pattern generated by rule 22 shows a cluster-like pattern, and the 
class 2 local periodic pattern generated by rule 156 or 62 also shows a cluster-like pattern. Even 
if the original synchronous ECA shows the class 1 homogeneous pattern, asynchronous tun-
ing changes the behavior to the cluster-like pattern. 

 
Figure 5. Pattern generated by AT-ECA (left) and synchronous ECA (right). The number represents the rule number of 
the passive rule of AT-ECA and the rule number of synchronous ECA. 
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We previously examined the behavior of all AT-ECA, 256 rules [25,26]. It is found 
that the behaviors of many ECA are changed from class 1, 2, and 3 to class 4. Although 
there is no order parameter controlling the phase from class 1, 2, 3, and 4, all ECA rules 
can be arranged in an ECA rule space, with respect to whether chaotic behavior appears 
or not. It leads to the phase transition from the order pattern (class 1 or 2) to the chaotic 
pattern (class 3) via the complex class 4 pattern. The phase transition from the order to 
chaos is similar to the phase transition from the solid phase (order) to the liquid (chaos) 
phase in H2O. Both transitions contain the critical phenomenon showing the intermediate 
state of order and chaos. Even in ECA, one can find class 4 behavior in rule 110, showing 
the intermediate complex pattern consisting of chaos and order. Rule 110 shows a complex 
periodic pattern that is locally oscillated and sometimes fires spatially propagated solitary 
waves (called gliders). If those patterns are disturbed by perturbation, patterns show typ-
ical cluster-like patterns, of which locally stable patterns containing spatially propagating 
elements. Although it is not known that rule 110 shows an extrinsic critical character such 
as power law distribution, it is considered that rule 110 is located as the critical phenom-
enon in the phase transition from order to chaos. The critical state in the transition from 
order to chaos is sometimes called the edge of chaos. 

In terms of computability, one can see computation in patterns generated by ECA. If 
configurations of cells whose values are 1 are compared to the values in computation, it is 
considered that class 1 or 2 ECA shows a highly efficient computation since a specific 
stable pattern is rapidly obtained from random initial conditions. In contrast, it is consid-
ered that class 3 ECA shows a universal computation since various configurations can be 
obtained from the initial conditions. While an important role in computation is efficient 
and universal computation, which can be realized neither by class 1 and 2 nor by class 3 
ECA. It is known that rule 110 showing class 4 can be used as a universal Turing machine. 
Since locally periodic patterns interact with each other via the gliders, rule 110 can show 
both universal and highly efficient computation to some extent. That computability might 
be taken after by cellular automata showing cluster-like patterns. 

Those considerations can lead to schematic diagrams showing the unfolded edge of 
chaos, as shown in Figure 6. A diagram in the above center shows a schematic diagram of 
the edge of chaos found in synchronous ECA rule space. It is assumed that all 256 ECA 
rules are arranged depending on whether their generated patterns are chaos or not. In 
ECA rules located at the edge of chaos there are only four rules which are symmetric to 
rule 110 with respect to local configurations or values. Typical patterns generated by syn-
chronous ECA are shown, such that class 2 and class 1 are classified by order pattern, and 
class 3 are classified by chaos. Those synchronous ECA patterns are shown in Figure 6 
above and connected to the phase transition by thin arrows, while thick arrows represent 
the application of asynchronous tuning to synchronous ECA. As well, in Figure 5, both 
order and chaos can be replaced by cluster-like patterns corresponding to the edge of 
chaos. Two patterns connected by thick arrows have the same rule of ECA as well as the 
case of Figure 5, and i.e., if synchronous ECA is rule r, the passive rule of AT-ECA is also 
rule r. Since the application of asynchronous tuning to synchronous ECA changes gener-
ated patterns from both chaos and order to the cluster-like patterns at the edge of chaos 
for many cases, one could say that the edge of chaos is unfolded by asynchronous tuning, 
as shown in Figure 6. 
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Figure 6. Unfolded edge of chaos by asynchronous tuning. 

Not only patterns, but the power law distribution of the temporal decay of the den-
sity and of the power spectrum is estimated for AT-ECA. It is found that the pattern gen-
erated by AT-ECA shows the power law distribution of the decay of the density of state-
1, and that the exponent of the power law is close to the exponent found at the critical 
point in the phase transition of the directed percolation. It is also found that the time series 
of decimal expression for the binary sequence generated by AT-ECA shows, what is called, 
1/f noise. Those results directly support that AT-ECA shows critical behavior or behaviors 
found at the edge of chaos. In that sense, one can justify the idea of unfolding edge of 
chaos of which the critical phenomenon found only at the narrow area of the critical point 
in synchronous ECA can be unfolded in the rule space of ECA and the critical behaviors 
are ubiquitously found in the rule space. 

The idea of the “unfolding edge of chaos” could explore the idea of criticality. Not 
only ECA but dynamic systems show the edge of chaos in the phase transition in which 
there is a very narrow region showing criticality, and that is generalized in the world of 
natural systems. Since most biological systems are interpreted as systems adapted to their 
own environments to some extent, they are regarded as systems at the edge of chaos. The 
next question arises, how do rare systems at the critical point become ubiquitously found 
in biological systems. Most researchers think that the solution is natural selection, and that 
tuning toward the criticality is driven by natural selection. That idea leads to the idea of 
self-organized criticality. Although self-organized criticality could explain the reason why 
the critical state is ubiquitously found in the natural world, the fitness under the environ-
ments is required to define self-organized criticality, and that evokes the role of natural 
selection too much. The idea of unfolding the edge of chaos implies that critical phenom-
ena are ubiquitously found without severe selection. 

To understand the role of the unfolding edge of chaos, it is necessary to examine the 
computability of AT-ECA. We propose the measure of universality and efficiency of com-
putability of ECA and compare the measurements obtained by synchronous ECA with 
that by asynchronous ECA. We here examine that measure obtained by AT-ECA. 

3. Computability of AT-ECA 
The computability of AT-ECA is measured with respect to the following computa-

tional universality and computational efficiency [28]. First, computational universality is 



Entropy 2021, 23, 1376 10 of 14 
 

defined by the following. Given 2n all possible initial states with random boundary con-
ditions, the computational universality of rule r, U(r), is defined by 

 𝑆𝑆𝑅𝑅(𝑂𝑂) =  { 𝐺𝐺(𝑓𝑓𝑟𝑟𝑇𝑇)(𝑐𝑐0, 𝑐𝑐1, … , 𝑐𝑐𝑛𝑛+1)∈𝐁𝐁𝑛𝑛| (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛)∈ 𝐁𝐁𝑛𝑛, (𝑐𝑐0, 𝑐𝑐𝑛𝑛+1)∈𝐑𝐑(𝐁𝐁2)}  (14) 

𝑈𝑈(𝑂𝑂)  =  #𝑆𝑆𝑅𝑅(𝑂𝑂) (15) 

𝑈𝑈𝑁𝑁(𝑂𝑂) =
𝑈𝑈(𝑂𝑂)

2𝑛𝑛
 (16) 

where for a set 𝑆𝑆, #𝑆𝑆 represents the cardinality of a set 𝑆𝑆, 𝐑𝐑(𝐁𝐁2) represents one element 
set randomly determined from 𝐁𝐁2 , superscript 𝑇𝑇 represents 𝑇𝑇 numbers iteration of a 
transition rule 𝑓𝑓𝑟𝑟 . If 𝑛𝑛 = 3 , then 𝑈𝑈(0)  =  #{(0, 0, 0)}  =  1 , and 𝑈𝑈(204)  =
#{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}＝8. 𝑈𝑈𝑁𝑁(𝑂𝑂) repre-
sents the normalized computational universality. Here, we call elements of a set, 𝑆𝑆𝑅𝑅(𝑂𝑂), 
reachable states or possible goals. 

Next, we define the computational efficiency of a transition rule 𝑂𝑂. To separate from 
the computational universality, the computational efficiency is expressed by the average 
time to reach the reachable states. For each reachable state 𝑋𝑋∈𝑆𝑆𝑅𝑅(𝑂𝑂), the average time to 
reach X is represented by τ𝑟𝑟(𝑋𝑋) is expressed as 

 τ𝑟𝑟(𝑋𝑋) =  � 𝑇𝑇(𝐺𝐺(𝑓𝑓𝑟𝑟𝑇𝑇
𝑌𝑌∈𝐁𝐁∗

)(𝑌𝑌) = 𝑋𝑋) (17) 

where 𝐁𝐁 ∗ =  𝐁𝐁𝑛𝑛×𝐑𝐑(𝐁𝐁2), 𝑇𝑇(𝐺𝐺(𝑓𝑓𝑟𝑟𝑇𝑇)(𝑌𝑌) = 𝑋𝑋) implies time 𝑇𝑇 such that 𝐺𝐺(𝑓𝑓𝑟𝑟𝑇𝑇)(𝑌𝑌) = 𝑋𝑋. Ad-
ditionally, if 𝐺𝐺(𝑓𝑓𝑟𝑟𝑇𝑇)(𝑌𝑌) = 𝑋𝑋 is not obtained within 2𝑛𝑛 time steps, then 𝑇𝑇(𝐺𝐺(𝑓𝑓𝑟𝑟𝑇𝑇)(𝑌𝑌) = 𝑋𝑋) 
is a constant value, 𝑇𝑇θ. For the case of R204 in which any initial condition is not changed 
by the transition, 𝐺𝐺(𝑓𝑓𝑟𝑟)(𝑌𝑌) = 𝑌𝑌  with 𝑇𝑇 = 1 and then for any 𝑋𝑋∈𝑆𝑆𝑅𝑅(𝑂𝑂) , τ𝑟𝑟(𝑋𝑋) = (1 +
𝑇𝑇θ (#𝐁𝐁 ∗  −1)), since any initial condition except for 𝑋𝑋 cannot reach the goal 𝑋𝑋. The com-
putational efficiency is defined by 

𝐸𝐸(𝑂𝑂) =  �
τ𝑟𝑟(𝑋𝑋)

#𝑆𝑆𝑅𝑅(𝑂𝑂)
𝑋𝑋∈𝑆𝑆𝑅𝑅(𝑟𝑟)

 (18) 

Since 𝐸𝐸(𝑂𝑂) is the average time to reach the reachable state, the smaller 𝐸𝐸(𝑂𝑂) is, the 
more efficient ECA 𝑂𝑂 is. By using that computational universality and computational ef-
ficiency, we here examine the computability of AT-ECA. 

It is easy to imagine that computational universality trades off with computational 
efficiency. Conrad previously claimed that molecular computing shows the tradeoff be-
tween computational universality and efficiency. We previously visualized the tradeoff 
between computational universality and efficiency in synchronous ECA, the step function 
outputting the discretized computational efficiency for the semi-interval in the interval 
[1,255] representing the range of the computational universality. That interval is divided 
into 𝑚𝑚 semi-intervals, and the 𝑘𝑘-th semi-interval is represented by �𝑘𝑘−1

𝑚𝑚
, 𝑘𝑘
𝑚𝑚
�. For the 𝑘𝑘-th 

interval, the discretized computational efficiency is defined by 
𝐸𝐸MIN(𝑘𝑘)  =  min{𝐸𝐸(𝑂𝑂) | 𝑈𝑈𝑁𝑁(𝑂𝑂)  ∈  Int𝑘𝑘},    if  𝑈𝑈𝑁𝑁(𝑂𝑂) exists in  Int𝑘𝑘; 

min{𝐸𝐸(𝑂𝑂)|𝑈𝑈𝑁𝑁(𝑂𝑂) ∈  Int𝑗𝑗 ,   𝑗𝑗 > 𝑘𝑘},   otherwise.  (19) 

Figure 7 shows the computational efficiency, 𝐸𝐸(𝑂𝑂), plotted against the computational 
universality, 𝑈𝑈(𝑂𝑂), for synchronous ECA, AT_ECA, and asynchronous ECA. The 𝐸𝐸(𝑂𝑂) 
plotted against 𝑈𝑈(𝑂𝑂) for synchronous ECA is expressed as a function defined by Equation 
(19). Since all semi-intervals do not contain the point 𝐸𝐸(𝑂𝑂) plotted against 𝑈𝑈(𝑂𝑂) and if the 
semi-interval has no point then 𝐸𝐸MIN(𝑘𝑘) is assigned by the minimum 𝐸𝐸(𝑂𝑂) in larger semi-
intervals, 𝐸𝐸MIN(𝑘𝑘) is expressed as a step function. Step functions in Figures 7A and B re-
veal 𝐸𝐸MIN(𝑘𝑘) for synchronous ECA. That function implies that the computational effi-
ciency is realized at most in each semi-interval and that the monotonous implies the 
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tradeoff between computational universality and computational efficiency in synchro-
nous ECA. 

 
Figure 7. Comparison between computability of AT-ECA and synchronous ECA. Each circle represents the mean time to 
the possible goal (reachable state) plotted against universality. (A): Computability of AT_ECA. (B): Computability of syn-
chronous ECA. 

Circles plotted in Figure 7A show 𝐸𝐸(𝑂𝑂) plotted against 𝑈𝑈(𝑂𝑂) for AT-ECA, where 
only 𝐸𝐸(𝑂𝑂) that is smaller than the step function 𝐸𝐸MIN(𝑘𝑘) for synchronous ECA is repre-
sented by a circle. Since plotted circles show more efficient computation rather than syn-
chronous ECA as far as the computational universality is almost the same, we here say for 
the situation, that the tradeoff of synchronous ECA is broken. Each circle represents AT-
ECA whose passive rule is assigned by a rule, r. Although there are a possible 256 circles, 
some circles are hidden in the area upper than 𝐸𝐸MIN(𝑘𝑘). It is clear to see that about 70% of 
all rules break the tradeoff found in synchronous ECA. Figure 7B shows 𝐸𝐸(𝑂𝑂) plotted 
against 𝑈𝑈(𝑂𝑂) for asynchronous ECA. While asynchronous updating is variously imple-
mented, it is implemented by introducing the probability controlling updating a transition 
rule such that 

  𝑐𝑐𝑖𝑖𝑡𝑡+1 =  𝑓𝑓𝑟𝑟(𝑐𝑐𝑖𝑖−1𝑡𝑡 , 𝑐𝑐𝑖𝑖𝑡𝑡 , 𝑐𝑐𝑖𝑖+1𝑡𝑡 )   with 1 − 𝑝𝑝; 

𝑐𝑐𝑖𝑖𝑡𝑡 , with 𝑝𝑝.  
(20) 

Figure 7B is obtained for the condition such that 𝑝𝑝 = 0.25. However asynchronous 
ECA also breaks the tradeoff of synchronous ECA, as fewer rules break the tradeoff com-
pared to AT-ECA. 

We here compare the break by AT-ECA with that by asynchronous ECA, as shown 
in Figure 8. Figure 8A shows the frequency distribution for the mean deviation from the 
tradeoff. For each 𝑂𝑂, the deviation from the tradeoff is obtained by 𝐸𝐸MIN(𝑘𝑘) − 𝐸𝐸(𝑂𝑂) with 
𝑈𝑈𝑁𝑁(𝑂𝑂) ∈  Int𝑘𝑘, and for each 𝑘𝑘, the deviations in Int𝑘𝑘 are averaged. The frequency distri-
bution of the deviation for asynchronous ECA is represented by yellow histograms and 
that for AT-ECA is represented by dark blue histograms. Asynchronous ECA is estimated 
for 𝑝𝑝 = 0.25 in which more rules break the tradeoff rather than any other parameters. It 
is clear to see that AT-ECA breaks the tradeoff of synchronous ECA larger than asynchro-
nous ECA with 𝑝𝑝 = 0.25. Figure 8B shows the normalized number of rules breaking the 
tradeoff of synchronous ECA. The left twenty bars represent the normalized number of 
rule breaking the tradeoff for asynchronous ECA, with the parameter from 0.05 to 1.0 for 



Entropy 2021, 23, 1376 12 of 14 
 

each 0.05. Bars are arranged in order of size. The largest bar shows about 0.5. The normal-
ized number of rules breaking the tradeoff for AT-ECA is shown at the right end in Figure 
8B. Compared to asynchronous ECA, the normalized number for AT-ECA is much larger 
than that for asynchronous ECA. With respect to both deviation from the tradeoff and the 
normalized number of rules breaking the tradeoff, AT-ECA breaks the tradeoff much 
more rather than asynchronous ECA. It implies that AT-ECA has more computability ra-
ther than simple asynchronous ECA. 

Although it is known that computing based on asynchronous updating is different 
from that on synchronous updating, they were studied as independently separated. As 
well as the relationship between thermodynamics and statistical mechanics, the attempt 
to spell out the relation between them in ECA should be pursued. We here first examine 
the relationship between asynchronous and synchronous updating with respect to the 
passive and active updating that is defined order of updating. Synchronous updating is 
described as a specific updating in the form of passive updating that is assumed to be 
equal to active updating. Instead of simple equality between passive and active updating, 
we here implement the traumatic structure of the passive and active, of which both the 
passive and active updating is accepted (positive antinomy) on one hand, and neither the 
passive nor active updating is also accepted (negative antinomy) on the other hand. To 
implement the traumatic structure, perpetual change of the order of updating is required, 
and that makes each cell update rules both actively and passively (positive antinomy). 
Simultaneously, the passive and the active are implemented as the form of the local tran-
sition rule. Since the passive rule has universality actively dominating all cells and the 
active rule has passively changed dependent on local configuration, the negative an-
tinomy that is expressed as neither passive nor active is also implemented. In that sense, 
the traumatic structure is implemented in ECA, and that requires perpetual changing of 
the order of updating. That is the implementation of the inevitable dissipative structure 
in ECA. That leads to AT-ECA. 

 
Figure 8. Breaks of the tradeoff in AT-ECA and asynchronous ECA. (A): Frequency distribution of the mean deviation 
from the tradeoff, for AT-ECA (dark blue) and asynchronous ECA (yellow). (B): The normalized number of rules breaking 
the tradeoff for asynchronous ECA and AT-ECA (represented by Asyn-Tuned). 

Due to the traumatic structure, each cell uses both passive rule and active rules in 
tuning the relation between them. It results in time development tuning synchronous and 
asynchronous updating. Via that tuning, randomness is perpetually supplied to change 
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the order of updating, and that implements inevitable dissipative structure. AT-ECA 
shows the critical property found in the phase transition from chaos to order. Since apply-
ing the asynchronous tuning to ECA leads to the behavior of the edge of chaos, it is easy 
to implement the edge of chaos. Since either synchronous or asynchronous updating is 
artificial, tuning between synchronous and asynchronous ECA which looks more natural 
could show the aspect of natural phenomena. In that sense, the notion of the unfolded 
edge of chaos plays a significant role in complex systems. 

In particular, we estimate the computability of AT-ECA in a term of the quantitative 
measure of computational universality and computational efficiency. While all ECA sys-
tems, synchronous ECA, asynchronous ECA, and AT-ECA show the tradeoff between the 
computational universality and efficiency, AT-ECA reveals much more efficiency as far 
as the computational universality of AT-ECA is as same as those of synchronous ECA and 
asynchronous ECA. It implies that AT-ECA breaks the tradeoff of synchronous and asyn-
chronous ECA. That shows that unfolded edge of chaos generated by AT-ECA carries 
high performance with respect to computability. 

Recently it is well known that the recurrent neural network can be replaced by neural 
networks containing the reservoir [29]. In particular, there are some attempts in which the 
reservoir is implemented by cellular automata [30]. Since the reservoir is not a simple 
thermal pool, the reservoir must play a role in both regulating and disturbing input pat-
terns, such as the edge of chaos. It is expected that a highly efficient and robust reservoir 
can be realized by AT-ECA. 

4. Conclusions 
We here propose elementary cellular automata taking after the idea of dissipative 

structure with respect to the updating mechanism. By introducing active and passive up-
dating in a term of the order of updating and non-locality, synchronous updating is de-
fined as an extreme updating of which the passive updating is equivalent to the active one. 
In contrast, a natural perturbed system is defined by asynchronously tuned elementary 
cellular automata (AT-ECA) of which both passive and active updating are accepted with 
respect to the order of updating and neither passive nor active updating is accepted with 
respect to non-locality. We here call such a paradoxical structure the traumatic structure 
and claim that the traumatic structure takes after the idea of dissipative structure. 

Since AT-ECA shows the critical property of the power law and complex cluster-like 
patterns featuring both locally periodic and chaotic interaction, it can be said that they 
mimic the behavior of cellular automata at the edge of chaos. Application of the device of 
asynchronous tuning to ECA leads to such behaviors, we call the property like the edge 
of chaos ubiquitously found “unfolded edge of chaos”. In particular, we examine the com-
putational power of AT-ECA with respect to computational universality and computa-
tional efficiency. The result shows that AT-ECA or unfolded edge of chaos has much more 
highly efficient computational power for the same computational universality rather than 
synchronous and asynchronous ECA. 
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